Lista 1 B - CE003 - semestre 2010-1 - Prof. Elias
- Assinale verdadeiro (V) ou falso (F) às afirmações a seguir:
- Denomina-se variável aleatória à função com domínio o espaço amostral de
um experimento aleatório e imagem um conjunto χ onde χ
ℜ
- Da definição anterior, se χ = ℜ então a variável aleatória é discreta
- Da definição no ítem a), se χ é um conjunto finito ou infinito enumerável, então a
variável aleatória é discreta
- Seja pi = P(X = xi), onde X é uma variável aleatória discreta e xi é um valor
possível de X, então 0 ≤ pi ≤ 1
- Do ítem anterior 0 ≤∑
i=1np
i ≤ 1, onde n é o número de valores possíveis de X
- E(X) = ∑
i=1np
i, se X é uma variável aleatória discreta
- E(h(X)) = ∑
i=1nh(x
i)pi, se X é uma variável aleatória discreta
- V (X) = ∑
i=1nx
i2p
i, se X é uma variável aleatória discreta
- V (X) = ∑
i=1nx
i2p
i - E(X)2, se X é uma variável aleatória discreta
- Se E(X) = a então E(bX) = ab, com a e b constantes
- Se V (X) = a então V (bX) = ab, com a e b constantes
- Se V (X) = a então V (b + X) = ab, com a e b constantes
- Se V (X) = a então V (b + X) = a, com a e b constantes
- O tempo T, em minutos, necessário para um operário processar uma peça é uma v. a. com a
seguinte distribuição de probabilidade
|
|
|
|
|
|
|
t | 2 | 3 | 4 | 5 | 6 | 7 |
|
|
|
|
|
|
|
p(t) | 0,1 | 0,1 | 0,3 | 0,2 | 0,2 | 0,1 |
|
|
|
|
|
|
|
|
- Calcule o tempo médio de processamento
- Calcule a variância e o desvio-padrão do tempo de processamento
- Considere t10 a v. a. tempo de processamento de 10 peças. Encontre a média,
variância e o desvio-padrão de t10.
- No ítem anterior, suponha que para cada peça processada, o operário ganha um fixo de $2,00,
mas, se ele processar a peça em menos de seis minutos, ganha $0,50 em cada minuto poupado.
Por exemplo, se ele processa a peça em quatro minutos, recebe a quantia adicional de
$1,00.
- Encontre a distribuição do ganho do operário por peça
- Encontre a média, variância e o desvio padrão dessa distribuição
- Qual é a probabilidade do operário ganhar mais de $2,00 por peça?
- Das variáveis abaixo descritas, assinale quais são binomiais, e para essas dê parâmetros (n e p).
Quando julgar que a variável não é binomial, aponte as razões de sua conclusão.
- De uma urna com dez bolas brancas e 20 pretas, vamos extrair, com reposição, cinco
bolas. X é o número de bolas brancas nas cinco extrações
- Refaça o problema anterior, mas desta vez as n extrações são sem reposição
- Temos cinco urnas com bolas pretas e brancas e vamos extrair uma bola de cada
urna. Suponha que X seja o número de bolas brancas obtidas no final
- Vamos realizar uma pesquisa em dez cidades brasileiras, escolhendo ao acaso um
habitante de cada uma delas e classificando-o em pró ou contra um certo projeto
federal. Suponha que X seja o número de indivíduos contra o projeto no final da
pesquisa
- Em uma indústria existem 100 máquinas que fabricam determinada peça. Cada peça
é classificada coo boa ou defeituosa. Escolhemos ao acaso um instante de tempo e
verificamos uma peça de cada uma das máquinas. Suponha que X seja o número de
peças defeituosas.
- Se X ~ binomial(n,p), sabendo-se que E(X) = 12 e σ2 = 3, determinar:
- n
- p
- P(X < 12)
- P(X ≥ 14)
- E(X) e V ar(Z), onde Z = (X - 12)∕
3)
- P(Y ≥ 14∕16), onde Y = X∕n
- P(Y ≥ 12∕16), onde Y = X∕n
- Em cada situação, indique qual modelo você usaria para a variável aleatória em
questão.
- Número de pessoas na fila de um banco
- Número de peças com defeito num lote de 100 peças
- Número de peças produzidas por uma máquina até ser produzida uma peça
defeituosa
- Número de bolas brancas extraidas de uma urna contendo 10 bolas brancas e 30
bolas vermelhas
- Número de erros de digitação num livro
- Número de filhos homens em uma família com 3 filhos
- Numa equipe de 30 homens e 20 mulheres escolhe-se ao acaso 5 pessoas para formar
uma comissão e conta-se o número de mulheres na comissão
- Numa planilha de cadastros há milhares de cadastros de clientes do tipo A e do tipo
B. Seleciona-se ao acaso uma amostra de 30 clientes. Conta-se o número de clientes
do tipo A selecionados.
- Numa fila de banco há n pessoas. Um funcionário verifica se cada pessoa da fila
pode fazer os serviços no caixa automático, sem necessidade de permanecer na fila.
Conta-se o número de pessoas abordadas até encontrar a primeira que não necessita
ficar na fila.
- Após percorrer toda a fila do ítem anterior, conta-se o número de pessoas que não
necessitavam estar na fila.
- A argamassa projetada é um material utilizado para a proteção térmica de
estruturas de aço. Numa obra foram utilizados 15 toneladas e a cada tonelada
retirou-se uma amostra de 1kg para inspeção. Conta-se o número de amostras com
densidade seca média menor que a especificada.
- Na manufatura de um certo artigo, é sabido que um entre dez dos artigos é defeituoso. Qual a
probabilidade de que uma amostra casual de tamanho quatro contenha:
- nenhum defeituoso?
- exatamente um defeituoso?
- exatamente dois defeituosos?
- não mais do que dois defeituosos?
- todos defeituosos?
- Considere que no ítem anterior a amostra de 4 artigos é retirada de uma caixa com 20 artigos,
dos quais 5 artigos são defeituosos e 15 perfeitos, e refaça os cálculos.
- Houve uma certa denúncia por parte dos operários de uma indústria de que, toda vez que
ocorria um acidente em uma seção da indústria, ocorriam outros em outras seções mais ou
menos no mesmo horário. Em outras palavras, os acidentes não estavam ocorrendo ao acaso.
Para verifica essa hipótese, foi feita uma contagem do número de acidentes por hora durante um
certo número de dias (24 horas por dia). Os resultados da pesquisa estão no quadro
abaixo:
|
|
|
|
|
|
|
|
|
|
N0 de acidentes por hora | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|
|
|
|
|
|
|
|
|
|
Número de horas | 200 | 152 | 60 | 30 | 13 | 9 | 7 | 5 | 4 |
|
|
|
|
|
|
|
|
|
|
|
- Calcule o número de acidentes por hora nessa amostra
- Se o número de acidentes por hora seguisse uma distribuição de poisson, com média
igual à que você calculou, qual seria o número esperado de dias com 0, 1, 2, ..., 8
acidentes?
- Os dados revelam que a suspeita dos operários é verdadeira? (sugestão: faça o gráfico
do número de horas observado versus o número de acidentes por hora. Sobreponha
com os números esperados calculados no ítem anterior versus o número de acidentes
por hora.)
- O número de petroleiros que chegam a uma refinaria em cada dia ocorre segundo uma
distribuição de Poisson, com λ = 2. As atuais instalações podem atender, no máximo, a três
petroleiros por dia. Se mais de três aportarem num dia, o excesso é enviado a outro
porto.
- Em um dia, qual a probabilidade de se enviar petroleiros para outro porto?
- De quanto deverão ser aumentadas as instalações para permitir a todos os navios
que chegarem pelo menos em 95% dos dias?
- Qual o número médio de petroleiros que chegam por dia?