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Space-time modeling

I spatial process that evolves over time

x = {x11, ..., xn1, x12, ..., xnT}

I model the entire x at once

I Simplest way: Separable precision/covariance
I take a two-dimensional model for space
I take a univariate model for time
I ’combine it’ (next slide example)

I Another way:
I non-separable precision/covariance
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Vector AR(1) process

I x = {x11, ..., xn1, x12, ..., xnT}
I vector AR(1) process: x t = {x1t , ..., xnt}

x t = ρx t−1 + ωt

I ωt : correlated error innovation every time

ωt
i.i.d.∼ N(0,Q−1),

I ρ: temporal correlation

I space-time: when ωt follows some spatial model
I a AR(1) process for every time series
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From [Cameletti et al., 2012]



Kronecker product models

I x = {x11, ..., xn1, x12, ..., xnT}
I assume

π(x) ∝ (|Q1⊗Q2|∗)1/2 exp
(
−1
2
xT{Q1⊗Q2}x

)
I dim(Q1⊗Q2) = nT

I |.|∗ is the generalized determinant (if needed),
[Riebler et al., 2012]

I a separable space-time in R-INLA

f(spatial, ### index for space
model=a.spatial.model,
group=time, ### index for time
control.group=list(model=a.one.dim.model))
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Spacetime interactions

I kronecker product models follows Clayton’s rule
I combine Q1 and Q2 available
I WARNING: if Q1 or Q2 is from an intrinsic model

I Q1 and/or Q2 have rank deficiency
I warning care when main effects are in the model

I the described dynamic model is type IV and uses Q2 as AR(1)



Separable SPDE model in INLA

I Define the spatial SPDE model
I set a mesh, define the SPDE

I Define the temporal model
I Discrete time [Cameletti et al., 2012]

I simple AR(1) evolution

I Continuous time domain [Lindgren and Rue, 2015]
I Eg. AR(1) on coefficients for 2nd order B-splines
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On time knots

from [Lindgren and Rue, 2015]
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A non-separable example



The (linear) measurement equation
I Consider

y it = F
′
itβ + Ai(t)x t + εit

I F t is a matrix of covariates
I β are the fixed effects
I A(t) picks out the appropriate values of x t

I εt
i.i.d.∼ N(0, σ2I )

I vector AR(1) process for x

x t = ρx t−1 + ωt

I ωt : spatial SPDE model

ωt
i.i.d.∼ N(0,Q−1),

I ρ is the time correlation
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PM-10 concentration in Piemonte, Italy

Cameletti et al. (2011), on r-inla.org
I 24 monitoring stations
I Daily data from 10/05 to 03/06

r-inla.org


Space model part

I Make the mesh
mesh <- inla.mesh.2d(points =NULL,

points.domain=borders,
offset=c(20, 140),
max.edge=c(30, 100))

I Make the latent model
spde <- inla.spde2.pcmatern(

mesh=mesh, alpha=2, ## mesh and smoothness
prior.range = c(30, 0.01), ## P(range<30)=0.01
prior.sigma = c(0.8, 0.01)) ## P(sigma>0.7)=0.01



Using the group feature

I Construct a kronecker product model using the group feature
formula = y ~ -1 + intercept + WS + HMIX + ... +

f(field, model=spde,
group =time,
control.group=list(model="ar1")

)

I This tells INLA that the observations are grouped in a certain
way.

I control.group contains the grouping model (ar1,
exchangable, rw1, and others) as well as their prior
specifications.



Make an A matrix

I Use the group argument
LocationMatrix = inla.spde.make.A(mesh = mesh,

loc =dataLoc, group=time, n.group=nT)

I data locations in all group=time level
I builds an A matrix in an appropriate way



Organising the data

Covariates at the data points, but the latent field only defined their
through the A matrix

We need to make sure that A only applies to the random effect.

idx.set <- inla.spde.make.index("mesh.idx",n.field=nmesh,
n.group=T)

stack = inla.stack( data = dat,
A = list(1, LocationMatrix),
effects = list( list(WS = cov$WS,...),

c(idx.set,
list(intercept=rep(1,mesh$n*nT)))

)
)



Separable SPDE model (remark)

A spacetime process z(s, t), evolving like

(1− γt
∂

∂t
)αtz(s, t) = γ

−1/2
s E(s, t) (1)

(1− γE4)αE/2E(s, δt) = WE(s, δt) (2)

where
I E(s, t) is a spatially correlated process
I WE is an unit variance spacetime white noise

is a separable space-time process



Space time heat equation

A spacetime process z(s, t), evolving like

(γt
∂

∂t
−4)αtz(s, t) = γ

−1/2
s E(s, t) (3)
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