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Outline

Changing the hyperprior in the R-package INLA

Which prior should we choose?

A new concept: Penalised complexity priors



Changing the prior: Internal scale

• Hyperparameters are represented internally with more
well-behaved transformations, e.g. correlation ρ and precision
τ are internally represented as

θ1 = log(τ)

θ2 = log

(
1+ ρ

1− ρ

)
• The prior must be set on the parameter in internal scale
• Initial values for the mode-search must be set in internal scale



Changing the prior: Code

1 hyper = list(prec = list(prior = "loggamma",
2 param = c(1, 0.1),
3 initial = 4,
4 fixed = FALSE))
5
6 formula = y ~ f(idx , model = "iid", hyper = hyper) + ...

1 # For the iid model , default options can be seen with
2 inla.doc("iid")



Changing the prior: Available models
Some of the available choices, see also www.r-inla.org,
• "pc.prec" ← NEW
• "gaussian"
• "loggamma"
• "flat"
• "logtgaussian"

You can get information about the paramterisation of the
loggamma prior, say, using

1 inla.doc("loggamma")

It is also possible to use your own prior (on internal scale) with
• "expression:": R expression that calculates log-prior
• "table:": Tabulated values that are interpolated

www.r-inla.org
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How to assign your own prior (table)

It is possible to provide a table of suitable support values x (internal
scale) and the corresponding log-density values y as string:

“table: x_1 ... x_n y_1 ... y_n”

1 # use suitable support points x
2 lprec = seq(-10, 10, len =100)
3
4 # link the x and corresponding y values into a string which

begins with "table :""
5 prior.table = INLA ::: inla.paste(c("table:",cbind(lprec ,
6 prior.function(lprec))))

This is consequently assigned as

1 hyper = list(prec = list(prior = prior.table))



About the choice of prior distributions

The issue of setting prior distributions on model parameters is a
difficult issue in applied Bayesian statistics, in particular for
parameters further down the model hierarchy, such as precision or
correlation parameters.

What is the current practice?

• Choose priors based on
computational convenience.
• Choose priors used in the literature

and hope to avoid criticism.
• Ignore the problem and hope that

the data will dominate the prior.
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About prior choices

Simpson, Rue, Martins, Riebler and Sørbye (2015)
“Prior selection is the fundamental issue in Bayesian statistics.
Priors are the Bayesian’s greatest tool, but they are also the
greatest point for criticism: the arbitrariness of prior selection
procedures and the lack of realistic sensitivity analysis are a serious
argument against current Bayesian practice.”

Reference:
Simpson, D. P., Rue, H., Martins, T. G., Riebler, A. and Sørbye, S. H. (2015).
Penalising model component complexity: A principled practical approach to
constructing priors. arXiv:1403.4630.



Assignment of hyperpriors

The scaling problem of model components, where the structure
matrix has not full rank, i.e intrinsic GMRFs (IGMRFs)
• Models for splines (rw1, rw2)

• The Besag-model for area/regional models (besag)
• and others...

Problem:

• These models are unscaled and their properties change with
locations/dimension/graph.

Sørbye and Rue, 2014, Spat Stat
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Illustration RW1: Marginal variance
Consider the generalised variance

σ2GV = exp

(
1
n

n∑
i=1

log

(
1
τu

[
R−1

]
ii

))
=

1
τ
exp

(
1
n

n∑
i=1

log([R−1]ii )

)

1 > rw1 (5)
2 [1,] 1 -1 . . .
3 [2,] -1 2 -1 . .
4 [3,] . -1 2 -1 .
5 [4,] . . -1 2 -1
6 [5,] . . . -1 1
7 > geom.mean(diag(ginv(rw1 (5))))
8 [1] 0.73
9 > geom.mean(diag(ginv(rw1 (50))))

10 [1] 7.55
11 > geom.mean(diag(ginv(rw1 (500))))
12 [1] 75.580



Illustration: Besag model

Arnsberg

Mittelfranken

We consider two administrative
regions:
• Mittelfranken
• Arnsberg

Both regions have 12 districts.

Can we use the same hyperpriors?



What is the issue? [Sørbye and Rue (2014), Spat Stat]

The marginal variances τ−1u [R−]ii depend on the graph structure!
Consider the generalised variance

σ2GV =
1
τu

exp

(
1
n

n∑
i=1

log
([

R−
]
ii

))

If τu = 1 we get
• σ2GV ≈ 0.40 for Arnsberg
• σ2GV ≈ 0.29 for Mittelfranken
• σ2GV ≈ 0.56 for whole Germany

A prior for τu will not mean the same thing for every problem!
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How do we scale?
In order to unify the interpretation of the prior for τu and make it
transferable, we need to scale the model so that

σ2GV =
1
τu

Now, τu is the precision of the (marginal) deviation from a constant
level, independently from the underlying graph.

Caution: This scaling issues applies to all IGMRFs!

1 formula = f(.,model="..", hyper =..., scale.model=T)

The R-package INLA contains a function to scale any singular
precision matrix R

inla.scale.model(R, ...)



How do we scale?
In order to unify the interpretation of the prior for τu and make it
transferable, we need to scale the model so that

σ2GV =
1
τu

Now, τu is the precision of the (marginal) deviation from a constant
level, independently from the underlying graph.

Caution: This scaling issues applies to all IGMRFs!

1 formula = f(.,model="..", hyper =..., scale.model=T)

The R-package INLA contains a function to scale any singular
precision matrix R

inla.scale.model(R, ...)



How to choose our parameters?

• Assume τ ∼ Gamma(a, b) where E(τ) = a/b.
• We can say something about the scale of the effect with

σ =
√

1/τ
For example:

Prob(σ > U) = α

From this we can derive parameter b, if we fix a value for a,
say.

Sørbye and Rue, 2014, Spat Stat; Papoila et al., 2014, Biom J

• This isn’t enough: Why are we using a Gamma distribution,
why not half-Cauchy . . . ?



Penalised complexity (PC) priors

Simpson et al. (2015) introduced a new concept of defining priors
that are robust, invariant to reparameterisations and principle
based.

Main idea: Occam’s razor—a principle of parsimony
Simpler model formulations should be preferred until there is
enough support for a more complex model.



Our background: R-INLA

Building models adding up model components

η = Xβ + f1(...;θ1) + f2(...;θ2) + · · ·

• Many model components represent a flexible extension of a
base model.

• Put a prior on the distance between the flexible model and the
base model.
• Important: Mode should be at a distance equal to zero.
• Transform the prior back to the parameter of interest.
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1. Principle: Occam’s razor

• Many model components represent a flexible extension of a
base model. For each model component x we define a flexible
model

f = π(x |ξ)

where ξ is interpreted as a flexibility parameter.
• f is a flexible version of a base model

g = π(x |ξ = ξ0)



Examples for base models

Case Parameter ξ Base model

IID τ (precision) ξ = 1/τ ξ = 0 (no random effect)

Student-t ν (dof) ξ = 1/ν ξ = 0 (Gaussian)

IGMRF τ (precision) ξ = 1/τ ξ = 0 (constant, line, plane)

AR1 ρ (correlation) ξ = ρ ξ = 0 (no time-dependence)

ξ = 1 (no change in time)

Correlation Q ξ = Q ξ = I (no correlation)
matrix

Side comment: In a BYM model we would have nested base models:

Base model = 0→ iid→ dependence = more flexible model
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1. Occams razor

• The prior for ξ ≥ 0 should penalise the complexity introduced
by ξ

• The prior should be decaying with increasing measure by the
complexity (the mode should be at the base model)

A prior will cause overfitting (force complexity) if, loosely,

πξ(ξ = 0) = 0
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2. Principle: Measure of complexity

Use Kullback-Leibler discrepancy to measure the increased
complexity introduced by ξ > 0,

KLD(f ‖g) =
∫

f (x) log

(
f (x)

g(x)

)
dx

for flexible model f and base model g .

Example
Assume that the flexible model f is a N (µ; 1) where µ > 0. The
base model g refers to µ = 0. Then

KLD(f ‖g) = µ2

2
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3. Principle: Constant-rate penalisation

Main idea
Assign priors to “distances” between models, instead of assigning
priors to the parameters.

• Define the (uni-directional) “distance”

d(ξ) =
√

2 KLD(ξ)

• Assign an exponential distribution to d(ξ):

π(d(ξ)) = λ exp (−λd(ξ)) , λ > 0

which has mode at d(ξ) = 0.

• Do the change-of-variables to get a prior for the parameter of
interest.
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4. Principle: User-defined scaling

• Determine λ based on some knowledge of the model
component, for example in terms of prior mass in the tail.

• A natural criterion for IGMRFs is

P(σ > U) = P

(
1√
τ
> U

)
= α

where U is an upper limit for the standard deviation and α is a
small probability.

• The scale U determines the magnitude of the effect of a model
component and how informative the prior will be.
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Example: Precision of a Gaussian

Analytic result in this case (type-2 Gumbel):

π(τ) =
θ

2
τ−3/2 exp

(
−θ/
√
τ
)
, E(τ) =∞,

where Prob(σ > U) = α gives

θ = − ln(α)

u

Alternative interpretation

π(σ) = λ exp(−λσ)
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Comparison to a gamma prior
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The parameter λ can be chosen based on P(1/
√
τb > U) = α

⇒ λ = − log(α)/U.



How to do this in INLA

Specifying the pc-prior in the f-function:

1 hyper = list(precision =
2 list(prior = "pc.prec",
3 param = c(u, alpha)))

Documentation:

1 inla.doc("pc.prec")



Disease mapping

Assume
Yi | ηi ∼ Poisson(Ei exp(ηi ))

where the log relative risk is decomposed into

ηi = µ+ ui + vi + f (ci )

• µ is the overall level (intercept).
• vi ∼ N (0, τ−1v ) represent non-spatial overdispersion.
• ui are random effects with spatial structure.
• f (ci ) denotes a non-linear covariate effect.



The spatially structured effect

To incorporate a spatial structure into a model, the so called Besag
model is often used.

p(u | κu) ∝ κ(n−1)/2u exp

−κu
2

∑
i∼j

(ui − uj)
2


= κ

(n−1)/2
u exp

(
−κu

2
uTRu

)
.

where R is called structure matrix and defined as

Rij =


ni i = j

−1 i ∼ j

0 otherwise.

Here, i ∼ j denotes that i and j are neighbouring regions.
We are in a Bayesian framework, so how do we choose priors?



Choice of prior distributions

In this model, we have three precision parameters for which we
need a prior distribution. Let us look at the precision parameter τu
of the spatially structured effect.

• The Besag model is an intrinsic Gaussian Markov random field
(IGMRF), i.e. the precision matrix has not full rank
• The model penalises local deviation from a constant level.
• The hyperprior will control this local deviation.



Disease mapping (II)

Next challenge: How should we think about the model?

Base model = 0→ iid→ dependence = more flexible model

Rewrite the model as

η = µ+ f (ci ) +
1
√
τb

(√
1− γ · vi +

√
γ · ui ∗

)
where ·∗ is a unit-variance standardised model.

• Marginal precision τb.
• γ gives it interpretation:

independence (γ = 0), maximal spatial dependence (γ = 1)
• Parameters control different features.
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PC prior for the precision parameter

To construct the prior for τb we use:

• Base model: No spatial effect, i.e Σbase(τb) = 0 (τb →∞)

• Flexible model: b = 1√
τb

(√
1− γvi +

√
γu?i
)
⇒

Σflex(τb) = τ−1b ((1− γ) I + γR−? )

so that

KLD(τb) = KLD(N (0,Σflex(τb)) | N (0,Σbase)).



PC prior for the precision parameter

• Applying all principles we get a type-2 Gumbel distribution:

π(τb) =
λ

2
τ
−3/2
b exp (−λ/

√
τb)

which has a very heavy tail (no expectation!)

Note: This prior also corresponds to an exponential prior for
the standard deviation.

• It can be shown that any prior with finite expectation shrinks
towards a complex model. ⇒ enforces complexity!
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PC prior for the mixing parameter

The PC-prior is thereby derived analogously as for the precision,
where we use:

• Base model (γ = 0): v Σbase(γ) = I

• Flexible model:
√
1− γ · v +

√
γ · u∗
⇒ Σflex(γ) = (1− γ) · I + γR−?

• The resulting prior is not a standard distribution.
• It can be defined using Pr(γ < U) = α.
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• The resulting prior is not a standard distribution.
• It can be defined using Pr(γ < U) = α.



Germany-example: The model is able to learn

We also have a covariate, which is conjectured to have a non-linear
effect ⇒ We use an independent PC prior on a spline precision.
• U = 0.2/0.31, α = 0.01 for the precision parameters
• U = 1/2, α = 2/3 for the mixing weight γ.

Results:
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Discussion: PC priors

• The new principled constructive approach to construct priors
seems very promising.

• Easy and natural interpretation as a well defined shrinkage to a
base-model
• We can chose the degree of “informativeness”
• A lot of work to integrate these ideas into R-INLA
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Ongoing work

• Work out PC-priors for more models and implement these as
new defaults in INLA.
• Reparameterize models to make them interpretable:

1 inla.doc("bym2")

• Develop a novel system for assigning priors, in which the user
only has to choose one overall scaling parameter!
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Thank you for your attention!

If you have any doubts or questions, please write us:
elias@r-inla.org
help@r-inla.org

elias@r-inla.org
help@r-inla.org
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