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I
What is INLA?

@ The short answer: INLA is a fast method to do Bayesian inference
with latent Gaussian models and INLA is an R-package that
implements this method with a flexible and simple interface.
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I
What is INLA?

@ The short answer: INLA is a fast method to do Bayesian inference
with latent Gaussian models and INLA is an R-package that
implements this method with a flexible and simple interface.

o A much longer answer:

o Is in the paper H. Rue, Martino, and Chopin (2009) Approximate
Bayesian inference for latent Gaussian models by using
integrated nested Laplace approximations. Journal of the Royal
Statistical Society: Series B. 319-392

o Or, first, read H. Rue et al. (2017) Bayesian Computing with INLA:
A Review. Annual Review of Statistics and Its Application 4, 395-421.
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Informations? http://www.r-inla.org

LA project . . .
amesroenok | BAyeSian computing with INLA !
Barrier Models
Books
Contact us, stay This site provides documentation to the R-INLA package which solves a large class of statistical models using the INLA
updated, get help or approach.
report an error
Discussion forum
Download
Examples and
tutorials
Case studies and
code from papers
N-Mixture models

Recent posts to the discussion group Recent announcements

SocoliGroup Recent Announcements
Small tutorials by
Haakon Bakka
Tutorials C Mark all as read Filters ~ Help

Congratulations!!! Genters for Disease Control and
Prevention (Atlanta, USA) awarded the paperA BAYESIAN

Volume | SPATIAL AND TEMPORAL MODELING APPROACH

Volume Il TOMAPPING GEOGRAPHIC VARIATION IN MORTALITY
FAQ m RATES FORSUBNATIONAL AREAS WITH R-INLAby ...
Help Posted 26 Jun 2013, 13:04 by Havard Rue
Internal use R-inla discussion group shared publicly Missing links There may be some missing links when the web server was
Models ——— 5 pp— moved from ntnu.no to r-inla-download.org, but it translates rather easily,

Latent models, e likehttps:/iwww.math.ntnu ...

likelihoods and 30 of 1640 topics (99+ umead)@ About (@) Posted 10 Jun 2019, 13:04 by Havard Rue

priors.

Tools to manipulate Workshop in Glasgow There will be a workshop on spatiotemporal

models and

Welcome to this discussion group about r-inla. Please ask your modelling using R-INLA from July 3 to July 5 at the Institute of Biodiversity,

@ There are some books around ...
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http://www.r-inla.org

NSNS
So... Why should you use R-INLA?

o What type of problems can we solve?
o What type of models can we use?
o When can we use it?

To have proper answers, we need to start at the very beginning
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NSNS
So... Why should you use R-INLA?

o What type of problems can we solve?
o What type of models can we use?
o When can we use it?

To have proper answers, we need to start at the very beginning

@ The core

o We have questions
o We observe/collect some data.
o We want answers
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So... Why should you use R-INLA?

o What type of problems can we solve?
@ What type of models can we use?
o When can we use it?

To have proper answers, we need to start at the very beginning

o The core
o We have questions
o We observe/collect some data.

o We want answers

o How do we find answers?
@ We need to make choices:

o Bayesian or frequentist?
o How do we model the data?
o How do we compute the answer?

o These questions are not independent.
LGM and INLA



The basic model idea

Sumirio

O The basic model idea
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The basic model idea

Basic statistical model structure

@ Observations of a phenomena may follow the model
y=nuF,p)+e

o y is the observation
o p(F, ) is the explanation

o if it is a linear model, then

H(Fuﬁ) = /80 + /BlFi,l + ...+ ,BpFi,p

o e is the unexplained part
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The basic model idea

Basic statistical model structure

@ Observations of a phenomena may follow the model
y=nuF,p)+e

o y is the observation
o p(F, ) is the explanation

o if it is a linear model, then
/L(F,,ﬁ) = /80 + BIFI,I + ...+ ,BpFi,p

o e is the unexplained part

@ The “explanation part” may not be the “truth”

o choose pf.,.) that reduces e
o there may be some options for p(.,.)
o u.,.) is “a vision of the world”
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The basic model idea

Basic statistical model structure contd.

@ Observations of a phenomena may follow the model
y=uF p)+e

o y is the observation
o u(F, ) is the explanation
o e is the unexplained part
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The basic model idea

Basic statistical model structure contd.

@ Observations of a phenomena may follow the model
y=uF p)+e

o y is the observation
o u(F, ) is the explanation
o e is the unexplained part

o Statistics at this point (more to come):

o e follows a probability distribution
o p(.,.) may be a simplification
o all the models are wrong, but some are useful
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The basic model idea

The statistical modeling problem

o Propose u(F, 3) that
o sets e as completely random

@ i.e. no other information available to explain e
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The basic model idea

The statistical modeling problem

o Propose u(F, 3) that
o sets e as completely random

@ i.e. no other information available to explain e

o For a given u(F, 3), § is unknown

o estimate /3
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The basic model idea

The statistical modeling problem

o Propose u(F, 3) that
o sets e as completely random

@ i.e. no other information available to explain e

o For a given u(F, 3), § is unknown

o estimate /3

@ Account for uncertainty
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The basic model idea

The linear predictor

Suppose u(F, B) is a linear function of § on F, the linear predictor is

w(Fi,B) = o+ BiFi1 + ...+ BpFip

o this can be written as E(y|F, 3), where we model the expected value of
y conditional on F and (8
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The linear predictor

Suppose u(F, B) is a linear function of § on F, the linear predictor is

w(Fi,B) = o+ BiFi1 + ...+ BpFip

o this can be written as E(y|F, 3), where we model the expected value of
y conditional on F and (8

o F includes the design matrix, factors, explanatory variables, covariates,
independent variables, etc.

o usually it is assumed to be fixed
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The basic model idea

The linear predictor
Suppose u(F, 3) is a linear function of 8 on F, the linear predictor is

w(Fi,B) = o+ BiFi1 + ...+ BpFip

o this can be written as E(y|F, 3), where we model the expected value of
y conditional on F and (8

o F includes the design matrix, factors, explanatory variables, covariates,
independent variables, etc.

o usually it is assumed to be fixed

e [ is a vector of unknown constants

o regression coefficients (measure the effect of the covariates)
o usually are the parameters of main interest
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About the coefficients

o the effect of F; is constant (;) among the range of F; values
o It is a hyper-plane on the p dimensional space

o
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Orange data

##  Tree age circumference

## 1 1118 30
## 2 1 484 58
# 3 1 664 87
#i# Tree age circumference
## 33 5 1231 142
## 34 5 1372 174
## 35 5 1582 177
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The basic model idea

Orange data (visualize)
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Orange: model 1

@ model 1: circumference increases as age increases

circumference = fy + $1Age + error
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Orange: model 1

@ model 1: circumference increases as age increases

circumference = fy + $1Age + error

@ Outcome (circunference): y = (y1,...,¥n)

o Covariate (age): w = (wi, ..., wy)

E(vi)=fo+ fiwi, Var(y;))=7"", i=1,...,n
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The basic model idea

On the common linear model

o Observation model y | 8o, f1, T
x 0
o Encodes information about observed data
o Latent model x: The unobserved process

o Hyperprior for 0
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The basic model idea

On the common linear model

(7]

Observation model y | o, 1, T
X 6
o Encodes information about observed data

(7]

Latent model x: The unobserved process

(]

Hyperprior for 8

(~]

From this we can compute the posterior distribution
m(x,0 | y) o< w(y | x,0)m(x)m(6)

and then the corresponding posterior marginal distributions.

o each model parameter has its own posterior marginal distribution, which
is the distribution after accounting for the other parameters
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Fitting using INLA
ml <- inla(circumference ~ age, data=Orange,

control.compute = list(cpo = TRUE))
ml$summary.fixed

#i# mean sd 0.025quant 0.5quant 0.975quant
## (Intercept) 17.400 8.59090 0.4363  17.399 34.350
## age 0.107 0.00825 0.0905 0.107 0.123

mi$summary.hyperpar(1,]

## mean sd O
## Precision for the Gaussian observations 0.00188 0.000449
#Hi#t 0.5quant 0.975quanf

## Precision for the Gaussian observations 0.00185 0.0028¢
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The basic model idea

Posterior marginals
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Model 1 fit
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The basic model idea

Goodness-of-fit measures

o Conditional Predictive Ordinate - CPO:

P(y?™ly-i)

y_; is the y vector without the y; element

o useful for model comparison
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The basic model idea

Goodness-of-fit measures

o Conditional Predictive Ordinate - CPO:
P(y?™ly-i)

y_; is the y vector without the y; element

o useful for model comparison

o Probability Integral Transform - PIT:

P(Y; < y™ly-i)

o useful to detect lack of fit or outliers
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Orange: model 1 check
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Extending the basic model

Sumirio

© Extending the basic model
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Extending the basic model

Orange example: effect for each tree

@ model 2 the increase in circumference with age is different for each
tree
circumference = Sy + BreeAge + error

@ o and f;, j for each tree, are unknown

o Now we have: y | 8o, B1,...,0s, T
M 9
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About the coefficients
o Usually it is assumed that 3; is

e a random sample from a population
o because each tree is sampled from a population of trees
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Extending the basic model

About the coefficients

o Usually it is assumed that 3; is
e a random sample from a population
o because each tree is sampled from a population of trees

o It is very common to consider §; ~ N(O,Tﬁ_l)
e even non Bayesian does this
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Extending the basic model

About the coefficients

o Usually it is assumed that 3; is
e a random sample from a population
o because each tree is sampled from a population of trees

o It is very common to consider §; ~ N(O,Tﬁ_l)
e even non Bayesian does this

o Being Bayesian:
o It is also common to consider Sy ~ N(mo, 7'0_1), mg and 7y fixed
o 8 ={pBo,S1,-.., 05} is a Gaussian with precision

T0
T3
8
T8
T8
]



Extending the basic model

A small point to think about

o From a Bayesian point of view fixed effects and random effects are all
the same (unobservable and unknown)

o Fixed effects are also random
o They only differ in the prior we put on them
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Extending the basic model

Orange example, model 2

f2 <- circumference ~ 1 + f(Tree, age, model='iid')
m2 <- inla(f2, data=0range, control.compute=1list(cpo=TRUE))

m2$summary . fixed

## mean

## (Intercept) 18.11 3.674

m2$summary.random$Tree

## ID mean

## 1 3 0.08192 0.004807
## 2 1 0.08672 0.004808
## 3 5 0.10293 0.004809
## 4 2 0.12644 0.004812
## 5 4 0.13202 0.004812

Elias ( LEG/UFPR)
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0.08194
0.08675
0.10295
0.12647
0.13205

25.43

sd 0.025quant 0.5quant 0.975quant

0.09134
0.09615
0.11235
0.13587
0.14145

O O O O O

sd 0.025quant 0.5quant 0.975quant moc
18.08

18.(

moc
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. 126!
.132:
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Extending the basic model

Orange example, model 2 check
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Extending the basic model

Extending the model framework

o So far the basic (linear) model

y = XB+e

does not solves all the problems
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Extending the model framework

o So far the basic (linear) model
y = XB+e

does not solves all the problems

o random effects
n=u(F,B)+Zb
@ non-linear effects
o work more on u(F, )
@ non-Gaussian outcomes

o p(y|...) may be non-Gaussian

Elias ( LEG/UFPR) LGM and INLA Glasgow, 3-5, July 2019 27 / 57



Extending the basic model

Salmonella example

Breslow (1984) analyses some mutagenicity assay data (shown below) on
salmonella in which three plates have been processed at each dose i of
quinoline and the number of revertant colonies of TA98 Salmonella measured.
A certain dose-response curve is suggested by theory.

dose of quinoline (pg per plate)

0 10 33 100 333 1000

15 16 16 27 33 20
21 18 2% 41 3/ X
28 21 33 689 41 42

Figure 1: Salmonella data
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Extending the basic model

Salmonella model

This is assumed to be a random effects Poisson model allowing for over-
dispersion. Let x ;be the dose on the plates i 1, i 2 and i 3. Then we assume

y j~ Poisson( m j)
log(mj)=a+blog(xi+10)+gx+1j
1~ Normal(0, t)
a,b, g, tare given independent ““noninformative" priors. The appropriate

Figure 2: Salmonella model
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Extending the basic model

Salmonella model fit

data(Salm)
head (Salm)
#it

## 1 15
## 2 21
## 3 29
## 4 16
## 5 18
## 6 21

y dose rand

0
0
0
10
10
10

DO WN

salmm <- inla(y ~ log(dose+10) + dose + f(rand, model='iid'),

Elias ( LEG/UFPR )

LGM and INLA

family='Poisson', data=Salm,
control.compute=list (cpo=TRUE))
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Salmonella model results

#i# mean sd 0.025quant 0.5quant 0.975quant moc
## (Intercept) 2.17 0.28 1.61 2.17 2.72 2.°
## log(dose + 10) 0.32 0.07 0.16 0.32 0.46 0.:
## dose 0.00 0.00 0.00 0.00 0.00 0.¢
#i# mean sd 0.025quant 0.5quant 0.975qua:
## Precision for rand 8205 15938 9 71 555!
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Extending the basic model

Salmonella model fit result

30 40 50

20

0 200 400 600 800 1000

dose
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Extending the basic model

Epilepsia example

Breslow and Clayton (1993) analyse data initially provided by Thall and Vail
(1990) concerning seizure counts in a randomised trial of anti-convulsant
therpay in epilepsy. The table below shows the successive seizure counts for
59 patients. Covariates are treatment (0,1), 8-week baseline seizure counts,
and age in years. The structure of this data is shown below

Patient 1y, Y2 ¥z ¥g4 Tt Base Age

1 5 3 3 3 0 "m 3
2 3 5 3 3 0 11 30
3 2 4 0 5 0 6 25
4 4 4 1 4 ] g 36
B a0 20 21 12 0 52 42
9 5 6 6 0 12 37

55 1 4 3 2 1 12 37

[ IR, FEN ol D S B
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Epilepsia data

data(Epil)

head (Epil)

## y Trt Base Age V4 rand Ind
# 15 0 11 31 O 1 1
# 23 0 11 31 0 2 1
# 33 0 11 31 O 3 1
# 43 0 11 31 1 4 1
# 53 0 11 30 0 5 2
# 65 0 11 30 O 6 2
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Hierarchical models

Sumirio

© Hierarchical models
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Hierarchical models

Hierarchical models, level 1

o Likelihood, the conditional model for the outcome, y

y|x, 01 ~m(ylx,01) = [Ty 7(yilxi, 01)
(conditional independence)
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Hierarchical models

Hierarchical models, level 1

o Likelihood, the conditional model for the outcome, y

y|x, 01 ~m(ylx,01) = [Ty 7(yilxi, 01)
(conditional independence)

o x, see H. Rue et al. (2017) for an example

e x;, for i=1,...,nis the linear predictor
e X;j, j > nincludes fixed and random effects
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Hierarchical models

Hierarchical models, level 1

o Likelihood, the conditional model for the outcome, y

y|x, 01 ~m(ylx,01) = [Ty 7(yilxi, 01)
(conditional independence)

o x, see H. Rue et al. (2017) for an example

e x;, for i=1,...,nis the linear predictor
e X;j, j > nincludes fixed and random effects

o 01: likelihood extra parameter

o example: variance (dispersion), zero inflation
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Likelihood:

The likelihood, 7(y|x, ) depends on

o the kind of response

e binary, counts, continuous, censored
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Hierarchical models

Likelihood:

The likelihood, 7(y|x, ) depends on

o the kind of response

e binary, counts, continuous, censored

@ how is it collected

o wusually each individual has only one observation

o possible for more than one

o Unusual example: point process (point pattern) where we only have the
locations of a set of events Can you explain in the course what you
mean by having only the locations of a set of events?
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Hierarchical models

Hierarchical model, level 2

o the model for the random effect

o not observable, latent
o assumed to have a probability distribution

o usually Gaussian — INLA

x|o2 ~ m(x|62) = N(0,Q(2)"")
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Hierarchical models

Hierarchical model, level 2

o the model for the random effect

o not observable, latent
o assumed to have a probability distribution

o usually Gaussian — INLA

x|o2 ~ m(x|62) = N(0,Q(2)"")

o this distribution has its own parameters, >, the hyper-parameters
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Hierarchical models

Random effect distribution:

@ The random effect distribution, m(x|Q(0)) is

o Non-observable (thus latent)
o if Gaussian — latent Gaussian
o Markovian — Q(.) sparse — computational benefits
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Hierarchical models

Random effect distribution:

@ The random effect distribution, m(x|Q(0)) is

o Non-observable (thus latent)
o if Gaussian — latent Gaussian
o Markovian — Q(.) sparse — computational benefits

o It represents

o covariate effects (coefficients or smoothed effects)
o random effects (individuals, temporal, spatial)

o unstructured or structured
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Hierarchical models

Random effect distribution:

@ The random effect distribution, m(x|Q(0)) is

o Non-observable (thus latent)
o if Gaussian — latent Gaussian
o Markovian — Q(.) sparse — computational benefits

o It represents

o covariate effects (coefficients or smoothed effects)
o random effects (individuals, temporal, spatial)

o unstructured or structured

o It can be

o unstructured (independent, non-correlated individuals)
o structured (dependent, correlated, similar neighbour effects)
o more than one structure (or level) combined
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Hierarchical models

Hierarchical model, level 3

o if Bayesian

o assumed a distribution for the hyper-parameters

Elias ( LEG/UFPR ) LGM and INLA Glasgow, 3-5, July 2019 40 / 57



Hierarchical models

Hierarchical model, level 3

o if Bayesian

o assumed a distribution for the hyper-parameters

o have 0 = {61,6,}

0 ~ ()
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Prior distribution for the hyper-parameters 0 : 7(6)

o likelihood examples
o precision parameter
o Normal, gamma, beta, binomial negative
o zero inflation probability
o random effect examples

o random effect precision parameter
o correlation parameter
o range parameter
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Hierarchical models

Hierarchical Model Summary

What are the

Q distribution of the responses?

Q@ distribution of the underlying unobserved (latent) components?
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Hierarchical models

Hierarchical Model Summary

What are the

Q distribution of the responses?

Q@ distribution of the underlying unobserved (latent) components?
if Bayesian

@ prior beliefs about the parameters (distribution) on the
hyper-parameters in the model?
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Hierarchical models

Latent Gaussian models

@ Assume a Gaussian distribution for the

o regression coefficients
o smoothed effects
o random effects
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Hierarchical models

Latent Gaussian models

@ Assume a Gaussian distribution for the

o regression coefficients
o smoothed effects
o random effects

o Latent Gaussian Model - LGM

o Basically, if you have Gaussian distribution for each of the unknowns in
the linear predictor you have a LGM
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INLA

Sumirio

Q INLA
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What is INLA?

o Integrated Nested Laplace Approximations
@ Short answer: fast method for Bayesian inference on LGM
o More details: see H. Rue, Martino, and Chopin (2009)

o Recommended to start with the review in H. Rue et al. (2017)
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INLA

INLA overview

o Integrated Nested Laplace Approximations for p(6;|y) and p(x;|y)

Elias ( LEG/UFPR ) LGM and INLA Glasgow, 3-5, July 2019 46 / 57



INLA

INLA overview

o Integrated Nested Laplace Approximations for p(6;|y) and p(x;|y)

o Step 1: approach p(fly) =~ p(f|y)

o Laplace approximation at its mode 6, ;3(9-|y)
o select a good set of values for 8 around 6

o eb: just the mode (empirical Bayes)
o grid: grid around the mode
o ccd: central composite design
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INLA

INLA overview contd

o Integrated Nested Laplace Approximations for p(6;|y) and p(xi|y)
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INLA

INLA overview contd

o Integrated Nested Laplace Approximations for p(6;|y) and p(xi|y)
o Step 2: approach p(xily,0) ~ p(xily,0)

o for a set of values of 6
o Gaussian, adaptive, simplified Lapplace or (full) Laplace approximation
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INLA

INLA overview contd

o Integrated Nested Laplace Approximations for p(6;|y) and p(xi|y)
o Step 2: approach p(xily,0) ~ p(xily,0)
o for a set of values of 6

o Gaussian, adaptive, simplified Lapplace or (full) Laplace approximation

o Step 3: approach p(x;|ly) and p(6;]y)

o numerical integration over 6
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INLA

INLA overview contd

o Integrated Nested Laplace Approximations for p(6;|y) and p(xi|y)
o Step 2: approach p(xily,0) ~ p(xily,0)
o for a set of values of 6

o Gaussian, adaptive, simplified Lapplace or (full) Laplace approximation

o Step 3: approach p(x;|ly) and p(6;]y)

o numerical integration over 6

o IF p(y|...) is Gaussian, there are no approximations in steps 1 and 2
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INLA

Several models under this framework

Generalized (mixed) models

Generalized additive (mixed) models

Survival models

Dynamic models

Stochastic volatility models

Smoothing spline

Semi-parametric regression

Disease mapping

Model based geostatistics*

Log-Gaussian Cox processes

Space-time models

e Semi-parametric regression with spatial (space-time) varying
coefficients

o +++

© © 6 6 6 6 6 06 06 0 o
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INLA

Several models under this framework

© 06 6 6 06 6 06 6 06 06 0 o

(*]

Generalized (mixed) models
Generalized additive (mixed) models
Survival models

Dynamic models

Stochastic volatility models
Smoothing spline

Semi-parametric regression

Disease mapping

Model based geostatistics*
Log-Gaussian Cox processes
Space-time models

Semi-parametric regression with spatial (space-time) varying
coefficients

+++

— GLMM, GAM, GAMM, ... different names for a similar thing
LGM and INLA



Some applications cited in H. Rue et al. (2017)

Recent examples of applications using the R-INLA package for statistical analysis include disease mapping (

; ; ; ; ); age-period-cohort
models ( ); a study of the evolution of the Ebola virus { ); the relationships between access
to housing, health, and well-being in cities ( ); the prevalence and correlates of intimate partner violence against
men in Africa ( ); a search for evidence of gene expression heterosis ( ); analysis of traffic pollution and
hospital admissions in London ( ); early transcriptome changes in maize primary root tissues in response to
moderate water deficit conditions by RNA sequencing ( ); performance of inbred and hybrid genotypes in plant
breeding and genetics ( ); a study of Norwegian emergency wards ); effects of
measurement errors ( A , ); network meta-analysis ( ); time-
series analysis of genotyped human campylobacteriosis cases from the Manawatu region of New Zealand ( );
modeling of parrotfish habitats ( ); Bayesian outbreak detection ( ); long-term trends in the
number of Monarch butterflies ( ); long-term effects on hospital admission and mortality of road traffic
noise ( ); spatio-temporal dynamics of brain tumors ); ovarian cancer mortality (

); the effect of preferential sampling on phyledynamic inference ); analysis of the impact
of climate change on abundance trends in central Europe ( ); investigation of drinking patterns in US counties
from 2002 to 2012 ( ); resistance and resilience of terrestrial birds in drying climates );
cluster analysis of population amyotrophic lateral sclerosis risk ( ); malaria infection in Africa );
effects of fragmentation on infectious disease dynamics ( ); soil-transmitted helminth infection in sub-Saharan
Africa ( ); analysis of the effect of malaria control on Plasmodium falciparum in Africa between 2000
and 2015 ( ); adaptive prior weighting in generalized regression ( ); analysis of hand, foot, and
mouth disease surveillance data in China ( ); estimation of the biomass of anchovies in the coast of Perti (

); and many others.

i H )
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https://www.annualreviews.org/doi/10.1146/annurev-statistics-060116-054045

INLA

Deprivation effect, Ribeiro et al. (2018)
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https://link.springer.com/article/10.1007/s00038-018-1081-y

INLA

Survival: frailty map
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INLA

Leishmaniasis in Brazil, Karagiannis-Voules et al. (2013)

Predicted CL rates
in 2010
<0.55
0.55 - 1.80
I 180-540
B 540-15.00

W 1500
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http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002213

INLA

Malaria in Africa, Gething (2015)
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https://www.nature.com/articles/nature15535

INLA

Non-separable space-time modeling in the globe
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INLA

Flexibility must come with responsability

o PC-prior Penalized Complexity prior

o Simpson et al. (2016)
o Fuglstad et al. (2019)
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