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So, where is Curitiba?
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What is INLA?

The short answer: INLA is a fast method to do Bayesian inference
with latent Gaussian models and INLA is an R-package that
implements this method with a flexible and simple interface.

A much longer answer:
Is in the paper H. Rue, Martino, and Chopin (2009) Approximate
Bayesian inference for latent Gaussian models by using
integrated nested Laplace approximations. Journal of the Royal
Statistical Society: Series B. 319–392
Or, first, read H. Rue et al. (2017) Bayesian Computing with INLA:
A Review. Annual Review of Statistics and Its Application 4, 395–421.
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Informations? http://www.r-inla.org

There are some books around . . .
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So. . . Why should you use R-INLA?

What type of problems can we solve?
What type of models can we use?
When can we use it?

To have proper answers, we need to start at the very beginning

The core
We have questions
We observe/collect some data.
We want answers

How do we find answers?
We need to make choices:

Bayesian or frequentist?
How do we model the data?
How do we compute the answer?

These questions are not independent.
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The basic model idea

Basic statistical model structure

Observations of a phenomena may follow the model

y = µ(F, β) + e

y is the observation
µ(F, β) is the explanation

if it is a linear model, then

µ(Fi , β) = β0 + β1Fi,1 + ...+ βpFi,p

e is the unexplained part

The “explanation part” may not be the “truth”
choose µ(., .) that reduces e
there may be some options for µ(., .)
µ(., .) is “a vision of the world”
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The basic model idea

Basic statistical model structure contd.

Observations of a phenomena may follow the model

y = µ(F, β) + e

y is the observation
µ(F, β) is the explanation
e is the unexplained part

Statistics at this point (more to come):
e follows a probability distribution
µ(., .) may be a simplification
all the models are wrong, but some are useful
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The basic model idea

The statistical modeling problem

Propose µ(F, β) that
sets e as completely random

i.e. no other information available to explain e

For a given µ(F, β), β is unknown
estimate β

Account for uncertainty
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The basic model idea

The linear predictor
Suppose µ(F, β) is a linear function of β on F, the linear predictor is

µ(Fi , β) = β0 + β1Fi ,1 + ...+ βpFi ,p

this can be written as E(y|F, β), where we model the expected value of
y conditional on F and β

F includes the design matrix, factors, explanatory variables, covariates,
independent variables, etc.

usually it is assumed to be fixed

β is a vector of unknown constants
regression coefficients (measure the effect of the covariates)
usually are the parameters of main interest
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The basic model idea

About the coefficients

the effect of Fj is constant (βj) among the range of Fj values
It is a hyper-plane on the p dimensional space
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The basic model idea

Orange data

## Tree age circumference
## 1 1 118 30
## 2 1 484 58
## 3 1 664 87

## Tree age circumference
## 33 5 1231 142
## 34 5 1372 174
## 35 5 1582 177
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The basic model idea

Orange data (visualize)
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The basic model idea

Orange: model 1

model 1: circumference increases as age increases

circumference = β0 + β1Age + error

Outcome (circunference): y = (y1, . . . , yn)
Covariate (age): w = (w1, . . . ,wn)

E(yi) = β0 + β1wi , Var(yi) = τ−1, i = 1, . . . , n
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The basic model idea

On the common linear model

Observation model y | β0, β1︸ ︷︷ ︸
x

, τ︸︷︷︸
θ

:

Encodes information about observed data

Latent model x: The unobserved process
Hyperprior for θ

From this we can compute the posterior distribution

π(x, θ | y) ∝ π(y | x, θ)π(x)π(θ)

and then the corresponding posterior marginal distributions.
each model parameter has its own posterior marginal distribution, which
is the distribution after accounting for the other parameters
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The basic model idea

Fitting using INLA

m1 <- inla(circumference ~ age, data=Orange,
control.compute = list(cpo = TRUE))

m1$summary.fixed

## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) 17.400 8.59090 0.4363 17.399 34.350 17.400 3.67e-05
## age 0.107 0.00825 0.0905 0.107 0.123 0.107 3.67e-05

m1$summary.hyperpar[1,]

## mean sd 0.025quant
## Precision for the Gaussian observations 0.00188 0.000449 0.00111
## 0.5quant 0.975quant mode
## Precision for the Gaussian observations 0.00185 0.00286 0.00178

Elias ( LEG/UFPR ) LGM and INLA Glasgow, 3-5, July 2019 16 / 57



The basic model idea

Posterior marginals
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The basic model idea

Model 1 fit
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The basic model idea

Goodness-of-fit measures

Conditional Predictive Ordinate - CPO:

P(yobs
i |y−i)

y−i is the y vector without the yi element
useful for model comparison

Probability Integral Transform - PIT:

P(Yi ≤ yobs
i |y−i)

useful to detect lack of fit or outliers
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The basic model idea

Orange: model 1 check
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Extending the basic model
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Extending the basic model

Orange example: effect for each tree

model 2 the increase in circumference with age is different for each
tree

circumference = β0 + βtreeAge + error

β0 and βj , j for each tree, are unknown
Now we have: y | β0, β1, . . . , β5︸ ︷︷ ︸

x

, τ︸︷︷︸
θ
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Extending the basic model

About the coefficients

Usually it is assumed that βj is
a random sample from a population

because each tree is sampled from a population of trees

It is very common to consider βj ∼ N(0, τ−1
β )

even non Bayesian does this

Being Bayesian:
It is also common to consider β0 ∼ N(m0, τ

−1
0 ), m0 and τ0 fixed

β = {β0, β1, . . . , β5} is a Gaussian with precision
τ0

τβ

τβ

τβ

τβ

τβ
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Extending the basic model

A small point to think about

From a Bayesian point of view fixed effects and random effects are all
the same (unobservable and unknown)
Fixed effects are also random
They only differ in the prior we put on them
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Extending the basic model

Orange example, model 2

f2 <- circumference ~ 1 + f(Tree, age, model='iid')
m2 <- inla(f2, data=Orange, control.compute=list(cpo=TRUE))
m2$summary.fixed

## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) 18.11 3.674 10.91 18.08 25.43 18.04 1.26e-05

m2$summary.random$Tree

## ID mean sd 0.025quant 0.5quant 0.975quant mode kld
## 1 3 0.08192 0.004807 0.07234 0.08194 0.09134 0.08199 1.022e-05
## 2 1 0.08672 0.004808 0.07715 0.08675 0.09615 0.08679 1.030e-05
## 3 5 0.10293 0.004809 0.09335 0.10295 0.11235 0.10300 1.058e-05
## 4 2 0.12644 0.004812 0.11685 0.12647 0.13587 0.12652 1.101e-05
## 5 4 0.13202 0.004812 0.12243 0.13205 0.14145 0.13210 1.112e-05

c(m1=-sum(log(m1$cpo$cpo)), m2=-sum(log(m2$cpo$cpo)))

## m1 m2
## 162.5 135.5
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Extending the basic model

Orange example, model 2 check
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Extending the basic model

Extending the model framework

So far the basic (linear) model

y = Xβ + e
= η + e

does not solves all the problems

random effects
η = µ(F , β) + Zb

non-linear effects
work more on µ(F , β)

non-Gaussian outcomes
p(y|...) may be non-Gaussian
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Extending the basic model

Salmonella example

Figure 1: Salmonella data
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Extending the basic model

Salmonella model

Figure 2: Salmonella model
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Extending the basic model

Salmonella model fit

data(Salm)
head(Salm)

## y dose rand
## 1 15 0 1
## 2 21 0 2
## 3 29 0 3
## 4 16 10 4
## 5 18 10 5
## 6 21 10 6

salmm <- inla(y ~ log(dose+10) + dose + f(rand, model='iid'),
family='Poisson', data=Salm,
control.compute=list(cpo=TRUE))
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Extending the basic model

Salmonella model results

## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) 2.17 0.28 1.61 2.17 2.72 2.18 0
## log(dose + 10) 0.32 0.07 0.16 0.32 0.46 0.32 0
## dose 0.00 0.00 0.00 0.00 0.00 0.00 0

## mean sd 0.025quant 0.5quant 0.975quant mode
## Precision for rand 8205 15938 9 71 55538 15
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Extending the basic model

Salmonella model fit result
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Extending the basic model

Epilepsia example

Figure 3: Eplepsia dataElias ( LEG/UFPR ) LGM and INLA Glasgow, 3-5, July 2019 33 / 57



Extending the basic model

Epilepsia data

data(Epil)
head(Epil)

## y Trt Base Age V4 rand Ind
## 1 5 0 11 31 0 1 1
## 2 3 0 11 31 0 2 1
## 3 3 0 11 31 0 3 1
## 4 3 0 11 31 1 4 1
## 5 3 0 11 30 0 5 2
## 6 5 0 11 30 0 6 2
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Hierarchical models

Hierarchical models, level 1

Likelihood, the conditional model for the outcome, y

y|x, θ1 ∼ π(y|x, θ1) =
∏n

i=1 π(yi |xi , θ1)
(conditional independence)

x, see H. Rue et al. (2017) for an example
xi , for i = 1, ..., n is the linear predictor
xj , j > n includes fixed and random effects

θ1: likelihood extra parameter
example: variance (dispersion), zero inflation
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Hierarchical models

Likelihood:

The likelihood, π(y|x, θ) depends on

the kind of response
binary, counts, continuous, censored

how is it collected
usually each individual has only one observation
possible for more than one
Unusual example: point process (point pattern) where we only have the
locations of a set of events Can you explain in the course what you
mean by having only the locations of a set of events?
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Hierarchical models

Hierarchical model, level 2

the model for the random effect
not observable, latent
assumed to have a probability distribution

usually Gaussian → INLA

x|θ2 ∼ π(x|θ2) = N(0,Q(θ2)−1)

this distribution has its own parameters, θ2, the hyper-parameters
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Hierarchical models

Random effect distribution:

The random effect distribution, π(x|Q(θ)) is
Non-observable (thus latent)
if Gaussian → latent Gaussian
Markovian → Q(.) sparse → computational benefits

It represents
covariate effects (coefficients or smoothed effects)
random effects (individuals, temporal, spatial)

unstructured or structured

It can be
unstructured (independent, non-correlated individuals)
structured (dependent, correlated, similar neighbour effects)
more than one structure (or level) combined
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It can be
unstructured (independent, non-correlated individuals)
structured (dependent, correlated, similar neighbour effects)
more than one structure (or level) combined

Elias ( LEG/UFPR ) LGM and INLA Glasgow, 3-5, July 2019 39 / 57



Hierarchical models

Hierarchical model, level 3

if Bayesian
assumed a distribution for the hyper-parameters

have θ = {θ1, θ2}

θ ∼ π(θ)
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Hierarchical models

Prior distribution for the hyper-parameters θ : π(θ)

likelihood examples
precision parameter

Normal, gamma, beta, binomial negative

zero inflation probability

random effect examples
random effect precision parameter
correlation parameter
range parameter
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Hierarchical models

Hierarchical Model Summary

What are the

1 distribution of the responses?
2 distribution of the underlying unobserved (latent) components?

. . . if Bayesian

3 prior beliefs about the parameters (distribution) on the
hyper-parameters in the model?
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Hierarchical models

Latent Gaussian models

Assume a Gaussian distribution for the
regression coefficients
smoothed effects
random effects

Latent Gaussian Model - LGM
Basically, if you have Gaussian distribution for each of the unknowns in
the linear predictor you have a LGM
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INLA
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INLA

What is INLA?

Integrated Nested Laplace Approximations
Short answer: fast method for Bayesian inference on LGM
More details: see H. Rue, Martino, and Chopin (2009)

Recommended to start with the review in H. Rue et al. (2017)
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INLA

INLA overview

Integrated Nested Laplace Approximations for p(θj |y) and p(xi |y)

Step 1: approach p(θ|y) ≈ p̃(θ|y)
Laplace approximation at its mode θ̃, p̃(θ̃|y)
select a good set of values for θ around θ̃

eb: just the mode (empirical Bayes)
grid: grid around the mode
ccd: central composite design

Elias ( LEG/UFPR ) LGM and INLA Glasgow, 3-5, July 2019 46 / 57



INLA

INLA overview

Integrated Nested Laplace Approximations for p(θj |y) and p(xi |y)

Step 1: approach p(θ|y) ≈ p̃(θ|y)
Laplace approximation at its mode θ̃, p̃(θ̃|y)
select a good set of values for θ around θ̃

eb: just the mode (empirical Bayes)
grid: grid around the mode
ccd: central composite design

Elias ( LEG/UFPR ) LGM and INLA Glasgow, 3-5, July 2019 46 / 57



INLA

INLA overview contd

Integrated Nested Laplace Approximations for p(θj |y) and p(xi |y)

Step 2: approach p(xi |y , θ) ≈ p̃(xi |y , θ)
for a set of values of θ
Gaussian, adaptive, simplified Lapplace or (full) Laplace approximation

Step 3: approach p(xi |y) and p(θj |y)
numerical integration over θ

IF p(y|...) is Gaussian, there are no approximations in steps 1 and 2
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INLA

Several models under this framework

Generalized (mixed) models
Generalized additive (mixed) models
Survival models
Dynamic models
Stochastic volatility models
Smoothing spline
Semi-parametric regression
Disease mapping
Model based geostatistics∗

Log-Gaussian Cox processes
Space-time models
Semi-parametric regression with spatial (space-time) varying
coefficients
+++

→ GLMM, GAM, GAMM, . . . different names for a similar thing
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INLA

Some applications cited in H. Rue et al. (2017)
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https://www.annualreviews.org/doi/10.1146/annurev-statistics-060116-054045


INLA

Deprivation effect, Ribeiro et al. (2018)

● ●
● ● ● ● ●

● ● ●

● ●

● ● ● ● ● ● ● ●

●

●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ●
● ● ●

● ● ●
● ●

●
●

●
● ●

●
●

● ● ●
● ●

● ●

●

Italy Portugal Spain

All England France

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

1.3

Deprivation classes

R
el

at
iv

e 
R

is
k

● Men

Women

Elias ( LEG/UFPR ) LGM and INLA Glasgow, 3-5, July 2019 50 / 57

https://link.springer.com/article/10.1007/s00038-018-1081-y


INLA

Survival: frailty map
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INLA

Leishmaniasis in Brazil, Karagiannis-Voules et al. (2013)
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http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0002213


INLA

Malaria in Africa, Gething (2015)
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https://www.nature.com/articles/nature15535


INLA

Non-separable space-time modeling in the globe
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INLA

Flexibility must come with responsability

PC-prior Penalized Complexity prior
Simpson et al. (2016)
Fuglstad et al. (2019)
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