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Bayesian hierarchical models

Latent Gaussian models

Deterministic inference



Example: Ski flying records

Assume a simple linear regression model with Gaussian observations
y = (y1, . . . , yn), where

E(yi ) = µ+ βxi , Var(yi ) = τ−1, i = 1, . . . , n
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Alternative: Bayesian hierarchical model

I Observation model y | µ, β︸︷︷︸
x

, τ︸︷︷︸
θ

: Encodes information about

observed data

I Latent model x : The unobserved process

I Hyperprior for θ

From this we can compute the posterior distribution

p(x , θ | y) ∝ p(y | x , θ) p(x) p(θ)

and then the corresponding posterior marginal distributions.
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Results
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Real-world datasets are usually much more complicated!

Using a Bayesian framework:
I Build (hierarchical) models to account for potentially

complicated dependency structures in the data.
I Attribute uncertainty to model parameters and latent variables

using priors.

Two main challenges:

1. Need computationally efficient methods to calculate posteriors.
2. Select priors in a sensible way (see tomorrow)



Bayesian hierarchical models

INLA can be used with Bayesian hierarchical models where we
model in different stages or levels:

Stage 1: What is the distribution of the responses?

Stage 2: What is the distribution of the underlying unobserved
(latent) components?

Stage 3: What are our prior beliefs about the parameters
controlling the components in the model?



Stage 1

How is our data (y) generated from the underlying components (x)
and hyperparameters (θ) in the model:

I Gaussian response? (temperature, rainfall, fish weight ...)

I Count data? (people infected with a disease in each area)
I Point pattern? (locations of trees in a forest)
I Binary data? (yes/no response, binary image)
I Survival data? (recovery time, time to death)

(It is also important how data are collected!)

This information is placed into our likelihood π(y |x ,θ)
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Stage 2

The underlying unobserved components x are called latent
components and can be:

I Fixed effects for covariates
I Unstructured random effects (individual effects, group effects)
I Structured random effects (AR(1), regional effects, . . . )

These are linked to the responses in the likelihood through linear
predictors.



Stage 3

The likelihood and the latent model typically have hyperparameters
that control their behavior. The hyperparameters θ can include:

Examples likelihood:
I Variance of observation noise
I Dispersion parameter in the negative binomial model
I Probability of a zero (zero-inflated models)

Examples latent model:
I Variance of unstructured effects
I Correlation of multivariate effects
I Range and variance of spatial effects
I Autocorrelation parameter
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Example: Tokyo rainfall data

Rainfall over 1 mm in the Tokyo area for each calendar day during
two years (1983-84) are registered.
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Tokyo rainfall data

Rainfall over 1 mm in the Tokyo area for each calendar day during
two years (1983-84) are registered.
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Stage 1: The data

yi | pi ∼ Binomial(ni , pi ),

for i = 1, 2, ..., 366

ni =

{
1, for 29 February
2, other days

yi ∈
{
{0, 1}, for 29 February
{0, 1, 2}, other days

Linear predictor

logit(pi ) = xi ⇔ pi =
1

1 + exp(−xi )

probability of rain on day i depends on xi



Stage 2: The latent model

It seems natural borrow strength over time and assume a cyclic
smooth random effect, e.g. a cyclic random walk of first or second
order. A random walk of first order (CRW1) is defined as:

π(x |θ) ∝ exp

{
−θ
2

[
(x1 − x366)2 +

366∑
i=2

(xi − xi−1)2

]}

= exp
{
−θ
2
xTRx

}

with R =


2 -1 -1
-1 2 -1

-1 2 -1
. . .

-1 2 -1
-1 2 -1

-1 -1 2





Stage 2: The latent model

It seems natural borrow strength over time and assume a cyclic
smooth random effect, e.g. a cyclic random walk of first or second
order. A random walk of first order (CRW1) is defined as:

π(x |θ) ∝ exp

{
−θ
2

[
(x1 − x366)2 +

366∑
i=2

(xi − xi−1)2

]}

= exp
{
−θ
2
xTRx

}

with R =


2 -1 -1
-1 2 -1

-1 2 -1
. . .

-1 2 -1
-1 2 -1

-1 -1 2





Stage 3: Hyperparameters

The structured time effect is controlled by one precision (inverse
variance) parameter θ.

I A larger value of θ means less variation in x, i.e. a smoother
effect.

I θ is related to the variation in pi .
I θ > 0: people commonly assume

θ ∼ Ga(shape = a, rate = b)

I However, θ depends on R, so it is hard to define values for a
and b. You could do this by defining reasonable lower and
upper quantiles. (We talk about this tomorrow)



Latent Gaussian models

This was just one example of a very useful class of models called
Latent Gaussian models.

I The characteristic property is that the latent part of the
hierarchical model is Gaussian, x |θ ∼ N(0,Q−1)

I The expected value is 0

I The precision matrix (inverse covariance matrix) is Q



The general set-up

The set up contains GLMs, GLMMs, GAMs, GAMMs, and more.
The mean of the observation i , µi , is connected to the linear
predictor, ηi , through a link function g ,

ηi = g(µi ) = µ+ z>i β +
∑
γ

wγ,i fγ(cγ,i ) + vi , i = 1, 2, . . . , n

where

µ : Intercept
β : Fixed effects of covariates z

{fγ(·)} : Non-linear/smooth effects of covariates c
{wγ,i} : Known weights defined for each observed data point

v : Unstructured error terms



Loads of examples

I Generalized linear and additive (mixed) models
I Disease mapping
I Survival analysis
I Log-Gaussian Cox-processes
I Spatio and spatio-temporal models
I Stochastic volatility models
I Measurement error models
I And more!



Specification of the latent field

I Collect all parameters (random variables) in the latent field
x = {µ,β, {fγ(·)},η}.

I A latent Gaussian model is obtained by assigning Gaussian
priors to all elements of x .

I Very flexible due to many different forms of the unknown
functions {fγ(·)}:

I Hyperparameters account for variability and length/strength of
dependence
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Flexibility through f -functions

The functions {fγ} in the linear predictor make it possible to
capture very different types of random effects in the same
framework:

I f (time): For example, an AR(1) process, RW1 or RW2

I f (spatial location): For example, a Matérn field

I f (covariate): For example, a RW1 or RW2 on the covariate
values

I f (time, spatial location) can be a spatio-temporal effect

I And much more



Additivity

I One of the most useful features of the framework is the
additivity.

I Effects can easily be removed and added without difficulty.

I Each component might add a new latent part and might add
new hyperparameters, but the modelling framework and
computations stay the same.



A small point to think about

From a Bayesian point of view fixed effects and random effects are
all the same.

I Fixed effects are also random
I They only differ in the prior we put on them



Example: Disease mapping in Germany

We observed larynx cancer mortality counts for males in 544 district
of Germany from 1986 to 1990 and want to make a model.

Information available:

yi : The count at location i .
Ei : An offset; expected number of

cases in district i .
ci : A covariate (level of smoking

consumption) at location i

si : spatial location i (here, district).
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Bayesian disease mapping

Stage 1: We choose a Poisson distribution for the responses,
so that

yi | ηi ∼ Poisson(Ei exp(ηi )))

Stage 2: ηi is a linear function of the latent components: a
covariate ci , a spatially structured effect fu, an
unstructured effect v likelihood by

ηi = µ+ βci + fu(si ) + vi

Stage 3: τf : Precision parameter for the structured effect

τv : Precision parameter for the unstructured effect

The latent field is x = (µ, β, {fu(·)}, v1, v2, . . . , vn), the
hyperparameters are θ = (τf , τv ), and must be given a prior.
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Computations

So...

Now we have a modelling framework

But how do we get our answers?



What do we care about?

It depends on the problem!
I A single element of the latent field (e.g. the sign or quantiles

of a fixed effect)

I A linear combination of elements from the latent field (the
average over an area of a spatial effect, the difference of two
effects)

I A single hyperparameter (the correlation)
I A non-linear combination of hyper parameters (animal models)
I Predictions at unobserved locations
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What do we care about?

The most important quantity in Bayesian statistics is the posterior
distribution:

Posterior︷ ︸︸ ︷
π(x ,θ | y) ∝

Prior︷ ︸︸ ︷
π(θ)π(x | θ)

Likelihood︷ ︸︸ ︷∏
i∈I

π(yi | xi ,θ)

from which we can derive the quantities of interest, such as

π(xi | y) ∝
∫ ∫

π(x ,θ | y)dx−idθ

=

∫
π(xi | θ, y)π(θ | y)dθ

or π(θj | y).

These are very high dimensional integrals and are typically not
analytically tractable.



Traditional approach: MCMC?

MCMC is based on sampling with the goal to construct a Markov
chain with the target posterior as stationary distribution.

I Extensively used within Bayesian inference since the 1980’s.
I Flexible and general, sometimes the only thing we can do!
I A generic tool is available with JAGS/OpenBUGS.
I Tools for specific models are of course available, e.g. BayesX

and stan.
I Standard MCMC sampler are generally easy-ish to program

and are in fact implemented in readily available software
I However, depending on the complexity of the problem, their

efficiency might be limited.

? Markov chain Monte Carlo



Approximate inference

Bayesian inference can (almost) never be done exactly. Some form
of approximation must always be done.

I MCMC “works” for everything, but it can be incredibly slow
I Is it possible to make a quicker, more specialized inference

scheme which only needs to work for this limited class of
models?



Recall: What is our model framework?

Latent Gaussian models

y |x ,θ ∼
∏
i

π(yi |ηi ,θ) Any of several distributions!

x |θ ∼ π(x |θ) ∼ N (0,Q(θ)−1) Gaussian (GMRF)!
θ ∼ π(θ) Any distribution!

where the precision matrix Q(θ) is sparse. Generally these “sparse”
Gaussian distributions are called Gaussian Markov random fields
(GMRFs).

The sparseness can be exploited for very quick computations for the
Gaussian part of the model through numerical algorithms for sparse
matrices.



The INLA idea

Use the posterior distribution

π(x ,θ | y) ∝ π(θ)π(x | θ)π(y | x ,θ)

to approximate the posterior marginals

π(xi | y) and π(θj | y)

directly.

Let us consider a toy example to illustrate the ideas.



How does INLA work?

Observations
yi = m(i) + εi , i = 1, . . . , n

Here, we assume that m(i) is a smooth function wrt i and

εi
iid∼ N (0, τ0) with known precision τ0.

1 n = 50
2 idx = 1:n
3 # generate something

smooth representing m
4 fun = 100*((idx -n/2)/n)^3
5 # add some noise
6 y = fun + rnorm(n, mean

=0, sd=1)
7 plot(idx , y)
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Assumed hierarchical model

1. Data: Gaussian observations with known precision

yi | xi , θ ∼ N (xi , τ0)

2. Latent model: A random walk of second order1

π(x | θ) ∝ θ(n−2)/2 exp

(
−θ
2

n∑
i=3

(xi − 2xi−1 + xi−2)2

)

3. Hyperparameter: The smoothing parameter θ which we assign
a Γ(a, b) prior

π(θ) ∝ θa−1 exp (−bθ) , θ > 0

1model="rw2"
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Derivation of posterior marginals (I)

Since
x , y | θ ∼ N (·, ·)

(derived using π(x , y | θ) ∝ π(y | x , θ) π(x | θ)),
we can compute (numerically) all marginals, using that

π(θ | y) =
π(x , θ | y)

π(x | y , θ)

∝

Gaussian︷ ︸︸ ︷
π(x , y | θ) π(θ)

π(x | y , θ)︸ ︷︷ ︸
Gaussian
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Posterior marginal for hyperparameter

Select a grid of points t1, . . . , tk to represent the density θ | y .
(Here, the points are chosen to be equi-distant).
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Derivation of posterior marginals (II)

From
x | y , θ ∼ N (·, ·)

we can compute

π(xi | y) =

∫
π(xi | y , θ)︸ ︷︷ ︸

Gaussian

π(θ | y) dθ

≈
∑
k

π(xi | y , tk)π(tk | y)∆k

where tk , k = 1, . . . ,K , correspond to representative points of θ | y
and ∆k are the corresponding weights (equal to 1 if points are
equi-distant).
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Posterior marginal for latent parameters

Compute the conditional marginal posterior for each xi given tk .
Here, shown for x1.
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Posterior marginal for latent parameters

Weigh the resulting (conditional) marginal posterior by the density
associated with each θk .
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Posterior marginal for latent parameters

Numerically sum over all conditional densities to obtain the
posterior marginal for each xi .
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Fitted spline

The posterior marginals are used to calculate summary statistics,
like means, variances and credible intervals:
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R-code

1 formula = y ~ -1 + f(idx , model="rw2", constr=FALSE ,
2 hyper=list(prec=list(prior="loggamma", param=c(a,b))))
3
4 result = inla(formula ,
5 data = data.frame(y=y, idx=idx),
6 control.family = list(initial = log(tau_0), fixed=TRUE

))
7
8 plot(idx , y, pch =19)
9 lines(result$summary.random [[1]]$mean , col=2, lwd =2)



Extensions

This is the basic idea behind INLA. It is quite simple.

However, we need to extend this basic idea so we can deal with
1. More than one hyperparameter
2. Non-Gaussian observations
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1. More than one hyperparameter

I Locate the mode

I Compute the Hessian to
construct principal
components

I Grid-search to locate bulk
of the probability mass

θ1

θ 2
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1. More than one hyperparameter

I Locate the mode

I Compute the Hessian to
construct principal
components

I Grid-search to locate bulk
of the probability mass

θ1

θ 2

z1

z2

All points found have equal area weight ∆k .



Alternatives for moderate number of hyperparameters

Integrating out the hyperparameter for moderate m (6 to 12) is
expensive as the number of evaluation points is exponential in m.

Alternatives:
I Extreme: use just the modal configuration (empirical Bayes)

I Use a central composite design (CCD), e.g. for m = 2
design points circle points



2. Non-Gaussian observations

In application we may choose likelihoods other than a Gaussian.
How does this change things?

π(θ | y) ∝

Non-Gaussian, BUT KNOWN︷ ︸︸ ︷
π(x , y | θ) π(θ)

π(x | y ,θ)︸ ︷︷ ︸
Non-Gaussian and UNKNOWN

I In many cases π(x | y ,θ) is very close to a Gaussian
distribution, and can be replaced with a Laplace
approximation.
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The GMRF (Laplace) approximation

Let x denote a GMRF with precision matrix Q and mean µ.
Approximate

π(x |θ, y) ∝ exp

(
−1
2
x>Qx +

n∑
i=1

log π(yi |xi )

)

by using a second-order Taylor expansion of log π(yi |xi ) around µ0,
say.

Recall

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
1
2
f ′′(x0)(x − x0)2 = a + bx − 1

2
cx2

with b = f ′(x0)− f ′′(x0)x0 and c = −f ′′(x0). (Note: a is not
relevant).



The GMRF approximation (II)

Thus,

π̃(x |θ, y) ∝ exp

(
−1
2
x>Qx +

n∑
i=1

(ai + bixi − 0.5cix2
i )

)

∝ exp
(
−1
2
xT (Q + diag(c))x + bTx

)
to get a Gaussian approximation with precision matrix Q + diag(c)
and mean given by the solution of (Q + diag(c))µ = b. The
canonical parameterisation is

NC (b,Q + diag(c))

which corresponds to

N ((Q + diag(c))−1b, (Q + diag(c))−1).



Illustration
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What do we get ...

π̃(θ | y) ∝ π(x , y | θ) π(θ)

π̃(x | y ,θ)

∣∣∣∣∣
x=x?(θ)

I find the mode of π̃(θ | y) (optimization)
I explore π̃(θ | y) to find grid points tk for numerical

integration.

However, why is it called integrated nested Laplace approximation?

There is another step that changes:

π(xi | y) ≈
∑
k

π(xi | y , tk)︸ ︷︷ ︸
Not Gaussian!

π̃(tk | y)∆k
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Approximating π(xi |y ,θ)

Three possible approximations:
1. Gaussian distribution derived from π̃G (x |θ, y), i.e.

π̃(xi |θ, y) = N (xi ;µi (θ), σ2
i (θ))

with mean µi (θ) and marginal variance σ2
i (θ).

However, errors in location and/or lack of skewness possible

2. Laplace approximation

3. Simplified Laplace approximation
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Laplace approximation of π(xi |θ, y)

π̃LA(xi |θ, y) ∝ π(x ,θ, y)

π̃GG(x−i |xi ,θ, y)

∣∣∣∣∣
x−i=x?

−i (xi ,θ)

The approximation is very good but expensive as n factorizations of
(n − 1)× (n − 1) matrices are required to get the n marginals.

Computational modifications exist:
1. Approximate the modal configuration of the GMRF

approximation.

2. Reduce the size n by only involving the “neighbors”.
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Simplified Laplace approximation

Faster alternative to the Laplace approximation

I based on a series expansion up to third order of the numerator
and denominator of π̃LA(xi |θ, y)

I corrects the Gaussian approximation for error in location and
lack of skewness.

This is default option when using INLA but this choice can be
modified.
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The integrated nested Laplace approximation (INLA)

Step I Approximate π(θ|y) using the Laplace approximation and
select good evaluation points tk .

Step II For each tk and i approximate π(xi |y , tK ) using the
Laplace or simplified Laplace approximation for selected
values of xi .

Step III For each i , sum out tk

π̃(xi |y) =
∑
k

π̃(xi |tk , y)× π̃(tk |y)×∆k .



How can we assess the error in the approximations?

Tool 1: Compare a sequence of improved approximations
1. Gaussian approximation
2. Simplified Laplace
3. Laplace

No big differences → good approximation.



How can we assess the error in the approximations?

Tool 2: Estimate the “effective” number of parameters as defined
in the Deviance Information Criteria:

pD(θ) = D(x ;θ)− D(x ;θ)

and compare this with the number of observations.

Low ratio is good.

This criteria has theoretical justification.



Limitations

I The dimension of the latent field x can be large (102–106)
I But the dimension of the hyperparameters θ must be small

(≤ 15)

In other words, each random effect can be big, but there cannot be
too many random effects unless they share parameters.
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