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Tokyo example
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Number of raining days in Tokyo, for each yearly day in two years
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Number of raining days in Tokyo, for each yearly day in two years
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A model for Tokyo data

Observation model
i ~ Binomial(n;, p;),
fori=1,2,...,366

1, for 29 February (1)
2, other days
{0,1}, for 29 February 2)
{0,1,2}, other days
o 1
Pi=q7 exp(—x;)

probability on day i depends on x;
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Smoothing x

— Let 2
_ O
xi[x—j ~ N(Xi, )
where
X2+X366 if i=1
Xj=q SN 1 << 366 . 3)
@ if i = 366
and 0 = 1/02

— 6 is controls the variation of x
e SO, related to variantion of p;

— as 0 > 0: people usually use 7(0) ~ Gamma(a, b)
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Hierarchical model
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Bayesian hierarchical model

— y: observed response data
— 04: likelihood parameter(s)
n
y|x,01 ~(y|x,01) = [ [ =(vilx.64)  (ind. cond.)
i=1
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Bayesian hierarchical model

— y: observed response data
— 04: likelihood parameter(s)
n
y|x,01 ~(y|x,01) = [ [ =(vilx.64)  (ind. cond.)
i=1
— Xx: latent/unobserved field
e Gaussian — to use INLA
— 05: latent field parameter(s)

|6 ~ 7(x|62) = N(0, Q(62) ")
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Bayesian hierarchical model

— y: observed response data
— 04: likelihood parameter(s)
n
y|x,01 ~(y|x,01) = [ [ =(vilx.64)  (ind. cond.)
i=1

— Xx: latent/unobserved field
e Gaussian — to use INLA

— 05: latent field parameter(s)
|02 ~ m(x|02) = N(0.Q(62) )

— in short: 8 = {64,602} (hyperparameter)
0 ~ 7(0) — to be Bayeﬁ!nNTNU
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7(y|x, 8): likelihood

Depends on

— which kind of data values we have
binary (yes/no response, binary image)
counts (people infected with a disease in each area)
continuous - or + (stock return, temperature)
continuous + (rainfall amount, fish weight)
survival (recovery time, time to death)
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7(y|x, 8): likelihood

Depends on

— which kind of data values we have
binary (yes/no response, binary image)
counts (people infected with a disease in each area)
continuous - or + (stock return, temperature)
continuous + (rainfall amount, fish weight)
e survival (recovery time, time to death)

— the way it is collected

e usual: each observational unit gives one value
e each observational unit gives more than one value
e point process: locations (time, spatial) of events
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(x| Q(0)): The latent field prior

— ltis
e unobserved
e called Gaussian latent random field
e the most important ingredient in INLA
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(x| Q(0)): The latent field prior

— ltis

e unobserved

e called Gaussian latent random field

e the most important ingredient in INLA
— it represents

e covariate coefficients

e unobserved effects
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(x| Q(0)): The latent field prior

— ltis
e unobserved
e called Gaussian latent random field
e the most important ingredient in INLA

— it represents

e covariate coefficients
e unobserved effects

— it can be

¢ unstructured (Tokyo: p; doesn’t depends pj)
e structured (Tokyo: p; depends on neighbour days)
e more than one (structured(s) + unstructured(s) + covariate(s))
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7(6): The O prior

— parameters from the likelihood and x distribution
— examples (likelihood):
e precision parameter of the Gaussian or Gamma

e dispersion parameter in Beta, negative binomial
e zero-inflation probability
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7(6): The O prior

— parameters from the likelihood and x distribution
— examples (likelihood):
e precision parameter of the Gaussian or Gamma

e dispersion parameter in Beta, negative binomial
e zero-inflation probability

— examples (latent field)
e precision parameter in, usually, all of those

e correlation parameter (in some for time series modelling)
e range parameter (in some for spatial data modelling)
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On the Tokyo model
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A model for Tokyo data

Observation model
yi ~ Binomial(n;, p;)
o 1
Pi=7 + exp(—x))

the likelihood has no 6

366

w(y1x) = [ =(vilx)
i—1
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Latent model

0 366
W(XW) X exp {_2 [(X1 - X366)2 + Z(X,’ — X,'_1)2] } (4)

i=2

= exp {—ZXTRX} (5)
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Latent model

0 366
W(XW) X exp {_2 [(X1 - X366)2 + Z(X,’ — X,'_1)2] } (4)

=2
0 1
-1 -1
-1 2 -1
-1 2 -1
where R =
-1 2 -1
12 -1
-1 -1 j\!TNU. o
Q(0) =96R Seomes e Techmaloms

\ elias@r-inla.org, INLA - Introduction
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Latent model warning

0 366
exp {—2 [(X1 — Xag6)” + Y (X — Xi—1 )2] } (6)
=2
intrinsic/improper

X; = 20, Xi_1=10 — Xx;—x;_1 =10
X; = 10020, x;_41=10010 — x;—x;_1 =10

constraint or take the intercept out
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7(6) problem

— Tokyo example: Q(6) = 6R
e bigger 6 less variation of x
— related to the variation of p;
— 6 > 0: people usually use § ~ Gamma(a, b)
— improper distribution: 6 values depends on R
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m(x]0 =1)and n
The marginal variance and n relation

rw.var <- function(n, order) {
R <- as.matrix(INLA:::inla.rw(n, order=order))
mean(diag(INLA:::inla.ginv(R, rankdef=order)))
}
n <- c(10, 100, 366, 1000); names(n) <- n
rbind (rwl=sapply(n, rw.var, order=1),
rw2=sapply(n, rw.var, order=2))

## 10 100 366 1000
## rwl 1.65 16.665 60.99954 166.6665
## rw2 2.40 2381.190 116733.95702 2380955.1304
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7(x|60 = 1): one realization

2
|

cumsum(rmorm(10000))

o 2000 4000 6000 8000 10000

Index

We need to control the marginal variance!
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7(6) solution

1. scale the model — easy to interpret 6
e Tutorial on scale.option at www.r-inla.org/
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7(6) solution

1. scale the model — easy to interpret 6
e Tutorial on scale.option at www.r-inla.org/

2. AND (new idea) Penalized complexity prior

PO: basic model: p; = pg
P1: complex model: p; varies
Kullback-Leibler divergence (KLD)
— adistance from P1 model to PO, KLD(P0/P0) = 0
allow variation on p;
AND supports the basic model
— Gamma(a, b) always overfits
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Heart model example
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yes
no
100 140 180 220
sbp
yes
no
2 4 6 8 12
1dl
yes
no

20 30 40 50 60
age

Heart data, from catdata package

yes

no
O 5 10 20 30
tobacco
yes
no
10 20 30 40
adiposity
no yes
famhist
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Model?

— Generalized Linear Model?

e linear predictor

e nonlinear link (logit, probit, and others)
— Nonlinear effect from covariate?

e parametric nonlinear function?

e non parametric nonlinear function?

— Bayesian?

1 <- glm(y ~ age, family=binomial, data=heart)
b <- inla(y ~ age, family='binomial', data=heart)
round (cbind (1=coef (summary (1)) [,1:2], b=b$summary.fix[,1:2]

## 1.Estimate 1.Std. Error b.mean b.sd
## (Intercept) -3.5217 0.4160 -3.5257 0.4160
## age 0.0641 0.0085 0614@ 0.0085

Norwegian Unlversny of
Science and Technology

www.ntnu.no elias@r-inla.org, INLA - Introduction




GxxMs: Different names for the same
thing

GLMM/GAM/GAMM/+++
— Perhaps the most important class of statistical models
— Many “different” models belong to this class
— No good (enough) MCMC solution around

— Even frequentist approaches does not scale well
computationally
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Back to linear models

Consider the linear model
Vi = PBoFi1 + B1Fi2 + BoFiz + Uj + €;

where F is the design matrix (with ones at first column)
— Yy, is an observation
— u is the intercept
— Bo, B1 and (3> are the regression coefficients
— uis arandom effect
— ¢; is i.i.d. normal observation noise.

How it works in a Bayesian framework?
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Bayesian linear models

Linear model:

Yi = BoFir + B1Fi2 + B2F i1 + uj + €

Bayesian model: chose priors. Usual choices:

— B = (o, 51,582)T ~ N(0,7.'I), where 74 is a small number
— u ~ N(0,Q,") where the precision matrix Q is known

— e~ N(O,77'1
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What does this look like? (Horror slide!)

(y,u,3) are jointly Gaussian!
m(y|u, B) o exp (—%(y —u-F'3)(y—u- FTg))

I —I —F™\ /[y
— exp (;”(yT u 87) (l I FT) (u))
-F F F'F) \8

It follows that

m(y,u,8) = n(y|u, B)m(u)x(B)

! —1 —FT y
x exp —%(yT u” BN | -1 1+ 'Qy FT u
~F F FIF+ T ) \B

Tn
B Norwegian University of
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How can we use this?

From multivariate Gaussian distributions:

If
X = <XA> ~ N (NA> ’ <QAA QAB> 1 ’

then the conditional distribution is given by

Xalxg ~ N (uA - Q,}}\QAB(XB — KB); QZ)A) :

We can easily compute the marginal distributions for u;|y and 5;|y.
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Non Gaussian likelihood?

General framework:
— include the linear predictor in x
e with a small fixed variance

#data

a(ylx) = T (i)

i=1
— Gaussian approximantion does the rest
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Further Examples

— Dynamic linear models

— Stochastic volatility models (famously difficult with MCMC)
— Generalised linear (mixed) models

— Generalised additive (mixed) models

— Spline smoothing

— Semiparametric regression

— Space-varying (semiparametric) regression models
— Disease mapping

— Log-Gaussian Cox-processes

— Model-based geostatistics (*)

— Spatio-temporal models

— Survival analysis

— +++
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Bayesian inference
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On our Bayesian hierarchical model

— Inference on (what we know about) 6 and x given y
e in maths: #(x|y) and 7(6|y)

— considering 7(y|x,0), =(x|0) and 7(8)
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On our Bayesian hierarchical model

— Inference on (what we know about) 6 and x given y
e in maths: #(x|y) and 7(6|y)

— considering 7(y|x,0), =(x|0) and 7(8)
— using the Bayes theorem,

ﬂﬂmzj%wuﬁwuwwwwe

w(6ly) = [ w(ylx. 6)n(x|6)r(6)dx
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On our Bayesian hierarchical model

— Inference on (what we know about) 6 and x given y
e in maths: #(x|y) and 7(6|y)

— considering 7(y|x,0), =(x|0) and 7(8)
— using the Bayes theorem,

r(xly) = / 7(y|x, 0)(x|0)m(6)d0
w(6ly) = [ w(ylx. 6)n(x|6)r(6)dx

— even more...
i 7T(0A_V),j= 1vad|m(0)
o w(xly),i=1,..,dim(x)
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The inference problem

— we have to compute

w(X;|y) o</x{‘}/o7r(y|x, 0)(x|0)m(0) dO dx _j,
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The inference problem

— we have to compute
m(Xily) o< /X | /o m(y|x,0)n(x|6)(6) d6 dx_j
and o
o) [ [ T 0)r(x0)7(0) 90y Ox
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The inference problem

— we have to compute
w(uly) | | | 7vix.0)x(xi0)x(6) do ox
and o
o) [ [ T 0)r(x0)7(0) 90y Ox

— remember
e dim(@) is small
e dim(x) is not small
e we have to compute very high dimensional integrals
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The inference problem

— we have to compute
7r(x,-|y)o</x | /b?w(y|x,0)7r(x\0)7r(0) do ax;_j
and o
o) [ [ T O)r(x0)(0) a0 o

— remember

e dim(@) is small

e dim(x) is not small

e we have to compute very high dimensional integrals
— typically they are not analytically tractable

e — we have to approach
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using MCMC

— single-site: compute (the expressions) for

o p(0;|60_;,x.y)
o p(xi|x_i,0,y)
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using MCMC

— single-site: compute (the expressions) for
o (6160 X,y)
e p(xi|x-i,0,y)

— draw samples from such conditionals
e WinBUGS, OpenBUGS, JAGS, and others

— use these samples to summarize p(x) and p(0)
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using MCMC

— single-site: compute (the expressions) for
o (6160 X,y)
e p(xi|x-i,0,y)

— draw samples from such conditionals
e WinBUGS, OpenBUGS, JAGS, and others

— use these samples to summarize p(x) and p(0)
— warning
e sampling from x;|x_;, 0,y
— slow convergence when strong dependence
— does not works for our example...

e better: draw joint sample from x|, y
e best: use INLA
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Outline

INLA overview
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What INLA does

— INLA does:
e compute marginals of 7(x;|y) and 7(6;|y)
— how?
e approach «(x|0, y) to approach =(0|y)
e explore m(6|y)
— approach 7 (6;]y)
e approach (x| x_;)
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Important ingredient
The GMRF-approximation

m(x|0,y) o« exp <—;xTox +) log 7r(y,~\x,-)>
i
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Important ingredient
The GMRF-approximation

m(x|0,y) o« exp <—;xTox +) log 7r(y,~\x,-)>
i

~ exp (—;(x ~ W)@+ diag(e))(x - u))
= 7['G(X‘aay)
o

Ci=—3z where [; = log(w(yi|xi)), i = 1,...,# data
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Important ingredient
The GMRF-approximation

m(x|0,y) o« exp <—;xTox +) log 7r(y,~\x,-)>
i

~ exp (—;(x ~ W)@+ diag(e))(x - u))
= 7['G(X‘aay)
o

Ci=—3z where [; = log(w(yi|xi)), i = 1,...,# data

— Markov and computational properties (on Q) are preserved
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Important ingredient
The GMRF-approximation

m(x|0,y) o« exp <—;xTox +) log 7r(y,~\x,-)>
i

1 .
~ o (500 1)(@+ diag(e)lx - 1))
= TI'G(X‘O, y)
Ci = —57”2 where [; = log(w(yi|xi)), i = 1,...,# data
— Markov and computational properties (on Q) are preserved
— 7(x|6,y) costs
e temporal: O(n)
e spatial: O(nlog(n))
If y|x, 0 is Gaussian, the “approximation” is EtNTNU

Norwegian University of
Science and Technology
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INLA, 7(6,y)

— Considering
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INLA, 7(6,y)

— Considering

_ m(8,x]y)
m(0ly) = ~(X10.y)

m(0)m(x|0)7(y|x,0)
m(x|6,y)
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INLA, 7(6,y)

— Considering

_ m(8,x]y)
m(0ly) = ~(X10.y)

m(0)m(x|0)7(y|x,0)
m(x|6,y)

— Gaussian approximation to denominator

~(6)(x|0)(y|X, 6)
m(61y) 7a(x[6.y)

|x=x+(8)
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INLA, 7(6,y)

— Considering

_ m(8,x]y)
m(0ly) = ~(X10.y)

m(0)m(x|0)7(y|x,0)
m(x|6,y)

— Gaussian approximation to denominator

~(6)(x|0)(y|X, 6)
m(61y) 7a(x[6.y)

|x=x+(8)

— mode of #(0|y) (optimization)
e explore 7(0|y)
— approach = (6;|y) (numerical integration)
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INLA, 7(xy. 6)

Approaching =(x;|y, 0)
— Problem
e dim(x)=n is not small
e n marginals to compute

— Laplace approximation

(X, 6ly)

Tea(X-ilxi,y,0)| _ (x.6)
— =" _j I

(X | y,0) =~
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INLA, 7(xy. 6)

Approaching =(x;|y, 0)
— Problem
e dim(x)=n is not small
e n marginals to compute

— Laplace approximation

(X, 6ly)

Tea(X-ilxi,y,0)| _ (x.6)
— =" _j I

(X | y,0) =~

— simpler/cruder (fast) approximation (from =g(x|y, 6))

#(xily, 8) = N(x;; 1i(6), 2(8))
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INLA, =(xi|y)

Approaching 7(x;|y, 0)
— integrate 0 out from 7(x; | y, 0)
— select values for 0
— use weighted sum

7(xi | y) o< > F(xily, 6)) x 7(6)y)
J
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Remarks

1. Expect 7(0]y) to be accurate, since
e x|0 is a priori Gaussian
¢ Likelihood models are ‘well-behaved’ so

m(x]0,y)
is almost Gaussian.

2. There are no distributional assumptions on 6|y
3. Similar remarks are valid to

Aﬂ:(XI’ | Hay)

NTNU
Norwegian University of
Science and Technology

elias@r-inla.org, INLA - Introduction



How can we assess the error in the
approximations?

Tool 1: Compare a sequence of improved approximations
1. Gaussian approximation
2. Simplified Laplace
3. Laplace

No big differences — good approximation
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How can we assess the error in the
approximations?

Tool 2: Estimate the “effective” number of parameters as defined in
the Deviance Information Criteria:

po(6) = D(x; ) — D(x; 6)

and compare this with the number of observations
Low ratio is good.
This criteria has theoretical justification.
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