

NTNU Norwegian University of Science and Technology

INLA - Introduction

Elias T. Krainski

Outline

Tokyo example

Hierarchical mode

On the Tokyo model

Heart model example

Bayesian inference

INLA overview

Number of raining days in Tokyo, for each yearly day in two years

Number of raining days in Tokyo, for each yearly day in two years

A model for Tokyo data

Observation model

$$y_i \sim \text{Binomial}(n_i, p_i),$$

for i = 1, 2, ..., 366

$$n_i = \begin{cases} 1, & \text{for 29 February} \\ 2, & \text{other days} \end{cases}$$

$$y_i \in \begin{cases} \{0,1\}, & \text{for 29 February} \\ \{0,1,2\}, & \text{other days} \end{cases}$$
 (2)

$$p_i = \frac{1}{1 + exp(-x_i)}$$

probability on day i depends on x_i

Smoothing x

- Let

$$x_i | \boldsymbol{x}_{-i} \sim N(\overline{x}_i, \frac{\sigma^2}{2})$$

where

$$\overline{X}_{i} = \begin{cases} \frac{x_{2} + x_{366}}{2} & \text{if} & i = 1\\ \frac{x_{i-1} + x_{i+1}}{2} & \text{if} & 1 < i < 366\\ \frac{x_{365} + x_{1}}{2} & \text{if} & i = 366 \end{cases}$$
 (3)

and
$$\theta = 1/\sigma^2$$

- θ is controls the variation of **x**
 - so, related to variantion of p_i
- as $\theta > 0$: people usually use $\pi(\theta) \sim \text{Gamma}(a, b)$

NTNU Norwegian University of Science and Technology

Outline

Tokyo example

Hierarchical model

On the Tokyo model

Heart model example

Bayesian inference

INLA overview

Bayesian hierarchical model

- y: observed response data
- θ_1 : likelihood parameter(s)

$$\mathbf{y}|\mathbf{x}, \mathbf{\theta}_1 \sim \pi(\mathbf{y}|\mathbf{x}, \mathbf{\theta}_1) = \prod_{i=1}^n \pi(\mathbf{y}_i|\mathbf{x}, \mathbf{\theta}_1)$$

(ind. cond.)

Bayesian hierarchical model

- y: observed response data
- θ_1 : likelihood parameter(s)

$$\mathbf{y}|\mathbf{x}, \mathbf{\theta}_1 \sim \pi(\mathbf{y}|\mathbf{x}, \mathbf{\theta}_1) = \prod_{i=1}^n \pi(\mathbf{y}_i|\mathbf{x}, \mathbf{\theta}_1)$$
 (ind. cond.)

- x: latent/unobserved field
 - Gaussian → to use INLA
- θ_2 : latent field parameter(s)

$$\mathbf{x}|\boldsymbol{\theta}_2 \sim \pi(\mathbf{x}|\boldsymbol{\theta}_2) = N(\mathbf{0}, \mathbf{Q}(\boldsymbol{\theta}_2)^{-1})$$

Bayesian hierarchical model

- y: observed response data
- θ_1 : likelihood parameter(s)

$$\mathbf{y}|\mathbf{x}, \mathbf{\theta}_1 \sim \pi(\mathbf{y}|\mathbf{x}, \mathbf{\theta}_1) = \prod_{i=1}^n \pi(\mathbf{y}_i|\mathbf{x}, \mathbf{\theta}_1)$$
 (ind. cond.)

- x: latent/unobserved field
 - Gaussian → to use INLA
- θ_2 : latent field parameter(s)

$$\mathbf{x}|\boldsymbol{\theta}_2 \sim \pi(\mathbf{x}|\boldsymbol{\theta}_2) = N(\mathbf{0}, \mathbf{Q}(\boldsymbol{\theta}_2)^{-1})$$

— in short: $\theta = \{\theta_1, \theta_2\}$ (hyperparameter)

$$oldsymbol{ heta} \sim \pi(oldsymbol{ heta})
ightarrow ext{to be Bayesian}_{ ext{NTNII}}$$

$\pi(y|x,\theta)$: likelihood

Depends on

- which kind of data values we have
 - binary (yes/no response, binary image)
 - counts (people infected with a disease in each area)
 - continuous or + (stock return, temperature)
 - continuous + (rainfall amount, fish weight)
 - survival (recovery time, time to death)

$\pi(y|x,\theta)$: likelihood

Depends on

- which kind of data values we have
 - binary (yes/no response, binary image)
 - counts (people infected with a disease in each area)
 - continuous or + (stock return, temperature)
 - continuous + (rainfall amount, fish weight)
 - survival (recovery time, time to death)
- the way it is collected
 - usual: each observational unit gives one value
 - · each observational unit gives more than one value
 - point process: locations (time, spatial) of events

$\pi(\mathbf{x}|\mathbf{Q}(\theta))$: The latent field prior

- It is
 - unobserved
 - called Gaussian latent random field
 - the most important ingredient in INLA

$\pi(\mathbf{x}|\mathbf{Q}(\theta))$: The latent field prior

- It is
 - unobserved
 - called Gaussian latent random field
 - the most important ingredient in INLA
- it represents
 - · covariate coefficients
 - unobserved effects

$\pi(\mathbf{x}|\mathbf{Q}(\theta))$: The latent field prior

- It is
 - unobserved
 - called Gaussian latent random field
 - the most important ingredient in INLA
- it represents
 - covariate coefficients
 - unobserved effects
- it can be
 - unstructured (Tokyo: p_i doesn't depends p_j)
 - structured (Tokyo: *p_i* depends on neighbour days)
 - more than one (structured(s) + unstructured(s) + covariate(s))

$\pi(\theta)$: The θ prior

- parameters from the likelihood and x distribution
- examples (likelihood):
 - precision parameter of the Gaussian or Gamma
 - dispersion parameter in Beta, negative binomial
 - zero-inflation probability

$\pi(\theta)$: The θ prior

- parameters from the likelihood and x distribution
- examples (likelihood):
 - precision parameter of the Gaussian or Gamma
 - dispersion parameter in Beta, negative binomial
 - zero-inflation probability
- examples (latent field)
 - precision parameter in, usually, all of those
 - correlation parameter (in some for time series modelling)
 - range parameter (in some for spatial data modelling)

Outline

Tokyo example

Hierarchical mode

On the Tokyo model

Heart model example

Bayesian inference

INLA overview

A model for Tokyo data

Observation model

$$y_i \sim \text{Binomial}(n_i, p_i)$$

$$p_i = \frac{1}{1 + \exp(-x_i)}$$

the likelihood has no θ

$$\pi(\boldsymbol{y}|\boldsymbol{x}) = \prod_{i=1}^{366} \pi(y_i|x_i)$$

Latent model

$$\pi(\boldsymbol{x}|\boldsymbol{\theta}) \propto \exp\left\{-\frac{\theta}{2}\left[(x_1 - x_{366})^2 + \sum_{i=2}^{366}(x_i - x_{i-1})^2\right]\right\}$$
(4)
$$= \exp\left\{-\frac{\theta}{2}\boldsymbol{x}^T\boldsymbol{R}\boldsymbol{x}\right\}$$
(5)

Latent model

$$\pi(\boldsymbol{x}|\boldsymbol{\theta}) \propto \exp\left\{-\frac{\theta}{2}\left[(x_1 - x_{366})^2 + \sum_{i=2}^{366}(x_i - x_{i-1})^2\right]\right\} \tag{4}$$

$$= \exp\left\{-\frac{\theta}{2}\boldsymbol{x}^T\boldsymbol{R}\boldsymbol{x}\right\}$$

where
$$\mathbf{R} = \begin{pmatrix} 2 & -1 & & & & -1 \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & -1 & & & \\ & & & \ddots & & \\ & & & & -1 & 2 & -1 \\ & & & & -1 & 2 & -1 \\ -1 & & & & -1 & 2 \end{pmatrix}$$

 $Q(\theta) = \theta R$

NTNU Norwegian University of Science and Technology

Latent model warning

$$\exp\left\{-\frac{\theta}{2}\left[(x_1-x_{366})^2+\sum_{i=2}^{366}(x_i-x_{i-1})^2\right]\right\}$$
 (6)

intrinsic/improper

$$x_i = 20,$$
 $x_{i-1} = 10 \rightarrow x_i - x_{i-1} = 10$
 $x_i = 10020,$ $x_{i-1} = 10010 \rightarrow x_i - x_{i-1} = 10$

constraint or take the intercept out

$\pi(\theta)$ problem

- Tokyo example: $Q(\theta) = \theta R$
 - bigger θ less variation of \boldsymbol{x}
 - related to the variation of p_i
- $\theta > 0$: people usually use $\theta \sim \text{Gamma}(a, b)$
- improper distribution: θ values depends on \boldsymbol{R}
 - hard to interpret θ (a=????, b=?????)

$\pi(\boldsymbol{x}|\theta=1)$ and n

The marginal variance and *n* relation

```
rw.var <- function(n, order) {
   R <- as.matrix(INLA:::inla.rw(n, order=order))</pre>
   mean(diag(INLA:::inla.ginv(R, rankdef=order)))
n < c(10, 100, 366, 1000); names(n) < n
rbind(rw1=sapply(n, rw.var, order=1),
     rw2=sapply(n, rw.var, order=2))
##
         10
                100
                             366
                                         1000
## rw1 1.65 16.665 60.99954
                                     166.6665
## rw2 2.40 2381.190 116733.95702 2380955.1304
```


$\pi(\boldsymbol{x}|\theta=1)$: one realization

We need to control the marginal variance!

$\pi(\theta)$ solution

- 1. scale the model \rightarrow easy to interpret θ
 - Tutorial on scale.option at www.r-inla.org/

$\pi(\theta)$ solution

- 1. scale the model \rightarrow easy to interpret θ
 - Tutorial on scale.option at www.r-inla.org/
- 2. AND (new idea) Penalized complexity prior
 - P0: basic model: $p_i = p_0$
 - P1: complex model: p_i varies
 - Kullback-Leibler divergence (KLD)
 - a distance from P1 model to P0, KLD(P0/P0) = 0
 - allow variation on p_i
 - AND supports the basic model
 - Gamma(a, b) always overfits

Outline

Tokyo example

Hierarchical mode

On the Tokyo model

Heart model example

Bayesian inference

INLA overview

Heart data, from catdata package

Model?

- Generalized Linear Model?
 - linear predictor
 - nonlinear link (logit, probit, and others)
- Nonlinear effect from covariate?
 - parametric nonlinear function?
 - non parametric nonlinear function?
- Bayesian?

GxxMs: Different names for the same thing

GLMM/GAM/GAMM/+++

- Perhaps the most important class of statistical models
- Many "different" models belong to this class
- No good (enough) MCMC solution around
- Even frequentist approaches does not scale well computationally

Back to linear models

Consider the linear model

$$y_i = \beta_0 \mathbf{F}_{i1} + \beta_1 \mathbf{F}_{i2} + \beta_2 \mathbf{F}_{i3} + u_i + \epsilon_i$$

where *F* is the design matrix (with ones at first column)

- y_i is an observation
- μ is the intercept
- β_0 , β_1 and β_2 are the regression coefficients
- u is a random effect
- ϵ_i is i.i.d. normal observation noise.

How it works in a Bayesian framework?

Bayesian linear models

Linear model:

$$y_i = \beta_0 \mathbf{F}_{i1} + \beta_1 \mathbf{F}_{i2} + \beta_2 \mathbf{F}_{i1} + u_i + \epsilon_i$$

Bayesian model: chose priors. Usual choices:

- $\beta = (\beta_0, \beta_1, \beta_2)^T \sim N(\mathbf{0}, \tau_{\text{fix}}^{-1} \mathbf{I})$, where τ_{fix} is a small number
- $\boldsymbol{u} \sim N(\boldsymbol{0}, \boldsymbol{Q}_{\boldsymbol{u}}^{-1})$ where the *precision matrix* \boldsymbol{Q} is known
- $-\epsilon \sim N(\mathbf{0}, \tau_{\mathsf{n}}^{-1} \mathbf{I})$

What does this look like? (Horror slide!)

 (y, u, β) are jointly Gaussian!

$$\pi(\mathbf{y}|\mathbf{u},\boldsymbol{\beta}) \propto \exp\left(-\frac{\tau_{\mathsf{n}}}{2}(\mathbf{y} - \mathbf{u} - \mathbf{F}^{\mathsf{T}}\boldsymbol{\beta})^{\mathsf{T}}(\mathbf{y} - \mathbf{u} - \mathbf{F}^{\mathsf{T}}\boldsymbol{\beta})\right)$$

$$= \exp\left(-\frac{\tau_{\mathsf{n}}}{2}(\mathbf{y}^{\mathsf{T}} \quad \mathbf{u}^{\mathsf{T}} \quad \boldsymbol{\beta}^{\mathsf{T}})\begin{pmatrix} \mathbf{I} & -\mathbf{I} & -\mathbf{F}^{\mathsf{T}} \\ -\mathbf{I} & \mathbf{I} & \mathbf{F}^{\mathsf{T}} \\ -\mathbf{F} & \mathbf{F} & \mathbf{F}^{\mathsf{T}}\mathbf{F} \end{pmatrix}\begin{pmatrix} \mathbf{y} \\ \mathbf{u} \\ \boldsymbol{\beta} \end{pmatrix}\right)$$

It follows that

$$\pi(\mathbf{y}, \mathbf{u}, \boldsymbol{\beta}) = \pi(\mathbf{y}|\mathbf{u}, \boldsymbol{\beta})\pi(\mathbf{u})\pi(\boldsymbol{\beta})$$

$$\propto \exp\left(-\frac{\tau_{\mathbf{n}}}{2} (\mathbf{y}^{T} \quad \mathbf{u}^{T} \quad \boldsymbol{\beta}^{T}) \begin{pmatrix} \mathbf{I} & -\mathbf{I} & -\mathbf{F}^{T} \\ -\mathbf{I} & \mathbf{I} + \tau_{\mathbf{n}}^{-1} \mathbf{Q}_{\mathbf{u}} & \mathbf{F}^{T} \\ -\mathbf{F} & \mathbf{F} \end{pmatrix} \begin{pmatrix} \mathbf{y} \\ \mathbf{u} \\ \boldsymbol{\beta} \end{pmatrix}\right)$$
Norwegian University of

How can we use this?

From multivariate Gaussian distributions: If

$$m{x} \equiv egin{pmatrix} m{x}_A \ m{x}_B \end{pmatrix} \sim m{N} \left(egin{pmatrix} m{\mu}_A \ m{\mu}_B \end{pmatrix}, egin{pmatrix} m{Q}_{AA} & m{Q}_{AB} \ m{Q}_{BA} & m{Q}_{BB} \end{pmatrix}^{-1}
ight),$$

then the conditional distribution is given by

$$oldsymbol{x}_{A}|oldsymbol{x}_{B}\sim oldsymbol{N}\left(oldsymbol{\mu}_{A}-oldsymbol{Q}_{AA}^{-1}oldsymbol{Q}_{AB}(oldsymbol{x}_{B}-oldsymbol{\mu}_{B}),oldsymbol{Q}_{AA}^{-1}
ight).$$

We can easily compute the marginal distributions for $u_i|\mathbf{y}$ and $\beta_i|\mathbf{y}$.

Non Gaussian likelihood?

General framework:

- include the linear predictor in x
 - with a small fixed variance

$$\pi(\boldsymbol{y}|\boldsymbol{x}) = \prod_{i=1}^{\# \text{data}} \pi(y_i|x_i)$$

Gaussian approximantion does the rest

Further Examples

- Dynamic linear models
- Stochastic volatility models (famously difficult with MCMC)
- Generalised linear (mixed) models
- Generalised additive (mixed) models
- Spline smoothing
- Semiparametric regression
- Space-varying (semiparametric) regression models
- Disease mapping
- Log-Gaussian Cox-processes
- Model-based geostatistics (*)
- Spatio-temporal models
- Survival analysis
- +++

Outline

Tokyo example

Hierarchical mode

On the Tokyo model

Heart model example

Bayesian inference

INLA overview

On our Bayesian hierarchical model

- Inference on (what we know about) θ and \boldsymbol{x} given \boldsymbol{y}
 - in maths: $\pi(\mathbf{x}|\mathbf{y})$ and $\pi(\theta|\mathbf{y})$
- considering $\pi(\mathbf{y}|\mathbf{x},\theta)$, $\pi(\mathbf{x}|\theta)$ and $\pi(\theta)$

On our Bayesian hierarchical model

- Inference on (what we know about) θ and \boldsymbol{x} given \boldsymbol{y}
 - in maths: $\pi(\mathbf{x}|\mathbf{y})$ and $\pi(\boldsymbol{\theta}|\mathbf{y})$
- considering $\pi(\mathbf{y}|\mathbf{x},\theta)$, $\pi(\mathbf{x}|\theta)$ and $\pi(\theta)$
- using the Bayes theorem,

$$\pi(\mathbf{x}|\mathbf{y}) = \int \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \int \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\mathbf{x}$$

On our Bayesian hierarchical model

- Inference on (what we know about) θ and \boldsymbol{x} given \boldsymbol{y}
 - in maths: $\pi(\boldsymbol{x}|\boldsymbol{y})$ and $\pi(\boldsymbol{\theta}|\boldsymbol{y})$
- considering $\pi(\mathbf{y}|\mathbf{x},\theta)$, $\pi(\mathbf{x}|\theta)$ and $\pi(\theta)$
- using the Bayes theorem,

$$\pi(\mathbf{x}|\mathbf{y}) = \int \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \int \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\mathbf{x}$$

- even more...
 - $\pi(\theta_j|y), j = 1, ..., \dim(\theta)$
 - $\pi(x_i|y)$, i = 1, ..., dim(x)

- we have to compute

$$\pi(x_i|\mathbf{y}) \propto \int_{x_{\{-i\}}} \int_{\boldsymbol{\theta}} \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} d\mathbf{x}_{\{-i\}}$$

- we have to compute

$$\pi(x_i|\mathbf{y}) \propto \int_{x_{\{-i\}}} \int_{\boldsymbol{\theta}} \pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \pi(\mathbf{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} d\mathbf{x}_{\{-i\}}$$

and

$$\pi(\theta_j|\boldsymbol{y}) \propto \int_{\boldsymbol{x}} \int_{\boldsymbol{\theta}_{f-D}} \pi(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta}) \pi(\boldsymbol{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}_{\{-j\}} d\boldsymbol{x}$$

- we have to compute

$$\pi(\mathbf{x}_i|\mathbf{y}) \propto \int_{\mathbf{x}_{\{-i\}}} \int_{\mathbf{\theta}} \pi(\mathbf{y}|\mathbf{x},\mathbf{\theta}) \pi(\mathbf{x}|\mathbf{\theta}) \pi(\mathbf{\theta}) d\mathbf{\theta} d\mathbf{x}_{\{-i\}}$$

and

$$\pi(\theta_j|\boldsymbol{y}) \propto \int_{\boldsymbol{x}} \int_{\boldsymbol{\theta}_{\{-j\}}} \pi(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta}) \pi(\boldsymbol{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}_{\{-j\}} d\boldsymbol{x}$$

- remember
 - $dim(\theta)$ is small
 - dim(x) is not small
 - · we have to compute very high dimensional integrals

- we have to compute

$$\pi(\mathbf{x}_i|\mathbf{y}) \propto \int_{\mathbf{x}_{\{-i\}}} \int_{\mathbf{\theta}} \pi(\mathbf{y}|\mathbf{x},\mathbf{\theta}) \pi(\mathbf{x}|\mathbf{\theta}) \pi(\mathbf{\theta}) d\mathbf{\theta} d\mathbf{x}_{\{-i\}}$$

and

$$\pi(\theta_j|\boldsymbol{y}) \propto \int_{\boldsymbol{x}} \int_{\boldsymbol{\theta}_{\{-j\}}} \pi(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta}) \pi(\boldsymbol{x}|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}_{\{-j\}} d\boldsymbol{x}$$

- remember
 - $dim(\theta)$ is small
 - dim(x) is not small
 - · we have to compute very high dimensional integrals
- typically they are not analytically tractable
 - ullet o we have to approach

using MCMC

- single-site: compute (the expressions) for
 - $p(\theta_j|\boldsymbol{\theta}_{-j}, \boldsymbol{x}, \boldsymbol{y})$
 - $p(x_i|\mathbf{x}_{-i},\boldsymbol{\theta},\mathbf{y})$

using MCMC

- single-site: compute (the expressions) for
 - $p(\theta_i|\theta_{-i}, \mathbf{x}, \mathbf{y})$
 - $p(x_i|\mathbf{x}_{-i},\boldsymbol{\theta},\mathbf{y})$
- draw samples from such conditionals
 - WinBUGS, OpenBUGS, JAGS, and others
- use these samples to summarize $p(\mathbf{x})$ and $p(\theta)$

using MCMC

- single-site: compute (the expressions) for
 - $p(\theta_i|\theta_{-i}, \mathbf{x}, \mathbf{y})$
 - $p(x_i|\mathbf{x}_{-i},\boldsymbol{\theta},\mathbf{y})$
- draw samples from such conditionals
 - WinBUGS, OpenBUGS, JAGS, and others
- use these samples to summarize p(x) and $p(\theta)$
- warning
 - sampling from $x_i | \mathbf{x}_{-i}, \boldsymbol{\theta}, y$
 - slow convergence when strong dependence
 - does not works for our example...
 - better: draw joint sample from $x | \theta, y$
 - best: use INLA

Outline

Tokyo example

Hierarchical mode

On the Tokyo model

Heart model example

Bayesian interence

INLA overview

What INLA does

- INLA does:
 - compute marginals of $\pi(x_i|\mathbf{y})$ and $\pi(\theta_i|\mathbf{y})$
- how?
 - approach $\pi(\mathbf{x}|\boldsymbol{\theta},\mathbf{y})$ to approach $\pi(\boldsymbol{\theta}|\mathbf{y})$
 - explore $\pi(\boldsymbol{\theta}|\mathbf{y})$
 - approach $\pi(\theta_j|\mathbf{y})$
 - approach $\pi(x_i|\mathbf{x}_{-i})$

The GMRF-approximation

$$\pi(\boldsymbol{x} \mid \boldsymbol{\theta}, \boldsymbol{y}) \propto \exp\left(-\frac{1}{2}\boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \sum_{i} \log \pi(y_i | x_i)\right)$$

The GMRF-approximation

$$\pi(\boldsymbol{x} \mid \boldsymbol{\theta}, \boldsymbol{y}) \propto \exp\left(-\frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{Q}\boldsymbol{x} + \sum_{i}\log\pi(y_{i}|x_{i})\right)$$

$$\approx \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{T}(\boldsymbol{Q} + \operatorname{diag}(\boldsymbol{c}))(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

$$= \pi_{G}(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})$$

$$= \pi_{G}(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})$$

$$= \frac{dl_{i}^{2}}{2} \text{ where } l_{i} = \log(\pi(y_{i}|x_{i})), i = 1, \dots, \# \text{ data}$$

$$c_i = -\frac{dl_i^2}{dx_i^2}$$
 where $l_i = \log(\pi(y_i|x_i))$, $i = 1, ..., \#$ data

The GMRF-approximation

$$\pi(\boldsymbol{x} \mid \boldsymbol{\theta}, \boldsymbol{y}) \propto \exp\left(-\frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{Q}\boldsymbol{x} + \sum_{i} \log \pi(y_{i}|x_{i})\right)$$

$$\approx \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{T}(\boldsymbol{Q} + \operatorname{diag}(\boldsymbol{c}))(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

$$= \pi_{G}(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})$$

$$c_i = -rac{dl_i^2}{dx_i^2}$$
 where $l_i = \log(\pi(y_i|x_i))$, $i = 1,...,\#$ data

— Markov and computational properties (on Q) are preserved

The GMRF-approximation

$$\pi(\boldsymbol{x} \mid \boldsymbol{\theta}, \boldsymbol{y}) \propto \exp\left(-\frac{1}{2}\boldsymbol{x}^{T}\boldsymbol{Q}\boldsymbol{x} + \sum_{i} \log \pi(y_{i}|x_{i})\right)$$

$$\approx \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{T}(\boldsymbol{Q} + \operatorname{diag}(\boldsymbol{c}))(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

$$= \pi_{G}(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})$$

$$c_i = -rac{dl_i^2}{dx_i^2}$$
 where $l_i = \log(\pi(y_i|x_i)), i = 1, ..., \#$ data

- Markov and computational properties (on **Q**) are preserved
- $\widetilde{\pi}(\mathbf{x}|\boldsymbol{\theta},\mathbf{y})$ costs
 - temporal: O(n)
 - spatial: $O(n\log(n))$

If $\mathbf{y}|\mathbf{x}, \theta$ is *Gaussian*, the "approximation" is Norwegian University of Science and Technology

INLA, $\pi(\theta_j|\mathbf{y})$

Considering

$$\pi(\theta|\mathbf{y}) = \frac{\pi(\theta,\mathbf{x}|\mathbf{y})}{\pi(\mathbf{x}|\theta,\mathbf{y})}$$

INLA, $\pi(\theta_j|\mathbf{y})$

Considering

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{\pi(\boldsymbol{\theta}, \boldsymbol{x}|\boldsymbol{y})}{\pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})}$$

$$\propto \frac{\pi(\boldsymbol{\theta})\pi(\boldsymbol{x}|\boldsymbol{\theta})\pi(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta})}{\pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})}$$

INLA, $\pi(\theta_i|\mathbf{y})$

Considering

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{\pi(\boldsymbol{\theta}, \boldsymbol{x}|\boldsymbol{y})}{\pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})}$$

$$\propto \frac{\pi(\boldsymbol{\theta})\pi(\boldsymbol{x}|\boldsymbol{\theta})\pi(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta})}{\pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})}$$

Gaussian approximation to denominator

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) \approx \frac{\pi(\boldsymbol{\theta})\pi(\boldsymbol{x}|\boldsymbol{\theta})\pi(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta})}{\pi_{\mathbf{G}}(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})}|_{\boldsymbol{x}=\boldsymbol{x}^*(\boldsymbol{\theta})}$$

INLA, $\pi(\theta_j|\mathbf{y})$

- Considering

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{\pi(\boldsymbol{\theta}, \boldsymbol{x}|\boldsymbol{y})}{\pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})}$$

$$\propto \frac{\pi(\boldsymbol{\theta})\pi(\boldsymbol{x}|\boldsymbol{\theta})\pi(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta})}{\pi(\boldsymbol{x}|\boldsymbol{\theta}, \boldsymbol{y})}$$

Gaussian approximation to denominator

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) \approx \frac{\pi(\boldsymbol{\theta})\pi(\boldsymbol{x}|\boldsymbol{\theta})\pi(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\theta})}{\pi_{\mathsf{G}}(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{y})}|_{\boldsymbol{x}=\boldsymbol{x}^*(\boldsymbol{\theta})}$$

- mode of $\tilde{\pi}(\boldsymbol{\theta}|\boldsymbol{y})$ (optimization)
 - explore $\hat{\pi}(\hat{\theta}|\hat{y})$
 - approach $\pi(\theta_j|\mathbf{y})$ (numerical integration)

NTNU Norwegian University of Science and Technology

INLA, $\pi(x_i|y,\theta)$

Approaching $\pi(x_i|\mathbf{y},\theta)$

- Problem
 - dim(x)=n is not small
 - n marginals to compute
- Laplace approximation

$$\widetilde{\pi}(\mathbf{x}_i \mid \mathbf{y}, \mathbf{\theta}) pprox \frac{\pi(\mathbf{x}, \mathbf{\theta} | \mathbf{y})}{\widetilde{\pi}_{GG}(\mathbf{x}_{-i} | \mathbf{x}_i, \mathbf{y}, \mathbf{\theta})} \bigg|_{\mathbf{x}_{-i} = \mathbf{x}^*_{-i}(\mathbf{x}_i, \mathbf{\theta})}$$

INLA, $\pi(\mathbf{x}_i|\mathbf{y},\boldsymbol{\theta})$

Approaching $\pi(x_i|\mathbf{y},\theta)$

- Problem
 - dim(x)=n is not small
 - n marginals to compute
- Laplace approximation

$$\widetilde{\pi}(\mathbf{x}_i \mid \mathbf{y}, \mathbf{\theta}) pprox \frac{\pi(\mathbf{x}, \mathbf{\theta} | \mathbf{y})}{\widetilde{\pi}_{GG}(\mathbf{x}_{-i} | \mathbf{x}_i, \mathbf{y}, \mathbf{\theta})} \bigg|_{\mathbf{x}_{-i} = \mathbf{x}^*_{-i}(\mathbf{x}_i, \mathbf{\theta})}$$

— simpler/cruder (fast) approximation (from $\pi_G(\mathbf{x}|\mathbf{y},\theta)$)

$$\hat{\pi}(\mathbf{x}_i|\mathbf{y},\mathbf{\theta}) = N(\mathbf{x}_i; \mu_i(\mathbf{\theta}), \sigma_i^2(\mathbf{\theta}))$$

INLA, $\pi(x_i|y)$

Approaching $\pi(x_i|\mathbf{y},\theta)$

- integrate θ out from $\widetilde{\pi}(x_i \mid \mathbf{y}, \theta)$
- select values for θ
- use weighted sum

$$\widetilde{\pi}(\mathbf{x}_i \mid \mathbf{y}) \propto \sum_i \widetilde{\pi}(\mathbf{x}_i \mid \mathbf{y}, \mathbf{\theta}_j) \times \widetilde{\pi}(\mathbf{\theta}_j \mid \mathbf{y})$$

Remarks

- 1. Expect $\widetilde{\pi}(\boldsymbol{\theta}|\boldsymbol{y})$ to be accurate, since
 - $x|\theta$ is a priori Gaussian
 - · Likelihood models are 'well-behaved' so

$$\pi(\mathbf{x} \mid \boldsymbol{\theta}, \mathbf{y})$$

is almost Gaussian.

- 2. There are no distributional assumptions on $\theta | \mathbf{y}$
- 3. Similar remarks are valid to

$$\widetilde{\pi}(\mathbf{x}_i \mid \boldsymbol{\theta}, \mathbf{y})$$

How can we assess the error in the approximations?

Tool 1: Compare a sequence of improved approximations

- 1. Gaussian approximation
- 2. Simplified Laplace
- 3. Laplace

No big differences \rightarrow good approximation

How can we assess the error in the approximations?

Tool 2: Estimate the "effective" number of parameters as defined in the Deviance Information Criteria:

$$p_{D}(\theta) = \overline{D}(\boldsymbol{x}; \theta) - D(\overline{\boldsymbol{x}}; \theta)$$

and compare this with the number of observations Low ratio is good.

This criteria has theoretical justification.

