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Śaunak Sen
Department of Epidemiology & Biostatistics
University of California, San Francisco
185 Berry St., Suite 5700
San Francisco, CA 94107-1762
USA
sen@biostat.ucsf.edu

Portions of the authors’ articles published in Genetics are reprinted with permission of the
Genetics Society of America.

Linux R© is a registered trademark of Linus Torvalds.

GoogleTM and Google GroupsTM are trademarks of Google Inc.

Microsoft R©, Windows R©, and Excel R© are registered trademarks of Microsoft Corporation.

Mac R©, Mac OS R©, and Macintosh R© are registered trademarks of Apple Computer, Inc.

UNIX R© is a registered trademark of The Open Group.

ISSN 1431-8776
ISBN 978-0-387-92124-2 e-ISBN 978-0-387-92125-9
DOI 10.1007/978-0-387-92125-9
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009929238

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To Aimee and Suheeta



Preface

QTL are quantitative trait loci: genetic loci that contribute to variation in
a quantitative trait. QTL mapping is the effort to identify QTL through an
experimental cross.

In this book, we give an overview of the practical aspects of the analysis
of QTL mapping experiments based on inbred line crosses, with explicit in-
structions on the use of the R/qtl software (an add-on package for the general
statistical software, R). We give some of the details of the statistical meth-
ods, but we mostly focus on how to get and make sense of results. Real data
examples are included throughout.

The intended audience includes scientists who are performing QTL map-
ping experiments and participating directly in the analysis. We expect the
reader to have a general understanding of statistical methods, including max-
imum likelihood estimation and linear regression. Some readers will be statis-
ticians analyzing data from QTL experiments with a basic understanding of
genetics. We provide limited introduction to either statistics or genetics. Read-
ers with a limited understanding of statistics may wish to first study Rice
(2006). Readers with a limited understanding of genetics may wish to first
study Brown (2006). Alternatively, one might consider The Cartoon Guide
to Statistics (Gonick and Smith, 1993) and The Cartoon Guide to Genetics
(Gonick and Wheelis, 1991), which are more gentle and entertaining (but less
complete) introductions to the subjects.

In line with our aim to describe the practical aspects of QTL mapping, the
book contains extensive discussion of the R/qtl software. We have attempted
to separate the discussion of R/qtl into subsections, so that readers who wish
to focus on the basic ideas and skip over the software considerations may do
so. In some places (e.g., Chap. 3, on data diagnostics), this was not feasible.

While much can be accomplished with R/qtl (and much of this book may
be read) with a limited understanding of R, efficient use of the software (and
an understanding of more complex R/qtl code) requires a more detailed un-
derstanding of R. We provide very little discussion of R itself, and refer the
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reader to Dalgaard (2002), for a gentle introduction to R, and Venables and
Ripley (2002), for a more comprehensive discussion of R.

The content of the book is ordered according to the way in which QTL
analyses might proceed. (There is one exception: we postpone the discus-
sion of experimental design to Chap. 6, as it requires a reasonably complete
understanding of QTL mapping.) We begin with an introduction (Chap.1),
including an overview of the structure of data from a QTL mapping experi-
ment and the basic statistical problems. In Chap. 2, we explain how to import
QTL mapping data into R/qtl, we describe some of the example data sets that
will be considered further in later chapters, and we demonstrate how one may
simulate QTL mapping data in R/qtl. At the end of the chapter, we describe
the internal structure of QTL mapping data within R/qtl; this section should
probably be skipped at first reading. In Chap. 3, we describe the various di-
agnostic procedures for assessing the quality and integrity of QTL mapping
data.

Chapter 4 is the heart of the book. There, we discuss the basic approach to
QTL mapping (interval mapping), the assessment of statistical significance in
a genome scan, and the calculation of confidence intervals for QTL location.
We focus on the case that residual variation in the phenotype follows a normal
distribution. In Chap. 5, we consider several extensions of standard interval
mapping for non-normal phenotypes.

In Chap. 6, we describe various experimental design issues, including the
choice of cross, marker density, and sample size, and selective genotyping
strategies. We consider both the power to detect a QTL and the precision of
localization of QTL. We focus on the use of the R/qtlDesign software (another
add-on package for R), but also describe how one may estimate power and
precision through computer simulation with R/qtl.

In Chap. 7, we describe the use of covariates in QTL mapping. We initially
consider the inclusion of additive covariates (in which the effect of the QTL is
constant, independent of the value of the covariate), but we also discuss the
investigation of QTL × covariate interactions. We conclude the chapter with
a discussion of composite interval mapping (CIM), in which genetic markers
are included as covariates.

The first seven chapters focus almost exclusively on single-QTL models.
In Chap. 8, we take the first step towards multiple-QTL models by consid-
ering two-dimensional, two-QTL genome scans. Such two-dimensional scans
offer the opportunity to assess evidence for linked or interacting QTL. In
Chap. 9, we provide a more comprehensive discussion of the identification
and exploration of multiple-QTL models. The problem is viewed as one of
model selection in multiple linear regression, though with a number of special
features.

We conclude the book with two case studies (Chap. 10 and 11), in order to
illustrate the entirety of the process of mapping QTL. We bring together all
of the tools discussed in the previous chapters to demonstrate their combined
use in order to solve two moderately difficult problems.
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The book has been written with a variety of possible readers in mind, in-
cluding experienced QTL mappers interested in adopting the R/qtl software,
postdoctoral researchers new to QTL mapping, and statistics graduate stu-
dents interested in exploring applications of statistics. We do not expect that
the book will be often read front-to-back in a linear fashion, and different
readers will likely wish to approach the book differently.

The experienced QTL mapper might start with Chap. 2, on importing
QTL mapping data sets, but would then likely skip about, making liberal
use of the Contents and Index to identify sections of particular interest. The
reader new to QTL mapping should start with the Introduction (Chap. 1),
but might skip Chap. 2 and 3 at first reading and jump right into Chap. 4, in
which the essentials of QTL mapping are described.

We have created a web site with on-line complements for the book (see
http://www.rqtl.org/book). Included on that site are files with all of the R
code used in the book, including the detailed code used to create the figures.
We have also created an R package, R/qtlbook, containing all of our example
data sets (except those already included in R/qtl).

We thank Victor Boyartchuk, Bill Dietrich, Mehmet Guler, Krista Nichols,
Virginie Orgogozo, Sarah Owens, Bev Paigen, Karlyne Reilly, Noel Rose, Andy
Smith, Michelle Southard-Smith, and Gary Thorgaard for providing data and
for allowing its distribution. The public distribution of data is invaluable for
statistical genetic methods development, and for learning. We further thank
Aimee Teo Broman, Ken Manly, Krista Nichols, Virginie Orgogozo, Abra-
ham Palmer, and several anonymous reviewers for suggestions to improve
the book, and Sungjin Kim for identifying a number of typographical errors.
Our ideas on QTL mapping were greatly influenced by Gary Churchill, Mark
Neff, and Terry Speed; we thank them for many years of stimulating discus-
sions. Our efforts were supported, in part, by NIH grants R01-GM074244 and
R01-GM078338.

The book was created using R version 2.8.1, R/qtl version 1.11-12, R/qtl-
Design version 0.92, and R/qtlbook version 0.16-3. Later versions of these soft-
ware may have some minor differences; important changes will be described in
the on-line complements (http://www.rqtl.org/book). The book was con-
structed with LATEX and Sweave; we don’t know how we could have done it
otherwise. We thank the developers of R, LATEX, and Sweave for making this
work possible.

Madison, Wisconsin; San Francisco, California Karl W. Broman
June, 2009 Śaunak Sen
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1

Introduction

Many phenotypes (traits) of biomedical, agricultural, or evolutionary impor-
tance are quantitative in nature. Examples include blood pressure (to study
hypertension), milk output (in dairy breeding), and number of seeds produced
per plant (to study evolutionary fitness). Many phenotypes such as coat color
of mice, or cancer tumor aggressiveness, may not be strictly quantitative, but
may be studied by a derived quantitative measure. We may classify mice by
whether or not they have an agouti coat color, a 0/1 measure, or grade tumors
by aggressiveness on a scale of 1 to 4 by examining tumor biopsies.

Variation in such quantitative traits is often due to the effects of multiple
genetic loci as well as environmental factors. Knowledge of the number, loca-
tions, effects, and identities of such genetic loci (called quantitative trait loci,
QTL) can lead to new biological insights. The information from QTL can be
used to develop new therapeutic drugs, assist the selection for improved agri-
cultural crops or breeds, and improve our understanding of natural selection.

Studies to identify, or “map,” QTL may be undertaken in humans or in
nonhuman species including model organisms such as mice or Drosophila (fruit
flies). In these studies, we assemble or create a genetically diverse population.
Then we associate genetic variation with phenotypic variation in the study
population. Regions of the genome that show convincing evidence of associa-
tion are flagged as QTL.

In this book, we consider the problem of mapping QTL in an experimental
cross formed from two inbred lines. Such crosses are the simplest populations
in which we can perform QTL mapping. They are the easiest to understand
biologically, as well as mathematically. For this reason, they are the staples of
experimental geneticists, and the most common QTL study population. QTL
mapping in more complex populations, including in humans, may be viewed
as generalizations. Thus, for both biologists and quantitative methodologists,
understanding QTL mapping in experimental crosses is an excellent launching
point for more ambitious investigations.

We focus on QTL mapping with the R/qtl software, an add-on package for
the R statistical software, for the analysis of QTL experiments. In the following

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 1,
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2 1 Introduction

three sections, we elaborate on the idea of a QTL experiment, describe the
basic crosses and data, and introduce the central statistical problems in QTL
mapping. Subsequently, we describe R and R/qtl, as well as some of the al-
ternative programs for QTL mapping. We conclude the chapter with a brief
description of the general work flow of QTL data analysis.

1.1 Why perform a QTL experiment?

As mentioned above, the fundamental idea underlying QTL mapping is to as-
sociate genotype and phenotype in a population exhibiting genetic variation.
Conceptually, the most straightforward study would be in a natural popula-
tion of the organism of interest. For example, to understand hypertension, we
may study genetic associations with hypertension in a large cohort such as
the Nurses Health Study (London et al., 1989). While extremely useful, this
approach presents a few problems. First, human studies are expensive; second,
the phenotypic characterization may be noisy because we cannot control the
subjects’ environment and life history; and finally, associations do not nec-
essarily imply causation because of possible confounding due to population
structure.

QTL mapping in experimental crosses provides an excellent alternative.
By suitably choosing a model organism we can home in a particular aspect of
the phenotype of interest. For example, we may study hypertension in mice,
or alcohol addition in Drosophila, by appealing to the evolutionary connec-
tion between humans, mice, and Drosophila. We have greater control over the
phenotyping accuracy, environment, and life history than in natural popula-
tions. For example, we can feed all mice the same diet, and keep the mouse
rooms climate-controlled, and phenotype the mice at the same day in identical
experimental conditions. We can perform phenotyping that may be invasive,
impractical, or unethical in humans (such as examining the liver in mice on
a high-fat diet). We also have greater control over the genetic composition of
the population in experimental crosses. This allows us to magnify the genetic
effect of a putative QTL by judiciously choosing the strains to cross. By cross-
ing two (or more) strains, we also effectively randomize genetic variation in
the progeny population. This allows us to conclude that genetic associations
detected in a cross are causal. Because experimental crosses segregate genetic
variation that is simpler relative to a natural population, we can perform more
complex statistical modeling to identify epistasis (QTL × QTL interactions),
and QTL × environment interactions.

Experimental crosses do have some disadvantages. If the cross is in a model
organism, the degree to which the conclusions apply to the target organism
depends on how good the model is. For example, if we use Arabidopsis to study
drought tolerance, the conclusions may not be directly applicable to grapes,
although there is a good chance that the pathways implicated in Arabidop-
sis are also relevant to grapes. Identification of a QTL does not necessarily



1.2 Crosses and data 3

help us identify a gene, since the region spanned by a QTL may contain tens,
and sometimes thousands, of genes. A QTL may not be successfully repli-
cated in a congenic strain (identical to one strain at all but the QTL region
derived from a different strain) because of epistatic interactions with the ge-
netic background. Developing statistical and experimental solutions to these
shortcomings is an active research area.

QTL mapping in experimental crosses is an excellent first step towards
more expensive investigations. The simple genetic structure of experimental
crosses provides a relatively tractable framework to study the conceptual and
statistical principles of genetic mapping.

1.2 Crosses and data

We focus on experimental crosses between inbred lines. An inbred line is
formed by repeated sibling mating (or, in many plants, selfing) to obtain
individuals who are completely homozygous: both chromosomes are identical
at all positions. Inbred lines are essentially “immortal” since all individuals in
an inbred line are genetically identical to one another, and to their progeny
(apart from sex).

If two inbred lines show a consistent phenotypic difference, despite being
raised in a common environment, one may be confident that the strain dif-
ference has a genetic basis. The identity of QTL underlying such phenotypic
differences may be revealed analyzing crosses between the strains. By cross-
ing the strains, we obtain progeny whose genomes are shuffled versions of the
parental genomes.

The simplest cross to describe is the backcross (Fig. 1.1). Two inbred
strains, denoted A and B, are crossed to obtain the first filial (F1) generation.
F1 individuals receive a copy of each chromosome from each of the two parental
strains; wherever the parental strains differ, the F1 generation is heterozygous.
The F1 individuals are crossed to one of the two parental strains. For example,
if an F1 individual is crossed with its A strain parent, the backcross progeny
receive one chromosome from the A strain and one from the F1. Thus, at each
autosomal locus, they have genotype AA or AB. The chromosome received
from the F1 parent may be one of the original parental chromosomes intact
but is generally a mosaic of the two parental chromosomes, as a result of
recombination at meiosis (the process of cell division that gives rise to sex
cells). The points of exchange are called crossovers.

While the backcross is the simplest possible experimental cross, the inter-
cross (Fig. 1.2) is also commonly used. In an intercross, one crosses F1 siblings
(or, in many plants, one may self an F1 individual) to obtain the F2 genera-
tion, who receive a recombinant chromosome from each parent and so, at any
autosomal locus, have genotype either AA, AB, or BB. The intercross allows
the detection of QTL for which one allele is dominant, while in a backcross
to the A strain, one may detect a QTL only if the A allele is not dominant.
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A B

F1A

BC

Figure 1.1. Schematic representation of the autosomes in a backcross experiment.
The two inbred strains, A and B, are represented by blue and pink chromosomes,
respectively. The F1 generation, obtained by crossing the two strains, receives a
single chromosome from each parent, and all individuals are genetically identical. If
we cross an individual from the F1 generation “back” to one of the parental strains
(the A strain, in this example), we obtain a population exhibiting genetic variation.
The backcross individuals receive an intact A chromosome from their A parent. The
chromosome received from their F1 parent may be an intact A or B chromosome, but
is generally a mosaic of the A and B chromosomes as a result of recombination at
meiosis. Any given locus has a 50% chance of being heterozygous and a 50% chance of
being homozygous. This figure represents the autosomes only. When considering the
X chromosome, four backcross populations (“directions”) are possible (see Fig. 4.22
on page 110).

Moreover, the intercross allows one to estimate the degree of dominance at a
QTL.

Another strategy would be to use recombinant inbred lines (Fig. 1.3).
These are constructed by beginning with an intercross, and then mating pairs
of F2 siblings, followed by a parallel series of repeated sibling mating to con-
struct a new panel of inbred lines whose genomes are a mosaic of the two
initial lines. In organisms that allow selfing, one may following the initial
cross by repeated selfing, multiple times in parallel; the progress to inbreeding
in recombinant inbred lines by selfing is more rapid.

Recombinant inbred lines (RILs) have a number of advantages. Since they
are immortal, we need genotype each line only once; we can phenotype mul-
tiple individuals from each line to reduce individual, environmental and mea-
surement variability; we can obtain multiple invasive phenotypes on the same
set of genomes; and, as the breakpoints in RILs are more dense than those
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A B

F1 F1

F2

Figure 1.2. Schematic representation of the autosomes in an intercross experiment.
The two inbred strains, A and B, are represented by blue and pink chromosomes,
respectively. As with the backcross strategy, the F1 generation, obtained by crossing
the two strains, has a chromosome from each parent, and all F1 individuals are
genetically identical. By crossing two individuals in the F1 generation (or by selfing
when possible), we create genetic variation in the resulting F2 population. The three
possible genotypes AA, AB, and BB appear in a 1:2:1 ratio. This figure represents
the autosomes only; the behavior of the X chromosome is displayed in Fig. 4.23 on
page 111.

that occur in any one generation, we can achieve better mapping resolution.
However, constructing and maintaining RILs is expensive. For this reason,
they are more commonly used by plant biologists whose costs are lower rela-
tive to animal biologists. Most of the examples in this book will focus on the
backcross and intercross. However, we will further consider the RIL design in
the chapter on experimental design (Chap. 6).

Before embarking on a QTL experiment, the experimenter will usually
phenotype several individuals from the two parental strains, and often some
F1 hybrid individuals. Hypothetical phenotype data for two inbred strains, the
F1 hybrid, and a backcross population are shown in Fig 1.4. Individuals within
each of the parental strains are genetically identical, and so any variation
in the phenotype within the strains is nongenetic (due to a combination of
measurement error, environmental variation, and individual developmental
noise). One generally chooses parental strains that show systematic phenotypic
differences. Note that the within-strain variation is not necessarily the same
in the two parental strains. The F1 individuals are also genetically identical,
and so any phenotypic variation in the F1 is again nongenetic. The phenotype
distribution of the F1 individuals is often intermediate between the parental
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A B
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Figure 1.3. Schematic representation of the autosomes during the breeding of re-
combinant inbred lines by sibling mating. The first two generations are identical to
an F2 intercross. In subsequent generations, siblings are mated producing progeny
that are less and less heterozygous. If continued indefinitely, this process will produce
individuals that are completely homozygous at every locus, but with chromosomes
that are a mosaic of the parental chromosomes. The frequency of the breakpoints be-
tween the AA and BB genotypes is determined by the breeding scheme (sib-mating
or selfing, or some other scheme). In practice, 10–20 generations of inbreeding are
actually performed.
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Figure 1.4. (Hypothetical) phenotype data for the two parental strains, the F1

hybrid, and a backcross population. Vertical line segments are plotted at the within-
group averages. In this simulated example, the difference in the phenotype means
between strains is quite large relative to the within-strain variation. The mean phe-
notype in the F1 generation is intermediate between the two strains, while the back-
cross progeny exhibit a wider spectrum of phenotypic variation and resemble the A
strain more than the B strain.

lines’ distributions, but this is not necessarily the case. Individuals in the
backcross population are not genetically identical, and so they should exhibit
greater phenotypic variation.

The key idea in QTL mapping is to obtain phenotype data on a number
of backcross or intercross progeny and then identify regions in the genome
where genotype is associated with the phenotype. However, the genotype is
not observed at every possible position along the chromosomes, but only at a
set of discrete landmarks called genetic markers. These are biochemical assays
that reveal the identity of a defined genomic region. Microsatellite and SNP
markers are the most common types of markers used for QTL mapping.

QTL mapping data has three interrelated data structures: the phenotypes,
the genotypes, and the marker map. The phenotype data consists of observable
characteristics of each individual in the population. These would include traits
of interest such as blood pressure, or body weight, but also covariates such
as sex, cross direction, and environmental conditions such as diet. Typically
one has data on 100–1000 individuals. The genotype data consists of a set of
genetic markers spanning the genome. In a typical mouse experiment, one may
start with about 100 markers approximately evenly spaced along the genome.
The genetic map specifies the markers locations on the chromosomes in terms
of genetic distance. If a genetic map is not available, one would infer marker
order and position with the available data.
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Blood pressure (mm of Hg)

80 90 100 110 120 130

C57BL/6J
A/J (B6xA)F1

(AxB6)F1

Figure 1.5. Histogram of systolic blood pressure for 250 backcross mice from
Sugiyama et al. (2001). Also shown are the phenotypic ranges of parental and F1

hybrid strains (mean ± 2 SD). The A/J (or A) strain is normotensive, while the
C57BL/6J (or B6) strain is hypertensive. The F1 hybrids and the backcross resem-
ble the hypertensive B6 strain. Notice that the range of the phenotype is not unlike
humans.

While a physical map specifies the physical position of markers on the
chromosomes, in a genetic map distance is measured by the rate of crossover
events at meiosis. Two markers are d centiMorgans (cM) apart if there is there
is an average of d crossovers in the intervening interval in every 100 products
of meiosis.

1.2.1 Mouse hypertension data as an example

As an example, we consider the data of Sugiyama et al. (2001) on salt-induced
hypertension in the mouse. They measured systolic blood pressure in 250
male mice from a backcross between the hypertensive C57BL/6J (B6) and
normotensive A/J (A) strains. (B6xA)F1 mice were mated to B6 mice to
produce a total of 250 male mice. The data are included with R/qtl, and will
be referred to as the hyper data. (Further details will be provided in Sec. 2.3.)
A histogram of the blood pressures of these backcross mice is shown in Fig. 1.5.

A total of 173 markers were genotyped; the genetic map of the markers is
shown in Fig. 1.6. For most regions of the genome, markers were placed at a
spacing of 10–20 cM. In regions for which an initial analysis indicated some
evidence for a QTL (for example, chromosomes 1 and 4), additional markers
were added.

The actual genotype data are shown in Fig. 1.7; individuals have been
sorted by their phenotype: mice with lower blood pressure are at the bottom,
and mice with higher blood pressure are at the top. By careful study of Fig. 1.7,
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Figure 1.6. The genetic map of markers typed in the data from Sugiyama et al.
(2001). Almost all marker intervals are less than 20cM. Some regions, most notably
on chromosomes 1 and 4, have a higher density of markers.

one can guess the identity of a few putative QTL. For example, on each of
chromosomes 1 and 4, there is mostly blue at the bottom of the figure and
mostly red at the top. Homozygotes (red) tend to have higher blood pressure
than heterozygotes (blue). On chromosome 6, the opposite pattern is seen: the
bottom is mostly red and the top is mostly blue. This may indicate a QTL
with an effect of the opposite sign. Visual examination of the raw data has an
important role in detecting data quality issues, and can also provide informal
evidence for QTL. However, for objective evidence for QTL formal statistical
methods are required.

1.3 Central statistical problems

Investigators perform QTL experiments with a variety of goals in mind, and so
the details of the appropriate statistical methods to meet those goals will also
vary. For example, an evolutionary biologist may be particularly interested in
the number and effects of QTL, while for a biomedical researcher the goal is
to identify the gene (or genes) underlying at least one QTL; the number and
effects of QTL may be of minor interest.

The principal goals of QTL mapping are nevertheless well defined. First,
we seek to detect QTL (and, potentially, interactions among QTL). Second,
we seek confidence regions for the locations of the QTL. Finally, we seek to
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Figure 1.7. Genotype data for the backcross from Sugiyama et al. (2001). Red
and blue pixels correspond to homozygous and heterozygous genotypes, respectively.
White pixels indicate missing genotype data. Black vertical lines indicate the bound-
aries between chromosomes. Individuals are sorted by their phenotype (low blood
pressure at the bottom, high blood pressure at the top). A three-step selective geno-
typing strategy was used for this cross. Individuals at the extremes of the phenotype
distribution were genotyped for a set of framework markers spanning the genome.
On selected chromosomes all individuals were typed for framework markers; dense
genotyping was performed on recombinant marker intervals to narrow down the
locations of recombination events.
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Markers Phenotype

QTL Covariates

Figure 1.8. The statistical structure of the QTL mapping problem. The QTL and
covariates are responsible for phenotypic variation (indicated by the directed solid
arrows). The markers and the QTL are correlated with each other due to linkage
(indicated by the bidirectional solid arrow). The markers do not directly cause the
phenotype; some markers may be associated with the phenotype via linkage to the
QTL (indicated by the directed dashed arrow).

estimate the effects of the QTL (that is, the effect, on the phenotype, of sub-
stituting one allele for another). These are generally viewed to be of decreasing
importance. (For example, there is little need for a confidence interval for a
QTL that has not been clearly detected). In this book, we will focus primarily
on detecting QTL and their interactions.

The QTL mapping problem is best split into two distinct parts: the missing
data problem and the model selection problem.

As illustrated schematically in Fig. 1.8, the phenotype is influenced by the
genotype at QTL plus possible covariates such as sex, treatment, or environ-
mental effects. However, we generally do not observe the genotype at the QTL,
but only at marker loci. The genotypes at the markers and the QTL are asso-
ciated due to linkage, which results in an association between the phenotype
and the marker genotypes.

If one knew the genotype of each individual at each position in the genome,
QTL mapping would reduce to the identification of the set of sites in the
genome that matter in producing the phenotype and of how these sites com-
bine together (and with other covariates) to produce the phenotype. This is
the model selection problem. However, since we observe individuals’ genotypes
only at a discrete set of genetic markers and wish to consider positions between
markers as the possible locations of QTL, we must use the marker genotype
data to infer the genotypes at intervening locations. This is the missing data
problem.

There are several solutions to the missing data problem, which are all
satisfactory when the markers are reasonably dense. Although solutions to
the model selection problem have been proposed, it remains challenging. The
general problem of variable selection in regression is an active area of research
for which no generally acceptable solution is known.
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We complete this section with a more detailed discussion of probability
models for the processes that give rise to QTL data. For the missing data
problem, in which one uses marker genotype data to infer the genotype at in-
tervening positions, one requires a model for the recombination process. More
important, however, are models that connect the genotype and phenotype.

1.3.1 Models for recombination

Solutions to the missing data problem mentioned in the previous subsection
rely on models for recombination. These models help us probabilistically con-
nect unobserved genotypes to observed genotypes. Genotypes are missing for
all individuals at locations between typed markers; they may be missing for
untyped individuals at typed markers. All approaches for dealing with missing
data rely on the calculation of the genotype probabilities at a putative QTL
on the basis of the available multipoint marker data. To do so, one must have
a model for the recombination process.

The most convenient model is that of no crossover interference: that the lo-
cations of crossovers on a meiotic product are according to a Poisson process.
Informally, this means that crossover locations are random. Under the no in-
terference model, recombination events in disjoint intervals are independent.
As a result, the genotypes at markers along a chromosome form a Markov
chain. In other words, conditional on the genotype at a particular locus, the
genotypes at positions to the left are independent of the genotypes at posi-
tions to the right. We should emphasize that we also assume that there is no
segregation distortion (i.e., that the frequencies of genotypes at an autosomal
locus are in the ratios 1:1 in a backcross and 1:2:1 in an intercross).

The convenience of the no crossover interference assumption is best illus-
trated by an example. In Fig. 1.9, we display hypothetical genotype data for
three different backcross individuals at a set of six markers along a chromo-
some; each row corresponds to a different individual. (The dashes are meant
to indicate missing data.) We seek the probability that an individual is AA
or AB at the locus (perhaps a putative QTL) indicated by the triangle, given
its available marker data.

If no crossover interference is assumed to hold, one need only consider the
genotypes at the nearest flanking typed markers. For the first individual, we
need only consider the genotypes at markers M3 and M4; we can ignore the
genotypes at the other markers. If riQ is the recombination fraction between
marker Mi and the putative QTL, and if rij is the recombination fraction
between markers Mi and Mj , then the probability that the individual has
genotype AA at the putative QTL is (1−r3Q)(1−r4Q)/(1−r34); the probability
that it is AB is r3Qr4Q/(1 − r34).

Note that the fact that the individual showed a recombination event be-
tween markers M4 and M5 is irrelevant here, as under the no interference
model, recombination events in disjoint intervals are independent. However,
most organisms exhibit positive crossover interference (crossovers tend not to



1.3 Central statistical problems 13

M1 M2 M3 M4 M5 M6Q

AA AA AA AA AB AB

AB AA AA − AB AA

AA AB − AB AA AA

?

Figure 1.9. Illustration of the problem of inferring missing genotype data. Each
row is the marker genotype data for a different backcross individual. Dashes indicate
missing data. We seek the probability that each individual has genotype AA or AB
at the putative QTL indicated by the triangle.

occur too close together). In particular, the mouse exhibits extremely strong
crossover interference, with crossovers seldom being separated by less than
20 cM. In the presence of positive crossover interference, the recombination
event between markers M4 and M5 would result in a decreased chance for a
double recombinant in the interval between M3 and M4, and so there would
be a greater probability that the individual is AA at the putative QTL. How-
ever, calculations are much simpler under the no interference model, and the
difference has been seen to have little influence on QTL mapping results.

For the second individual, we consider the genotypes at markers M3 and
M5, as the genotype at marker M4 is missing. The probability that the indi-
vidual is AA at the putative QTL is (1 − r3Q)r5Q/r35. The probability that
it is AB is r3Q(1 − r5Q)/r35.

Finally, for the third individual, we consider the genotypes at markers M2

and M4. The probability that it is AA at the putative QTL is r2Qr4Q/(1−r24).
The probability that it is AB at the putative QTL is (1−r2Q)(1−r4Q)/(1−r24).

In summary, an essential task in QTL mapping concerns the reconstruc-
tion of missing genotype data conditional on the observed marker genotypes.
This requires a model for the recombination process. While meiosis generally
exhibits positive crossover interference (with crossovers not occurring close
together), we generally assume no crossover interference, as calculations are
then greatly simplified. We have illustrated the value of no crossover inter-
ference with some simple examples. In general, one may use algorithms for
hidden Markov models (HMMs) for these sorts of calculations, as one can
then allow for the presence of genotyping errors and more simply deal with
partially informative genotypes (such as the case of dominant markers in an
intercross). HMM algorithms form the core of R/qtl, and are described in
detail in Appendix D.
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One last point: it may be worthwhile to discuss the role of map functions.
A map function relates the genetic length of an interval (which is generally not
estimable) to its recombination fraction (which generally is estimable); that
is, it relates the expected number of crossovers in an interval to the probabil-
ity of an odd number of crossovers (as a recombination event implies an odd
number of crossovers). A model for crossover interference may imply a map
function (though not necessarily, as if there is variation in the level of inter-
ference along a chromosome, an interval of a given genetic length would not
correspond to a fixed recombination fraction), though the converse is not true.
Common map functions include the Haldane map function (corresponding to
no interference), the Kosambi map function (corresponding approximately to
the level of interference in humans) and the Carter–Falconer map function
(corresponding approximately to the level of interference in mice).

In calculating the genotype probabilities at a putative QTL given the avail-
able marker data, and using the no interference assumption, a map function
is used to convert genetic lengths to recombination fractions. But if one’s own
data is used to estimate the genetic map, and if that is done (as is typical) un-
der the no interference assumption, it is the recombination fractions that are
actually estimated; the estimated genetic distances are derived via a map func-
tion. In this case, it will not matter what map function is used, provided that
the same map function used to derive genetic distances is also used to convert
back to recombination fractions. The only role of the map function concerns
the scale on which results are plotted, as the results are generally plotted as a
function of genetic distance. One should not treat estimated genetic distances
with much reverence; most important are the markers themselves, which tie
one’s results back to the DNA sequence.

1.3.2 Models connecting genotype and phenotype

Most important are models connecting genotype and phenotype. Consider a
single backcross individual, and let y denote its phenotype and g its whole-
genome genotype (that is, its genotype at all polymorphisms between the
parental strains).

Imagine that there are just p sites that matter in producing the pheno-
type, where p is some small proportion of the total number of polymorphisms,
and let g1, . . . , gp denote the individual’s genotype at these p QTL. We then
have E(y|g) = μg1...gp

and var(y|g) = σ2
g1...gp

. That is, the expected value
(i.e., mean or average) and variance of an individual’s phenotype, given its
whole-genome genotype, depends only on its genotype at the p QTL; all other
polymorphisms are inconsequential.

Thus we may split individuals into 2p groups (3p groups in an intercross)
that are genetically identical at all polymorphisms contributing to the pheno-
type. The residual variation in each group, σ2

g1...gp
, will be entirely nongenetic

(measurement error, environmental variation, and individual developmental
noise).
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We often make a number of simplifying assumptions. First, we may assume
constant variance (homoscedasticity): that σ2

g1...gp
≡ σ2. In other words, the

individual, residual variation (which includes measurement error and environ-
mental variation) is constant within each of the 2p groups. To the contrary,
we often see that such variation increases with the average phenotype, but the
constant variance assumption is convenient.

Second, we may assume that the residual variation follows a normal dis-
tribution: y|g ∼ N(μg1...gp

, σ2). That is, the phenotype distribution within
each of the 2p groups follows a normal curve, though with different averages.
Note that this is not the same as to say that the marginal phenotype distri-
bution follows a normal distribution; rather, the marginal distribution follows
a mixture of normal distributions, the components of the mixture being the
2p groups with distinct genotypes at the p QTL.

Finally, we often assume that the QTL act additively , so that

E(y|g) = μg1...gp
= μ +

∑
j Δjzj

where zj = 0 or 1, according to whether gj is AA or AB. That is, the effect
of QTL j is Δj , no matter the genotype at the other loci.

Any deviation from additivity is called epistasis. The term epistasis is often
reserved for a particular type of interaction, in which the effect of a mutation
at a locus may be masked by the presence of a mutation at a second locus.
However, statistical geneticists have come to use the term more generally.

As an illustration of epistasis, consider the hypothetical data plotted in
Fig. 1.10. Focus first on Fig. 1.10A; we split backcross individuals into four
groups according to their joint genotypes at two QTL. Dots are plotted at
the average phenotype for each of the two-locus genotypes; line segments are
drawn between the averages for a fixed genotype at QTL 2.

The average phenotype for individuals with genotype AA at both QTL is
10, while the average phenotype for individuals with genotype AB at QTL
1 and AA at QTL 2 is 40, and so the effect of QTL 1 is 30 in individuals
with genotype AA at QTL 2. The average phenotype for the individuals with
genotype AA at QTL 1 and AB at QTL 2 is 60, while the average phenotype
for individuals with genotype AB at both QTL is 90, and so the effect of QTL
1 is 30 in individuals with genotype AB at QTL 2. Thus the effect of QTL 1
is the same, no matter the genotype at QTL 2; similarly, the effect of QTL 2
is the same, no matter the genotype at QTL 1. Thus the QTL are said to be
additive. (Sometimes, in this case, the QTL are said to be independent, but
this can be confused with whether or not the QTL are linked on a chromosome,
and so we prefer the term additive.)

In Fig. 1.10B, on the other hand, the effect of QTL 1 is 30 when the
genotype at QTL 2 is AA, but is 65 when the genotype at QTL 2 is AB;
similarly the effect of QTL 2 depends on the genotype at QTL 1. Thus the
QTL are said to interact (or to be epistatic): the effect of one QTL depends
on the genotype at the other QTL.
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Figure 1.10. Illustration of possible effects of two QTL in a backcross. A. Additive
QTL. B. Interacting QTL. Points are located at the average phenotype for a given
two-locus genotype. Line segments connect the averages for a given genotype at the
second QTL.

Figure 1.11 provides the analogous illustration for an intercross. The po-
sition of the average phenotype for the AB group between the averages for
the AA and BB groups concerns additivity at a locus (versus dominance or
recessivity). Two loci are additive (as in panel A) if the pattern of effect at
one QTL is the same no matter the genotype at the other QTL: that the three
curves in Fig. 1.11A are parallel. In Fig. 1.11B, the pattern of effect of QTL
1 is different for different genotypes at QTL 2, and vice versa, and so the two
QTL are said to interact.

Sometimes a distinction is made between epistasis that concerns simply
differences in the sizes of effects (as in Fig. 1.10B) versus changes in the sign
of effect (as in Fig. 1.11B), as the former might be eliminated by a change
in the scale on which the phenotype is measured, while the latter cannot
be. We should emphasize further: strict additivity of QTL is rare and would
be lost with a transformation of the phenotype. Thus, the question is not
whether two loci interact but by how much. Further, deviation from additivity
does not necessarily imply physical interaction or even a shared pathway.
Polymorphisms in multiple genes may underly each QTL, and so conclusions
regarding potential biological interactions are quite tenuous.
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Figure 1.11. Illustration of possible effects of two QTL in an intercross. A. Additive
QTL. B. Interacting QTL. Points are located at the average phenotype for a given
two-locus genotype. Line segments connect the averages for a given genotype at the
second QTL.

1.4 About R and R/qtl

The development of the R/qtl software was begun at the suggestion of Gary
Churchill. Our primary goal was to make complex QTL mapping methods
widely accessible and allow users to focus on modeling rather than comput-
ing. We further sought to develop an extensible platform for QTL mapping: to
have a fast implementation of the hidden Markov model technology for deal-
ing with the problem of missing genotype information, which forms the core
of all QTL mapping methods, and to make these intermediate calculations
readily accessible to the sophisticated user, so that specially tailored mapping
methods can be more easily implemented.

R/qtl has been implemented as an add-on package to the general statis-
tical software, R. R is an open source implementation of the S language, is
widely used by academic statisticians, and is extensively used for microarray
analyses (see the Bioconductor Project, http://www.bioconductor.org). As
described on the R project homepage (http://www.r-project.org):

R is a system for statistical computation and graphics. It consists
of a language plus a run-time environment with graphics, a debugger,
access to certain system functions, and the ability to run programs
stored in script files.

The core of R is an interpreted computer language which al-
lows branching and looping as well as modular programming using
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functions. Most of the user-visible functions in R are written in R. It
is possible for the user to interface to procedures written in the C,
C++, or FORTRAN languages for efficiency. The R distribution con-
tains functionality for a large number of statistical procedures. Among
these are: linear and generalized linear models, nonlinear regression
models, time series analysis, classical parametric and nonparametric
tests, clustering and smoothing. There is also a large set of functions
which provide a flexible graphical environment for creating various
kinds of data presentations. Additional modules are available for a
variety of specific purposes.

The development of R/qtl as an add-on to R allows us to take advantage of
the basic mathematical and statistical functions, and powerful graphics capa-
bilities, that are provided with R. Further, the user benefits by the seamless
integration of the QTL mapping software into a general statistical analysis
program.

Much of the source code for R/qtl is written in R (particularly the portion
that concerns data manipulation and graphics). However, most functions that
require fast computation (such as those concerning hidden Markov models)
were written in C.

R and R/qtl are freely available for Windows, Unix and Mac OS X, and
may be downloaded from the Comprehensive R Archive Network (CRAN,
http://cran.r-project.org). Also see the R/qtl web site, http://www.rqtl.
org. For instructions regarding downloading and installing R and R/qtl, see
Appendix A.

Much can be accomplished with R/qtl (and much of this book may be
understood) with little detailed knowledge of R. Learning R may require a
formidable investment of time, but it will definitely be worth the effort, both
for increased facility in the use of R/qtl and for more general statistical anal-
ysis. Numerous free documents on getting started with R are available at
CRAN. In addition, a growing list of books on R are available [for example,
see Dalgaard (2002) or Venables and Ripley (2002)].

In learning R and R/qtl, as with any computer language or program, it is
important to fiddle about: try out the example code, and explore what happens
when the code is modified. In addition, one should refer to the extensive
documentation included with both R and R/qtl. See Sec. A.5 for details on
accessing the documentation.

1.5 Other software

There are numerous other computer programs for QTL mapping. We do not
attempt to cover these exhaustively.

MapMaker/QTL was the first computer program for QTL mapping, but
it has not been updated since 1994, and only allows the fit of single-QTL
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models. QTL Cartographer provides more extensive facilities for the fit of
multiple-QTL models, and has a graphical user interface (GUI) for Windows.
Map Manager QTX is a GUI-based program that some users find most intu-
itive, but QTL mapping is performed exclusively with Haley–Knott regression,
which can be inefficient and prone to artifacts. Commercial software programs
include MapQTL and MultiQTL.

R/qtl is one of the few open source QTL mapping programs; its extensible
structure, which simplifies the implementation of specially tailored mapping
methods, is unique. R/qtl includes many of the important diagnostics present
in MapMaker, but also allows the fit of multiple-QTL models, as in QTL
Cartographer.

1.6 Work flow

In this section, we briefly describe the general work flow in QTL mapping.
One must start with the design of the experiment: the choice of strains, of
phenotypes to measure, of whether to perform a backcross or an intercross,
what markers should be genotyped and which individuals should be geno-
typed. Aspects of design are discussed in Chap. 6.

After the data have been obtained, the first task is to assemble them into
a computer file or files and import them into software. The import of QTL
mapping data into R/qtl is discussed in Chap. 2. Second, one performs a
variety of diagnostic checks on the data to identify possible errors, such as
mistakes in data entry, errors in marker order, and genotyping errors. This
task is discussed in Chap. 3, and is particularly important, as our ability
to map QTL will be eroded by low-quality data. Aspects of the phenotype
distribution may lead one to consider phenotype transformations or the use
of special phenotype models, such as the two-part model discussed in Sec. 5.3.

Next, one uses interval mapping (or one of its variants), performing a
genome scan with a single-QTL model, to detect loci with important marginal
effects. Interval mapping is discussed in Chap. 4 and 5. The statistical signif-
icance of putative QTL is established, taking into account the genome-wide
scan, generally by a permutation test (Sec. 4.3). Interval estimates for the
locations of QTL may also be obtained (Sec. 4.5).

One next turns to two-dimensional, two-QTL scans of the genome (dis-
cussed in Chap. 8). Such two-dimensional scans provide the first opportunity
to identify interactions between QTL, including the possibility of detecting
QTL with limited marginal effects, whose importance may be seen only by
considering their interaction with other loci. In addition, evidence for two
linked QTL (versus a single QTL on a chromosome) is best obtained by con-
sidering an explicit two-QTL model.

Finally, one will bring all of the putative QTL and QTL × QTL interac-
tions together into an overall multiple-QTL model (Chap. 9). In the context
of a global model, some QTL may then be omitted, while the exploration
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of additional QTL or interactions may lead to the addition of further terms
to the model. The fit of the global model may allow some refinement in the
location of QTL, and provides the most reliable estimates of the QTL effects.

The result of the analysis is some set of inferred QTL, with some under-
standing of their effects, locations, and possible interactions. These results will
be used to guide further experiments, perhaps with the aim of fine-mapping
the QTL and ultimately identifying the underlying gene or genes.

1.7 Further reading

There are numerous review articles on QTL mapping (e.g., Doerge et al., 1997;
Broman and Speed, 1999; Jansen, 2007; Broman, 2001). We particularly like
the review of Jansen (2007). Broman (2001) is one of the few reviews written
for nonstatisticians.

A number of books have some discussion of QTL mapping: Falconer and
Mackay (1996) has a chapter on QTL mapping, and Lynch and Walsh (1998)
and Liu (1998) each have several. Silver (1995) is a very nice book on mouse
genetics, and it is freely available online at http://www.informatics.jax.
org/silver. Also see the recent book by Wu et al. (2007).

McPeek (1996) provides a useful introduction to recombination and cross-
over interference. See also McPeek and Speed (1995). For a discussion of map
functions, see Speed (1996) and Zhao and Speed (1996). Broman et al. (2002)
studied crossover interference in the mouse. Strickberger (1985) contains an
excellent chapter on epistasis.

Ihaka and Gentleman (1996) is the paper introducing R. Broman et al.
(2003) is the original article reporting R/qtl. The most important book on R
is Venables and Ripley (2002); every user of R should have a copy. Dalgaard
(2002) provides a more gentle introduction.

Lander et al. (1987) is the original paper on MapMaker; Manly et al. (2001)
described Map Manager. The only clear reference on QTL Cartographer is the
manual (Basten et al., 2002), available online at http://statgen.ncsu.edu/
qtlcart/manual.
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Importing and simulating data

One of the more frustrating tasks associated with the use of any data analysis
software concerns the importation of data. Data can be imported into R/qtl in
a variety of formats, but users often have trouble with this step. In this chapter,
we describe how to import QTL mapping data into R for use with R/qtl. We
further discuss the simulation of QTL mapping data. In an optional section,
we describe the internal format that R/qtl uses for QTL mapping data.

As this may be the reader’s first exposure to R, we will introduce some of
the basic aspects of R as we go along. We should again emphasize that the
novice user will benefit by spending a couple of days reading Dalgaard (2002)
and playing with R.

Before you do anything, you must install R and the R/qtl package; this is
described in Appendix A. After invoking R, you must type library(qtl) to
load the R/qtl package. (In R, R/qtl is known as the qtl package or library.)
It is best to create a .Rprofile file containing this command, so that the
package will automatically be loaded whenever you invoke R. (See Sec. A.3.)

Essentially all tasks in R are performed via functions, such as the library
function mentioned above. Appendix B contains partial list of the functions
in R/qtl. A complete list may be viewed by typing the following.

> library(help=qtl)

The > symbol is the R prompt, which you will observe when R is ready
to accept input commands. R commands may be spread over several lines,
in which case the R prompt turns into the + symbol, indicating a continua-
tion line. (Appearance of the + prompt when one believes one’s command is
complete may indicate imbalance in parentheses. Press the escape key to can-
cel the command.) R input will be shown in a slanted typewriter font ,
while output will be in a plain typewriter font. (The output for the above
command was suppressed, as it would fill a couple of pages.)

Note that the up and down arrow keys may be used to scroll back through
previously entered commands. Emacs users will be pleased to find that many

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 2,
© Springer Science+Business Media, LLC 2009
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of the Emacs key bindings may be used. (But be careful about Ctrl-p, which
may lead you to print a page.)

2.1 Importing data

Importing QTL mapping data into R is accomplished with the read.cross
function. Data may be read in a variety of formats. We strongly recommend
the comma-delimited formats discussed in the next subsection, but Map-
Maker/QTL, Map Manager QTX, and QTL Cartographer formats may also
be used. Sample data files in most of the formats are available at the R/qtl
web site (http://www.rqtl.org/sampledata). The help file for read.cross
contains the complete details on the file formats and the use of the func-
tion. The help file may be viewed by typing ?read.cross; see Sec. A.5. Note
that basic use of the read.cross function is described in Sec. 2.1.1 on the
comma-delimited formats and is not repeated in the subsections on the other
formats.

Before contemplating loading one’s data into R, it must be assembled
into one of the accepted formats. While the comma-delimited formats can
be created in OpenOffice, Microsoft Excel, or other spreadsheet programs, a
different format (or computer program) might be best for entering the data
into the computer. (And ideally data should enter the computer directly from
the measurement device, rather than be input by hand.) The reformatting
of data files to conform to the requirements of specific software is a frequent
task for geneticists, and hand manipulation of data files is time-consuming
and error-prone. Thus we recommend that geneticists learn to program in a
language like Perl, which will greatly simplify the task. While the up-front
investment to learn Perl is large, the value such knowledge will provide over
one’s career is far larger.

2.1.1 Comma-delimited files

The recommended format for QTL mapping data to be imported into R/qtl
is the comma-delimited format, "csv" (an abbreviation of “comma-separated
values”). Several variations on this format will be described below. We begin
by discussing the basic one.

In the basic "csv" format, all phenotype and genotype data, plus the
genetic map of the typed markers, are combined into a single file with fields
delimited by commas. The file may be constructed in a spreadsheet, such as
OpenOffice or Microsoft Excel; an example is illustrated in Fig. 2.1. Be careful
about the use of commas within the fields (though the use of quotation marks
should prevent this from being a problem).

The initial columns are phenotypes (at least one phenotype must be in-
cluded, such as a numeric index for each individual). Subsequent columns are
markers. The first row contains the phenotype and marker names. The second
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0
0
0
0
0
0
0
0
0
0
0
0
0

c1m1 c1m3 c1m4 c1m5 c2m1 c2m2 c2m3
1 1 1 1 2 2 2

8.3 49.0 59.5 89.0 1.0 15.0 45.0
B B − H B B B
H H H H H H H
H B A A H − B
B H H − A A A
B − H H H B B
B B A H A H H
H H H H A B B
− A B B B H H
− A B B A A A
H B A A − H H
B H B B H H H
H B A A B H −
− H H H H H B

Figure 2.1. Part of a data file in the "csv" format, as it might be viewed in a
spreadsheet.

row must have empty fields in each of the phenotype columns. (This is quite
rigid; even a space character will mess things up.) For the genotype columns,
the second row should contain chromosome assignments. Numbers are best;
character strings, such as “Chr 1” or “six” will make later data manipulation
more cumbersome. Use “X” or “x” to identify the X chromosome.

An optional third row can contain the centiMorgan (cM) positions of the
genetic markers. The fields in the phenotype columns should again be blank.
Marker order is taken from the cM positions, if provided; otherwise it is taken
from the column order.

Subsequent rows correspond to the individuals, with phenotypes followed
by genotypes. Missing data should be indicated by “NA” or “-” or some other
code. (It is always best to insert some code indicating missingness rather
than leave some cells empty, as empty cells can be ambiguous: was the value
missing or was an error in data entry made?) Multiple missing data codes
may be used, but consistency between the phenotype and genotype data is
required: a missing value code for the genotype data cannot be a legitimate
phenotype and vice versa. No missing values are allowed in the chromosome
identifiers or genetic map positions.

For a backcross, two genotype codes are to be used: one for homozygotes
(e.g., AA) and one for heterozygotes (AB). For an intercross, five genotype codes
may be used: the two homozygotes (AA and BB), the heterozygote (AB), and
two further genotype codes to be used for dominant markers, such as D for
“not BB” (i.e., AA or AB) and C for “not AA” (i.e., AB or BB), as used by the
MapMaker software.

Consistency in genotype codes is required: one cannot use both A and AA
to indicate a homozygous A genotype. Also note that spaces can mess things
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Table 2.1. Possible intercrosses, and the appropriate code for the pgm “phenotype.”
In the crosses, females are always listed first, so A×B means a female A crossed to
a male B.

Possible genotypes

Cross Females Males pgm code

(A × B) × (A × B) AA, AB A-, B- 0

(B × A) × (A × B) AA, AB A-, B- 0

(A × B) × (B × A) AB, BB A-, B- 1

(B × A) × (B × A) AB, BB A-, B- 1

up: “A ” is treated as different from “A”. It is best to ensure that there are no
spaces in the final data file.

X chromosome genotypes should be coded just like the autosomal geno-
type data; in particular, hemizygous males should be coded as if they were
homozygous, rather than using separate codes for hemizygous and homozy-
gous genotypes. If X chromosome genotype data are included, one of the phe-
notypes should indicate the sex of the individuals. This may be called “sex”
or “Sex,” and the sexes may be coded by 0/1 for females/males, or by the
codes f/m, F/M, or female/male.

Further care is required for the X chromosome genotype data in an in-
tercross, as the direction of the cross must be known. Four possible inter-
crosses may be performed, as shown in Table 2.1. In all cases, the males
are hemizygous A or B at any one locus, but in the crosses (A×B)×(A×B)
and (B×A)×(A×B), the females are either AA or AB, while in the crosses
(A×B)×(B×A) and (B×A)×(B×A), the females are either AB or BB. Thus,
the order of the cross producing the F1 male is critical; for example, we wish
to know whether the paternal grandmother was from strain A or B.

We thus require, for intercrosses, a “phenotype” column named pgm (for
“paternal grandmother”), with codes 0 and 1 indicating which individuals
came from which cross, as shown in Table 2.1.

If one includes a phenotype named“id,”“ID,”or“Id,” it will be assumed to
provide individual identifiers. These will be used in certain places to indicate
the individuals (such as in plot.geno; see Sec. 3.5).

The specification of a file in the "csv" format is now complete. If the
file was created in a spreadsheet program, such as OpenOffice or Microsoft
Excel, you will need to use “Save as” and select the format “CSV (comma-
delimited)” to create the actual file. The result will look something like that
shown in Fig. 2.2. A complete example is provided at the R/qtl web site.

With our first file format understood, we now turn to the use of read.cross
to load the data into R.

A list of the input arguments for read.cross may be viewed via the args
function, as follows. (We often use args to get a quick reminder of the in-
put to a function.) Remember that, if R/qtl is not yet loaded, one must use
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pheno,sex,pgm,c1m1,c1m3,c1m4,c1m5,c2m1,c2m2,c2m3,c2m4,...

,,,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5...

,,,8.3,49,59.5,89,1,15,45,68.9,80.9,87.4,99,0,11.2,39....

0.093,f,0,A,B,A,A,B,H,H,H,H,H,H,B,H,H,B,B,H,A,A,A,A,H,...

0.177,f,0,B,H,H,H,H,B,B,B,B,H,B,H,H,H,-,H,H,H,H,A,H,A,...

0.271,f,0,B,A,H,H,H,H,H,A,A,A,A,H,H,H,H,H,H,B,-,B,B,H,...

0.230,f,0,B,B,A,H,B,B,B,B,B,H,B,A,H,H,B,B,H,H,H,B,B,H,...

0.228,f,0,H,H,H,H,H,H,H,H,B,B,B,B,B,H,H,H,H,B,H,H,H,B,...

0.279,f,0,H,B,A,A,H,B,B,H,A,A,-,A,A,A,H,H,H,A,A,H,B,H,...

0.419,f,0,B,H,H,H,A,A,A,A,A,A,A,B,B,B,B,B,B,B,H,H,H,H,...

0.427,f,0,B,A,H,H,H,B,B,B,B,B,B,H,H,H,B,B,B,H,H,A,A,A,...

0.282,f,0,B,B,A,H,A,H,H,A,A,A,A,B,B,H,A,-,B,H,H,H,H,B,...

0.4,f,0,H,H,H,H,A,B,B,H,H,H,H,H,H,H,B,H,H,H,H,H,H,H,H,...

0.521,f,0,H,A,B,B,B,H,H,H,H,H,H,H,H,A,A,A,H,B,B,B,H,H,...

0.385,f,0,A,A,B,B,A,A,A,H,H,H,H,B,B,H,H,H,H,H,H,A,A,A,...

0.518,f,0,H,B,A,A,H,H,H,B,B,B,B,A,A,H,H,A,H,H,H,H,H,H,...
...

Figure 2.2. Part of a text file in the "csv" format. The terminal dots in each line
are just to indicate that the file extends quite far to the right.

the library function to make it available. (Ignore the NULL; that’s just a
meaningless bit from the args function.)

> library(qtl)

> args(read.cross)

function (format = c("csv", "csvr", "csvs", "csvsr", "mm",
"qtx", "qtlcart", "gary", "karl"), dir = "", file, genfile,
mapfile, phefile, chridfile, mnamesfile, pnamesfile,
na.strings = c("-", "NA"), genotypes = c("A", "H", "B", "D",
"C"), alleles = c("A", "B"), estimate.map = TRUE,
convertXdata = TRUE, ...)

NULL

This is, admittedly, rather forbidding, but not all of the arguments will
be needed in all cases. Note that the c function is used to combine multiple
items together into a vector.

The argument format will be used to indicate that we are reading data in
the "csv" format. The possible formats are shown; the first listed is taken as
the default. The argument dir is used to indicate the directory in which the
file appears. By default, it is assumed that the file is in the current working
directory. (For details on how to select or change the working directory, see
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Sec. A.4.) The argument file will be used to give the name of the data file.
The other file arguments are used for formats in which the data are split across
multiple files.

The argument na.strings is used to indicate the set of missing data codes.
By default, either “-”or “NA”will be treated as missing. Note that most things
are case-sensitive, so “na”will be treated as different from“NA” and “Na”. If all
of these appear in the data file, all should be indicated via the na.strings
argument.

The argument genotypes is used to indicate the genotype codes, and takes
a vector of character strings. The order of the codes in the string is important.
We often forget whether“D”stands for“not AA”or“not BB,”and so we generally
must refer to the help file for read.cross, where this is explained. Note, again,
that the codes are case-sensitive, so “a” will be treated as different from “A.”

The argument alleles is used to indicate custom names for the alleles
(single-character names are best), so that if one does a mouse cross of BALB/c
× DBA/2, one might want to use the codes C and D for the alleles. These will be
used in certain plots (such as of phenotype against genotype) and summaries.

If the genetic map positions of the markers are not provided in the file
and estimate.map=TRUE, the intermarker distances will be estimated, while
if estimate.map=FALSE, a dummy map will be created. (If genetic map posi-
tions are provided, this argument will be ignored.) Estimation of the genetic
map can sometimes be time-consuming, and so one may wish to use esti-
mate.map=FALSE. One may later estimate the map with the function est.map
and plug it into the data object with replace.map; see Sec. 3.4.3.

If marker positions are provided in the file, it is important that no two
markers are placed at precisely the same position. If they are, this may be
rectified with the function jittermap; see page 84.

The “...” at the end of the specification of read.cross is used to allow
additional arguments to be specified; these are passed to the more basic R
function read.table, which does the actual work of reading in the data. Its
use will be explained further below.

There seems a lot to understand, but use of read.cross is generally not
so tedious as it might appear, as most of the arguments to the function can
be ignored. For example, suppose the data in Figures 2.1 and 2.2 are saved
in one’s working directory as the file mydata.csv. One could read this into R
with the following.

> mydata <- read.cross("csv", "", "mydata.csv")

Note that “<-” is the assignment operator. The data are read from the
mydata.csv file and combined into a single object (with a very special internal
format, described in Sec. 2.6.1) and assigned to mydata. This will be a new
object in our R workspace that we may manipulate and analyze. Type ls()
or objects() to list the objects in your workspace.

Also note that arguments to functions in R may be specified by their posi-
tion in the list, by their name, or they may be left unspecified (in which case
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the default values are assumed). Thus, in the code above, it is assumed that
format="csv", dir="", and file="mydata.csv", and we need not specify
values for na.strings, genotypes, or alleles, as the default values suffice
for our data. All of the following lines of code are equivalent.

> mydata <- read.cross("csv", , "mydata.csv")

> mydata <- read.cross("csv", file="mydata.csv")

> mydata <- read.cross(format="csv", file="mydata.csv")

> mydata <- read.cross(file="mydata.csv", format="csv")

> mydata <- read.cross(file="mydata.csv")

If the data file were in some location other than the R working directory,
we would need to specify its location with the dir argument. The directory
(or folder) hierarchy is indicated with forward slashes (/). In Windows, it
is traditional to use backslashes (\), but these will not work in R, though
double-backslashes (\\) may be used in place of forward slashes.

For example, if we were working on a Macintosh and our file was on the
Desktop, we might use the following code. The tilde (~) denotes our home
directory.

> mydata <- read.cross("csv", "~/Desktop", "mydata.csv")

If we were working in Windows and the file was located in c:\My Data,
we could use the following code.

> mydata <- read.cross("csv", "c:/My Data", "mydata.csv")

If we had coded the genotype data differently, we would need to use the
genotypes argument. Because of all of the intervening file name arguments,
the na.strings, genotypes, and alleles arguments generally must be spec-
ified by name. For example, suppose missing data were coded “na” and that
the genotypes were coded BB/BC/CC. Then the data would be read as follows.

> mydata <- read.cross("csv", "", "mydata.csv", na.strings="na",

+ genotypes=c("BB","BC","CC"),

+ alleles=c("B","C"))

We recommend downloading the example "csv" data file (listeria.csv)
from the R/qtl web site and trying to load it into R. (The file is included with
the R/qtl package, but it is in a spot that may be difficult to find.) If one has
trouble importing one’s own data, it is a good idea to try importing a file that
is known to be correct, so one may determine whether the problem concerns
some incompatibility in the file or an incomplete understanding of the use of
read.cross.

Outside the United States, commas are sometimes used instead of periods
in numbers, and so semicolons are sometimes used instead of commas in such
CSV files. Files of this sort may also be read; one must make use of the flexibil-
ity in the read.cross function through the “...” in its specification, through
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# The ch3c data

# File created by Karl W Broman, 7-19-06

# Intercross between C57BL/6J and A/J

# 100 females from the cross (AxB)x(AxB)

# 101 markers, including 10 on the X chromosome

pheno,sex,pgm,c1m1,c1m3,c1m4,c1m5,c2m1,c2m2,c2m3,c2m4,...

,,,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,5,5,5,5,5...

,,,8.3,49,59.5,89,1,15,45,68.9,80.9,87.4,99,0,11.2,39....

0.093,f,0,A,B,A,A,B,H,H,H,H,H,H,B,H,H,B,B,H,A,A,A,A,H,...

0.177,f,0,B,H,H,H,H,B,B,B,B,H,B,H,H,H,-,H,H,H,H,A,H,A,...

0.271,f,0,B,A,H,H,H,H,H,A,A,A,A,H,H,H,H,H,H,B,-,B,B,H,...

0.230,f,0,B,B,A,H,B,B,B,B,B,H,B,A,H,H,B,B,H,H,H,B,B,H,...

0.228,f,0,H,H,H,H,H,H,H,H,B,B,B,B,B,H,H,H,H,B,H,H,H,B,...

0.279,f,0,H,B,A,A,H,B,B,H,A,A,-,A,A,A,H,H,H,A,A,H,B,H,...

0.419,f,0,B,H,H,H,A,A,A,A,A,A,A,B,B,B,B,B,B,B,H,H,H,H,...

0.427,f,0,B,A,H,H,H,B,B,B,B,B,B,H,H,H,B,B,B,H,H,A,A,A,...
...

Figure 2.3. An example file in the "csv" format with comment lines included.

which further arguments are passed down to the more basic read.table func-
tion. That function allows arguments sep, for specifying the field separator,
and dec, for specifying the character used for the decimal point.

Thus, if the mydata.csv file had used semicolons and commas rather than
commas and periods, we would read it into R with the following code.

> mydata <- read.cross("csv", , "mydata.csv", sep=";", dec=",")

Note that these additional arguments must be specified by name.
One may include comments in an input file, to be ignored when it is im-

ported, but useful to document its contents. A single symbol, such as #, may
be used to indicate that the remainder of the line is to be ignored. The chosen
symbol cannot appear anywhere in the data, and is indicated, in the call to
read.cross, via the comment.char argument. (In R versions 2.3.1 and ear-
lier, comment.char="#" was the default, but in R versions 2.4.0 and later, the
default has become comment.char="", and so no such commenting character
is assumed.)

For example, the file in Fig. 2.3 contains initial comment lines, indicated
by #. To read this file into R, we would use the following code.

> mydata <- read.cross("csv", , "mydata.csv", comment.char="#")

There are three related comma-delimited formats: "csvr", "csvs", and
"csvsr". These are primarily for the case of expression genetic data, in which
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A B C D E F G H I J
1
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sex
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0.093 0.177 − 0.230 0.228 0.279 0.419
f f f f f f f
0 0 0 0 0 0 0
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1
1
1
1
2
2
2
2
2
2
2
3
3

8.3
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89.0
1.0

15.0
45.0
68.9
80.9
87.4
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B
B
−
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B
B
B
B
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H
H
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B
H
H
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H
H
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Figure 2.4. Part of a data file in the "csvr" format, as it might be viewed in a
spreadsheet.

QTL mapping is to be performed with the expression of all genes on a micro-
array, so that one has thousands or tens of thousands of phenotypes.

The "csvr" format is just like the "csv" format, but with rows and
columns interchanged. (The “r” is for rotate, but the file is technically trans-
posed rather than rotated.) In Fig. 2.4, the file from Fig. 2.1 is shown in
the "csvr" format. All other aspects are the same as before, and the use of
read.cross is unchanged, so such a file (call it "mydata_rot.csv") could be
read in as follows.

> mydata <- read.cross("csvr", , "mydata_rot.csv")

Of course, other arguments, such as genotypes, may be used as before.
The "csvs" format is similar to the "csv" format, but with separate files

for the phenotypes and the genotypes. The genotype data file must begin
with a single column containing individual identifiers, followed by columns for
each of the markers. As with the phenotype columns for the "csv" format,
this initial column must have empty cells in the rows for the chromosome
assignments and marker positions. The phenotype data file must contain a
column with precisely the same name and contents, so that we can be sure
that the phenotype and genotype data are appropriately aligned. An example
of this format is display in Fig. 2.5.

To read data in the "csvs" format, one must specify the names of both
files. This may be done via the read.cross arguments genfile and phefile,
as follows. (We assume that both files are in the current working directory.)

> mydata <- read.cross("csvs", genfile="mydata_gen.csv",

+ phefile="mydata_phe.csv")
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A B C D
1
2
3
4
5
6
7
8
9

10
11
12
13

pheno sex pgm id
0.093
0.177

−

0.230
0.228
0.279
0.419
0.427
0.282
0.400
0.521
0.385

f
f
f
f
f
f
f
f
f
f
f
f

0
0
0
0
0
0
0
0
0
0
0
0

1
2
3
4
5
6
7
8
9
10
11
12

Phenotype data file Genotype data file
A B C D E

1
2
3
4
5
6
7
8
9

10
11
12
13

id

1
2
3
4
5
6
7
8
9

10

c1m1 c1m3 c1m1 c1m3
1 1 1 1

8.3 49.0 8.3 49.0
B B B B
H H H H
H B H B
B H B H
B − B −

B B B B
H H H H
− A − A
− A − A
H B H B

Figure 2.5. Part of the genotype and phenotype data files for an example of the
"csvs" format, as they might be viewed in a spreadsheet.

For the user’s convenience, if the phefile argument was not specified, but
the file and genfile arguments were, we assume that file and genfile
are indicating the genotype and phenotype data files, respectively. This can
simplify the code a bit. For example, suppose that we are working in a di-
rectory MyProject/R, and that the two data files are sitting in the directory
MyProject/Data. The data could be imported as follows.

> mydata <- read.cross("csvs", "../Data", "mydata_gen.csv",

+ "mydata_phe.csv")

The "csvsr" format is just like the "csvs" format, but with both files
rotated as in the "csvr" format. We use read.cross in the same way as for
the "csvs" format.

2.1.2 MapMaker/QTL

The format "mm" is for data in the format used by the MapMaker software.
There are two files, a .raw file containing the genotype and phenotype data
and a second file containing the genetic map information. Examples of these
files are provided on the R/qtl web site.

The genetic map file may be in one of two formats. First, one may use
a .maps file, produced by MapMaker/Exp. Second, one may create a space-
delimited file, as illustrated in Fig. 2.6, with one row for each marker. The
first column is the chromosome assignment, the second column is the marker
name (which must match that used in the .raw file exactly), and an optional
third column may contain the cM position of each marker.

Use of read.cross to read data in the "mm" format is similar to the case of
the "csvs" format, discussed in the previous subsection. Specify the .raw file
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1 D10M44 0.00

1 D1M3 1.00

1 D1M75 24.85

1 D1M215 40.41

1 D1M309 49.99

1 D1M218 52.80

1 D1M451 70.11

1 D1M504 70.81

1 D1M113 80.62

1 D1M355 81.40

1 D1M291 84.93

1 D1M209 92.68

1 D1M155 93.64

2 D2M365 0.00

2 D2M37 27.94

2 D2M396 47.11
...

Figure 2.6. The initial portion of a space-delimited file that may be used to indicate
marker locations for the MapMaker ("mm") format.

with the file argument and the genetic map file with the mapfile argument.
(The format of the genetic map file is determined automatically.) Note that
the na.strings and genotypes arguments are ignored with this format, as
such codes are specified within the .raw file.

For the user’s convenience, if the mapfile argument was not specified, but
the genfile argument was, we assume that genfile indicates the genetic
map file. This can simplify the code a bit. For example, suppose that we are
working in a directory MyProject/R, and that the two data files are sitting in
the directory MyProject/Data. The data could be imported as follows.

> mydata <- read.cross("mm", "../Data", "mydata.raw",

+ "mydata.maps")

2.1.3 QTL Cartographer

The format "qtlcart" is for data in the format used by the QTL Cartog-
rapher software. There are two files, a .cro file containing the genotype and
phenotype data and a .map file containing the genetic map. Examples of these
files are provided on the R/qtl web site.

We use read.cross to read the QTL Cartographer files in a manner similar
to that used for the MapMaker files. For example, suppose we are working in
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a directory MyProject/R and that the two data files are in the directory
MyProject/Data; they could then be imported as follows.

> mydata <- read.cross("qtlcart", "../Data", "mydata.cro",

+ "mydata.map")

2.1.4 Map Manager QTX

The format "qtx" is for data in the format used by the Map Manager QTX
software. There is a single file, generally with extension .qtx, containing all of
the genotype and phenotype data as well as the genetic markers’ chromosome
assignments and order. Genetic map positions for the markers are generally
not included in the file, and so must be estimated. An example file is provided
on the R/qtl web site.

Loading data from a .qtx file into R/qtl is simple. The na.strings and
genotypes arguments need not be used, as such codes are included within the
file. Suppose that we are working in the directory MyProject/R; to read the
mydata.qtx from the directory MyProject/Data, type the following.

> mydata <- read.cross("qtx", "../Data", "mydata.qtx")

As the genetic map positions for the markers are generally not provided
in the .qtx file, and so must be estimated from the data, the import of the
data can be time consuming. One may wish to use estimate.map=FALSE in
the call to read.cross, and then use est.map and replace.map to estimate
the map and then plug it into the data. This process is described in more
detail in Sec. 3.4.3, but let us briefly consider a simple example.

> mydata <- read.cross("qtx", "", "mydata.qtx",

+ estimate.map=FALSE)

> themap <- est.map(mydata, error.prob=0.001)

> mydata <- replace.map(mydata, themap)

In the first line of code, we read in the data without estimating the intermarker
distances, and so a dummy map is inserted into the mydata object. In the
second line, we call est.map to estimate the genetic map, here assuming that
genotypes may be in error with probability 0.1%. The result is placed in the
object themap. In the final line of code, the replace.map function is used to
replace the map within mydata, inserting themap in its place. The output is
the same data but with a different map; we assign it back to mydata, writing
over the original data. (We might have assigned it to an object with a different
name, in which case both would appear in our R workspace.)

2.2 Exporting data

Data may be exported from R/qtl into several formats. This may be useful,
for example, if one wishes to compare results from R/qtl to those from QTL
Cartographer, or simulate data in R/qtl and analyze them in Cartographer.
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The write.cross function is used for this purpose. The cross argument is
the cross object to be exported. The chr argument may be used to indicate a
subset of chromosomes that should exported. The format argument indicates
the format to which the data should be written.

The filestem argument indicates the initial part of the file names. For
example, with the qtlcart format, .cro and .map files will be created. If one
uses filestem="mydata", the files "mydata.cro" and "mydata.map" will be
created.

The filestem can include a directory, so that the files may be written
somewhere other than the current working directory. For example, if one
wishes to save chromosomes 5 and 13 of the listeria data to a file in the
"csv" format on the Desktop on a Macintosh computer, use the following
code.

> data(listeria)

> write.cross(listeria, "csv", "~/Desktop/listeria", c(5, 13))

2.3 Example data

A variety of example data sets are included with R/qtl. A complete list may
be obtained with the following.

> data(package="qtl")

Of particular interest are the hyper and listeria data, which will be used
as the main examples in this book.

The hyper data set is from Sugiyama et al. (2001). (It was also discussed
in Sec. 1.2.) This is a backcross using the C57BL/6J and A/J inbred mouse
strains, with the F1 mated back to the C57BL/6J strain. There are 250 male
backcross individuals. Mice were given water containing 1% NaCl for two
weeks; the phenotype is blood pressure (actually the average of 20 blood
pressure measurements from each of 5 days).

The listeria data set is from Boyartchuk et al. (2001). This is an inter-
cross using the C57BL/6ByJ and BALB/cByJ inbred mouse strains. There
are 120 female intercross individuals (though only 116 were phenotyped). Mice
were injected with Listeria monocytogenes; the phenotype is survival time (in
hours). A large proportion of the mice (35/116) survived past the 240-hour
time point and were considered to have recovered from the infection; their
phenotype was recorded as 264.

A number of further example data sets will be used in this book. (For a
summary of all data sets considered in the book, see Appendix C.) These have
been compiled into an R package, R/qtlbook (known in R as the qtlbook
package). It may be obtained from the website for the book (http://www.
rqtl.org/book) and from the Comprehensive R Archive Network (CRAN,
http://cran.r-project.org).
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Additional example data may be obtained at the QTL Archive at The Jack-
son Laboratory (http://cgd.jax.org/nav/qtlarchive1.htm or use Google
to search for “QTL Archive”). Most of the data sets are available in the "csv"
format. One must register to access the data. As stated at the QTL Archive,
“The authors of the datasets retain individual ownership of the data. We re-
quest, as a courtesy to the authors, that you alert them in advance of any
publications that result from reanalysis of these data or obtain permission
prior to redistribution of data or results.”

2.4 Data summaries

All of the data read by read.cross (including genotypes, phenotypes, and
the genetic map) will be stored in a single object. (This object is stored in
a quite complex form; see Sec. 2.6.1.) A number of functions are provided to
get summary information about the object.

The most important function is summary.cross. In addition to providing
a brief summary of the cross, it performs an extensive series of checks of
the integrity of the data (for example, that there are the same number of
individuals in the phenotype data as in the genotype data).

The data object for a QTL mapping experiment is assigned a “class”
"cross". R includes some simple object-oriented features, so that one may
use the generic functions summary and plot on an object, and the relevant
summary or plot is made.

For example, the following code loads the listeria data and displays a
brief summary.

> data(listeria)

> summary(listeria)

F2 intercross

No. individuals: 120

No. phenotypes: 2
Percent phenotyped: 96.7 100

No. chromosomes: 20
Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19
X chr: X

Total markers: 133
No. markers: 13 6 6 4 13 13 6 6 7 5 6 6 12 4 8 4 4 4

4 2
Percent genotyped: 88.5
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Figure 2.7. The summary plot of the listeria data provided by the plot.cross

function, including the pattern of missing genotype data (upper left; black pixels
indicate missing data), the genetic map of the typed markers (upper right), a his-
togram of the phenotype (lower left), and a bar plot of the sexes (lower right).

Genotypes (%): CC:26.2 CB:48.9 BB:24 not BB:0
not CC:0.9

We see that this is an intercross with 120 individuals, that there are two
phenotypes, and 20 chromosomes containing 133 markers, and with genotype
completion of 88.5%.

In the above code, the generic summary function sees that listeria has
class "cross" and passes it to the summary.cross function, which provides
the actual summary.

Similarly, the following code provides a summary plot of the listeria
data, and in this case the generic plot function passes listeria to the
plot.cross function, which makes the plot (shown in Fig. 2.7).

> plot(listeria)

The individual panels in Fig. 2.7 may be obtained with the following code.
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> plot.missing(listeria)

> plot.map(listeria)

> plot.pheno(listeria, 1)

> plot.pheno(listeria, 2)

The plot.missing function creates the plot with the pattern of missing geno-
type data. It takes an argument reorder which can be used to order the
individuals according to their phenotype. The genetic map is obtained with
plot.map. The function plot.pheno plots a phenotype, either as a histogram
(using the R function hist) or as a bar plot (using the R function barplot),
depending on the nature of the phenotype.

Finally, there are a variety of other functions for getting additional small
pieces of information about a cross object. They are largely self-explanatory.

> nind(listeria)

[1] 120

> nphe(listeria)

[1] 2

> totmar(listeria)

[1] 133

> nchr(listeria)

[1] 20

> nmar(listeria)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X
13 6 6 4 13 13 6 6 7 5 6 6 12 4 8 4 4 4 4 2

The function nmar gives the numbers of markers on individual chromosomes.

2.5 Simulating data

One can simulate QTL mapping data in R/qtl with the sim.cross function;
it can simulate only additive QTL models. These basic facilities are described
in the next subsection. More complex QTL models may also be simulated by
making use of the QTL genotype data, which are stored in the object output
by sim.cross. This will be described in the following subsection. Computer
simulations are particularly useful for exploring the power to detect QTL and
the precision of localization of QTL. For further details, see Sec. 6.6.
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Figure 2.8. A genetic map, with approximately 10 cM marker spacing, modeled
after the mouse genome and contained in the map10 data set in R/qtl.

2.5.1 Additive models

The sim.cross function may be used to simulate a backcross or intercross
with an additive QTL model. It requires, as input, a genetic map of markers.
Such a map must be stored in a specific and rather complicated form (see
Sec. 2.6.2), and so we first describe how to create such a map.

First, an example map, modeled after the mouse genome and having ap-
proximately evenly spaced markers (at ∼10 cM) is provided with R/qtl in the
data set map10. To access the object and plot the map, type the following.

> data(map10)

> plot(map10)

The plot is shown in Fig. 2.8. The marker spacing varies slightly across chro-
mosomes so that the lengths of the chromosomes match those of the mouse
genome.

Second, one may extract the genetic map from a QTL mapping data set
with the pull.map function. For example, the following code extracts the map
from the listeria data.

> data(listeria)

> listmap <- pull.map(listeria)

Finally, one may use sim.map to generate a map, with equally spaced
markers or with markers placed randomly. Important arguments to sim.map
include len (the cM lengths of the chromosomes), n.markers (the numbers
of markers on the chromosomes), anchor.tel (indicates whether the ends of
the chromosomes should be forced to have markers), include.x (whether the
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final chromosome should be designated to be the X chromosome, versus all
chromosomes being autosomes), and eq.spacing (whether markers should be
spaced evenly).

For example, to create a map with a single autosome of length 200 cM and
having markers equally spaced at 20 cM, type the following.

> mapA <- sim.map(200, 11, include.x=FALSE, eq.spacing=TRUE)

To create a map with 19 autosomes and an X chromosome, chromosomes
all of length 100 cM, and each containing 10 randomly positioned markers,
though ensuring one marker at each end of each chromosome, we would type
the following.

> mapB <- sim.map(rep(100, 20), 10)

A similar map, but without anchoring the telomeres, would be obtained
as follows.

> mapC <- sim.map(rep(100, 20), 10, anchor.tel=FALSE)

Finally, to get a map with four autosomes of lengths 50, 75, 100, and
125 cM, respectively, and with equally spaced markers at a 5 cM spacing,
type the following.

> L <- c(50, 75, 100, 125)

> mapD <- sim.map(L, L/5+1, eq.spacing=TRUE, include.x=FALSE)

Note that one can use the summary.map function to get a short summary
of a genetic map; it works much like the summary.cross function described in
Sec. 2.4. We can get a summary of the mapD object, created above, as follows.

> summary(mapD)

n.mar length ave.spacing max.spacing
1 11 50 5 5
2 16 75 5 5
3 21 100 5 5
4 26 125 5 5
overall 74 350 5 5

With a genetic map in hand, we can now turn to the simulation of the ac-
tual data. The following code simulates data for a backcross of 100 individuals,
with complete and error-free genotype data, and markers placed according to
the genetic map in map10.

> simA <- sim.cross(map10, n.ind=100, type="bc")

We would simulate an intercross in the same way, using type="f2".
If QTL are to be simulated, we must specify the model via the model argu-

ment, which should be a matrix with three columns for a backcross and four
columns for an intercross. The first column in the matrix gives the chromo-
somes on which the QTL sit and the second column gives their cM positions.
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The third column contains the additive effect of each QTL: in a backcross,
the difference between the phenotype averages in heterozygotes and homozy-
gotes; in an intercross, half the difference between phenotype averages for the
homozygotes. In an intercross, there must be a fourth column giving the dom-
inance effect for each QTL (the difference between the average phenotype for
the heterozygotes and the midpoint between the average phenotypes for the
homozygotes).

Phenotypes are simulated from a normal distribution with residual vari-
ance σ2 = 1. Thus, in a backcross, if there is one QTL with additive effect
a, the proportion of the phenotypic variance explained by the QTL (i.e., the
heritability due to the QTL) will be a2/4/(a2/4 + 1). In an intercross with
one QTL exhibiting no dominance, the proportion of the phenotypic variance
explained is a2/2/(a2/2 + 1).

Let us first simulate a backcross with two additive QTL, each responsible
for 8% of the phenotypic variance. Place the first at 50 cM on chromosome 1
and the second at 65 cM on chromosome 14. We must first find the additive
effects that correspond to 8% phenotypic variance. Since the QTL are unlinked
and have the same size effect, we need (a2/4)/[2(a2/4) + 1] = 0.08. Solving
for a, we obtain a = √4 × 0.08/(1 − 2 × 0.08).

> a <- 2 * sqrt(0.08 / (1 - 2 * 0.08))

> mymodel <- rbind(c(1, 50, a), c(14, 65, a))

> simB <- sim.cross(map10, type="bc", n.ind=200, model=mymodel)

We use the c function to combine the chromosome, position and effect of each
QTL into a vector, and then rbind to combine the two into a matrix (rbind
makes them rows in the matrix).

As a further example, we simulate an intercross of 250 individuals with
three QTL, two having no dominance but with effects in the opposite direc-
tions and a third being strictly dominant. Let’s have the first two QTL be
linked on chromosome 3 at positions 40 cM and 65 cM, and place the third
on chromosome 4 at 5 cM. For simplicity, let’s set the effects at 0.5.

> mymodel2 <- rbind(c(3, 40, 0.5, 0), c(3, 65, -0.5, 0),

+ c(4, 5, 0.5, 0.5))

> simC <- sim.cross(map10, type="f2", n.ind=250, model=mymodel2)

By default, there are no errors in the genotype data. Errors can be included
at random via the error.prob argument. Genotype data are also, by default,
complete. The genotype data can be missing at random with some proba-
bility via the missing.prob argument. And so we can repeat our backcross
simulation with 1% genotyping errors and 5% missing data as follows.

> simD <- sim.cross(map10, type="bc", n.ind=200, model=mymodel,

+ error.prob=0.01, missing.prob=0.05)

Random missing genotype data is rather artificial. For more realistic miss-
ing data, we can simulate an intercross of the same size as the listeria data
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and apply the missing data observed in that data set. This is not so simple,
due to the complexity of the cross data objects and the need for a loop over
chromosomes, and so the following code has little chance of being understood
by the novice.

> data(listeria)

> listmap <- pull.map(listeria)

> simE <- sim.cross(listmap, type="f2", n.ind=nind(listeria),

+ model=mymodel2)

> for(i in 1:nchr(simE))

+ simE$geno[[i]]$data[ is.na(listeria$geno[[i]]$data) ] <- NA

By default, simulations are performed assuming no crossover interference
at meiosis. One may also simulate the crosses under the χ2 model or the Stahl
model. (See Sec. 2.7 for references.) The χ2 model has a single parameter, m,
which is a non-negative integer; m = 0 corresponds to no interference. With
m > 0, it is assumed that, on the four-strand bundle at meiosis, chiasmata
and intermediate points are thrown down at random (according to a Poisson
process), and that every (m + 1)st point is a chiasma. No chromatid interfer-
ence is assumed, so that the particular strands involved in each chiasma are
at random, independent between chiasmata. As a result, the crossovers on a
random meiotic product may be obtained by “thinning” the chiasmata inde-
pendently with probability 1/2. (That is, each chiasma has 1/2 chance of being
a crossover on the random product, with independence between chiasmata.) In
the Stahl model, chiasmata arise according to two independent mechanisms,
one following a χ2 model and the other exhibiting no interference; the ob-
served chiasma locations are the superposition of the two processes. There is
one additional parameter, p, giving the proportion of chiasmata to come from
the mechanism exhibiting no interference.

We can simulate under the χ2 model and the Stahl model via the argu-
ments m and p to sim.cross. By default, m=0 (in which case p is irrelevant),
indicating no crossover interference. The mouse exhibits strong crossover in-
terference with m ≈ 10. We can repeat our previous simulation, but with
recombination according to a χ2(m = 10) model as follows.

> simF <- sim.cross(map10, type="f2", n.ind=250, model=mymodel2,

+ m=10)

We can simulate from the Stahl model, with m = 10 and p = 0.1, as
follows.

> simG <- sim.cross(map10, type="f2", n.ind=250, model=mymodel2,

+ m=10, p=0.1)

2.5.2 More complex models

The simulations in the previous section were restricted to strictly additive
QTL models and with residual variation following a normal distribution with
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variance σ2 = 1. However, the QTL genotype data are stored as a matrix
within the output of sim.cross; with these data one may simulate data from
essentially any QTL model.

First, let us simulate two QTL exhibiting epistasis. Consider a backcross of
200 individuals, with a QTL located at 25 cM on chromosome 4 and another
at 45 cM on chromosome 5. Assume that an effect is seen only if an individual
is homozygous at both QTL, in which case the phenotype is reduced by one
unit.

We begin by simulating QTL having no effect, just so that their geno-
types may be obtained, but so that the simulated phenotype will follow a
normal(0,1) distribution, independent of genotype. We then modify the phe-
notype for individuals who are homozygous at both QTL. This requires a bit
of mucking about in the cross data object.

> data(map10)

> nullmodel <- rbind(c(4, 25, 0), c(5, 45, 0))

> episim <- sim.cross(map10, type="bc", n.ind=200,

+ model=nullmodel)

> qtlg <- episim$qtlgeno

> wh <- qtlg[,1]==1 & qtlg[,2]==1

> episim$pheno[wh, 1] <- episim$pheno[wh, 1] - 1

In the fifth line, we pull out the QTL genotype data. (The columns are the
QTL; the rows are the individuals.) In the sixth line, we identify the indi-
viduals that are homozygous at both QTL. (Internally, in a backcross, 1 and
2 correspond to the homozygous and heterozygous genotypes, respectively.
In an intercross, 1 and 3 are the two homozygous genotypes and 2 is the
heterozygous genotype.)

We might create a binary version of this phenotype by thresholding at 1.
(Individuals with quantitative phenotype > 1 become affected; the others are
unaffected.) We can paste this into the simulated data as a second phenotype.

> binphe <- as.numeric(episim$pheno[,1] > 1)

> episim$pheno$affected <- binphe

There will now be a second phenotype named “affected” with 1 and 0 indi-
cating affected and unaffected, respectively.

Finally, we might assign sexes to the individuals at random, and include a
sex difference in the phenotype and even a difference in the effect of the QTL
in the two sexes (a QTL × sex interaction). We’ll create a third phenotype
with these features, and place “sex” in the data as a fourth phenotype. Here,
0 and 1 correspond to females and males, respectively.

> sex <- sample(0:1, nind(episim), replace=TRUE)

> phe3 <- rnorm(nind(episim), 0, 1)

> phe3[wh & sex==0] <- phe3[wh & sex==0] - 1.5

> phe3[wh & sex==1] <- phe3[wh & sex==1] - 0.5
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> episim$pheno$pheno3 <- phe3

> episim$pheno$sex <- sex

We use the R function sample to sample with replacement from the vector
(0, 1), and rnorm to simulate standard normal data. The epistasis pattern for
the two QTL is as before, but the effects are different in the two sexes. We
reuse the wh object, created above, that indicated the individuals who were
homozygous at both QTL.

2.6 Internal data structure

In this section, we describe the internal data structures used by R/qtl for cross
and genetic map objects and the R syntax required to get access to the data.
Other data structures (such as those produced by the scanone and scantwo
functions) will be described in later chapters. This section is quite technical
and will require a reasonably detailed understanding of R, and so it should
probably be skipped initially. The choice of data structures required some
balance between ease of programming and simplicity for the user interface.
The syntax for references to certain pieces of the internal data can be quite
complicated.

2.6.1 Experimental cross

We describe the internal data structure used by R/qtl for QTL mapping data;
we will look at the data set hyper as an example. First, the object has a
“class,” which indicates that it corresponds to data for an experimental cross,
and gives the cross type. By having class "cross", the functions plot and
summary know to send the data to plot.cross and summary.cross.

> data(hyper)

> class(hyper)

[1] "bc" "cross"

As you can see, the class is a two-element vector containing first a character
string indicating the cross type ("bc" or "f2") and second "cross" to indicate
that it is an experimental cross.

Every cross object is a list with two components, one containing the geno-
type data and genetic maps and the other containing the phenotype data.

> names(hyper)

[1] "geno" "pheno"

The phenotype data is simply a matrix (more strictly a data frame) with
rows corresponding to individuals and columns corresponding to phenotypes.
We look at the phenotypes for the first five individuals as follows.
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> hyper$pheno[1:5,]

bp sex
1 109.6 male
2 109.8 male
3 110.1 male
4 110.6 male
5 115.0 male

The first phenotype is the blood pressure of each mouse; the second phenotype
indicates their sex. (In this case, all mice are male.) The phenotypes can be
either numeric or factors. The sex phenotype can be coded 0/1, f/m, F/M, or
female/male for female/male; in all but the first case, it must be a factor.

The genotype data is a list with components corresponding to chromo-
somes. Each chromosome has a name and a class. The class for a chromosome
is "A" or "X", for autosomes or the X chromosome, respectively.

> names(hyper$geno)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"
[12] "12" "13" "14" "15" "16" "17" "18" "19" "X"

> sapply(hyper$geno, class)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
"A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"
16 17 18 19 X
"A" "A" "A" "A" "X"

Each component of geno is itself a list with two components, data
(containing the marker genotype data) and map (containing the positions
of the markers, in cM). The genotype data are coded 1/2 for homozy-
gotes and heterozygotes in a backcross, and 1/2/3/4/5 for the genotypes
AA/AB/BB/not BB/not AA in an intercross.

> names(hyper$geno[[3]])

[1] "data" "map"

> hyper$geno[[3]]$data[91:94,]

D3Mit164 D3Mit6 D3Mit11 D3Mit14 D3Mit44 D3Mit19
91 2 1 1 1 1 1
92 1 1 1 1 1 1
93 NA 2 NA NA NA NA
94 NA 2 NA NA NA NA

> hyper$geno[[3]]$map

D3Mit164 D3Mit6 D3Mit11 D3Mit14 D3Mit44 D3Mit19
2.2 17.5 37.2 44.8 57.9 66.7
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On the X chromosome, all individuals are coded with genotypes 1/2. We
use the phenotypes sex and pgm, if they are available, to recode these as
AA/AB/BB/AY/BY before later analysis. The 1/2 codes simplify the use of
the HMM algorithms (as in calc.genoprob, to calculate genotype probabili-
ties), as all individuals may be treated as a backcross.

That completes the description of the raw data. However, other informa-
tion may exist in a cross object, as when one runs calc.genoprob, sim.geno,
or calc.errorlod, the output is the input cross object with the derived data
attached to each component (the chromosomes) of the geno component.

> names(hyper$geno[[3]])

[1] "data" "map"

> hyper <- calc.genoprob(hyper, step=10, error.prob=0.01)

> names(hyper$geno[[3]])

[1] "data" "map" "prob"

> hyper <- sim.geno(hyper, step=10, n.draws=2, error.prob=0.01)

> names(hyper$geno[[3]])

[1] "data" "map" "prob" "draws"

> hyper <- calc.errorlod(hyper, error.prob=0.01)

> names(hyper$geno[[3]])

[1] "data" "map" "prob" "draws" "errorlod"

The structure of the individual components that were added is relatively self-
explanatory.

Finally, when one runs est.rf, a matrix containing the pairwise recombi-
nation fractions and LOD scores is added to the cross object.

> names(hyper)

[1] "geno" "pheno"

> hyper <- est.rf(hyper)

> names(hyper)

[1] "geno" "pheno" "rf"

The hyper$rf object is a matrix. Values on the diagonal are the number of
individuals that were genotyped for the corresponding marker. Values above
the diagonal are LOD scores for a test of linkage; values below the diagonal
are estimated recombination fractions.

> hyper$rf[1:4,1:4]
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D1Mit296 D1Mit123 D1Mit156 D1Mit178
D1Mit296 92.0000 11.4201 3.1422 0.6321
D1Mit123 0.1413 92.0000 9.9274 0.6321
D1Mit156 0.3043 0.1630 250.0000 2.9045
D1Mit178 0.1667 0.1667 0.2449 49.0000

The function clean.cross may be used to remove the intermediate results
from a cross object (such as those created with calc.genoprob and est.rf),
as follows.

> hyper <- clean(hyper)

> names(hyper)

[1] "geno" "pheno"

> names(hyper$geno[[3]])

[1] "data" "map"

2.6.2 Genetic map

A genetic map object, as produced by sim.map or as extracted from a cross
object with pull.map, also has a somewhat complex form. We will look at
the data set map10, a genetic map modeled after the mouse genome. Such a
map object has class "map" so that plot and summary will call plot.map and
summary.map, respectively.

> data(map10)

> class(map10)

[1] "map"

The map is a list whose components are the individual chromosomes. Each
chromosome has class either "A" or "X" according to whether it is an autosome
or the X chromosome.

> names(map10)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"
[12] "12" "13" "14" "15" "16" "17" "18" "19" "X"

> sapply(map10, class)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
"A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"
16 17 18 19 X
"A" "A" "A" "A" "X"

The individual chromosomes are vectors specifying the marker locations
in cM, with names being the marker names.
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> map10[[15]]

D15M1 D15M2 D15M3 D15M4 D15M5 D15M6 D15M7 D15M8 D15M9
0.00 10.12 20.25 30.38 40.50 50.62 60.75 70.88 81.00
attr(,"class")
[1] "A"

2.7 Further reading

Broman and Heath (2007) discuss the management and manipulation of ge-
netic data. They emphasize the need for biologists to learn to program, and
the value of the Perl programming language for geneticists. While they focus
on human linkage data, the general principles apply to all genetic data

Useful Perl books include Learning Perl (Schwartz et al., 2008) for begin-
ners, Programming Perl (Wall et al., 2000) as a reference, and Perl Cookbook
(Christiansen and Torkington, 2003) for its recipes encompassing many com-
mon tasks. These books, plus a couple of others, may be purchased together
on a CD for a very good price: the Perl CD Bookshelf, available from O’Reilly
Media.

Regarding the χ2 model for crossover interference, see Zhao et al. (1995).
The Stahl model was described in Copenhaver et al. (2002).
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Data checking

Our ability to map the loci contributing to variation in a trait depends criti-
cally on the quality and integrity of the data. Odd mapping results can often
be traced to errors in the genotype data, the genetic maps, or the phenotype
data. Thus, the first order of business, following data import, should be to
identify and correct errors in the data.

A variety of data diagnostics are provided in R and R/qtl. We illustrate
these below using real but anonymized data. The process of checking data can
be quite interesting detective work. The features that should be studied are
generally well characterized, but in many cases it can be tricky to identify the
primary cause of a particular problem.

3.1 Phenotypes

We first take a look at the phenotype data. We look for individuals with
unusual phenotypes. These may be truly unusual individuals, but they may
also indicate errors in data entry and so deserve careful follow-up. We also
look for systematic problems in the phenotype data (such as drifts in the
measurements over time or between batches).

We begin by considering the example data, ch3a. We use the library
function to load the qtl and qtlbook packages (the latter contains the exam-
ple data used in this book), and use the data function to make the ch3a data
set available to us.

> library(qtl)

> library(qtlbook)

> data(ch3a)

These data have five related phenotypes; Fig. 3.1 contains histograms of
the phenotypes. Note that the histograms are generally skewed; this may
influence our choice of QTL mapping method, or we may seek to transform

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 3,
© Springer Science+Business Media, LLC 2009
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Figure 3.1. Histograms of the phenotypes from the ch3a data.

the phenotypes. More importantly, though, note that there is one individual
whose fourth phenotype is 0, considerably lower than the other individuals.

Figure 3.1 may be produced with the following code.

> par(mfrow=c(3,2))

> for(i in 1:5)

+ plot.pheno(ch3a, pheno.col=i)

The function par is used to modify graphics parameters; we create three
rows and two columns of plots with mfrow=c(3,2). The function c is used to
combine multiple items together into a vector.

We step through the five phenotypes using a for loop. (The plot.pheno
function is called five times, with i taking the values 1, 2, . . . , 5, sequentially.)
The distribution of a phenotype may displayed with the plot.pheno function,
which will create either a histogram or a bar plot, according to whether the
phenotype is numeric or categorical.

The unusual individual is rather difficult to see in Fig. 3.1; it is more clear
in scatterplots of the phenotypes against one another, displayed in Fig. 3.2.
Each panel contains the data for one phenotype plotted against the data for
another phenotype. The individual with 0 at the fourth phenotype now stands
out.

Figure 3.2 was created with the following code.

> pairs(jitter( as.matrix(ch3a$pheno) ), cex=0.6, las=1)

Since the phenotypes are discrete, we use jitter to add a bit of noise so
that individual points may be distinguished. The code ch3a$pheno is used to
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Figure 3.2. Scatterplots of the phenotypes against one another for the ch3a data.

pull out the phenotype data, which must be converted to a numeric matrix
with as.matrix in order to use the jitter function. The function pairs
creates the set of scatterplots; cex=0.6 is used to change the size of the points
and las=1 is used to change the orientation of the y-axis labels.

It is best to go back to the primary data to determine whether the 0 is a
true phenotype or whether it is a data entry error. In the latter case, we may
set the phenotype to be missing as follows.

> ch3a$pheno[ch3a$pheno == 0] <- NA

Any 0 phenotypes will then be replaced with NA and therefore are treated as
missing.

To complete our exploration of the phenotype data, we plot the individuals’
phenotypes against their index, which may correspond to the order in which
they were measured. The left panel in Fig. 3.3 contains a plot of the average
of the five phenotypes for each individual, in the order they appeared in the
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Figure 3.3. Plots of the average phenotype against index (left panel) and against
a randomized index (right panel) for the ch3a data.

data. The right panel contains the same individual phenotype averages, but
in a random order.

There is a clear pattern in the average phenotype that is not seen in the
case that the data have been randomized (which we include just to emphasize
the point). If this truly represents systematic changes in the phenotype over
the course of the measurements, it is cause for considerable concern, as it
indicates an important source of uncontrolled (and nongenetic) variation.

Figure 3.3 was produced with the following code. The function apply is
used to obtain the row averages in the phenotype data, and sample is used
to randomize the order of these averages.

> par(mfrow=c(1,2), las=1, cex=0.8)

> means <- apply(ch3a$pheno, 1, mean)

> plot(means)

> plot(sample(means), xlab="Random index", ylab="means")

3.2 Segregation distortion

It is important to check for segregation distortion at all markers (i.e., that the
genotypes appear in the expected proportions), as apparent distortion may
indicate genotyping problems. For example, consider the example data, ch3b.
We use the function geno.table to inspect the genotype frequencies at each
marker. The last column in the output is a p-value for a χ2 test of Mendelian
proportions (1:2:1 in an intercross).
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> data(ch3b)

> gt <- geno.table(ch3b)

> gt[ gt$P.value < 1e-7, ]

chr missing AA AB BB not.BB not.AA AY BY P.value
c4m7 4 0 31 0 113 0 0 0 0 2.829e-52
c6m9 6 0 28 0 116 0 0 0 0 2.374e-55
c7m3 7 40 62 2 40 0 0 0 0 1.257e-23
c10m8 10 64 36 4 40 0 0 0 0 6.950e-15
c11m3 11 26 10 0 108 0 0 0 0 1.070e-61
c13m1 13 18 99 27 0 0 0 0 0 1.923e-43
c13m4 13 51 43 13 37 0 0 0 0 2.241e-11
c14m1 14 57 10 77 0 0 0 0 0 1.979e-12
c14m2 14 0 61 79 4 0 0 0 0 8.048e-11
c14m5 14 18 45 1 80 0 0 0 0 1.900e-31
c16m2 16 12 0 104 28 0 0 0 0 8.293e-13
c16m6 16 15 32 1 96 0 0 0 0 1.149e-41
c18m5 18 38 1 1 104 0 0 0 0 2.379e-66
c19m3 19 9 0 134 1 0 0 0 0 3.500e-29

We see 14 markers, on 11 chromosomes, showing quite extreme distortion.
For example, markers c4m7 and c6m9 had no heterozygotes, while marker
c19m3 had almost all heterozygotes. It is likely that these problems are due
to genotyping errors.

As a further example, let us look at the listeria data from Boyartchuk
et al. (2001), which is included with R/qtl. Some markers show segregation
distortion, but the distortion is much less severe than was observed in the
ch3b data.

> data(listeria)

> gt <- geno.table(listeria)

> p <- gt$P.value

> gt[ !is.na(p) & p < 0.01, ]

chr missing CC CB BB not.BB not.CC P.value
D6M284 6 0 27 76 17 0 0 0.0060967
D6M254 6 0 18 77 25 0 0 0.0053804
D12M46 12 33 34 33 20 0 0 0.0083345
D13M99 13 0 48 49 23 0 0 0.0007282
D13M233 13 14 41 43 22 0 0 0.0050294
D13M106 13 0 45 55 20 0 0 0.0036066
D13M147 13 0 45 55 20 0 0 0.0036066

Note that is.na returns TRUE or FALSE according to whether the values
are missing or not, respectively, and ! is the logical “not.”

Many markers on chromosome 13 show a reduced frequency of B alleles,
which may indicate real segregation distortion (e.g., that there is a locus
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Figure 3.4. Histogram of the proportion of markers with identical genotypes for
each pair of individuals in the ch3a data.

on that chromosome that is associated with early mortality), rather than
genotyping errors.

3.3 Compare individuals’ genotypes

We have occasionally found it useful to compare the genotype data for each
pair of individuals from a cross, to identify pairs that have unusually similar
genotypes. These may indicate sample mix-ups of some kind.

For example, Fig. 3.4 contains a histogram of the proportion of markers
with identical genotypes for each pair of individuals in the ch3a data. There
are two pairs of individuals that have very similar genotype data.

Figure 3.4 was created with the following code. The comparegeno function
returns a matrix whose (i, j)th element is the proportion of markers at which
individuals i and j have the same genotype. The function hist creates the
actual histogram; the argument breaks defines the number of bins (and can
be used to define the precise breakpoints for the bins). The function rug is
used to create, underneath the histogram, line segments at the individual data
points, so that the two outliers may be clearly seen.

> data(ch3a)

> cg <- comparegeno(ch3a)

> hist(cg, breaks=200,

+ xlab="Proportion of identical genotypes")

> rug(cg)
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With the following code, we can identify the pairs of individuals with very
similar genotype data.

> which(cg > 0.9, arr.ind=TRUE)

row col
[1,] 138 5
[2,] 55 12
[3,] 12 55
[4,] 5 138

Individuals 5 and 138 have identical genotypes at all 86 markers at which
they were both typed; individuals 12 and 55 have the same genotype at 75/76
markers. Real backcross individuals shouldn’t show such similarity in their
genotypes, and so these individuals’ data should be viewed with suspicion.

3.4 Check marker order

It is critical that one check that markers are placed on the correct chromosomes
and in the correct order, as the incorrect placement of markers on the map can
destroy the results of the QTL analysis. Even if marker positions are based on
a high-quality physical map, mislabeling of markers can occur, and so marker
labels may not match the true markers that were genotyped.

3.4.1 Pairwise recombination fractions

The first thing to do is to estimate, for each pair of markers, the recombination
fraction between them, r, and calculate a LOD score for the test of r = 1/2.
Markers on different chromosomes should not appear linked, and for markers
on the same chromosome, the estimated recombination fraction should be
smaller for more closely linked markers.

We again consider a set of real but anonymized data, included in the
qtlbook package. We use est.rf to estimate the recombination fractions
between all pairs of markers. It inserts the results back into the cross object,
and so we assign the results back to the object, ch3c.

> data(ch3c)

> ch3c <- est.rf(ch3c)

Warning message:
In est.rf(ch3c) : Alleles potentially switched at markers
c1m3 c1m4 c7m1 c7m2

Before proceeding further, note the warning message produced by est.rf.
There may be markers whose alleles got switched (A for B and B for A).
These potential problems are identified by looking for markers whose LOD
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scores are larger for cases with r̂ > 0.5 rather than r̂ < 0.5. The function
checkAlleles gives slightly more detail; the last column in the output is
the difference between the largest LOD score corresponding to an estimated
recombination fraction > 0.5 and the largest LOD score corresponding to an
estimated recombination fraction < 0.5. Note that markers that are tightly
linked to a problem marker will also show up in this table.

> checkAlleles(ch3c)

marker chr index diff.in.max.LOD
2 c1m3 1 2 21.378
3 c1m4 1 3 15.010
32 c7m1 7 1 6.691
33 c7m2 7 2 10.769

There appear to be problems on chromosomes 1 and 7. Let us look in
more detail at the genotype data for the markers on chr 1. We use pull.map
to display the map for that chromosome, so that we can see the other marker
names, and then use geno.crosstab to create tables of genotypes at one
marker against genotypes at another marker.

> pull.map(ch3c, 1)

c1m1 c1m3 c1m4 c1m5
8.3 49.0 59.5 89.0

> geno.crosstab(ch3c, "c1m3", "c1m4")

c1m4
c1m3 - AA AB BB
- 7 0 0 0
AA 0 0 3 19
AB 0 0 38 7
BB 0 22 3 1

> geno.crosstab(ch3c, "c1m3", "c1m5")

c1m5
c1m3 - AA AB BB
- 7 0 0 0
AA 0 2 11 9
AB 0 9 24 12
BB 0 12 12 2

> geno.crosstab(ch3c, "c1m4", "c1m5")

c1m5
c1m4 - AA AB BB
- 7 0 0 0
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AA 0 11 10 1
AB 0 11 28 5
BB 0 1 9 17

It looks like marker 2 ("c1m3") is the problem: for that marker, relative
to markers c1m4 and c1m5, the double-recombinant classes are more common
than the nonrecombinant ones, while the table of two-locus genotypes for
markers c1m5 and c1m5 looks okay.

To fix the problem, we pull out the genotypes for chromosome 1 using the
function pull.geno, swap the alleles (replacing 1’s with 3’s and vice versa),
and then put the new data back.

> g <- pull.geno(ch3c, 1)

> g[,"c1m3"] <- 4 - g[,"c1m3"]

> ch3c$geno[[1]]$data <- g

By a similar approach, we find that it is marker 2 ("c7m2") on that is the
problem one on chr 7. We fix it as follows.

> g <- pull.geno(ch3c, chr=7)

> g[,"c7m2"] <- 4 - g[,"c7m2"]

> ch3c$geno[[7]]$data <- g

If we now rerun est.rf and checkAlleles, we’ll find there are no further
problems of this form.

> ch3c <- est.rf(ch3c)

> checkAlleles(ch3c)

No apparent problems.

We now return to the recombination fractions themselves, and our as-
sessment of marker placement. The function plot.rf is used to plot the
pairwise recombination fractions and LOD scores. We use the option alter-
nate.chrid=TRUE so that the individual chromosome IDs may be more easily
distinguished.

> plot.rf(ch3c, alternate.chrid=TRUE)

The results are displayed in Fig. 3.5; the estimated recombination fractions
between markers are in the upper left, and the LOD scores are in the lower
right. Red indicates pairs of markers that appear to be linked (low r̂ or high
LOD), and blue indicates pairs that are not linked (high r̂ or low LOD).

There are a number of red points in the lower right, indicating markers on
different chromosomes that appear linked. In particular, there appear to be
problems on chromosomes 1, 7, 12, 13, and 15. With the following code, we
plot the results for just those chromosomes (see Fig. 3.6).

> plot.rf(ch3c, chr=c(1, 7, 12, 13, 15))
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Figure 3.5. Estimated recombination fractions (upper left) and LOD scores (lower
right) for all pairs of markers in the ch3c data.

As a further indication of this problem, it is valuable to use the available
genotype data to reestimate the intermarker distances of the genetic map.
This is done, and the map plotted, with the following code. Note that the nm
object will have class "map", and so plot(nm) is equivalent to plot.map(nm).
Also note that with error.prob=0.001, we assume a 0.1% genotyping error
rate.

> nm <- est.map(ch3c, error.prob=0.001)

> plot(nm)

The estimated map, shown in Fig. 3.7, indicates clear problems on chro-
mosomes 7, 12 and 15: enormous map expansion occurs as a result of markers
that do not belong on those chromosomes. There may also be problems on
chromosomes 10 and 13. The results in Fig. 3.6 indicate that the fourth marker
on chr 7 belongs on chr 15, the first marker on chr 12 belongs on chr 7, the
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Figure 3.6. Estimated recombination fractions (upper left) and LOD scores (lower
right) for pairs of markers on selected chromosomes in the ch3c data.

second marker on chr 12 belongs on chr 1, the first marker on chr 13 belongs
on chr 12, and the fifth marker on chr 15 belongs on chr 12.

It is questionable whether we should move these markers to the positions
that they appear to be linked, or just omit them. The ideal solution would
be to retype these markers starting with new material. If we want to use the
available data for an initial analysis, and so seek to fix these problems in
marker positions, R/qtl does have some limited facilities for moving markers
between chromosomes.

We first need to identify the names of the markers, which can be accom-
plished with the function find.marker, using the argument index to specify
the markers by their numeric indices within the chromosomes. We then use
the movemarker function to move the markers to the chromosomes that they
appear to be belong. (The markers are moved to the end of the chromosome,
and so we will later need to fix the marker order on those chromosomes.)
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Figure 3.7. Genetic map, as estimated from the ch3c data.

> ch3c <- movemarker(ch3c, find.marker(ch3c, 7,index=4), 15)

> ch3c <- movemarker(ch3c, find.marker(ch3c,12,index=2), 1)

> ch3c <- movemarker(ch3c, find.marker(ch3c,12,index=1), 7)

> ch3c <- movemarker(ch3c, find.marker(ch3c,13,index=1), 12)

> ch3c <- movemarker(ch3c, find.marker(ch3c,15,index=5), 12)

We needed to be careful to move the second marker on chr 12 before
moving the first marker; if we had first moved the initial marker, the second
marker would no longer be in the second position.

We can then use est.rf to plot the recombination fractions and LOD
scores for the relevant chromosomes again. The results are in Fig. 3.8. The
markers now appear to be on the correct chromosomes, though there remain
some problems with the order of markers within the chromosomes. (We will
address that issue in Sec. 3.4.2.)

One last point on pairwise linkages: some strategies for selective geno-
typing can lead to odd results in the pairwise recombination fractions. For
example, consider the hyper data. At most markers, only individuals with
extreme phenotypes were genotyped, and at some markers, only individuals
showing recombination events at the surrounding markers were genotyped.
(The pattern of missing genotype data is diplayed in Fig. 1.7 on page 10).
The latter strategy leads to somewhat odd results in the pairwise recombi-
nation fractions and LOD scores, as in estimating the recombination fraction
between a pair of markers, we consider only the data on individuals who were
typed at both markers.
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Figure 3.8. Estimated recombination fractions (upper left) and LOD scores (lower
right) for pairs of markers on selected chromosomes in the ch3c data, after some
problems with marker positions have been fixed.

To calculate the recombination fractions for the hyper data set, we do the
following. The results are displayed in Fig. 3.9.

> data(hyper)

> hyper <- est.rf(hyper)

> plot.rf(hyper, alternate.chrid=TRUE)

Note that, while the LOD scores in the lower right triangle indicate no
linkages between nonsyntenic markers, there are some pairs with low estimated
recombination fractions (red pixels in the upper left triangle), as some markers
were typed on very few individuals. The checkerboard patterns on chr 1, 4,
11, and 15, might indicate problems with marker order, but are really due to
the strategy of typing only recombinant individuals at some markers.
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Figure 3.9. Estimated recombination fractions (upper left) and LOD scores (lower
right) for all pairs of markers in the hyper data.

3.4.2 Rippling marker order

One can check the order of markers on a chromosome using the ripple func-
tion (whose name was taken from a similar function in MapMaker/EXP).

We would like to compare all possible orderings of markers on a chromo-
some, but with even a moderate number of markers, the number of possible
marker orders is too large for such an exhaustive evaluation. If there are
n markers on a chromosome, there are n!/2 possible marker orders, where
n! = n × (n − 1) × (n − 2) × · · · × 2 × 1. In the case of 10 markers, there
are 1,814,400 possible marker orders. Thus, in ripple we consider a sliding
window of markers and consider all possible orders of the markers within the
window, keeping the order of markers outside the window fixed.

The ripple function can use two methods for comparing orders: max-
imum likelihood and minimal obligate crossovers. Maximum likelihood (in
which one considers the probability of the observed genotype data given a
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particular order, and then chooses the marker order for which this probability
is maximized) is generally preferred, but is considerably more computationally
intensive. It is simpler to count the number of obligate crossovers in the data,
for a given order, and then choose the order for which the number of obligate
crossovers is minimized. (In a backcross, one is simply counting crossovers,
though with the assumption that no double crossovers occur between typed
markers.) Counting crossovers is hundreds of times faster than maximum like-
lihood, and the results are remarkably similar. Thus we generally recommend
using the crossover count method with a large window, followed by maximum
likelihood with a much smaller window.

The key arguments for the ripple function include the cross, the spec-
ified chromosome (chr; just one chromosome is considered at a time), the
window size, and the method (either "countxo" or "likelihood"). For the
likelihood method, one may also specify an assumed genotyping error rate
with error.prob.

Let us return to the ch3c data; we had ensured that all markers were
on the correct chromosomes, but saw that some chromosomes showed clear
problems in marker order. We first look at chromosome 1, for which there are
just five markers. We’ll first count crossovers, and look at all possible marker
orders. We do so as follows.

> rip <- ripple(ch3c, 1, 5)

60 total orders

The result (assigned to the object rip) contains the number of obligate
crossovers for each possible marker order. We can get a summary of the results
as follows.

> summary(rip)

obligXO
Initial 1 2 3 4 5 197
1 1 5 2 3 4 124
2 4 3 2 1 5 134
3 2 3 4 1 5 146
4 1 5 4 3 2 146
5 1 5 3 2 4 152
... [ 16 additional rows] ...

The first row is the original marker order (i.e., that which is in the data).
Other marker orders are sorted by the number of obligate crossovers (which
appears in the final column), but only the first few are displayed. Note that
by moving marker 5 from one side of the chromosome to the position between
markers 1 and 2, the number of obligate crossovers is reduced from 197 to 124.
(Marker 5 was originally on chromosome 12, and when we used movemarker
to move it to chromosome 1, we just placed it at the end.)
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We can adopt the second order (with the minimal number of obligate
crossovers) using the switch.order function, whose main arguments are
cross, chr, and order. The order object should be a vector of integers indi-
cating the new marker order; we may insert the second row from the output
of ripple directly, to save a bit of effort, even though it is one value longer
than the number of markers. The switch.order function also takes an ar-
gument error.prob: the assumed genotyping error rate in the estimation of
the genetic map for the new order. Thus, we can switch the marker order on
chromosome 1 with the following.

> ch3c <- switch.order(ch3c, 1, rip[2,])

With the markers in their new order, we will now run ripple again using
the likelihood method but with a smaller window size, to see if the likeli-
hood approach is inconsistent with the approximate method. We assume a
genotyping error rate of 0.001.

> rip <- ripple(ch3c, 1, 3, method="likelihood",

+ error.prob=0.001, verbose=FALSE)

> summary(rip)

LOD chrlen
Initial 1 2 3 4 5 0.0 117.3
1 2 1 3 4 5 -1.2 173.7

When one uses method="likelihood", the ripple function gives some indi-
cation of its progress; we suppress this by using verbose=FALSE.

The second-to-last column in the summary is a LOD score (log10 likelihood
ratio) comparing the original order to the alternative order (or orders); a
negative value (as here) indicates that the original order has higher likelihood.
The last column gives the estimated genetic length of the chromosome with
the different marker orders; the best marker order is generally that giving the
shortest chromosome length. We see that no further change is needed.

We would now use the same approach with all other chromosomes. While
one could type the above commands repeatedly, a more detailed knowledge of
R can save quite a bit of effort. For example, we can use a for loop to run rip-
ple for each chromosome, one at a time, as follows. (We include chromosome
1 again, to make the code simpler.)

> rip <- vector("list", nchr(ch3c))

> names(rip) <- names(ch3c$geno)

> for(i in names(ch3c$geno))

+ rip[[i]] <- ripple(ch3c, i, 7, verbose=FALSE)

The first line creates a “list” that will contain the output. The second line
assigns it the names of the chromosomes in the data.

Now things get a bit hairy. We use sapply to pull out, for each chromo-
some, the difference in the number of obligate crossovers between the initial
order and the best of the other orders.
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> dif.nxo <- sapply(rip, function(a) a[1,ncol(a)]-a[2,ncol(a)])

> dif.nxo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-10 16 -7 -23 -8 -22 44 -10 -12 45 -12 78 -5 -10 -4
16 17 18 19 X
-10 -11 -5 -9 2

It is probably best to not seek a complete understanding of this code at the
moment. We assigned the results to the object dif.nxo, and then typed the
name of the object to print the results. The positive numbers indicate that an
order other than that in the data showed a decrease in the number of obligate
crossovers.

We can now loop through all of the chromosomes and switch the order of
markers whenever the alternate order showed an improvement.

> for(i in names(ch3c$geno)) {

+ if(dif.nxo[i] > 0)

+ ch3c <- switch.order(ch3c, i, rip[[i]][2,])

+ }

Again, the code is complex, but consider the effort saved; we hope this en-
courages the reader to learn a bit more R.

Since for some chromosomes, we did not look at all possible marker orders,
it is a good idea to repeat the process to see if any further improvement may
be found.

> for(i in names(ch3c$geno))

+ rip[[i]] <- ripple(ch3c, i, 7, verbose=FALSE)

> dif.nxo <- sapply(rip, function(a) a[1,ncol(a)]-a[2,ncol(a)])

We can now look to see whether any of the values in dif.nxo are positive
(indicating that an alternate order is better).

> any(dif.nxo > 0)

[1] FALSE

Finally, we go back through all of the chromosomes with ripple, this time
using method="likelihood" and a window size of three markers.

> for(i in names(ch3c$geno))

+ rip[[i]] <- ripple(ch3c, i, 3, method="likelihood",

+ error.prob=0.001, verbose=FALSE)

> lod <- sapply(rip, function(a) a[2, ncol(a)-1])

The object lod contains the LOD scores for the best alternate order rela-
tive to that in the data. The following prints those that are positive (indicating
that the alternate order is an improvement).

> lod[lod > 0]
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X
1.655

The X chromosome shows some improvement, and so we look at those
results more closely.

> summary(rip[["X"]])

LOD chrlen
Initial 1 2 3 4 5 6 7 8 9 10 0.0 96.9
1 1 2 3 5 4 6 7 8 9 10 1.7 102.2
2 1 2 3 5 6 4 7 8 9 10 1.7 102.2
3 1 2 3 4 5 7 6 8 9 10 0.0 96.9

Switching markers 4 and 5 increases the likelihood by a factor of 101.7 ≈ 50,
but leads to a longer chromosome. It is questionable whether the marker order
should be switched or not, as a LOD score of 1.7 is not exceptionally strong
evidence for the alternate order. Both orders might be considered in later QTL
analyses, and if there is evidence for a QTL in the region, we will want to look
especially carefully at the marker order.

Finally, we may take another look at the pairwise recombination fractions,
at least for chromosomes that were shown in Fig. 3.8 to have some problems.
Calls to est.rf and plot.rf produce the results in Fig. 3.10, as follows.

> ch3c <- est.rf(ch3c)

> plot.rf(ch3c, chr=c(1, 7, 12, 13, 15))

The results are just what we want: red along the diagonal, fading to blue off
the diagonal.

3.4.3 Estimate genetic map

Now that we have the markers in what we believe are the correct orders, we
finish this section by estimating the intermarker distances from the observed
data; we further compare the results to the map that was included with the
data. The function est.map does the map estimation. We can use plot.map
to plot a single genetic map or to plot two maps against each other. Moreover,
if a cross object is input to this function, it pulls out the genetic map from the
data and plots the map. So with the following, we can estimate the genetic
map for the ch3c data in its final form and plot it against the map in the data
(see Fig. 3.11).

> nm <- est.map(ch3c, error.prob=0.001, verbose=FALSE)

> plot.map(ch3c, nm)

For many chromosomes, the estimated map is identical to the one within
the ch3c data set. That is because we had moved some markers around, and
if marker order is modified, the intermarker distances must be estimated with
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Figure 3.10. Estimated recombination fractions (upper left) and LOD scores (lower
right) for pairs of markers on selected chromosomes in the ch3c data, after some
problems with marker positions have been fixed.

the available data. Several chromosomes exhibit considerable map expansion
(e.g., chromosome 6): the estimated map is quite a bit longer than the map
in the data. This may indicate the presence of genotyping errors.

One may wish, at this point, to replace the map within the ch3c with that
estimated from the data. Reference genetic maps are often based on a rather
small number of individuals. (For example, the original MIT mouse genetic
map was based on an intercross with just 46 individuals.) One’s own data
often contains many more individuals, and so may produce a more accurate
map. The only caveat is that reference genetic maps generally contain a much
more dense set of markers, which (as described in the next section) provides
greater ability to detect genotyping errors. Thus reference genetic maps may
be based on cleaner genotype data.

To replace the genetic map in the ch3c data with that estimated from the
data, we use the function replace.map, as follows.
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Figure 3.11. The genetic map in the ch3c data (after considerable revisions in
marker order) plotted against the map estimated from the data. For each chromo-
some, the line on the left is the map in the data, and the line on the right is the
map estimated from the data; line segments connect the positions for each marker.

> ch3c <- replace.map(ch3c, nm)

3.5 Identifying genotyping errors

Our ability to map QTL relies on high-quality genotype data; errors in the
genotype data will lessen our ability to detect QTL. Genotyping errors may
appear as apparent tight double crossovers. Meiosis generally exhibits strong
crossover interference, and so crossovers will not occur too close together.
Thus, if the genotype at a single marker is out of phase with the surround-
ing markers, it is likely in error. This requires dense marker genotype data;
with sparse markers, one cannot be sure whether the apparent tight double
crossover is an error or is a true double crossover.

Detection of genotyping errors is facilitated by the calculation of genotyp-
ing error LOD scores. For each individual at each marker, we calculate a log10

likelihood ratio comparing the hypothesis that the particular genotype is in
error to the hypothesis that it is correct; the likelihood uses the genotype data
at all other markers on the chromosome. (For further details on this calcula-
tion, see Sec. D.7.) These LOD scores serve largely to ease the identification
of unusually tight double crossovers.
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To calculate the genotyping error LOD scores, we use the calc.errorlod
function. One must specify an assumed genotyping error rate, and the results
can be sensitive to this rate. The results are especially sensitive to the genetic
map. Thus, before calculating the error LOD scores, we may first wish to
replace the map in the data with that estimated from the data. In the following
we do that plus calculate the error LOD scores for the hyper data.

> data(hyper)

> newmap <- est.map(hyper, error.prob=0.01)

> hyper <- replace.map(hyper, newmap)

> hyper <- calc.errorlod(hyper)

The top.errorlod function prints information about the genotypes with
error LOD score above a specified cut off (indicated by the argument cutoff).
An argument chr may be used to give results for a selected subset of the
chromosomes. In the following, we look at the genotypes with error LOD
scores > 5. We save the results to the object top, and then type the name of
the object to print the results.

> top <- top.errorlod(hyper, cutoff=5)

> top

chr id marker errorlod
1 16 50 D16Mit171 16.000
2 16 54 D16Mit171 16.000
3 16 81 D16Mit5 8.915
4 16 24 D16Mit5 8.915
5 16 71 D16Mit5 8.915
6 16 34 D16Mit5 8.915
7 13 42 D13Mit78 8.000
8 13 42 D13Mit148 7.881

There are a number of genotypes indicated to be likely in error. The id column
is a numeric index here, but if a phenotype named “id” or “ID” had been
included in the data, such labels would be used.

We can look more closely at the problem genotypes with the func-
tion plot.geno, which plots the genotype data for a single chromosome,
for selected individuals. We pull out the individual IDs from the result of
top.errorlod, and plot their genotype data for chromosome 16. We use the
cutoff argument to indicate that genotypes with error LOD score > 5 should
be flagged.

> plot.geno(hyper, 16, top$id[top$chr==16], cutoff=5)

The results are shown in Fig. 3.12.
A small number of genotyping errors will not have much influence on

the results, and so one should be concerned only if an inordinate number of
possible errors are seen (though this may also indicate a problem with marker
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Figure 3.12. Chromosome 16 genotypes for selected individuals in the hyper data.
Open and closed circles are homozygous and heterozygous genotypes, respectively.
Possible genotyping errors are flagged with red squares; inferred crossovers are indi-
cated with blue ×’s.

order). However, if one sees evidence for a QTL in the region, it may be
valuable to take a second look at the raw genotype information or to rerun
the genotypes on some markers.

3.6 Counting crossovers

Another useful diagnostic is to count the number of crossovers implied by
the genotype data in each individual. Individuals with an unusually small or
large number of crossovers should be viewed with suspicion. This may be an
indication of either poor quality DNA or sample mix-ups.

The function countXO may be used to count the number of observed
crossovers for each individual. One may use the chr argument to focus on
a selected set of chromosomes. By default, we count the total number of
crosssovers across the genome. If countXO is called with the argument by-
chr=TRUE, the function returns a matrix containing the numbers of crossovers
on the individual chromosomes.

Let us again consider the hyper data. We may count crossovers and plot
them as follows (see Fig. 3.13).

> nxo <- countXO(hyper)

> plot(nxo, ylab="No. crossovers")

Note that these counts are the minimal number of crossovers required to
explain the observed genotype data. We see a large shift in the distribution
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Figure 3.13. The observed number of crossovers for each individual in the hyper

data.

between the first 92 individuals and the remaining 158 individuals, due to the
selective genotyping of the data. (The initial 92 individuals were genotyped
at markers across the genome; the remaining individuals were typed only on
selected chromosomes that exhibited evidence for a QTL.)

Particularly interesting are the two individuals with > 25 crossovers.

> nxo[nxo>25]

56 57
37 28

The 56th individual exhibited 37 crossovers. (The first row in the above output
contains labels with the indexes of the individuals; the second row contains
the crossover counts.) This is considerably larger than was seen in others (see
Fig. 3.13). The initial 92 individuals showed an average of 14 crossovers. The
remaining 158 individuals (genotyped only on selected chromosomes) had an
average of 4 crossovers.

> mean(nxo[1:92])

[1] 13.84

> mean(nxo[-(1:92)])

[1] 3.741

If we pull out the crossover counts for each chromosome for individual 56,
we can identify the chromosomes that are particularly problematic.
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> countXO(hyper, bychr=TRUE)[56,]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X
2 0 1 1 5 7 2 2 1 2 4 1 0 1 4 1 1 1 1 0

The genotype data for chromosome 6 (for which this individual shows
seven apparent crossovers) are particularly suspicious, and deserve further
investigation.

3.7 Missing genotype information

As a final diagnostic, we compute the proportion of missing genotype infor-
mation at positions along the genome, given the available marker data. This
can help us to identify regions where further markers might be added. In addi-
tion, as we will see in the next chapter, standard interval mapping to identify
regions harboring QTL can occasionally give spurious evidence for linkage in
regions of low genotype information, and so an evaluation of the proportion
of missing information in regions of inferred QTL can help us to identify such
problems.

Consider a fixed position in the genome and let gi denote the genotype of
individual i at that site. We first calculate pij = Pr(gi = j | M i), where M i

denotes the multipoint marker genotype data for individual i. We consider two
methods for defining the proportion of missing genotype information. First,
we correspond the possible genotypes with integers (1 and 2 for a backcross,
and 1, 2, and 3 for an intercross), and calculate the conditional variance of
the genotypes, given the available marker genotype data,

∑
i var(gi|M i), and

look at the ratio of this variance to the variance in the case of no genotype
information (n/4 for a backcross and n/2 for an intercross). If there is complete
genotype information (e.g., at a fully typed marker), we obtain a ratio of 0; if
there is no genotype information, we obtain a ratio of 1.

In the second method, we use the information theoretic concept of entropy,
−

∑
i

∑
j pij log2 pij , where we take 0 log 0 = 0. We again take the ratio of this

quantity to the value for the case of no genotype information (n for a backcross
and 3n/2 for an intercross). Again, if there is complete genotype information,
we obtain a ratio of 0; if there is no genotype information, we obtain a ratio
of 1.

These quantities may be calculated and plotted with plot.info. For ex-
ample, a plot of the missing genotype information in the hyper data appears
in Fig. 3.14, which was created with the following.

> plot.info(hyper, col=c("blue", "red"))

We use col to indicate that the entropy and variance versions of the results
should be plotted in blue and red, respectively.

The proportion of missing genotype information is effectively 0 at the fully
typed markers. For several chromosomes, the minimal missing information is
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Figure 3.14. The proportion of missing genotype information in the hyper data.
Results by the entropy and variance versions are shown in blue and red, respectively.

about 63%, as only the 92 individuals (out of 250) with extreme phenotypes
were genotyped.

The detailed results of plot.info may be saved in an object. We can
get the results just at the markers by rerunning plot.info with step=0 and
then show the results just for chromosome 14 as follows. (The argument step
indicates the density of the grid, in cM, at which the missing inforamtion is
to be calculated. The default value is step=1; use of step=0 indicates that
the calculation should be performed only at the markers.)

> z <- plot.info(hyper, step=0)

> z[ z[,1]==14, ]

chr pos misinfo.entropy misinfo.variance
D14Mit48 14 0.00 0.8475 0.8098
D14Mit14 14 16.40 0.6355 0.6335
D14Mit37 14 29.05 0.6331 0.6324
D14Mit7 14 43.68 0.6344 0.6333
D14Mit266 14 52.97 0.6355 0.6336

The result is a matrix with four columns: the chromosome and cM position
followed by the missing information results by the entropy and variance meth-
ods, respectively.

A related function of interest is nmissing, which returns the number of
missing genotypes for each individual or each marker (according to whether
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Figure 3.15. Histogram of the number of individuals with missing genotypes at the
markers in the hyper data.

the argument what is "ind" or "mar", respectively). For example, we can get
a histogram of the number of missing genotypes at the markers in the hyper
data as follows. The results are in Fig. 3.15.

> hist(nmissing(hyper, what="mar"), breaks=50)

About 40 markers were typed on essentially everyone; over 100 were typed
on only the 92 individuals with extreme phenotypes. The remaining 29 mark-
ers were typed only on a few individuals.

There is also a function ntyped which provides the opposite of nmissing:
the number of typed markers for each individual, or the number of typed
individuals for each marker.

3.8 Summary

Success in QTL mapping requires high-quality data. Given the time and ex-
pense in gathering data, reasonable effort should be devoted to identifying
and correcting errors in the data prior to QTL analysis.

Histograms, scatterplots and time-course plots can assist in the identifi-
cation of gross errors in the phenotype data, or of real but odd individuals
deserving careful consideration in later analysis.

The assessment of genotype data begins with the inspection of the segre-
gation patterns. Problem markers are often revealed by departures from the
1:1 and 1:2:1 patterns expected in a backcross and intercross, respectively.

While the availability of sequence-based marker maps in many organisms
has eliminated much of the effort that was once required to establish marker
order, the genetic maps of typed markers should still be carefully inspected.
Errors in marker labels are not uncommon, and these may be revealed by
an inspection of pairwise linkages and the reestimation of intermarker genetic
distances.
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Finally, it can be useful to study the pattern of crossovers to identify
genotyping errors that are revealed by apparent tight double crossovers. The
calculation of genotyping error LOD scores simplies this effort. However, the
presence of a small number of genotyping errors will not have much influence
on later results, and so this aspect of the detective work is generally not
critical.

3.9 Further reading

Surprisingly little has been written on the detective work involved in identify-
ing and resolving errors in QTL mapping data. Of some relevance is Broman
(1999), concerning cleaning human genotype and pedigree data. The genotyp-
ing error LOD scores were developed by Lincoln and Lander (1992).
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Single-QTL analysis

The most commonly used method for QTL analysis is interval mapping, in
which one posits the presence of a single QTL and considers each point on a
dense grid across the genome, one at a time, as the location of the putative
QTL. A central issue concerns the treatment of missing genotype information:
at a position between genetic markers, genotype data are not available and
must be inferred on the basis of the available marker genotype data. Several
methods are available; we describe the most popular. These methods all have
analogs for the fit of multiple-QTL models, which will be discussed in Chap. 8
and 9. We further discuss the establishment of statistical significance in such
single-QTL genome scans, and the special treatment that is required for the X
chromosome. But first, in order to introduce the basic ideas in QTL mapping,
we describe an even simpler method, sometimes called marker regression.

Each section will begin with a bit of theory, followed by R code for perform-
ing the analyses with R/qtl. The R code is cumulative through the chapter;
the results in one section may rely on code executed in a previous section.

4.1 Marker regression

The simplest method for the analysis of QTL mapping data is to consider
each marker individually, split the individuals into groups, according to their
genotypes at the marker, and compare the groups’ phenotype averages. While
this method can seldom be recommended for use in practice, it provides a
valuable framework for thinking about QTL mapping and for describing some
of the essential issues in QTL mapping.

Consider, for example, the hyper data, described in Sec. 2.3. The blood
pressure phenotype is plotted against the genotype at markers D4Mit214 and
D12Mit20 in Fig. 4.1. At D4Mit214, the homozygous individuals exhibit a
larger average phenotype than the heterozygotes, indicating that this marker
is linked to a QTL. At D12Mit20, on the other hand, the two genotype groups

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 4,
© Springer Science+Business Media, LLC 2009
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Figure 4.1. Dot plots of the blood pressure phenotype against the genotype at two
selected markers, for the hyper data. Confidence intervals for the average phenotype
in each genotype group are shown.

show similar phenotypes, and so D12Mit20 is not indicated to be linked to a
QTL.

In a backcross, we test for linkage of a marker to a QTL by a t test; in
an intercross, we would use analysis of variance (ANOVA), which gives an F
statistic. Traditionally, evidence for linkage to a QTL is measured by a LOD
score: the log10 likelihood ratio comparing the hypothesis that there is a QTL
at the marker to the hypothesis that there is no QTL anywhere in the genome.

The LOD score at a marker is calculated as follows. First, consider the
null hypothesis of no QTL, in which case, with yi denoting the phenotype for
individual i, yi ∼ N(μ, σ2) (i.e., the phenotypes follow a single normal dis-
tribution, independent of the genotypes). We consider the likelihood function
L0(μ, σ2) = Pr(data |no QTL, μ, σ2) =

∏
i φ(yi;μ, σ2), where φ is the density

of the normal distribution. We take as estimates of μ and σ2 the values for
which the likelihood is maximized (such estimates are called the maximum
likelihood estimates, MLEs). For this model, the MLE of μ is simply the phe-
notype average, ȳ, and the MLE of σ2 is RSS0/n, where RSS0 =

∑
i(yi− ȳ)2 is

the null residual sum of squares and n is the sample size. The log10 likelihood
for the null hypothesis is obtained by plugging in the MLEs; with a bit of
algebra, it reduces to −n

2 log10 RSS0.
Under the alternative hypothesis, that there is a QTL at the marker un-

der test, we assume that yi|gi ∼ N(μgi
, σ2), where gi is the genotype of
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individual i at the marker, μAA and μAB are the phenotype averages for
the two genotype groups, and σ2 is the residual variance (assumed to be
the same in the two groups). The likelihood function is L1(μAA, μAB , σ2) =
Pr(data |QTL at marker, μAA, μAB , σ2) =

∏
i φ(yi;μgi

, σ2). We again esti-
mate the parameters by maximum likelihood: the values for which L1 achieves
its maximum. The MLEs for the μi are simply the phenotype averages within
the two genotype groups. The MLE of σ2 is the pooled estimate, RSS1/n,
where RSS1 =

∑
i(yi − μ̂gi

)2 is the residual sum of squares under the al-
ternative. The log10 likelihood for the alternative hypothesis is obtained by
plugging in the MLEs; it reduces to −n

2 log10 RSS1.
Finally, the LOD score is the difference between the log10 likelihood under

the alternative hypothesis and the log10 likelihood under the null hypothesis,
and so we obtain the following.

LOD =
n

2
log10

(
RSS0

RSS1

)

Note that individuals with missing genotype data at the marker must be
omitted from the estimation under the alternative, and so, in the calculation
of the LOD score, such individuals are omitted from both the alternative and
null likelihoods.

The LOD score is equivalent to the F statistic from ANOVA. (And note
that the t statistic in a backcross is the signed square root of the F statistic
that would be obtained from ANOVA.) Let df denote the degrees of freedom
(df=1 for a backcross and df=2 for an intercross); the connection between the
F statistic and the LOD score is as follows.

F =
(

RSS0 − RSS1

RSS1

)(
n − df − 1

df

)

=
(

RSS0

RSS1
− 1

) (
n − df − 1

df

)

=
(
10

2
n LOD − 1

) (
n − df − 1

df

)

The inverse of this formula is also of interest.

LOD =
n

2
log10

[

F

(
df

n − df − 1

)

+ 1
]

Note further that the estimated proportion of the phenotypic variance
explained by the QTL (i.e., the estimated heritability due to the QTL) is
(RSS0 −RSS1)/RSS0. Thus, the estimated percent variance explained by the
QTL is 1 − 10−

2
n LOD.

Large LOD scores indicate evidence for the presence of a QTL, but in
considering the statistical significance of LOD scores, we must take account
of the multiple tests performed. Discussion of this issue is deferred to Sec. 4.3.
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The key advantage of marker regression is its simplicity: we just perform
a t test or ANOVA at each marker. Thus, no special software is required, and
one may easily incorporate covariates (such as sex) or extend the analysis to
more complex models (such as for the treatment of censored survival times).

A key disadvantage is that one must omit individuals with missing marker
genotypes. Further, one cannot inspect positions between markers, and one
obtains rather poor information about QTL location. Also, the apparent effect
of a QTL is attenuated by its incomplete linkage to a marker. For example,
consider a backcross with a single QTL, and let μAA and μAB denote the
phenotype averages for the two QTL genotypes, so that the effect of the QTL
is Δ = μAB − μAA. If the recombination fraction between a marker and the
QTL is r, then the individuals with marker genotype AA will consist of a
fraction (1− r) with QTL genotype AA and a fraction r with QTL genotype
AB. Thus the average phenotype for individuals that are AA at the marker
will be μAA(1 − r) + μABr. Similarly, the average phenotype for individuals
that are AB at the marker will be μAB(1−r)+μAAr. As a result, the difference
between the phenotype averages for the two marker genotype groups will be
[μAB(1− r) + μAAr]− [μAA(1− r) + μABr] = Δ(1− 2r), and so the apparent
effect of the QTL is reduced by a factor (1− 2r) due to its incomplete linkage
to the marker.

The most important disadvantage of marker regression is that we con-
sider the presence of a single QTL. Thus we have limited ability to separate
linked QTL and no ability to assess possible interactions among QTL. This
disadvantage is shared with all of the methods described in this chapter.

Example

Let us now turn to the actual analysis with R/qtl, using the hyper data as
an example. We first load R/qtl and the data.

> library(qtl)

> data(hyper)

First note that the dot plots of phenotype against genotype, in Fig. 4.1,
were created with the plot.pxg function, as follows.

> par(mfrow=c(1,2))

> plot.pxg(hyper, "D4Mit214")

> plot.pxg(hyper, "D12Mit20")

The fit of single-QTL models is accomplished with the function scanone.
The use of the argument method="mr" indicates to use marker regression (i.e.,
ANOVA or a t test at each marker). For the hyper data, we type the following.

> out.mr <- scanone(hyper, method="mr")

The result, saved in out.mr, is a matrix with three columns: chromosome, cM
position, and LOD score. We can look at the results for the chromosome 12
as follows.
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> out.mr[ out.mr$chr == 12, ]

chr pos lod
D12Mit37 12 1.1 0.3610905
D12Mit110 12 16.4 0.0009559
D12Mit34 12 23.0 0.0005335
D12Mit118 12 40.4 0.0003868
D12Mit20 12 56.8 0.0136116

The output of scanone has class "scanone", and so use of the func-
tions plot and summary with the out.mr object will create a plot or sum-
mary via plot.scanone and summary.scanone, respectively. For example,
we may pull out the single largest LOD score from each chromosome with
summary.scanone; we show just those having LOD > 3 with the threshold
argument.

> summary(out.mr, threshold=3)

chr pos lod
D1Mit14 1 82.0 3.52
D4Mit214 4 21.9 6.86

The function max.scanone may be used to pick out the single biggest LOD
score, as follows.

> max(out.mr)

chr pos lod
D4Mit214 4 21.9 6.86

A plot of the LOD scores for chromosomes 4 and 12 is obtained with the
following. The result appears in Fig. 4.2.

> plot(out.mr, chr=c(4, 12), ylab="LOD score")

The argument chr is used to select the chromosomes to plot; by default all
chromosomes will be plotted. The argument ylab is used to change the y-axis
label.

The jagged appearance of the LOD curve for chromosome 4 is due to the
pattern of missing marker genotype data. Recall that in the marker regression
method, we split the individuals into groups according to their genotype at a
marker. If an individual’s genotype is missing, that individual must be omit-
ted, as we do not know the genotype group in which it should be placed. At
some markers in the hyper data, only recombinant individuals were genotyped
(see Fig. 1.7 on page 10), and so these markers, in isolation, will provide little
evidence for linkage to a QTL.
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Figure 4.2. LOD scores for each marker on chromosomes 4 and 12 for the hyper

data, calculated by marker regression.

4.2 Interval mapping

In this section, we consider several variants on interval mapping. Interval map-
ping improves on the marker regression method by taking account of missing
genotype data at a putative QTL. The various interval mapping methods
differ in their treatment of the missing genotype data. Standard interval map-
ping uses maximum likelihood estimation under a mixture model, while the
Haley–Knott regression methods use approximations to the mixture model.
The multiple imputation method uses the same mixture model but with mul-
tiple imputation in place of maximum likelihood.

4.2.1 Standard interval mapping

In standard interval mapping, we again assume the presence of a single QTL,
but now we consider a grid of positions along the genome as the possible
locations for the QTL. Consider a particular fixed position for the QTL, and
let gi denote the QTL genotype for individual i. As with the marker regression
method, we assume that yi|gi ∼ N(μgi

, σ2), but now the QTL genotype is
generally not known.

For each individual, we may calculate pij = Pr(gi = j|M i), where M i

denotes the multipoint marker genotype data for individual i. For example,
consider a backcross and two markers separated by a recombination fraction
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Table 4.1. Conditional probabilities for the QTL genotypes in a backcross, given
the genotypes at two flanking markers.

Marker genotype QTL genotype

Left Right AA AB

AA AA (1 − r1Q)(1 − r2Q)/(1 − r12) r1Qr2Q/(1 − r12)

AA AB (1 − r1Q)r2Q/r12 r1Q(1 − r2Q)/r12

AB AA r1Q(1 − r2Q)/r12 (1 − r1Q)r2Q/r12

AB AB r1Qr2Q/(1 − r12) (1 − r1Q)(1 − r2Q)/(1 − r12)

of r12. Suppose that our putative QTL sits in the intervening interval, and
let riQ denote the recombination fraction between marker i and the QTL.
If we assume no crossover interference and no genotyping errors, and if an
individual is typed at both markers, the QTL genotype probabilities given
the marker genotypes are as in Table 4.1. In general, one may use algorithms
for hidden Markov models (HMMs) for these sorts of calculations, as one can
then allow for the presence of genotyping errors and more simply deal with
partially informative genotypes (such as the case of dominant markers in an
intercross). For further details, see Sec. 1.3.1 and Appendix D.

Given the marker data, an individual’s phenotype follows a mixture of
normal distributions, with known mixing proportions (the pij). That is, the
density function for the phenotype of individual i is

∑
j pijφ(yi;μj , σ

2), where
φ is the density of the normal distribution and the sum is over the possible
QTL genotypes.

For example, consider a backcross containing a single QTL, and consider
two markers separated by 20 cM, with the QTL placed in the intervening
interval, 7 cM from the left marker. The phenotype distributions, conditional
on the genotypes at the two markers, are shown in Fig. 4.3.

Except in the case of rare double recombination events, all individuals
who are AA at both markers (top panel) will also be AA at the QTL, and so
their phenotypes will follow a normal distribution centered at μAA. Similarly,
individuals who are AB at both markers (lower panel) will generally also be
AB at the QTL, and so their phenotypes will follow a normal distribution
centered at μAB .

Individuals who are AA at the left marker but AB at the right marker will
consist of some individuals who are AA at the QTL (i.e., their recombination
event occurred to the right of the QTL) and some who are AB at the QTL
(having recombined to the left of the QTL). Similarly, individuals who are AB
at the left marker but AA at the right marker will consist of some individuals
who are AB at the QTL (having recombined to the right of the QTL) and
some who are AA at the QTL (having recombined to the left of the QTL).
The dashed curves in the central panels in Fig. 4.3 are the distributions of
the groups with common QTL genotype; the solid curves are the mixture
distributions.
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Figure 4.3. Phenotype distributions conditional on the genotype at two markers,
in the case of a backcross containing a single QTL. The markers are separated by
20 cM and the QTL sits within the marker interval, 7 cM from the left marker. The
dashed curves are the distributions of the groups with common QTL genotype; the
solid curves are the mixture distributions.

We estimate the μj and σ by maximum likelihood; that is, we take as
our estimates those values for which the observed data is most probable. The
likelihood function is L(μ, σ) =

∏
i

∑
j pijφ(yi;μj , σ

2), where the sum is over
the possible QTL genotypes. The MLEs cannot be obtained in closed form;
an iterative algorithm is necessary. We use a form of the EM algorithm. We
begin with initial estimates μ̂0

j and σ̂(0).
In the E-step at iteration s, we calculate the conditional probability that

an individual is in QTL genotype group j given its marker data, phenotype,
and our current estimates of the μj and σ.

w
(s)
ij = Pr(gi = j|M i, yi, μ̂

(s−1)
j , σ̂(s−1))

=
pijφ(yi; μ̂

(s−1)
j , σ̂(s−1))

∑
k pikφ(yi; μ̂

(s−1)
k , σ̂(s−1))

In the M-step, we update our estimates of the μj and σ, treating the w
(s)
ij

as weights.
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μ̂
(s)
j =

∑
i w

(s)
ij yi/

∑
i w

(s)
ij

σ̂(s) =

√
∑

ij w
(s)
ij (yi − μ̂

(s)
j )2

n

Iterations are repeated until the estimates converge (i.e., until the esti-
mates stop changing). The EM algorithm has the advantage that the likelihood
is nondecreasing across iterations. It may be that the algorithm converges to
a local maximum, but with relatively dense markers and relatively complete
marker genotype data, the likelihood is well behaved and the EM algorithm
will converge to the global maximum. If there were multiple modes in the
likelihood surface, one would want to use multiple initial estimates for the
EM algorithm, but because the likelihood is well behaved in this context, we
generally start the algorithm by taking w

(0)
ij = pij and then doing the M-

step. This is equivalent to using Haley–Knott regression (Sec. 4.2.2) to get
the initial estimates.

Once the maximum likelihood estimates of the μj and σ have been ob-
tained, a LOD score is calculated as follows.

LOD = log10

(∏
i

∑
j pijφ(yi; μ̂j , σ̂

2)
∏

i φ(yi; μ̂0, σ̂2
0)

)

where μ̂0 and σ̂0 are the average and SD of the yi, so that the denominator
of the LOD score is the likelihood under the null hypothesis that there is no
QTL anywhere in the genome.

In standard interval mapping, the EM algorithm is performed at each
position on a grid of putative QTL locations along the genome, while the
estimates and likelihood under the null hypothesis are calculated just once.

The key advantage of interval mapping, relative to marker regression, is
that one takes appropriate account of missing genotype information. Thus,
we need not omit individuals with missing genotype at a marker, and we may
inspect positions between markers. We thus obtain a more clear understanding
of QTL location. (The smooth LOD curves are also nicer to look at. Before
the development of interval mapping, papers reporting the results of QTL
mapping contained long tables of p-values; the plot of LOD curves was an
important advance.) Further, we may obtain an improved estimate of the
effect of a QTL, as such an estimate may be obtained at its estimated position,
rather than using the genotypes at the nearest genetic marker.

Disadvantages of interval mapping include increased computation time,
the need for specialized software, and difficulty in generalizing the method
for more complex models or for the inclusion of environmental and other co-
variates. These disadvantages are no longer of much importance, as interval
mapping requires only a couple of seconds of computer time, a variety of rele-
vant computer programs are available, and a variety of extensions of interval
mapping have been implemented.
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The most important disadvantage of interval mapping is that we are still
considering only a single-QTL model, and so we have limited ability to sep-
arate linked QTL and no ability to assess possible interactions among QTL.
With complete marker genotype data, interval mapping and marker regression
give precisely the same results at the markers. Interval mapping seems fancy,
but it is little different, conceptually, from simply performing ANOVA at each
marker.

Example

Having completed our discussion of the theory underlying standard interval
mapping, we now turn to the calculations in R/qtl. We first must calculate the
conditional genotype probabilities, pij = Pr(gi = j|M i). This is done with
the function calc.genoprob. The argument step is used to define the density
(in cM) of the grid on which these probabilities will be calculated; this will
determine the density at which interval mapping is performed. The argument
error.prob allows the probabilities to be calculated assuming a given rate of
genotyping errors.

> hyper <- calc.genoprob(hyper, step=1, error.prob=0.001)

In calc.genoprob, one may also use the argument off.end to calculate the
probabilities to some distance past the terminal markers on the chromosome,
so that interval mapping will be performed past the terminal markers, but
this can lead to the artifacts in the results (for example, a QTL near the end
of the chromosome may show a mirror image past the terminal marker), and
so we generally use off.end=0 (the default).

We should emphasize that it is important, for analyses with R/qtl, that
no two markers are placed at precisely the same position. If there are markers
that coincide, a warning will be produced by the function summary.cross.
Marker positions may be moved apart slightly with the function jittermap,
as follows. Note that this should be done prior to the call to calc.genoprob.

> hyper <- jittermap(hyper)

Interval mapping is performed with the scanone function, using the argu-
ment method="em" (for “EM algorithm”).

> out.em <- scanone(hyper, method="em")

Standard interval mapping is the default method, and so method="em" can be
omitted, as follows.

> out.em <- scanone(hyper)

The form of the results was described in the previous section. We can plot
the results for all chromosomes as follows; the results appear in Fig. 4.4.

> plot(out.em, ylab="LOD score")
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Figure 4.4. LOD scores by standard interval mapping for the hyper data.

We can also use plot.scanone to plot both the interval mapping results
and those by marker regression (obtained in the previous section) together in
one figure. This may be done in a couple of different ways. First, we can send
both results to the plot.scanone function. We plot the results for chromo-
somes 4 and 12 as follows; see Fig. 4.5.

> plot(out.em, out.mr, chr=c(4, 12), col=c("blue", "red"),

+ ylab="LOD score")

We can produce the same figure by first plotting the interval mapping
results and then adding the marker regression results using add=TRUE.

> plot(out.em, chr=c(4, 12), col="blue", ylab="LOD score")

> plot(out.mr, chr=c(4, 12), col="red", add=TRUE)

Finally, we can create a black-and-white plot with different line types,
using the lty argument. Use lty=1 for a solid line, lty=2 for a dashed line,
and lty=3 for a dotted line. We give it a vector with two plot types; the first
line type is used for the first result sent to the plot; the second line type is for
the second result.

> plot(out.em, out.mr, chr=c(4, 12), col="black", lty=1:2,

+ ylab="LOD score")
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Figure 4.5. LOD scores for selected chromosomes for the hyper data by standard
interval mapping (blue) and marker regression (red).

4.2.2 Haley–Knott regression

Haley–Knott regression provides a fast approximation of the results of stan-
dard interval mapping. In standard interval mapping, we assume that yi|gi ∼
N(μgi

, σ2), where yi is the phenotype of individual i and gi is its (unobserved)
QTL genotype. We further calculate pij = Pr(gi = j|M i), where M i is the
marker genotype data for individual i. Recall that yi|M i follows a mixture of
normal distributions.

Note that E(yi|M i) =
∑

j pijμj and so the conditional phenotype average,
given the available marker data, is linear in the μj . This suggests that the μj

might be estimated by linear regression of the yi on the pij .
This is Haley–Knott regression. At each position on our grid across the

genome, we calculate the pij and then regress the phenotype on this matrix.
In doing so, we pretend that yi|M i ∼ N(

∑
j pijμj , σ

2). That is, we replace
the normal mixture with a single normal distribution, though with the correct
mean function. We may thus calculate a LOD score as

LOD =
n

2
log10

(
RSS0

RSS1

)

where RSS0 is the null residual sum of squares and RSS1 is the residual sum
of squares from the regression of the yi on the pij .

Haley–Knott regression can be much faster than standard interval map-
ping, as an iterative algorithm is not needed; one performs a single regression
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at each position. However, the treatment of missing genotype information is
less than ideal, and so its approximation of standard interval mapping can be
poor in regions of low genotype information (such as widely spaced or incom-
pletely genotyped markers). The approximation is especially poor in the case
of selective genotyping (in which only individuals with extreme phenotypes
are genotyped). We will discuss this issue further in Sec. 4.2.5, below.

Example

To perform Haley–Knott regression, we again need the genotype probabilities
calculated by calc.genoprob, though we do not need to run the function
again here, as it was executed in order to get the results by standard interval
mapping. We again use the scanone function, and use method="hk" for Haley–
Knott regression, as follows.

> out.hk <- scanone(hyper, method="hk")

We plot the results with those of standard interval mapping with the fol-
lowing. We look only at chromosomes 1, 4, and 15, so that the differences may
be more clearly seen; the result appears in Fig. 4.6.

> plot(out.em, out.hk, chr=c(1,4,15), col=c("blue","red"),

+ ylab="LOD score")

The results from standard interval mapping and Haley–Knott regression
are seen to be quite similar, though they deviate from each other at the ends
of the chromosomes, particularly at the distal end of chromosome 15. The
discrepancies occur in regions of missing genotype information, and are par-
ticularly affected by the selective genotyping strategy used for these data.
The terminal markers on chromosomes 1 and 4, and the distal markers on
chromosome 15, were genotyped at only the 92 individuals with most extreme
phenotypes.

R/qtl contains a function -.scanone for subtracting two sets of LOD
scores from each other, provided that they conform exactly (that they come
from the same cross and that calculations were performed at the same den-
sity). We thus may look at the differences in the LOD scores from the two
methods as follows. The result appears in Fig. 4.7.

> plot(out.hk - out.em, chr=c(1,4,15), ylim=c(-0.5, 1.0),

+ ylab=expression(LOD[HK] - LOD[EM]))

> abline(h=0, lty=3)

We used abline to add a dotted horizontal line at 0, and we used the function
expression to get a fancy y-axis label. Type ?plotmath to read about the
possibilities with expression, and consider the following code. (We omit the
resulting figure and any explanation; hopefully the interested reader can figure
this out.)
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Figure 4.6. LOD scores for selected chromosomes for the hyper data by standard
interval mapping (blue) and Haley–Knott regression (red).

> plot(rnorm(100), rnorm(100), xlab=expression(hat(mu)[0]),

+ ylab=expression(alpha^beta),

+ main=expression(paste("Plot of ", alpha^beta,

+ " versus ", hat(mu)[0])))

4.2.3 Extended Haley–Knott regression

An improved version of Haley–Knott regression may be obtained by also
considering the variances. In Haley–Knott regression, we used the fact that
E(yi|M i) =

∑
j pijμj and made the approximation yi|M i ∼ N(

∑
j pijμj , σ

2).
That is, we approximate the mixture distribution with a single normal dis-
tribution with the correct mean, but with constant variance independent of
genotype.

In the extended Haley–Knott regression method, we note that

var(yi|M i) = var[E(yi|gi)|M i] + E[var(yi|gi)|M i]

= var(μgi
|M i) + E(σ2|M i)

=
∑

j pij [μj −
∑

k pikμk]2 + σ2

Write mi(μ) =
∑

j pijμj and vi(μ, σ2) =
∑

j pij [μj − mi(μ)]2 + σ2 =
∑

j pijμ
2
j −(

∑
j pijμj)2+σ2. In the extended Haley–Knott method, we assume
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Figure 4.7. Differences in the LOD scores from Haley–Knott regression and stan-
dard interval mapping for selected chromosomes from the hyper data.

that yi|M i ∼ N [mi(μ), vi(μ, σ2)]. That is, we replace the mixture distribution
with a single normal distribution but with the correct mean and variance
functions.

We estimate the μj and σ2 by maximum likelihood (though with this
approximate normal model). This requires an iterative method, though it
generally converges more quickly than the EM algorithm under the mixture
model.

The extended Haley–Knott method is not as fast as Haley–Knott regres-
sion, but it provides an improved approximation and is still somewhat faster
than standard interval mapping. Most importantly, the extended Haley–Knott
method is more robust than standard interval mapping; see Sec. 4.2.5.

Example

As with standard interval mapping and Haley–Knott regression, we need
the genotype probabilities calculated by calc.genoprob, though we do not
need to run the function again here. We use the scanone function with
method="ehk" for the extended Haley–Knott method, as follows.

> out.ehk <- scanone(hyper, method="ehk")

We can plot the three interval mapping methods together with the follow-
ing. The results appear in Fig. 4.8.
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Figure 4.8. LOD scores for selected chromosomes for the hyper data by standard
interval mapping (black), Haley–Knott regression (blue), and the extended Haley–
Knott method (red, dashed).

> plot(out.em, out.hk, out.ehk, chr=c(1,4,15), ylab="LOD score",

+ lty=c(1,1,2))

The colors black, blue, and red are used by default. The argument lty is
used to define line types (1 is solid; 2 is dashed). As we will see, the results
by standard interval mapping and the extended Haley–Knott method are al-
most indistinguishable; we plot the extended Haley–Knott results with dashed
curves so that the interval mapping results may still be seen.

Note how much more closely the results from the extended Haley–Knott
method follow the results of standard interval mapping. The black curves are
completely covered by the red curves, as standard interval mapping and the
extended Haley–Knott method give results that are almost indistinguishable.)
Up to three results may be plotted with a single call to plot.scanone. Alter-
natively, we may use add=TRUE, to obtain this plot.

> plot(out.em, chr=c(1,4,15), ylab="LOD score")

> plot(out.hk, chr=c(1,4,15), col="blue", add=TRUE)

> plot(out.ehk, chr=c(1,4,15), col="red", lty=2, add=TRUE)

To more clearly see the differences among the results, we can again plot
the differences between the LOD scores. The results appear in Fig. 4.9.

> plot(out.hk - out.em, out.ehk - out.em, chr=c(1, 4, 15),

+ col=c("blue", "red"), ylim=c(-0.5, 1),
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Figure 4.9. Differences in the LOD scores from Haley–Knott regression (in blue)
and the extended Haley–Knott method (in red) from the LOD scores of standard
interval mapping, for selected chromosomes from the hyper data.

+ ylab=expression(LOD[HK] - LOD[EM]))

> abline(h=0, lty=3)

4.2.4 Multiple imputation

As we discussed in Sect. 1.3, the QTL mapping problem can be split into two
parts: the missing data problem and the model selection problem. The multiple
imputation approach dispenses with the missing data problem by filling in all
missing genotype data, even at sites between markers (on a grid along the
chromosomes). With complete genotype data, the fit of a QTL model reduces
to ANOVA (for single-QTL models) or multiple regression (for multiple-QTL
models).

The only wrinkle is that such imputations must be done multiple times,
with the final result being a combination of the results from the multiple im-
putations. Moreover, the combination of the single-imputation results can be
complicated. The imputations are simple and model fit with each imputation
is simple, but the combination of the imputations can be difficult.

Genotypes are imputed randomly, but conditional on the observed marker
genotype data: we simulate from the joint genotype distribution given the ob-
served data. For example, consider Fig. 4.10, which illustrates the imputation
of a single backcross individual’s genotype data. The observed genotype data
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Figure 4.10. Illustration of multiple imputations for a single backcross individual.
Red and blue squares correspond to homozygous and heterozygous genotypes, re-
spectively, while open squares indicate missing data. The marker genotype data for
the individual is shown at the top, below a genetic map (in cM) for the chromo-
some; multiple imputations of the genotype data, at the markers and at intervening
positions at 2 cM steps along the chromosome, are shown below.

at five genetic markers is shown at the top, followed by the imputed geno-
types for 15 different imputations. Note that the positions of the recombina-
tion events vary among the imputations, and a couple of imputations exhibit
double-crossovers between markers. The imputed genotypes at the markers
match those observed, as these data were simulated assuming no genotyping
errors (an assumption that may be relaxed).

Such multiple imputations would be obtained on all individuals. With a
given set of imputed data, we can simply perform a t test or ANOVA at each
position, as with such complete genotype data on all individuals, we know how
to split the individuals into genotype groups. Following tradition, we express
the results as LOD scores.

As a further illustration, consider Fig. 4.11, which contains imputation
results for chromosome 4 of the hyper data. The LOD curve from each of 16
imputations are shown in gray, and a combined LOD curve from a total of
64 imputations is shown in black. At markers with complete genotype data,
all LOD curves coincide, as all imputations give the same set of data. In
regions with less genotype information, the LOD curves from the individual
imputations deviate from one another.
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Figure 4.11. Illustration of the imputation results for chromosome 4 of the hyper

data. The individual LOD curves from 16 imputations are shown in gray; the com-
bined LOD score from a total of 64 imputations is shown in black.

For the normal model, the combined LOD score is the average of the LOD
scores from the individual imputations, though on the 10LOD scale. To obtain
a more stable estimate of this average, we use a trimmed mean. In the case of
m imputations, we trim the lowest and highest log2(m)/2 LOD scores. (More
precisely, we trim �log2(m)/2� from each end, where �x� is the greatest integer
≤ x. We generally take the number of imputations to be a power of 2, like 64
or 128: m = 2k for some positive integer k.) Moreover, we assume that the
LOD scores at a particular position, across imputations, approximately follow
a lognormal distribution, and we use the fact that, if L = ln(W ) ∼ N(μ, σ2),
so that W is lognormally distributed, E(W ) = exp(μ + σ2/2).

To be precise, the combined LOD scores that we calculate by the multiple
imputation method are not truly LOD scores. Strictly speaking, this is a
Bayesian method, and the combined scores are the log posterior distribution
(LPD) of QTL location, but the results are generally similar to the LOD scores
from standard interval mapping.

The multiple imputation approach is intensive in both computation time
and memory use. While it is more robust than standard interval mapping, it
has little advantage over the extended Haley–Knott method for single-QTL
models, particularly because of the large up-front cost to obtain the impu-
tations. The multiple imputation approach has greatest value for the fit and
exploration of multiple-QTL models (see Chap. 9).
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Example

To perform multiple imputation in R/qtl, we first perform the imputations us-
ing the sim.geno function. This function is similar to calc.genoprob, though
it has an additional argument, n.draws, through which the number of impu-
tations is specified.

> hyper <- sim.geno(hyper, step=1, n.draws=64, error.prob=0.001)

The imputed genotypes can take up an enormous amount of memory,
especially if step is small, n.draws is large, and there are many individuals
in the cross. In such cases, you will need a computer with a lot of RAM. You
may wish to perform initial analyses with a rather coarse step size and with
fewer imputations, reserving the refined step and larger n.draws for the fit
of later multiple-QTL models (see Chap. 9), in which case you can focus on
just those chromosomes that appear to harbor a QTL. If time and memory
are not as issue, more imputations are always better (just as a smaller step
size is always better). With relatively complete genotype data and relatively
dense markers, very few imputations will be required; the more sparse the
genotype information, the more imputations should be used. Repeating the
analysis with independent imputations can give a good indication of the need
for a larger number of imputations. If the results are hardly distinguishable,
the chosen number of imputations is sufficient.

The analysis is again accomplished with scanone, with method="imp" for
the multiple imputation method. For example, we type the following to per-
form interval mapping by multiple imputation with the hyper data.

> out.imp <- scanone(hyper, method="imp")

We plot the results for selected chromosomes with those from standard interval
mapping (Sec. 4.2.1) via the following; the results appear in Fig. 4.12.

> plot(out.em, out.imp, chr=c(1,4,15), col=c("blue", "red"),

+ ylab="LOD score")

It is again worthwhile to look at the differences between the LOD curves.
See Fig. 4.13.

> plot(out.imp - out.em, chr=c(1,4,15), ylim=c(-0.5, 0.5),

+ ylab=expression(LOD[IMP] - LOD[EM]))

> abline(h=0, lty=3)

4.2.5 Comparison of methods

In this section, we summarize the relative advantages and disadvantages of the
various single-QTL mapping methods that we have discussed in this chapter.
For a quick summary, see Table 4.2 on page 102.
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Figure 4.12. LOD scores for selected chromosomes for the hyper data by standard
interval mapping (blue) and multiple imputation (red).
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Figure 4.13. Differences in the LOD scores from multiple imputation and standard
interval mapping for selected chromosomes from the hyper data.
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Marker regression is not recommended for use in practice, except in the
case of dense markers with complete genotype data (as is sometimes the case
with data on recombinant inbred lines), because individuals with missing geno-
type at a marker must be omitted from the analysis, and one cannot inspect
positions between markers. The interval mapping methods take account of
missing genotype data.

Standard interval mapping, which uses maximum likelihood estimation in
a normal mixture model, is generally the preferred method, but it can give
artifacts. Recall that the LOD score is the log10 likelihood ratio, comparing the
hypothesis of a single QTL at the position under test to the null hypothesis
of no QTL anywhere in the genome. If the phenotype distribution exhibits
multiple modes, so that it would be better approximated by a mixture of
normal distributions rather than a single normal distribution, one can get
spuriously large LOD scores in regions of low genotype information (such as
a large gap between typed markers). At a typed marker, one is constrained
by the observed genotypes, but in a region with low genotype information,
the likelihood under the alternative essentially concerns the fit of a mixture
model.

For example, consider the listeria data. The phenotype is time-to-death
following infection with Listeria monocytogenes, but a large number of indi-
viduals recovered from infection, and so their phenotype was censored (and
recorded as 264 hours); see Fig. 2.7 on page 35. The markers are relatively
dense, and the genotype data relatively complete, and so application of stan-
dard interval mapping with these data do not cause problems. If we omit most
of the markers on a chromosome, we can illustrate our point. Chromosome 1
was typed at 13 markers; let us omit all but the terminal markers. We use the
function markernames to pull out the marker names for chromosome 1 and
drop.markers, to drop all but the first and last markers.

> data(listeria)

> mar2drop <- markernames(listeria, chr=1)[2:12]

> listeria <- drop.markers(listeria, mar2drop)

If we now perform standard interval mapping, we will see a large LOD peak
on chromosome 1, in the middle of the large interval with no genotype data (see
Fig. 4.14). The other interval mapping methods do not exhibit this problem;
we consider just the Haley–Knott methods here. We use the argument chr=1
in scanone so that only chromosome 1 is analyzed.

> listeria <- calc.genoprob(listeria, step=1, error.prob=0.001)

> outl.em <- scanone(listeria, chr=1)

> outl.hk <- scanone(listeria, chr=1, method="hk")

> outl.ehk <- scanone(listeria, chr=1, method="ehk")

> plot(outl.em, outl.hk, outl.ehk, ylab="LOD score",

+ lty=c(1,1,2))
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Figure 4.14. LOD scores by standard interval mapping (black), Haley–Knott re-
gression (blue) and the extended Haley–Knott method (red, dashed) for chromosome
1 of the listeria data, when the genotype data for all but the terminal markers
have been omitted.

The discontinuities in the LOD curve from standard interval mapping con-
cern multiple modes in the likelihood surface. At a typed marker, one is con-
strained by the observed genotype data. At the center of the large interval,
there is essentially no genotype data, and so one is fitting a pure mixture
model.

The Haley–Knott method is more robust than standard interval mapping;
however, the approximation used in Haley–Knott regression, in which we
regress the phenotype on conditional genotype probabilities, can be poorly
behaved with appreciable missing genotype data, particularly in the case of
selective genotyping. In the selective genotyping strategy (discussed further in
Chap. 6), only individuals with extreme phenotypes (for example, the individ-
uals in the upper and lower 10% of the phenotype distribution) are genotyped.
In the case of an inexpensive phenotype, this greatly reduces the cost of a study
yet provides nearly equivalent power for QTL detection.

Consider a backcross with genotypes coded as 0 and 1. In Haley–Knott
regression, an individual with no genotype data will be treated as if its geno-
type were 1/2 (and were known to be 1/2). This results in a slightly inflated
estimate of the effect of a QTL but also a greatly reduced estimate of the
residual variation, and so can give inflated LOD scores.
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In the extended Haley–Knott method, individuals with no genotype data
are also treated as having genotype 1/2, but their residual variance is ad-
justed, so they are given very little weight in the estimation. Standard interval
mapping and the multiple imputation method explicitly take account of the
fact that the individuals without genotypes have an equal chance of being ho-
mozygous and heterozygous. As a result, these other methods give remarkably
similar LOD curves, irrespective of whether the individuals without genotype
data are included in the analysis.

If one omitted individuals with absolutely no genotype data, Haley–Knott
regression will provide a good approximation to standard interval mapping.
However, often (as with the hyper data) selective genotyping is followed by
complete genotyping at certain markers, and so no individual is completely
lacking in genotype data.

Consider the hyper data as an example. The relationship between blood
pressure and the genotype at marker D4Mit214 is shown in the left panel
Fig. 4.15. The regression line of phenotype on genotype (equivalent to a t test)
is shown. In the right panel, the genotype data for all but the 92 individuals
with extreme phenotypes have been omitted. The blue line is the regression
line when only the genotyped individuals are considered. The red line is the
regression line obtained when those not genotyped are placed intermediate
between the two genotyped groups, as is done in Haley–Knott regression. The
regression lines in the right panel are more steep than that in the left panel,
but the biggest difference is that, in the right panel, with the ungenotyped
individuals placed in the center, the variation around the regression line is
artificially reduced.

Let us look more closely at the LOD curves that will be obtained by the
different methods. In the hyper data, further genotyping was performed in
regions showing initial evidence for a QTL; we will omit these genotypes, to
convert these data to the “pure” selective genotyping form.

First, we identify the markers that have mostly missing data (those that
were typed only on recombinant individuals) and use drop.markers to re-
move them from the data set. We assign the revised data to a new object,
hyper.rev.

> data(hyper)

> nt.mar <- ntyped(hyper, "mar")

> mar2drop <- names(nt.mar[nt.mar < 92])

> hyper.rev <- drop.markers(hyper, mar2drop)

Next, we eliminate the genotype data for the individuals with intermedi-
ate phenotype, who may be identified by their missing genotype data. This
requires a loop over the chromosomes; the genotype data for the relevant
individuals is replaced with NA (for “missing”).

> nm.ind <- nmissing(hyper.rev)

> ind2drop <- nm.ind > 0
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Figure 4.15. Relationship between blood pressure and the genotype at D4Mit214
for the hyper data. The horizontal green segments indicate the within-group av-
erages. In the left panel, the data for all individuals is shown with the regression
line of phenotype on genotype. In the right panel, the genotype data for all but the
92 individuals with extreme phenotypes is omitted. The blue line is the regression
line obtained with only the 92 phenotyped individuals. The red line comes from a
regression with all individuals, but with those not genotyped placed intermediate
between the two genotype groups, as is done in Haley–Knott regression.

> for(i in 1:nchr(hyper))

+ hyper.rev$geno[[i]]$data[ind2drop,] <- NA

Now, we perform genome scans using all individuals. We will use each of
standard interval mapping, Haley–Knott regression and the extended Haley–
Knott method.

> hyper.rev <- calc.genoprob(hyper.rev, step=1,

+ error.prob=0.001)

> out1.em <- scanone(hyper.rev)

> out1.hk <- scanone(hyper.rev, method="hk")

> out1.ehk <- scanone(hyper.rev, method="ehk")

The LOD curves from the three methods are shown in Fig. 4.16, which
was created as follows.

> plot(out1.em, out1.hk, out1.ehk, ylab="LOD score",

+ lty=c(1,1,2))
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Figure 4.16. LOD curves from standard interval mapping (black), Haley–Knott
regression (blue) and the extended Haley–Knott method (red, dashed), for the hyper
data when all individuals are considered but genotype data for individuals with
intermediate phenotype are omitted.

The LOD scores from Haley–Knott regression (in blue) are inflated. The
results of standard interval mapping (black) and the extended Haley–Knott
method (red) almost completely overlap. Thus, to distinguish among the
methods more clearly, we plot the differences between the LOD scores for
the Haley–Knott methods and those from standard interval mapping.

> plot(out1.hk-out1.em, out1.ehk-out1.em, col=c("blue", "red"),

+ ylim=c(-0.1, 4), ylab=expression(LOD[HK] - LOD[EM]))

> abline(h=0, lty=3)

The plot of the differences, in Fig. 4.17, confirm that the extended Haley–
Knott method gives results that are virtually identical to standard interval
mapping.

We now perform the same analyses, considering only the genotyped indi-
viduals. We use subset.cross to create a new version of the data with only
the genotyped individuals. The vector ind2drop was created above to contain
the logical values TRUE and FALSE, with TRUE indicating individuals with no
genotype data. We use !ind2drop to reverse the TRUE/FALSE values (! is
the logical “not”), to pull out just those individuals with genotype data.

> hyper.ex <- subset(hyper.rev, ind = !ind2drop)

> out2.em <- scanone(hyper.ex)
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Figure 4.17. Differences in the LOD curves of Haley–Knott regression (blue) and
the extended Haley–Knott method (red), from the LOD curves of standard interval
mapping, for the hyper data when all individuals are considered but genotype data
for individuals with intermediate phenotype are omitted.

> out2.hk <- scanone(hyper.ex, method="hk")

> out2.ehk <- scanone(hyper.ex, method="ehk")

Let us just look at the differences in the LOD scores for the methods for this
case (with only genotyped individuals considered) and the LOD curves from
standard interval mapping when all individuals were considered; see Fig. 4.18.

> plot(out2.em-out1.em, out2.hk-out1.em, out2.ehk-out1.em,

+ ylim=c(-0.1, 0.2), col=c("black", "green", "red"),

+ lty=c(1,3,2), ylab="Difference in LOD scores")

> abline(h=0, lty=3)

The methods all give similar results, and the results are not too different from
standard interval mapping when all individuals are considered (but with the
genotypes of the individuals with intermediate phenotype omitted).

In summary, standard interval mapping can give spuriously large LOD
scores in regions of low genotype information, if the phenotype distribution is
better approximated by a normal mixture than by a single normal distribution;
the other methods do not have this problem. Haley–Knott regression can
provide a poor approximation to interval mapping in the case of low genotype
information, and can give inflated LOD scores in the presence of selective
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Figure 4.18. Differences in the LOD curves (for the hyper data) from standard
interval mapping (in black), Haley–Knott regression (in green, dotted) and the ex-
tended Haley–Knott method (in red, dashed), all calculated with only the data on
the individuals with extreme phenotypes, from the LOD curves of standard interval
mapping, with all individuals but with genotype data for individuals with interme-
diate phenotype omitted.

Table 4.2. Relative advantages and disadvantages of the four interval mapping
methods.

Use of genotype Selective
information Robustness genotyping Speed

Standard interval mapping ++ − + −
Haley–Knott − + − +

Extended Haley–Knott + + + −
Multiple imputation ++ + + −−

genotyping. The extended Haley–Knott method may be preferred as it suffers
from neither of these problems. These points are summarized in Table 4.2.

Our last point concerns computation time. Haley–Knott regression is es-
pecially fast, and the extended Haley–Knott method is intermediate between
Haley–Knott regression and standard interval mapping in computation time.
The multiple imputation approach is particularly slow for the fit of single-QTL
models, and is best reserved for the fit of multiple-QTL models.

We can measure computation time with the system.time function. The
following times were obtained on a Mac Pro. We will consider the hyper data.
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First, look at the time to run calc.genoprob. We use step=0.25 so that the
later comparison of the methods is most clear.

> data(hyper)

> system.time(hyper <- calc.genoprob(hyper, step=0.25,

+ error.prob=0.001))

user system elapsed
1.392 0.472 1.882

In the output from system.time, the first number is the CPU time (in sec-
onds) and the third number is the total time.

Now let us look at the four interval mapping methods.

> system.time(test.hk <- scanone(hyper, method="hk"))

user system elapsed
0.238 0.095 0.337

> system.time(test.ehk <- scanone(hyper, method="ehk"))

user system elapsed
0.982 0.093 1.085

> system.time(test.em <- scanone(hyper, method="em"))

user system elapsed
1.105 0.094 1.207

The extended Haley–Knott method is intermediate between the other two
methods, though here it is not much faster than standard interval mapping.

For the multiple imputation approach, the calculations (in sim.geno and
scanone with method="imp") scale linearly in n.draws.

> system.time(hyper <- sim.geno(hyper, step=0.25,

+ error.prob=0.001, n.draws=32))

user system elapsed
11.795 4.253 16.288

> system.time(test.imp <- scanone(hyper, method="imp"))

user system elapsed
3.002 0.608 3.706

The imputations themselves are quite time consuming, and the actual analysis
is also slower than the EM algorithm. (This will depend on the number of
iterations needed for convergence of EM; the time for one iteration of EM is
approximately the same as the time analyzing one imputation.)
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Figure 4.19. Approximate null distribution of the LOD score at a particular posi-
tion (dashed curve) and of the maximum LOD score genome-wide (solid curve) for
a backcross in the mouse.

4.3 Significance thresholds

A LOD score indicates evidence for the presence of a QTL, with larger LOD
scores corresponding to greater evidence. The question is, how large is large?
In answering this question, we must take account of the genome-wide search
for QTL.

We consider the global null hypothesis, that there is no QTL anywhere in
the genome. (This is almost always clearly false, as we generally start with
inbred lines that show a clear difference in the phenotype, which implies that
there must be QTL. Nevertheless, the procedures described here are useful.)
Rather than consider the null distribution of the LOD score at a particular
position (the dashed curve in Fig. 4.19), we consider the null distribution of
the genome-wide maximum LOD score (the solid curve in Fig. 4.19).

As seen in Fig. 4.19, in a backcross with no QTL, at any fixed position
in the genome, one will typically see a LOD score of about 0.25, and will
seldom see a LOD score greater than 1. However, one will typically see a LOD
score > 1.5 somewhere in the genome, and will see a LOD score > 2.5 about
10% of the time. We compare our observed LOD scores to the distribution of
the genome-wide maximum LOD score, in the case that there were no QTL
anywhere. The 95th percentile of this distribution may be used as a genome-
wide LOD threshold. Alternatively, one may calculate a genome-scan-adjusted
p-value corresponding to an observed LOD score: the chance, under the null
hypothesis of no QTL, of obtaining a LOD score that large or larger somewhere
in the genome.

The null distribution of the genome-wide maximum LOD depends on a
number of factors, including the type of cross (backcross or intercross), the size
of the genome (in cM), the number of individuals, the number of typed mark-
ers, the pattern of missing genotype data, and the phenotype distribution.
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Figure 4.20. Diagram of the interval mapping process.

The type of cross and the genome size have the greatest influence. One may
derive this null distribution by several methods: computer simulation, analytic
calculations (e.g., for the case of infinitely dense markers), or by a permuta-
tion test. We prefer permutation tests, as they best account for the particular
features of one’s data.

The process involved in interval mapping is illustrated in Fig. 4.20. The
data consist of a rectangle of marker genotype data plus a column of phe-
notypes. QTL analysis results in a set of LOD curves, and one immediately
notes the genome-wide maximum LOD curve. The question is, if there were
no QTL (so that there was no association between phenotypes and the geno-
types), what sort of maximum LOD scores might be obtained?

In a permutation test, we tackle this directly by permuting (i.e., random-
izing or shuffling) the phenotypes relative to the genotype data. That is, the
genotype data rectangle remains intact, and the observed phenotypes are kept
the same, but which phenotype corresponds to which genotypes is random-
ized. We apply our QTL mapping method to this shuffled version of the data
and obtain a set of LOD curves; we then derive the genome-wide maximum
LOD score. The process is repeated a number of times, which results in a set of
maximum LOD scores, M∗

1 ,M∗
2 , . . . ,M∗

r , where r is the number of permuta-
tion replicates (generally r = 1000 or 10,000). We may use the 95th percentile
of the M∗

i as an estimated genome-wide LOD threshold, or we may calculate
a genome-scan-adjusted p-value as the proportion of the M∗

i that meet or
exceed a particular observed LOD score.

It should be noted that, in the case of selectively genotyped data, the usual
permutation test is not appropriate, as the individuals are no longer exchange-
able. One should instead use a stratified permutation test, shuffling individu-
als’ phenotypes separately within strata of similarly genotyped individuals.

A common question concerns the appropriate number of permutation repli-
cates. A larger number of permutation replicates gives greater precision in the
estimated significance thresholds or empirical p-values. While we generally
use 1000 permutation replicates initially, we may go up to 10,000 or even
100,000 replicates in order to achieve greater precision. Note that the number
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of permutation replicates that meet or exceed a given LOD score follows a
binomial(r, p) distribution, with r being the number of replicates and p be-
ing the true p-value. In the case that the p-value is around 0.05, the stan-
dard error of the estimated p-value from the permutation test will be around√

0.05 × 0.95/r. Thus, to achieve a standard error of 0.005, one would need
0.05 × 0.95/(0.005)2 = 1900 permutation replicates.

Finally, we wish to emphasize that we strongly oppose the use of strict
thresholds for statistical significance; it is better to report genome-scan-
adjusted p-values. P -values of 4.6% and 5.4% are essentially the same and
so should be treated the same. They shouldn’t be called “significant” and
“suggestive” according to whether they landed below or above a 5% cutoff.
Moreover, the importance accorded to a particular p-value depends upon a
number of factors, including the ultimate goals of the experiment.

Example

Let us illustrate the permutation test by considering the hyper data. We can
perform a permutation test with any of the QTL mapping methods discussed
in this chapter through the argument n.perm to the scanone function. That is,
we may use the scanone function just as before, but by including n.perm=1000
in the code, the function performs a permutation test with 1000 replicates
rather than doing the genome scan with the data. We must, of course, have
previously run calc.genoprob to obtain the QTL genotype probabilities; let’s
reload the hyper data and run calc.genoprob again, just to be sure.

> data(hyper)

> hyper <- calc.genoprob(hyper, step=1, error.prob=0.001)

Now we use scanone to do the permutation test. We use verbose=FALSE
to suppress any output.

> operm <- scanone(hyper, n.perm=1000, verbose=FALSE)

The result is a vector of length 1000, containing the genome-wide maximum
LOD score from each of 1000 permutation replicates. We may look at the first
5 results as follows.

> operm[1:5]

[1] 1.547 1.434 4.184 2.151 1.060

The object operm has class "scanoneperm". There is a corresponding plot
function, for plotting a histogram of the results, and a summary function, for
calculating LOD thresholds.

A histogram of the permutation results is produced as follows; see Fig. 4.21.

> plot(operm)

To obtain estimated genome-wide LOD thresholds for significance levels
20% and 5%, we do the following.
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Figure 4.21. Histogram of the genome-wide maximum LOD scores from 1000 per-
mutation replicates with the hyper data. The LOD scores were calculated by Haley–
Knott regression.

> summary(operm, alpha=c(0.20, 0.05))

LOD thresholds (1000 permutations)
lod

20% 2.16
5% 2.76

In the above, we used the traditional permutation test. However, for the
hyper data, a selective genotyping strategy was used, and so it is best to use
a stratified permutation test, permuting individuals’ phenotypes separately
within strata defined by the extent of genotyping.

We must first define a vector that indicates the strata. This may be done as
follows. We place individuals who were genotyped at more than 100 markers
in one group and the other individuals in a second group.

> strat <- (ntyped(hyper) > 100)

We then rerun the permutation test using the argument perm.strata to
indicate the strata.

> operms <- scanone(hyper, n.perm=1000, perm.strata=strat,

+ verbose=FALSE)

In this particular case, we see little difference in the significance threshold
when using the stratified permutation test. The 5% threshold is 2.71 (versus
2.76 from the traditional permutation test).

> summary(operms, alpha=c(0.20, 0.05))
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LOD thresholds (1000 permutations)
lod

20% 2.10
5% 2.71

Turning now to the use of the permutation results, note that if we provide
these results to the summary.scanone function, we can have LOD thresholds
calculated automatically. For example, the following picks out the LOD peaks
(no more than one per chromosome) that meet the 10% significance level.

> summary(out.em, perms=operms, alpha=0.1)

chr pos lod
c1.loc45 1 48.3 3.53
D4Mit164 4 29.5 8.09

We may further obtain the genome-scan-adjusted p-value for each LOD
peak.

> summary(out.em, perms=operms, alpha=0.1, pvalues=TRUE)

chr pos lod pval
c1.loc45 1 48.3 3.53 0.008
D4Mit164 4 29.5 8.09 0.000

For the QTL on chromosome 4, our estimated p-value is 0, as no permutations
showed a LOD score of 8.1 or greater. Citing a p-value of 0 doesn’t seem
right, but we can get an upper confidence limit on the true p-value with the
binom.test function, as follows.

> binom.test(0, 1000)$conf.int

[1] 0.000000 0.003682

Thus, we might report p < 0.004.

4.4 The X chromosome

The X chromosome exhibits special behavior and must be treated differently
from the autosomes in QTL mapping. The behavior of the X chromosome
depends on the direction of the cross, as well as the sex of the progeny. We
enumerate the possibilities in Fig. 4.22 and 4.23.

In Fig. 4.22, the four possible backcrosses to a single strain are presented.
For the backcrosses in panels c and d, in which the F1 parent is male, the
X chromosome is not subject to recombination, and so one cannot map QTL
on the X chromosome. We omit these crosses from further consideration. In
panels a and b, in which the F1 parent is female, the X chromosome does
recombine, and the order of the cross producing the F1 parent has no impact
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on the behavior of the X chromosome. Note that the backcross males are
hemizygous A or B, while females have genotype AA or AB. Thus, rather
than comparing, as for the autosomes, the phenotypic means between the AA
and AB genotype groups, the X chromosome requires a comparison of the
phenotypic means across four genotypic groups.

In Fig. 4.23, the four possible intercrosses are presented. In all cases, F2

progeny have a single X chromosome subject to recombination, and male F2

progeny are, at any given locus, hemizygous A or B. In the case that the F1

male parent was derived from a cross A × B (with the A parent being female;
panels a and b), the female F2 progeny are either AA or AB. In the cases that
the F1 male was derived from a cross B × A (with the B parent being female;
panels c and d), the female F2 progeny are either BB or AB. Note that the
direction of the cross giving the female F1 parent does not affect the behavior
of the X chromosome in the F2 progeny. Thus, when we discuss the direction
of the intercross, we consider only the direction of the cross that produced
the male F1 parent. The crosses in Fig. 4.23, panels a and b, are treated the
same, and the crosses in Fig. 4.23, panels c and d, are treated the same.

The relevant genotype comparisons are somewhat different for the X chro-
mosome than for autosomes. Further, the null hypothesis of no linkage must
be reformulated to avoid spurious linkage to the X chromosome as a result of
sex- or cross-direction-differences in the phenotype. (Sex differences are ob-
served in many phenotypes, and systematic phenotypic differences between
reciprocal crosses may arise, for example, from parent-of-origin effects. If not
taken into account, such systematic differences can lead to large LOD scores
on the X chromosome even in the absence of X chromosome linkage.) Finally,
to account for the fact that the number of degrees of freedom for the linkage
test on the X chromosome may be different from that on the autosomes, an
X-chromosome-specific significance threshold is required.

4.4.1 Analysis

The choice of the null and alternative hypotheses requires careful thought.
The goal of the R/qtl implementation, which we describe here, is to have
a procedure for routine use in QTL mapping. The choice of genotype com-
parisons was based on the following basic principles. First, a sex- or cross-
direction-difference in the phenotype should not lead to spurious linkage to
the X chromosome. Second, the set of comparisons should be parsimonious
but reasonable. Third, the null hypothesis must be nested within the alterna-
tive hypothesis. The choices for all possible cases are presented in Table 4.3;
we explain how these choices were made through specific examples, below.

Consider, for example, an intercross performed in one direction and includ-
ing both sexes. Females then have X chromosome genotype AA or AB, while
males are hemizygous A or B. Males that are hemizygous B should be treated
separately from the AA or AB females, and so the null hypothesis must then
allow for a sex-difference in the phenotype, as otherwise, the presence of such
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Figure 4.22. The behavior of the X chromosome in a backcross. Circles and squares
correspond to females and males, respectively. Blue and red bars correspond to DNA
from strains A and B, respectively. The small bar is the Y chromosome.



4.4 The X chromosome 111

(A x B) x (A x B)a

A B A B

F1F1

F2 F2

(B x A) x (A x B)b

B A A B

F1F1

F2 F2

(A x B) x (B x A)c

A B B A

F1F1

F2 F2

(B x A) x (B x A)d

B A B A

F1F1

F2 F2

Figure 4.23. The behavior of the X chromosome in an intercross. Circles and
squares correspond to females and males, respectively. Blue and red bars correspond
to DNA from strains A and B, respectively. The small bar is the Y chromosome.
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Table 4.3. Contrasts for analysis of the X chromosome in standard crosses.

Cross Direction Sexes Contrasts H0 df

BC Both AA:AB:AY:BY ♀:♂ 2
BC ♀ AA:AB Grand mean 1
BC ♂ AY:BY Grand mean 1

F2 Both Both AA:ABf:ABr:BB:AY:BY ♀f :♀r:♂ 3
F2 Both ♀ AA:ABf:ABr:BB ♀f :♀r 2
F2 Both ♂ AY:BY Grand mean 1
F2 One Both AA:AB:AY:BY ♀:♂ 2
F2 One ♀ AA:AB Grand mean 1
F2 One ♂ AY:BY Grand mean 1

a sex difference would cause spurious linkage to the X chromosome. For the
null hypothesis to be nested within the alternative, the alternative must allow
separate phenotype averages for the genotype groups AA, AB, AY, and BY
(see Table 4.3). We will call this the contrast AA:AB:AY:BY. Note that there
are two degrees of freedom for this test of linkage, just as for the autosomes,
as there are four mean parameters under the alternative and two under the
null (the average phenotype for each of females and males).

A somewhat more complex example is for the case that both directions
of the intercross were performed, but only females were phenotyped. As the
AA individuals come from one direction of the cross (which we will call the
“forward” direction) and the BB individuals come from the other direction of
the cross (the “reverse” direction), a cross direction effect on the phenotype
would cause spurious linkage to the X chromosome if the null hypothesis did
not allow for that effect. But then, in order for the null hypothesis to be nested
within the alternative, the AB individuals from the two cross directions must
be allowed to be different. Thus we arrive at the contrasts AA:ABf:ABr:BB
for the alternative and forward:reverse for the null. Here, again, the linkage
test has two degrees of freedom.

In the analogous case with males only, since both directions give rise to
equal parts hemizygous A and hemizygous B individuals, we need not split
the individuals according to the direction of the cross, as a cross direction
effect cannot cause spurious linkage to the X chromosome. In this case, the
test for linkage has one degree of freedom.

In the most complex case, of an intercross with both directions and both
sexes, all four types of females must be allowed to be separate, whereas the
males from the two directions may be pooled, and so the simplest comparison
includes the contrasts AA:ABf:ABr:BB:AY:BY, with the null hypothesis using
the contrasts female forward:female reverse:male. Thus, the linkage test has
three degrees of freedom.

For all interval mapping methods, the actual analysis is essentially the
same for the X chromosome as for the autosomes. As each backcross or inter-
cross individual has a single X chromosome that was subject to recombination,
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the calculation of the genotype probabilities given the available multipoint
marker genotype data is identical to those for an autosome in a backcross,
and so nothing new is needed there. The further analysis is hardly modified;
the only changes concern the set of genotype groups and the possible inclu-
sion of sex and/or cross direction as covariates under the null hypothesis.
Provided that phenotypes sex and pgm (if necessary) are included with the
data (see Sec. 2.1.1, page 24), the analysis will be performed correctly without
any intervention from the user.

4.4.2 Significance thresholds

A further point concerns the need for X-chromosome-specific levels of signifi-
cance, as the number of degrees of freedom for the X chromosome can differ
from that for the autosomes. We can assign a chromosome-specific false posi-
tive rate of αi for chromosome i. We require, however, that the αi are chosen
in order to maintain the desired genome-wide significance level, α. Under the
null hypothesis of no QTL and with the assumption of independent assortment
of chromosomes, the LOD scores on separate chromosomes are independent,
and so we must choose the αi so that α = 1 −

∏
i(1 − αi).

Any choice of the αi satisfying this equation will provide a genome-wide
false positive rate that is maintained at the desired level. For example, one
could choose α1 = α and αi = 0 for i 	= 1. A key issue, in choosing the αi,
concerns the power to detect a QTL. In the preceding example, one would
have high power to detect a QTL on chromosome 1, but no power to detect
a QTL on any other chromosome. The usual approach, with a constant LOD
threshold across the genome, provides high power to detect a QTL irrespective
of its location: in the case of high and uniform marker density and the presence
of a single autosomal QTL, the power to detect the QTL would be the same
no matter where it resides.

A reasonable approach is to use αi = 1−(1−α)Li/L, where Li is the genetic
length of chromosome i and L =

∑
i Li. This corresponds approximately to

the use of a constant LOD threshold across the autosomes.
Our actual recommendation is slightly different: we use a constant LOD

threshold across the autosomes and a separate threshold for the X chromo-
some. Taking LA to be the sum of the genetic lengths of the autosomes and
LX to be the length of the X chromosome, so that L = LA + LX , we use
αA = 1− (1−α)LA/L and αX = 1− (1−α)LX/L. In particular, in a permuta-
tion test to determine LOD thresholds, one would calculate, for permutation
replicate j, LOD∗

jA as the maximum LOD score across all autosomes and
LOD∗

jX as the maximum LOD score across the X chromosome. The LOD
threshold for the autosomes would be the 1−αA quantile of the LOD∗

jA, and
the LOD threshold for the X chromosome would be the 1 − αX quantile of
the LOD∗

jX .
Genome-scan-adjusted p-values can be estimated from the permutation re-

sults as follows. For a putative QTL on an autosome, one would first calculate
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the proportion, call it p, of the LOD∗
jA that were greater or equal to the

observed LOD score. The adjusted p-value would then be 1 − (1 − p)L/LA .
Equations for a locus on the X-chromosome are analogous, replacing the A’s
with X’s.

The precise estimation of the X-chromosome-specific LOD threshold will
require considerably more permutation replicates. We have found that one
must use roughly L/LX times more permutation replicates to get the same
precision for an adjusted p-value for the X chromosome as one would typically
need if a constant LOD threshold were used across the genome.

We have neglected to mention an important detail in the permutations
concerning the X chromosome. The rows in the phenotype matrix are shuffled
relative to the genotype data. Thus the sex (and pgm) attached to a par-
ticular phenotype is preserved. The X chromosome genotypes, however, are
randomized between males and females, but in a special way: the X chromo-
some genotypes are coded as 1/2 for all individuals, indicating the pattern
of recombination and of missing genotype data. These are shuffled across all
individuals, but the 1/2 codes are still interpreted as AA/AB for females from
one direction of the cross, BB/AB for females from the other direction, and
AY/BY for males.

An alternate strategy would be to permute separately within the four
strata (males and females in each cross direction). This would be important
if there were differences in the pattern of genotype data among the strata.

4.4.3 Example

As an example, we consider the data of Grant et al. (2006), which concerns
the basal iron levels in the liver and spleen of intercross mice. Both sexes
from reciprocal intercrosses with the C57BL/6J/Ola and SWR/Ola strains
were used; there are 284 individuals in total. The data are available in the
R/qtlbook package as the iron data. There are two phenotypes: the level of
iron (in μg/g) in the liver and spleen. There are approximately equal propor-
tions of males and females and of mice from each cross direction.

We can get access to the data and make a summary plot as follows; see
Fig. 4.24. We use pheno=1:2 to show histograms of just the liver and spleen
phenotypes, suppressing barplots of sex and pgm.

> library(qtlbook)

> data(iron)

> plot(iron, pheno=1:2)

Figure 4.25 contains a scatterplot of the log2(liver) and log2(spleen) phe-
notypes, with females as red circles and males as blue ×’s. The figure was
obtained as follows.

> plot(log2(liver) ~ log2(spleen), data=iron$pheno,

+ col=c("red", "blue")[iron$pheno$sex],

+ pch=c(1,4)[iron$pheno$sex])
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Figure 4.24. The summary plot of the iron data.

We use col and pch to indicate the color and plotting characters to use. For
example, c(1,4)[iron$pheno$sex] gives a vector of 1’s and 4’s according to
the sexes of the individuals, and with pch, 1 corresponds to a circle and 4 to
an ×.

Note that both phenotypes show a large sex difference, with females having
larger iron levels than males. For example, the average iron levels in the liver
of females and males are 112 (SE = 3) and 78 (SE = 3), respectively. If
the sex differences were not taken into account in QTL mapping on the X
chromosome, the LOD scores for that chromosome would be increased by
12.9 and 4.9 for the liver and spleen phenotypes, respectively.

We will focus on the liver phenotype, but we will consider it on the
log2 scale. (Discussion of the analysis of the spleen phenotype is deferred
to Sec. 4.7.) We transform the phenotype, and then use calc.genoprob and
scanone to perform a genome scan by standard interval mapping.

> iron$pheno[,1] <- log2(iron$pheno[,1])

> iron <- calc.genoprob(iron, step=1, error.prob=0.001)

> out.liver <- scanone(iron)

A plot of the results, obtained with plot.scanone, is shown in Fig. 4.26.
The peaks with LOD > 3 may be obtained with summary.scanone.

> summary(out.liver, 3)
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Figure 4.25. Scatterplot of log2(liver) versus log2(spleen) for the iron data, with
females as red circles and males as blue ×’s.

chr pos lod
D2Mit17 2 56.8 5.09
c7.loc47 7 48.1 3.41
D8Mit294 8 39.1 3.27
c16.loc22 16 28.6 9.47

The maximum LOD score on the X chromosome (0.31) is not so interesting.
Nevertheless, it is valuable to show how the permutation test would be done
to get autosome- and X-chromosome-specific LOD thresholds. We again use
the scanone function and use the n.perm argument to indicate the number
of permutations to perform, but here we also use perm.Xsp=TRUE to indicate
that we want to perform X-chromosome-specific permutations. In this case,
n.perm indicates the number of permutations to perform for the autosomes.
For the X chromosome, n.perm ×LA/LX permutations are performed.

> operm.liver <- scanone(iron, n.perm=1000, perm.Xsp=TRUE,

+ verbose=FALSE)

The LOD thresholds for a 5% significance level may be obtained as follows.

> summary(operm.liver, alpha=0.05)
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Figure 4.26. LOD curves for the liver phenotype in the iron data, calculated by
standard interval mapping.

Autosome LOD thresholds (1000 permutations)
lod

5% 3.36

X chromosome LOD thresholds (28243 permutations)
lod

5% 4.83

The threshold for the X chromosome is much larger than that for the au-
tosomes, as the test for linkage on the X chromosome has three degrees of
freedom, while for the autosomes there are two degrees of freedom (see Ta-
ble 4.3 on page 112).

We can again use the permutation results with summary.scanone to auto-
matically calculate the relevant LOD thresholds corresponding to a particular
significance level and to obtain genome-scan-adjusted p-values.

> summary(out.liver, perms=operm.liver, alpha=0.05,

+ pvalues=TRUE)

chr pos lod pval
D2Mit17 2 56.8 5.09 0.00311
c7.loc47 7 48.1 3.41 0.04449
c16.loc22 16 28.6 9.47 0.00000
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The alternate strategy, mentioned above, of a stratified permutation test,
is performed by first creating a numeric vector that indicates the strata to
which the individuals belong.

> strat <- as.numeric(iron$pheno$sex) + iron$pheno$pgm*2

> table(strat)

strat
1 2 3 4
74 75 65 70

We then rerun the permutation test with scanone, indicating the strata
via the perm.strata argument.

> operm.liver.strat <- scanone(iron, n.perm=1000, perm.Xsp=TRUE,

+ perm.strata=strat, verbose=FALSE)

The LOD thresholds are not too different.

> summary(operm.liver.strat, alpha=0.05)

Autosome LOD thresholds (1000 permutations)
lod

5% 3.41

X chromosome LOD thresholds (28243 permutations)
lod

5% 4.51

4.5 Interval estimates of QTL location

Once one has obtained evidence for a QTL, one may seek an interval estimate
of the location of the QTL. The estimated QTL location by interval mapping
will deviate somewhat from the true location, and so we seek the range of
possible QTL locations that are supported by the data. We assume, in this
section, that there is one and only one QTL on the chromosome of interest.

There are two major methods for calculating an interval estimate of QTL
location: LOD support intervals and Bayes credible intervals. The 1.5-LOD
support interval is the interval in which the LOD score is within 1.5 units of
its maximum. See Fig. 4.27 for an illustration. If the LOD score drops down
and back up (as in Fig. 4.27), one would obtain a set of disjoint intervals,
but we use the conservative approach of taking the wider connected interval.
The amount to drop affects the coverage of the LOD support intervals; we
prefer to use 1.5-LOD support intervals for a backcross, and 1.8-LOD support
intervals for an intercross.

An approximate Bayes credible interval is obtained by viewing 10LOD as
a real likelihood function for QTL location. (In fact, it is a profile likelihood,
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Figure 4.27. Illustration of the 1.5-LOD support interval for chromosome 4 of the
hyper data. The LOD curve was calculated by standard interval mapping.

as at each point we maximized over the possible QTL effects and the residual
SD.) Assuming a priori that the QTL is equally likely to be anywhere on the
chromosome, the posterior distribution of QTL location is obtained by rescal-
ing 10LOD to be a distribution, f(θ | data) = 10LOD(θ)/

∑
θ 10LOD(θ). The

95% Bayes credible interval is defined as the interval I for which f(θ | data)
exceeds some threshold and for which

∑
θ∈I f(θ | data) ≥ 0.95.

The Bayes interval is illustrated in Fig. 4.28. Plotted is 10LOD, rescaled so
that the area underneath the curve is 1. The area shaded in red is approxi-
mately 95% of the total area.

It is important to point out that neither the LOD support interval nor the
Bayes credible interval behave as true confidence intervals, as interval coverage
(the chance of obtaining an interval containing the true QTL location) is not
constant, but depends to some extent on the type of cross, marker density,
and the size of the QTL effect. Experience has shown, however, that Bayes
intervals have remarkably consistent coverage, and so may be preferred.

The use of a nonparametric bootstrap has also been used to create confi-
dence intervals for QTL location. In the nonparametric bootstrap, one sam-
ples, with replacement, from the individuals in the cross to create a new data
set of the same size as the original, but with some individuals repeated and
some omitted. With these new data, interval mapping is performed and the es-
timated location of the QTL recorded. The process is repeated multiple times,
to create a set of QTL location estimates, θ̂∗1 , θ̂∗2 , . . . , θ̂∗b . A confidence interval
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Figure 4.28. Illustration of the approximate 95% Bayes credible interval for chro-
mosome 4 of the hyper data. The LOD curve was calculated by standard interval
mapping.

is estimated as the region containing 95% of these bootstrap estimates; say
the 2.5th to 97.5th percentiles of the θ̂∗i .

Unfortunately, the bootstrap has been shown to perform poorly in this
context, and so it is not recommended. The maximum likelihood estimate
of QTL location obtained from interval mapping has a tendency to occur at
a marker. Moreover, the standard error of the estimated location depends
on the location of the QTL relative to the typed markers. As a result, the
coverage of bootstrap confidence intervals for QTL location depends critically
on the location of the QTL relative to the markers. In addition, the bootstrap
confidence intervals tend to be much wider than the LOD support and Bayes
credible intervals.

Example

We can calculate the LOD support interval and Bayes credible interval with
the functions lodint and bayesint, respectively. These take, as input, results
from scanone and the chromosome to consider, plus the argument drop in
lodint, indicating the amount to drop in LOD (1.5 by default), and prob in
bayesint, indicating the nominal Bayes fraction (95% by default).

We calculate the 1.5-LOD support and 95% Bayes credible intervals for
chromosome 4 in the hyper data as follows.
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> lodint(out.em, 4, 1.5)

chr pos lod
c4.loc19 4 19.0 6.566
D4Mit164 4 29.5 8.092
D4Mit178 4 30.6 6.387

> bayesint(out.em, 4, 0.95)

chr pos lod
c4.loc17 4 17.0 6.562
D4Mit164 4 29.5 8.092
c4.loc31 4 31.0 6.359

The first and last rows in the results indicate the ends of the intervals; the
middle row is the maximum likelihood estimate of QTL location.

Note that the ends of the intervals generally lie between marker locations.
One may use the argument expandtomarkers to expand the intervals to the
nearest flanking markers, as follows.

> lodint(out.em, 4, 1.5, expandtomarkers=TRUE)

chr pos lod
D4Mit286 4 18.6 6.507
D4Mit164 4 29.5 8.092
D4Mit178 4 30.6 6.387

> bayesint(out.em, 4, 0.95, expandtomarkers=TRUE)

chr pos lod
D4Mit108 4 16.4 5.490
D4Mit164 4 29.5 8.092
D4Mit80 4 31.7 5.145

We can obtain a bootstrap-based confidence interval for the location of a
QTL with the function scanoneboot, which takes the same set of arguments
as scanone, though only a single chromosome (indicated with the argument
chr) is considered, and the number of bootstrap replicates is indicated with the
argument n.boot. For example, we perform the bootstrap with chromosome 4
of the hyper data as follows.

> out.boot <- scanoneboot(hyper, chr=4, n.boot=1000)

A histogram of the bootstrap results is shown in Fig. 4.29. Note that 80%
of the bootstrap locations coincide with genetic markers. The results provide
a poor measure of the uncertainty in QTL location.

The output of scanoneboot has class "scanoneboot"; the actual confi-
dence interval is obtained with the function summary.scanoneboot, as follows.

> summary(out.boot)
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Figure 4.29. Histogram of the estimated QTL locations in 1000 bootstrap replicates
with the hyper data, chromosome 4, with LOD scores calculated by standard interval
mapping. The tick marks beneath the histogram indicate the locations of the genetic
markers.

chr pos lod
D4Mit41 4 14.2 6.076
D4Mit164 4 29.5 9.151
D4Mit276 4 32.8 3.881

This is a bit wider than the LOD support and Bayes credible intervals.

4.6 QTL effects

The effect of a QTL is characterized by the difference in the phenotype aver-
ages among the QTL genotype groups. For a backcross, we simply look at the
difference between the average phenotypes for the heterozygotes and the ho-
mozygotes, a = μAB − μAA. For an intercross, with three possible genotypes,
one traditionally considers the additive effect, a = (μBB − μAA)/2, and the
dominance effect, d = μAB − (μAA + μBB)/2.

In addition, the QTL effect is often characterized by the proportion of the
phenotypic variance explained by the QTL (also called the heritability due to
the QTL). Specifically, we consider

h2 = var{E(y|g)}/var(y),

where y is the phenotype and g is the QTL genotype. For a backcross, we
have h2 = a2/(a2 + 4σ2), where σ2 is the residual variance. For an intercross,
the heritability due to the QTL is h2 = (2a2 + d2)/(2a2 + d2 + 4σ2).
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Knowledge of the QTL effects is especially important in agricultural inves-
tigations to develop improved livestock or crops and in studies of evolution.
In biomedical research of models of human disease, which is our primary fo-
cus, the QTL effects are of lesser importance: while specific genes may carry
over from a model organism to humans, the actual alleles are not likely to be
the same, and so the QTL effects in the model are not likely to be relevant
for humans. Nevertheless, the QTL effects have important influence on one’s
ability to fine-map the QTL and ultimately identify the causal gene.

In considering the estimated effects of QTL, it is important to recognize
that they are often subject to considerable bias. The point is that, the esti-
mated effect of a QTL will vary somewhat from its true effect, but only when
the estimated effect is large will the QTL be detected. (We don’t estimate the
effects of QTL that we have not detected.) Among those experiments in which
the QTL is detected, the estimated QTL effect will be, on average, larger than
its true effect. This is selection bias.

As an illustration, consider Fig. 4.30. We simulated a backcross with 250
individuals, with a single QTL responsible for either 2.5, 5, or 7.5% of the
phenotypic variance. The true QTL effect is indicated with a blue vertical
line. The distribution of the estimated QTL effect, across 100,000 simulation
replicates, is displayed. There is a direct relationship between the estimated
percent variance explained by a QTL and the LOD score (see page 77). With
a sample size of 250, a LOD score of 3 corresponds to an estimated phenotypic
variance explained of 5.4%. Among the cases in which the LOD score is above
3 (the shaded portions of the distributions), the average estimated effect,
indicated by the red vertical line, is larger than the true effect.

Note that the selection bias is largest for QTL with small effects (for which
we have lower power for detection). QTL with very large effect are always
detected, and so the bias in their estimated effects will be minimal.

For a particular inferred QTL with an estimated effect of moderate size,
we cannot know whether it is a weak QTL that we were lucky to detect and
whose true effect is really rather small, or a QTL of truly large effect that
happened to appear to be not so strong in this particular experiment. The
estimated effects of QTL will often be overly optimistic, but we cannot be
sure about any particular case.

Selection bias in estimated QTL effects has a number of important impli-
cations. First, the overall estimated heritability due to a set of identified QTL
will almost always be too large and can be markedly so. Second, investigators
are often concerned, after repeating a QTL experiment, that an almost com-
pletely different set of QTL were identified. One should not conclude, in such
a situation, that the unreplicated QTL were false. Instead, it may be that
the phenotype is affected by numerous small-effect QTL, for each of which
the power of detection is small, and so in any given experiment we identify a
random portion of the QTL. Third, in the consideration of a congenic line (in
which, for example, the B allele at a QTL is introgressed into the A strain), one
may find that the difference between the average phenotypes for the congenic
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Figure 4.30. Illustration of selection bias in the estimated QTL effect. The curves
correspond to the distribution of the estimated percent variance explained by a
QTL for different values of the true effect (indicated by the blue vertical lines). The
shaded regions correspond to the cases where significant genomewide evidence for
the presence of a QTL would be obtained. The red vertical lines indicate the average
estimated QTL effect, conditional on the detection of the QTL.
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and the recipient strain is not so large as was expected given the QTL mapping
results. One might conclude, from this observation, that the QTL consisted of
multiple causal genes, and that some have not been included in the congenic
line. However, it could just be that the initial estimate of the QTL effect was
optimistically large. Finally, in marker-assisted selection efforts, one is likely
to find that the progress towards improvement is not so great as had been
anticipated, as the true effects of the loci under selection are not so large as
their initial estimates.

Example

The function for performing QTL mapping, scanone, does not provide es-
timated QTL effects. Such estimates are best obtained with the function
fitqtl, particularly for the case of a multiple-QTL model, but we will defer
discussion of fitqtl to Chap. 9. In the example in this section, we will focus
on the use of the function effectplot, whose primary purpose is for plotting
the phenotype averages for the genotype groups at an inferred QTL.

The function effectplot uses the multiple imputation method to obtain
estimates of the genotype-specific phenotype averages, taking account of miss-
ing genotype data. The estimates are weighted averages of the estimates from
the multiple imputations, with the individual imputations being weighted by
10LOD. The standard errors (SEs) include the imputation error. (If imputed
genotypes are not available, a call to sim.geno with n.draws=16 is made in
order to obtain them.)

The effectplot function takes a cross object as input; a marker name
is indicated via the mname1 argument. (The function may be used to plot
the estimated effects for two markers, with the second marker indicated
via the mname2 argument; see Chap. 8.) The argument var.flag may be
used to indicate whether to use a pooled estimate of the residual variance
(var.flag="pooled", the default), or to allow different residual variances in
the genotype groups (var.flag="group").

One can even use effectplot with “pseudomarker” positions (that is,
positions on the grid, in between markers). We refer to such pseudomarkers
with a chromosome and cM position, in the form "4@29.5", which refers to
the pseudomarker closest to 29.5 cM on chromosome 4.

For the hyper data, the largest LOD score was obtained at marker
D4Mit164 (chr 4, 29.5 cM). If we had known only the position, we could
find the name of the nearest marker with the function find.marker, which
takes as input a cross object, chromosome, and cM position.

> find.marker(hyper, 4, 29.5)

[1] "D4Mit164"

The effectplot for marker D4Mit164 in the hyper data may be obtained
as follows; the result appears in the left panel in Fig. 4.31.
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Figure 4.31. Plot of the blood pressure against the genotype at marker D4Mit164
for the hyper data. The left panel was produced by effectplot. The right panel
was produced by plot.pxg; red dots correspond to imputed genotypes. Error bars
are ± 1 SE.

> hyper <- sim.geno(hyper, n.draws=16, error.prob=0.001)

> effectplot(hyper, mname1="D4Mit164")

The output of effectplot (except for the plot) is generally suppressed,
but if one assigns the output to an object, it may be inspected. If one uses
draw=FALSE, the plot is not created.

> eff <- effectplot(hyper, mname1="D4Mit164", draw=FALSE)

> eff

$Means
D4Mit164.BB D4Mit164.BA

104.51 98.19

$SEs
D4Mit164.BB D4Mit164.BA

0.6703 0.7298

The function plot.pxg can be used to create a dot plot of a phenotype
against the genotypes at a marker. The function is relatively crude in its
treatment of missing genotype data: missing genotypes are filled in by a single
random imputation, conditional on the available marker data. Thus, if there
are many missing genotypes, one should view the results with some skepticism.
Genotypes that were imputed are plotted in red.
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As input to plot.pxg, we again provide a cross object plus a marker
name; the marker name is indicated with the argument marker. We can plot
the phenotype against the genotypes at D4Mit164 as follows. The plot appears
in the right panel of Fig. 4.31. Note that most genotypes are missing.

> plot.pxg(hyper, marker="D4Mit164")

The argument marker can take a vector of marker names, in which case the
phenotypes will be plotted against the joint genotypes at the markers; see
Chap. 8.

4.7 Multiple phenotypes

In a QTL experiment, one often measures multiple related phenotypes. The
joint analysis of multiple phenotypes can increase the power for QTL detection
and the precision of QTL localization, and can allow one to test for pleiotropy
(that a single QTL influences multiple phenotypes) versus tight linkage of
distinct QTL. Unfortunately, R/qtl does not yet include facilities for such
joint analysis of multiple phenotypes; multiple phenotypes are only considered
individually.

By default, scanone performs interval mapping with the first phenotype in
a data set. A different phenotype may analyzed via the argument pheno.col
(for “phenotype column”), which is the numeric index of the phenotype to be
analyzed or a character string indicating the phenotype by name. One may also
use the pheno.col argument to select multiple phenotypes for analysis by pro-
viding a vector of numeric indices or phenotype names. For most methods, this
is accomplished by a loop over the selected phenotypes. However, for Haley–
Knott regression (method="hk") and multiple imputation (method="imp"), an
improvement in computational efficiency is achieved by application of multi-
variate regression.

In Haley–Knott regression, one regresses the phenotype, y, on the genotype
probability matrix, X, by calculating (X ′X)−1X ′y. One may analyze a set of
phenotypes, Y , simultaneously, by calculating (X ′X)−1X ′Y . The construction
and inversion of X ′X need only be done once.

This trick can also be used for permutation tests: one creates a set of
permuted phenotypes, pastes them together into one large matrix, and then
performs Haley–Knott regression with the permuted phenotypes as a unit.
(Thanks are due to Hao Wu who suggested and implemented this strategy.)

Example

To illustrate the analysis of multiple phenotypes, we will return to the iron
data discussed in Sec. 4.4. There are two phenotypes: the iron levels in the
liver and spleen. We may also want to look at these on the log scale; we
can place log2(liver) and log2(spleen) in the phenotypes as follows. Note that
data(iron) reloads the data.
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> data(iron)

> iron$pheno <- cbind(iron$pheno[,1:2],

+ log2liver=log2(iron$pheno$liver),

+ log2spleen=log2(iron$pheno$spleen),

+ iron$pheno[,3:4])

We place them in positions 3 and 4, moving the sex and pgm phenotypes to
the end.

By default, scanone would analyze the first phenotype (liver). If we want
to consider the log2(liver) phenotype, we would use pheno.col=3, as follows.

> iron <- calc.genoprob(iron, step=1, error.prob=0.001)

> out.logliver <- scanone(iron, pheno.col=3)

We may also refer to phenotypes by name. For example, in place of
pheno.col=3 we could use pheno.col="log2liver", as follows.

> out.logliver <- scanone(iron, pheno.col="log2liver")

In addition, one may use pheno.col with a numeric vector of phenotypes
(with length equal to the number of individuals in the cross). And so, if we
were interested solely in the analysis of the log2(liver) phenotype, we could
skip the effort to include the transformed phenotype within the cross object
and simply type the following.

> out.logliver <- scanone(iron,

+ pheno.col=log2(iron$pheno$liver))

We may analyze all four phenotypes through pheno.col=1:4.

> out.all <- scanone(iron, pheno.col=1:4)

The result has six columns: chromosome, cM position, and then four
columns with LOD scores.

> out.all[1:5,]

chr pos liver spleen log2liver log2spleen
D1Mit18 1 27.3 0.1947 0.2695 0.1461 0.034035
c1.loc1 1 28.3 0.1869 0.2602 0.1390 0.026292
c1.loc2 1 29.3 0.1789 0.2515 0.1315 0.019184
c1.loc3 1 30.3 0.1705 0.2436 0.1239 0.012920
c1.loc4 1 31.3 0.1619 0.2366 0.1161 0.007736

The summary.scanone function displays (by default) the peak positions
for the first phenotype, but also shows LOD scores at those positions for the
other phenotypes. We can look at the peaks for another phenotype with the
lodcolumn argument. The LOD columns are indexed as 1, 2, 3, 4, and so
to get the peaks above 3 for the log2(spleen) phenotype, we would do the
following.

> summary(out.all, threshold=3, lodcolumn=4)
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chr pos liver spleen log2liver log2spleen
D8Mit4 8 13.6 0.739 4.3 0.887 3.90
c9.loc50 9 56.6 0.183 10.9 0.199 12.64

Two other summary formats are available, which display the peak LOD
scores for all phenotypes. The method mentioned above corresponds to the use
of format="onepheno". The use of format="allpheno" gives essentially the
same output, but with all of the LOD score columns considered. For each LOD
score column, we identify the position of the maximum peak and include that
row in the output if the LOD score exceeds its threshold. Thus, the output
may display multiple rows for a given chromosome. Note that the threshold
argument may be a single number (applied to all LOD score columns) or a
vector specifying separate thresholds for each LOD score column. For example,
the following returns the results for positions at which at least one of the
LOD score columns achieved its maximum for a chromosome, provided that
maximum LOD score exceeded 3.

> summary(out.all, threshold=3, format="allpheno")

chr pos liver spleen log2liver log2spleen
D2Mit17 2 56.8 4.907 1.917 5.086 2.279
c7.loc47 7 48.1 2.935 0.395 3.413 0.596
D8Mit4 8 13.6 0.739 4.303 0.887 3.895
D8Mit294 8 39.1 3.769 1.902 3.268 1.724
c8.loc40 8 40.0 3.786 1.752 3.241 1.581
c9.loc50 9 56.6 0.183 10.897 0.199 12.642
c16.loc21 16 27.6 7.837 0.848 9.338 1.136
c16.loc22 16 28.6 7.829 0.909 9.465 1.214

Finally, with format="allpeaks", a single row is given for each chromo-
some, containing the maximum LOD score for each phenotype column and
the position at which it was maximized. Those chromosomes for which at
least one of the LOD score columns exceeded its threshold are printed. For
example, the following returns the chromosomes at which at least one of the
LOD score columns had a peak exceeding 3.

> summary(out.all, threshold=3, format="allpeaks")

chr pos liver pos spleen pos log2liver pos log2spleen
2 2 56.8 4.907 58.0 1.994 56.8 5.086 58.0 2.42
7 7 50.1 2.959 53.6 0.818 48.1 3.413 53.6 1.01
8 8 40.0 3.786 13.6 4.303 39.1 3.268 13.6 3.90
9 9 31.6 0.998 56.6 10.897 32.6 0.824 56.6 12.64
16 16 27.6 7.837 30.6 0.981 28.6 9.465 30.6 1.31

If scanone output that contains multiple LOD score columns is sent to
the plot.scanone function, the default is again to plot just the first one. A
different column may be indicated via the argument lodcolumn, which (as
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Figure 4.32. LOD curves for selected chromosomes with the iron data. Blue and
red correspond to the liver and spleen phenotypes, respectively. Solid and dashed
curves correspond to the original and log scale, respectively.

in summary.scanone) takes values 1, 2, . . . . Further, lodcolumn can take a
vector of up to three values. And so, if we want to look at the results for all
four phenotypes, we might do the following. The results are in Fig. 4.32.

> plot(out.all, lodcolumn=1:2, col=c("blue", "red"),

+ chr=c(2, 7, 8, 9, 16), ylim=c(0,12.7), ylab="LOD score")

> plot(out.all, lodcolumn=3:4, col=c("blue", "red"), lty=2,

+ chr=c(2, 7, 8, 9, 16), add=TRUE)

Note the use of ylim to set the y-axis limits, to ensure that all of the LOD
curves would be contained in the plot.

We can use scanone to perform permutation tests on the set of phenotypes
simultaneously. As discussed in Sec. 4.4, we should perform separate permu-
tations on the autosomes and X chromosome, which may be accomplished by
using perm.Xsp=TRUE.

> operm.all <- scanone(iron, pheno.col=1:4, n.perm=1000,

+ perm.Xsp=TRUE)

We may again use summary to obtain LOD thresholds for each phenotype
for the autosomes and the X chromosome.

> summary(operm.all, alpha=0.05)
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Autosome LOD thresholds (1000 permutations)
liver spleen log2liver log2spleen

5% 3.96 7.27 3.4 3.37

X chromosome LOD thresholds (28243 permutations)
liver spleen log2liver log2spleen

5% 3.72 6.57 4.68 4.63

The unusually large LOD thresholds for the spleen phenotype are due to
the occurrence of spuriously high LOD scores in regions with large gaps be-
tween markers (see Sec. 4.2.5). The log transformed phenotypes are preferred
for these data, due to the skewed phenotype distributions (see Fig. 4.24 on
page 115).

The permutation results may again be used in summary.scanone to auto-
matically calculate thresholds and to obtain genome-scan-adjusted p-values.
The significance level for the LOD thresholds is indicated by the argument
alpha, which may take only one value, applied to all LOD score columns. For
example, the following gives, for each chromosome, the maximum LOD score
from each LOD score column with the corresponding genome-scan-adjusted
p-values. The results for a chromosome are printed if at least one of the LOD
score columns exceeded its 5% LOD threshold.

> summary(out.all, format="allpeaks", perms=operm.all,

+ alpha=0.05, pvalues=TRUE)

chr pos liver pval pos spleen pval pos log2liver
2 2 56.8 4.907 0.0166 58.0 1.994 0.833 56.8 5.086
7 7 50.1 2.959 0.2104 53.6 0.818 1.000 48.1 3.413
8 8 40.0 3.786 0.0641 13.6 4.303 0.320 39.1 3.268
9 9 31.6 0.998 0.9992 56.6 10.897 0.000 32.6 0.824
16 16 27.6 7.837 0.0000 30.6 0.981 0.999 28.6 9.465

pval pos log2spleen pval
2 0.00104 58.0 2.42 0.2525
7 0.04759 53.6 1.01 0.9967
8 0.06826 13.6 3.90 0.0114
9 1.00000 56.6 12.64 0.0000
16 0.00000 30.6 1.31 0.9513

We see evidence for QTL on chromosomes 2, 7, 8 and 16 for log2(liver)
and on chromosomes 8 and 9 for log2(spleen).

4.8 Summary

In a single-QTL scan, we posit the presence of a single QTL and consider
each position, one at a time, as the putative location of that QTL. With
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dense markers and complete marker genotype data, one may perform analysis
of variance at each marker. More typically, however, markers are spaced at 10–
20 cM, and some marker genotypes are missing. There are several approaches
to interval mapping, for interrogating positions between markers. These ap-
proaches differ in the way in which they take account of missing genotype
data at a putative QTL.

Standard interval mapping may be viewed as the gold standard, but it
is susceptible to spurious linkage peaks in regions of low marker information
when the phenotype distribution is not approximately normal. Haley–Knott
regression often gives a good approximation to standard interval mapping, at
a great improvement in computation time, but it performs poorly in the case
of selective genotyping. The extended Haley–Knott regression method gets
around these problems. The multiple imputation approach is rather slow for
single-QTL analyses, but will show advantages for the fit and exploration of
multiple-QTL models.

Statistical significance in a single-QTL scan is generally established through
the consideration of the distribution of the genome-wide maximum LOD score,
under the global null hypothesis of no QTL. This distribution is best derived
via a permutation test.

There are several technical difficulties that arise in the analysis of the
X chromosome. Additional covariates need to be incorporated into the null
hypothesis, to avoid spurious linkage to the X chromosome, and a separate
significance threshold will generally be required for the X chromosome.

Finally, an interval estimate of the location of a QTL may be obtained as
the 1.5-LOD support interval: the region in which the LOD score is within
1.5 units of its chromosome-wide maximum. An approximate Bayes credible
interval may also be used.

4.9 Further reading

Soller et al. (1976) were among the first to clearly describe the use of marker
regression. Lander and Botstein (1989) is the seminal paper on interval map-
ping. The initial paper on the EM algorithm in general (and which coined the
term) was Dempster et al. (1977).

Haley and Knott (1992) and Mart́ınez and Curnow (1992) independently
developed the method we now call Haley–Knott regression. (The discussion
in Haley and Knott (1992) is more clear.) Whittaker et al. (1996) described a
nice trick for Haley–Knott regression: regression of the phenotype on each pair
of adjacent markers can give the same information as regression on the condi-
tional QTL genotype probabilities at steps through the interval. This strategy
can further reduce computational effort, but requires complete marker geno-
type data (which is seldom available), and one cannot allow for the presence
of genotyping errors.
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Feenstra et al. (2006) described the extended Haley–Knott method; a sim-
ilar method was proposed by Xu (1998), though the iteratively reweighted
least squares algorithm presented there is not quite right and can give nega-
tive LOD scores. The multiple imputation approach was proposed by Sen and
Churchill (2001).

Lander and Botstein (1989) estimated significance thresholds for a genome
scan by computer simulation as well as analytic means (the latter for the
case of an infinitely dense map of markers). Churchill and Doerge (1994)
proposed the use of permutation tests in this context. Manichaikul et al. (2007)
described the use of a stratified permutation test in the presence of selective
genotyping.

Broman et al. (2006) described the treatment of the X chromosome as
presented in this chapter.

Lander and Botstein (1989) proposed the use of 1- and 2-LOD support
intervals. Dupuis and Siegmund (1999) provided some support for the use
of 1.5-LOD support intervals. Sen and Churchill (2001) described the Bayes
intervals. Visscher et al. (1996b) described the use of the bootstrap in this
context, though Manichaikul et al. (2006) showed that it behaves badly, and
so the LOD support intervals and especially the Bayes credible intervals are
preferred.

Beavis (1994) was the first to raise the issue of selection bias in estimated
QTL effects (now often called the Beavis effect); see also Broman (2001).

Jiang and Zeng (1995) provide a good discussion of the joint analysis of
multiple phenotypes.
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Non-normal phenotypes

The methods discussed in Chap. 4 all rely on the assumption that, given QTL
genotype, the phenotype follows a normal distribution. This is not the same as
to assume that the marginal phenotype distribution is normal—it will follow
a mixture of normal distributions. But in the case that no QTL has very
large effect, the marginal phenotype distribution would generally be close to
normal: unimodal and reasonably symmetric.

While the normality assumption is often reasonable, departures from nor-
mality are not uncommon: the phenotype may be dichotomous, highly skewed,
or exhibit spikes. (For example, if the phenotype is the mass of gallstones, some
individuals may have no gallstones, and so a spike at 0 would be observed.) In
practice, application of standard interval mapping will generally give reason-
able results, even for a dichotomous trait, provided that statistical significance
is established via a permutation test, and except for the problem of spurious
LOD scores in regions of low genotype information (see Sec. 4.2.5).

Nevertheless, improved efficiency may be obtained by applying alternate
methods. The simplest approach is to transform the phenotype. (For exam-
ple, for the iron data in Sec. 4.4.3, we used a log transformation.) We gen-
erally stick to either taking logs, square roots, or no transformation. In this
chapter, we describe several alternative interval mapping methods, including
nonparametric interval mapping (based on the ranks of the phenotypes), in-
terval mapping specific for binary traits, and a two-part model for the case of
a phenotype distribution exhibiting a spike (such as at 0).

We conclude the chapter with a section describing, for the especially
computer-savvy reader, how one can implement one’s own QTL mapping
method in R/qtl. This is illustrated by an implementation of a Cox propor-
tional hazards model for right-censored phenotypes, using the Haley–Knott
regression approach.

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 5,
© Springer Science+Business Media, LLC 2009
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5.1 Nonparametric interval mapping

In the case of complete genotype data at a putative QTL, standard inter-
val mapping is equivalent to using a t test (for a backcross) or analysis of
variance (for an intercross). The nonparametric analogs of these methods are
the Wilcoxon rank-sum test and the Kruskal–Wallis test. Here we describe
the extension of these rank-based methods for interval mapping, in which the
QTL genotypes are not known but must be inferred on the basis of multipoint
marker genotype data. We will focus on the extension of the Kruskal–Wallis
test, in which there is an arbitrary number of genotype groups; the Wilcoxon
rank-sum test corresponds to the special case of two groups.

Let yi denote the phenotype of individual i, and rank the phenotypes from
1, . . . , n, with Ri denoting the rank for individual i. In the case of ties, one
may randomize the ranks for any tied phenotypes, though we prefer to assign
the average rank within each group of ties.

Consider some fixed position in the genome as the location of a putative
QTL, and let pij = Pr(gi = j|M i), the QTL genotype probabilities given
the available multipoint marker data, M i. Whereas in the Kruskal–Wallis
test statistic, one considers the sum of the ranks within each group, here the
exact assignment of individuals to QTL genotype groups is not known; rather,
individual i has prior probability pij of belonging to group j. Thus we consider
the expected rank-sum, Sj =

∑
i pijRi.

We then form the statistic

H =
∑

j

(
n −

∑
i pij

n

) [
(Sj − E0j)2

V0j

]

where E0j and V0j are the mean and variance of Sj under the null hypothesis
of no linkage, considering the pij as fixed. That is, E0j and V0j are the average
and variance of the Sj if we take the Ri to be a random permutation of the
integers 1, . . . , n. We seek loci for which the expected rank sums, Sj , deviate
from their average under the null hypothesis of no linkage.

After some algebra, we obtain the following formula.

H =
12

n(n + 1)

∑

j

(n −
∑

i pij) (
∑

i pij)2

n
∑

i p2
ij − (

∑
i pij)2

[∑
i pij Ri∑

i pij
− n + 1

2

]2

In the case that the putative QTL is at a fully typed genetic marker, the pij

will all be 0 or 1, and the above statistic reduces to the Kruskal–Wallis test
statistic.

A standard correction for the case of ties is to use the statistic H ′ = H/D
where D = 1−

∑
k(t3k−tk)/(n3−n), with tk being the number of values in the

kth group of ties. If there are no ties, D = 1 and so H ′ = H. In the presence
of ties, the correction results in a slight inflation of the test statistic. Note,
however, that if a permutation test is used to establish statistical significance,
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the correction factor is immaterial, as it will apply uniformly to the observed
statistics as well as those from each permutation.

As the nonparametric statistic H ′ follows, approximately, a χ2 distribution
under the null hypothesis of no linkage, we convert the statistic to the LOD
scale by taking LOD = H ′/(2 ln 10). The resulting statistic is not a true LOD
score, as a LOD score is a log10 likelihood ratio, and the nonparametric interval
mapping method does not involve a likelihood. However, this transformation
gives statistics whose values are more in line with those from standard interval
mapping.

It is important to emphasize that this method for extending rank-based
test statistics for the case of missing genotype information is more in the style
of Haley–Knott regression than of standard interval mapping. In the case of
appreciable missing genotype information, the method may lose efficiency.
Thus, an alternate approach deserves mention: one might convert the ranked
phenotypes to quantiles of the normal distribution and apply standard interval
mapping. In other words, we could use as our phenotypes zi = Φ−1[(Ri −
1/2)/n], where Φ−1 is the inverse of the cumulative distribution function of the
standard normal distribution. (That is, if Z follows a normal distribution with
mean 0 and SD 1, Φ(z) = Pr(Z ≤ z), and Φ−1 is the inverse of this function.)
This approach will not work well in the case of many ties in the phenotypes,
particularly for the case of a spike in the phenotype distribution, but otherwise
should give results similar to the nonparametric interval mapping method
described above.

Example

To illustrate these nonparametric methods, we consider the listeria data,
described in detail in Sec. 2.3 and 2.4. This is a mouse intercross; the pheno-
type concerns survival time following infection with Listeria monocytogenes,
and exhibits a spike at 264 hours: approximately 30% of the mice survived
past the 240-hour time point and were considered to have recovered from the
infection; their phenotype was recorded as 264. (For a histogram, see the lower
left panel in Fig. 2.7 on page 35.)

We first need to get access to the data (which are distributed with the R/qtl
package), and run calc.genoprob to calculate the QTL genotype probabilities
given the available marker genotype data.

> library(qtl)

> data(listeria)

> listeria <- calc.genoprob(listeria, step=1, error.prob=0.001)

Nonparametric interval mapping is performed with the scanone function,
using the argument model="np", as follows. (In scanone, the argument model
refers to the phenotype model, by default taken to be "normal", and the
argument method refers to the analysis method. The method argument is
ignored when model="np".)



138 5 Non-normal phenotypes

0

1

2

3

4

5

6

7

Chromosome

LO
D

 s
co

re

1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 X

Figure 5.1. LOD scores by nonparametric interval mapping for the listeria data.

> out.np <- scanone(listeria, model="np")

By default, ties in the phenotypes are replaced by the average rank in
each group of ties. With the argument ties.random=TRUE, ranks for tied
phenotypes are randomized.

We can plot the results for all chromosomes as follows; the results appear
in Fig. 5.1. We use alternate.chrid=TRUE so that the chromosome IDs may
be more easily distinguished.

> plot(out.np, ylab="LOD score", alternate.chrid=TRUE)

As described in Chap. 4, a permutation test may be performed via the
n.perm argument to scanone, as follows. We need to use perm.Xsp=TRUE to
perform X-chromosome-specific permutations.

> operm.np <- scanone(listeria, model="np", n.perm=1000,

+ perm.Xsp=TRUE)

The 5% LOD thresholds are the following.

> summary(operm.np, 0.05)

Autosome LOD thresholds (1000 permutations)
lod

5% 3.20

X chromosome LOD thresholds (25078 permutations)
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lod
5% 2.33

Significant evidence for a QTL is seen on chromosomes 1, 5, 13, and 15.

> summary(out.np, perms=operm.np, alpha=0.05, pvalues=TRUE)

chr pos lod pval
c1.loc76 1 76.0 3.38 0.0343
c5.loc27 5 27.0 5.42 0.0000
D13M147 13 26.2 6.76 0.0000
c15.loc23 15 23.0 3.49 0.0187

5.2 Binary traits

In human linkage analysis, much of the focus has been on binary traits,
and methods for quantitative traits were developed later. With experimen-
tal crosses, on the other hand, researchers have focused almost exclusively on
quantitative traits. Nevertheless, interval mapping for binary traits is no more
difficult than for quantitative traits.

Let the phenotypes yi take values either 0 or 1. (For example, assign unaf-
fected individuals the value 0 and affected individuals 1.) Consider some fixed
position in the genome as the location of a putative QTL, and let gi denote
the QTL genotype of individual i. Again, let pij = Pr(gi = j|M i).

Let πj = Pr(yi = 1|gi = j), the penetrance of QTL genotype j. Given
the marker data, M i, but not knowing the QTL genotypes gi, the yi fol-
low mixtures of Bernoulli distributions (analogous to the mixtures of normal
distributions that arise in standard interval mapping).

The likelihood for the parameters π = (πj) is then

L(π) =
∏

i

∑

j

pij (πj)yi (1 − πj)(1−yi)

We obtain maximum likelihood estimates (MLEs), π̂j , using a form of the EM
algorithm. At iteration s + 1, we have estimates of the parameters, π̂(s). In
the E-step, we calculate weights for each individual and for each genotype:

w
(s+1)
ij = Pr(gi = j|yi,M i, π̂

(s)) =
pij (π̂(s)

j )yi (1 − π̂
(s)
j )(1−yi)

∑
k pik (π̂(s)

k )yi (1 − π̂
(s)
k )(1−yi)

.

In the M-step, we reestimate the probabilities πj as weighted proportions
using the weights, w

(s+1)
ij :

π̂
(s+1)
j =

∑
i yiw

(s+1)
ij

∑
i w

(s+1)
ij

.



140 5 Non-normal phenotypes

We begin the algorithm by taking w
(0)
ij = pij , and iterate until the estimates

converge, giving the MLE, π̂.
We next calculate a LOD score for the test of H0 : πj ≡ π. First note

that the MLE, under H0, of the common probability π is the overall pro-
portion, π̂0 =

∑
i yi/n. Letting π̂0 = (π̂0, π̂0, π̂0), the LOD score is LOD =

log10{L(π̂)/L(π̂0)}.
As with standard interval mapping, the likelihood under H0 is calculated

once, while the EM algorithm is performed at each position on a grid covering
the genome, producing a LOD curve for each chromosome.

Example

Let us apply the binary trait method to the listeria data, taking as the
binary trait whether the individuals’ survived the infection or not. We first
create the binary trait and append it to the phenotype data. Note that the
function pull.pheno can be used to pull out a phenotype column.

> binphe <- as.numeric(pull.pheno(listeria, 1) > 250)

> listeria$pheno <- cbind(listeria$pheno, binary=binphe)

We need the results of calc.genoprob, but these were obtained in the pre-
vious section. The binary trait mapping method is performed with scanone,
using the argument model="binary". The phenotype must have values 0
and 1. We use the argument pheno.col to indicate that the new pheno-
type (named "binary") is to be used; we could also use pheno.col=3 or even
pheno.col=binphe.

> out.bin <- scanone(listeria, pheno.col="binary",

+ model="binary")

We can plot the results for all chromosomes, together with the results
obtained by the nonparametric method, as follows. The results appear in
Fig. 5.2.

> plot(out.np, out.bin, col=c("blue", "red"), ylab="LOD score",

+ alternate.chrid=TRUE)

A permutation test is again performed using the n.perm argument to
scanone. Again we should use perm.Xsp=TRUE.

> operm.bin <- scanone(listeria, pheno.col="binary",

+ model="binary", n.perm=1000,

+ perm.Xsp=TRUE)

The LOD thresholds for the 5% significance level are the following.

> summary(operm.bin, alpha=0.05)
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Figure 5.2. LOD scores by nonparametric interval mapping (in blue) and binary
trait mapping (in red) for the listeria data. The binary trait is defined by survival
> 250 hr or not.

Autosome LOD thresholds (1000 permutations)
lod

5% 3.63

X chromosome LOD thresholds (25078 permutations)
lod

5% 2.53

Significant evidence for a QTL is seen on chromosomes 5 and 13.

> summary(out.bin, perms=operm.bin, alpha=0.05, pvalues=TRUE)

chr pos lod pval
c5.loc29 5 29.0 6.13 0.00104
D13M147 13 26.2 3.67 0.04468

5.3 Two-part model

One often observes a spike in the phenotype distribution, such as that observed
for the survival phenotype in the listeria data. Another common example



142 5 Non-normal phenotypes

is the case of mass of tumor, with some individuals exhibiting no tumor. In
this section, we describe an analysis method particular for this situation.

Assume, without loss of generality, that the spike in the phenotype distri-
bution is at 0. Let yi denote the quantitative phenotype for individual i. Let
zi = 0 if yi = 0, and zi = 1 if yi > 0.

A simple approach for QTL mapping in this situation is to first analyze
the quantitative phenotype, yi, using only the individuals for which yi > 0,
by standard interval mapping, and then separately analyze the binary trait
zi. These can be combined in what we call the two-part model.

Assume that the (M i, yi, zi) are mutually independent, that Pr(zi =
1|gi = j) = πj , and that yi|(gi = j, zi = 1) ∼ normal(μj , σ

2). In other
words, the probability that an individual with QTL genotype j has the null
phenotype is 1 − πj ; if this individual’s phenotype is non-null, it follows a
normal distribution with mean μj , depending on the QTL genotype, and with
SD σ, independent of genotype.

In an intercross, this model contains seven parameters, θ = (π1, π2, π3, μ1,
μ2, μ3, σ). The likelihood function is the following:

L(θ) =
∏

i

∑

j

pij (1 − πj)1−zi {πj φ(yi;μj , σ)}zi

where φ(y;μ, σ) is the density function for a normal distribution with mean
μ and SD σ.

We may again obtain MLEs with a form of the EM algorithm. Assume at

iteration s + 1 we have estimates θ̂
(s)

. In the E-step, we calculate weights for
each individual and each genotype:

w
(s+1)
ij = Pr(gi = j|yi, zi,M i, θ̂

(s)
) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pij (1−π̂
(s)
j )

∑
k pik (1−π̂

(s)
k )

if zi = 0

pij π̂
(s)
j φ(yi; μ̂

(s)
j , σ̂(s))

∑
k pik π̂

(s)
k φ(yi; μ̂

(s)
k , σ̂(s))

if zi = 1

In the M-step, we obtain revised estimates of the parameters according to
the following equations:

π̂
(s+1)
j =

∑
i w

(s+1)
ij zi

∑
i w

(s+1)
ij

μ̂
(s+1)
j =

∑
i yi w

(s+1)
ij zi

∑
i w

(s+1)
ij zi

σ̂(s+1) =

√
√
√
√

∑
i

∑
j(yi − μ̂

(s+1)
j )2 w

(s+1)
ij zi

∑
i zi



5.3 Two-part model 143

We again start the algorithm by taking w
(0)
ij = pij , and iterate until the

estimates converge, producing the MLEs, θ̂.
We may calculate a LOD score for the test of H0 : πj ≡ π, μj ≡ μ. We first

note that, under H0, the MLEs of the three parameters, π, μ, and σ, are

π̂0 =
∑

i zi

n

μ̂0 =
∑

i zi yi∑
i zi

σ̂0 =

√∑
i(yi − μ̂0)2 zi∑

i zi
.

In other words, π̂0 is the proportion of individuals with a positive phenotype,
and μ̂0 and σ̂0 are the sample mean and SD, among individuals with positive
phenotypes. Letting θ̂0 = (π̂0, π̂0, π̂0, μ̂0, μ̂0, μ̂0, σ̂0), the LOD score is LOD =
log10{L(θ̂)/L(θ̂0)}.

We calculate two additional sets of LOD scores. First, we consider the
hypothesis H′

0 : πj ≡ π, but allowing the μj to vary; the corresponding LOD
scores assess evidence for QTL that specifically influence the chance that
an individual has the null phenotype. Second, we consider the hypothesis
H′′

0 : μj ≡ μ, but allowing the πj to vary; the corresponding LOD scores assess
evidence for QTL that influence the average phenotype, among individuals
with a non-null phenotype. We could say that H′

0 concerns the penetrance of
the disease and H′′

0 concerns the severity of the disease.
Note that in the case of complete QTL genotype information (i.e., when the

putative QTL is at a marker that has been fully typed), the pij are all either
1 or 0, and the two parts of the model fully separate. In this case, the MLEs
under the two-part model are exactly those obtained by the two separate
analyses (the analysis of the binary trait and the conditional analysis of the
quantitative trait, for those individuals with nonzero phenotype). Further, the
LOD score for the two-part model is simply the sum of the LOD scores from
the two separate analyses.

Example

As an illustration, we again consider the listeria data. Analysis with the
two-part model is performed with scanone using model="2part". The spike
in the phenotype is assumed to be either the largest or the smallest observed
phenotype. By default, the smallest phenotype is assumed; for the listeria
data we must use the argument upper=TRUE to indicate that it is the largest
observed phenotype (264 hr) that is to be treated as the spike. We will consider
log survival time as the phenotype, and so we first append log survival to the
phenotype data.
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Figure 5.3. LOD scores from the two-part model, with LOD(π, μ) in black, LOD(π)
in blue and LOD(μ) in red, for the listeria data.

> y <- log(pull.pheno(listeria, 1))

> listeria$pheno <- cbind(listeria$pheno, logsurv=y)

We now use scanone to calculate the LOD curves.

> out.2p <- scanone(listeria, model="2part", upper=TRUE,

+ pheno.col="logsurv")

The results (see Fig. 5.3) contain three LOD score columns: LOD(π, μ),
for the overall test of πj ≡ π and μj ≡ μ; LOD(π), for the test of πj ≡ π;
and LOD(μ), for the test of μj ≡ μ. We plot all three together as follows. The
argument lodcolumn is used to plot all three LOD score columns.

> plot(out.2p, lodcolumn=1:3, ylab="LOD score",

+ alternate.chrid=TRUE)

The results indicate that the locus on chromosome 1 largely affects time-
to-death, given that an individual has died (LOD(μ), in red, is large while
LOD(π), in blue, is small). The locus on chromosome 5 largely affects the
chance of survival (LOD(π), in blue, is large while LOD(μ), in red, is small).
The loci on chromosomes 13 and 15 affect both aspects of the phenotype (both
LOD(μ) and LOD(π) are large).

A permutation test is performed as follows.
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> operm.2p <- scanone(listeria, model="2part", upper=TRUE,

+ pheno.col="logsurv", n.perm=1000,

+ perm.Xsp=TRUE)

The results, for each of the autosomes and X chromosome, contain 3
columns: the genome-wide maxima of LOD(π, μ), LOD(π), and LOD(μ), for
each permutation replicate. We obtain LOD thresholds as follows. (Note that
π is denoted p in the output.)

> summary(operm.2p, alpha=0.05)

Autosome LOD thresholds (1000 permutations)
lod.p.mu lod.p lod.mu

5% 4.8 3.63 3.88

X chromosome LOD thresholds (25078 permutations)
lod.p.mu lod.p lod.mu

5% 3.18 2.54 2.58

If we consider just the overall LOD score, LOD(π, μ), significant evidence
for a QTL is seen on chromosomes 1, 5, and 13.

> summary(out.2p, perms=operm.2p, alpha=0.05, pvalues=TRUE)

chr pos lod.p.mu pval lod.p pval lod.mu
c1.loc81 1 81.0 5.46 0.02183 0.594 1.00000 4.890
c5.loc27 5 27.0 6.80 0.00416 6.030 0.00104 0.779
D13M147 13 26.2 7.39 0.00312 3.667 0.04571 3.726

pval
c1.loc81 0.00832
c5.loc27 1.00000
D13M147 0.06750

As discussed in Sec. 4.7, we may use the format argument of sum-
mary.scanone to get the maximum LOD scores for each of the three LOD
score columns in out.2p.

> summary(out.2p, perms=operm.2p, alpha=0.05, pvalues=TRUE,

+ format="allpeaks")

chr pos lod.p.mu pval pos lod.p pval pos lod.mu
1 1 81.0 5.46 0.02183 12.0 0.825 1.00000 81.0 4.89
5 5 27.0 6.80 0.00416 29.0 6.117 0.00104 15.0 1.03
13 13 26.2 7.39 0.00312 26.2 3.667 0.04571 26.2 3.73

pval
1 0.00832
5 1.00000
13 0.06750
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Note that the locus on chromosome 15 did not achieve the 5% signifi-
cance level here, but was seen to have a significant effect by nonparametric
interval mapping (see Sec. 5.1). The linkage test in nonparametric interval
mapping concerns two degrees of freedom, while with the two-part model,
the test concerns four degrees of freedom. Thus, the two-part model has a
higher significance threshold and so lower power for QTL detection. On the
other hand, the separation of penetrance and severity can give a more detailed
understanding of the QTL effects.

5.4 Other extensions

Essentially any phenotype model that is of interest in linear regression would
also find application for QTL mapping. Only a limited number have been
implemented in R/qtl. Thus, we conclude this chapter with a description,
for the more computationally-savvy reader, of how such alternative mapping
methods may be implemented with R/qtl.

We consider, as an illustration, the case of right-censored phenotypes. A
phenotype is right-censored if it is only known to be greater than some value.
For example, in the listeria data, a large proportion of individuals had not
died of the Listeria monocytogenes infection at 264 hr. In the two-part model
described in the previous section, these were viewed as having recovered from
the infection, but we could also view the outcome as a survival time, and that
the survival time for these individuals was right-censored.

A common approach for the analysis of such data is the use of a Cox
proportional hazards model. Consider a random survival time, Y , and let
f(y) denote its density and S(y) = Pr(Y > y) denote its survival function.
The hazard function is h(y) = f(y)/S(y), which is essentially the chance that
an individual will die immediately at time y given that it has survived to that
point.

In the Cox proportional hazards model, we assume that the hazard func-
tion for individuals with QTL genotype g is hg(y) = h0(y)eβg , where h0 is
some completely unspecified baseline hazard function, and the βg are the ef-
fects of the QTL genotypes. While the QTL genotypes will generally not be
known, we may use an approach analogous to Haley–Knott regression. Let
pij = Pr(gi = j|M i) denote the QTL genotype probabilities given the avail-
able marker data, and assume that the hazard function for individual i is
h0(y) exp[

∑
j βjpij ].

To fit the Cox proportional hazards model, we use the survival package,
which is distributed with R.

A function to perform the analysis appears in Fig. 5.4. As described in
Sec. 4.4, the X chromosome requires special treatment, but we will just omit
it from consideration here.

In line 4, we use the require function to ensure that the survival package
is loaded. In lines 6–10 we omit individuals with missing phenotypes and make
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1 scanone.cph <-

function(cross, pheno.col=1)

{

require(survival)

5

pheno <- pull.pheno(cross, pheno.col)

cross <- subset(cross, ind=!is.na(pheno))

pheno <- pheno[!is.na(pheno)]

if(class(pheno) != "Surv")

10 stop("Need the phenotype to be of class \"Surv\".")

chrtype <- sapply(cross$geno, class)

if(any(chrtype=="X")) {

warning("Dropping X chromosome.")

15 cross <- subset(cross, chr=(chrtype != "X"))

}

chr <- names(cross$geno)

result <- NULL

20 for(i in 1:nchr(cross)) {

if(!("prob" %in% names(cross$geno[[i]]))) {

warning("First running calc.genoprob.")

cross <- calc.genoprob(cross)

}

25 p <- cross$geno[[i]]$prob

# pull out map; drop last column of probabilities

map <- attr(p, "map")

p <- p[,,-dim(p)[3],drop=FALSE]

30

lod <- apply(p, 2, function(a,b)

diff(coxph(b ~ a)$loglik)/log(10), pheno)

z <- data.frame(chr=chr[i], pos=map, lod=lod)

35

# special names for rows

w <- names(map)

o <- grep("^loc-*[0-9]+", w)

if(length(o) > 0) # locations cited as "c*.loc*"

40 w[o] <- paste("c",names(cross$geno)[i],".",w[o],sep="")

rownames(z) <- w

result <- rbind(result, z)

}

45 class(result) <- c("scanone", "data.frame")

result

}

Figure 5.4. The scanone.cph function.
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sure that the phenotype has been appropriately converted to be a survival time
(see below). In lines 12–17, we omit the X chromosome and store the names
of the chromosomes.

In line 19, we create a dummy object that will contain all of the results. In
line 20, we begin a loop over the chromosomes. In lines 21–25 we check that
the results of calc.genoprob are available, and pull out the probabilities for
the current chromosome.

In line 28, we pull out the genetic map for the grid on which the QTL geno-
type probabilities were calculated. In line 29, we drop the last column from
the QTL genotype probabilities, since the analysis will include an intercept
term.

In lines 31–32, we perform the actual analysis. We use the apply function
to send the QTL genotypes, one column at a time, to the coxph function.
The coxph function is part of the survival package, and performs the Cox
proportional hazards regression. Part of the output of coxph is the log (base e)
likelihood, for the null model (with just the intercept) and for the alternative
model (including the covariates: here, the QTL genotype probabilities). We
take the difference of these log likelihoods and then divide by ln(10) to convert
the result to the LOD scale.

In line 34, we paste together the chromosome IDs, map positions, and LOD
scores into a data frame. In lines 36–41 we create special row names, used to
ensure clarity regarding which positions are markers and which are between
markers. In line 43, we append the results for this chromosome to the end of
our growing set of results.

Finally, in line 45, we change the“class”of the result to include "scanone",
so that we may use plot and summary and have the data sent to plot.scanone
and summary.scanone. The final line contains the return value for the
function.

Example

Let us now apply the method to the listeria data. We first need to load the
survival package and the code for the scanone.cph function; the latter may
be done with the source function.

> library(survival)

> source("scanone_cph.R")

We need to convert the phenotype into a censored survival time, using
the function Surv in the survival package. This is done to indicate which
phenotypes are to be viewed as censoring times rather than actual survival
times. Surv takes two arguments: the survival/censoring times and an indi-
cator of whether the values were observed or were censored. We append this
revised phenotype to the end of the phenotype data. (This will now be the
fifth phenotype in the data set.)
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Figure 5.5. LOD scores from the Cox proportional hazards model, using an ap-
proach analogous to Haley–Knott regression, for the listeria data.

> y <- pull.pheno(listeria, 1)

> y <- Surv(y, y<250)

> listeria$pheno <- cbind(listeria$pheno, surv=y)

We may now send the data to scanone.cph to perform the analysis. We
may refer to the phenotype by its name, "surv".

> out.cph <- scanone.cph(listeria, pheno.col="surv")

We may plot the resulting LOD scores as follows. (See Fig. 5.5.)

> plot(out.cph, ylab="LOD score", alternate.chrid=TRUE)

We have not written code to do a permutation test, and so we will perform
the permutation test by brute force, using a for loop.

> n.perm <- 1000

> operm.cph <- cbind(lod=1:n.perm)

> chr <- names(listeria$geno)

> temp <- subset(listeria, chr=(chr != "X"))

> n.ind <- nind(listeria)

> for(i in 1:n.perm) {

+ temp$pheno <- temp$pheno[sample(n.ind),]

+ out <- scanone.cph(temp, pheno.col="surv")

+ operm.cph[i] <- max(out[,3], na.rm=TRUE)
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+ }

> class(operm.cph) <- "scanoneperm"

The LOD threshold for the 5% significance level is the following.

> summary(operm.cph, 0.05)

LOD thresholds (1000 permutations)
lod

5% 3.51

Significant evidence for a QTL is seen on chromosomes 5, 13 and 15.

> summary(out.cph, perms=operm.cph, alpha=0.05, pvalues=TRUE)

chr pos lod pval
c5.loc28 5 28.0 6.50 0.000
D13M147 13 26.2 6.26 0.000
c15.loc24 15 24.0 3.60 0.039

5.5 Summary

With the interval mapping methods of Chap. 4, one assumes that the residual
variation in the phenotype follows a normal distribution. While the normality
assumption is often appropriate, many phenotypes show clear departures from
normality. Application of interval mapping often performs reasonably anyway,
particularly if the phenotype is transformed to give approximate normality.
However, there are alternatives. Nonparametric interval mapping considers
the ranks of the phenotype values. An interval mapping method specific for
binary traits is simple to develop. In general, one may generate an interval
mapping method tailored to any sort of phenotype model.

5.6 Further reading

The first three methods discussed in this chapter were considered in Bro-
man (2003), in which the two-part model was proposed. Kruglyak and Lan-
der (1995) proposed the nonparametric interval mapping approach for back-
crosses; they described a somewhat different method for dealing with inter-
crosses, but we prefer the extension of the Kruskal–Wallis test statistic. Xu and
Atchley (1996) described the approach for binary traits, though in a somewhat
more general context that included marker covariates. Visscher et al. (1996a)
and McIntyre et al. (2001) both described approximate methods for interval
mapping with binary traits, but these are not recommended.

Several authors have described QTL mapping methods for survival times.
Symons et al. (2002) used a Monte Carlo method to fit a semiparametric
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Cox proportional hazards model (Cox, 1972), making more precise use of the
genotype data than the method described in Sec. 5.4. Diao and Lin (2005)
considered the same model, but used a different, and less computationally
demanding method for estimation. Diao et al. (2004) described maximum
likelihood for a fully parametric Weibull model. Moreno et al. (2005) studied
the performance of the Weibull and Cox proportional hazards model relative
to standard interval mapping.

Several other methods deserve mention, but have not yet been imple-
mented in R/qtl. Hackett and Weller (1995) described a method for the anal-
ysis of ordinal traits. Jansen (1992, 1993b) described the use of generalized
linear models for QTL mapping, which could be applied for a variety of types
of phenotypes, including count data.
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Experimental design and power

Sound experimental design is essential to good science. Scientific review com-
mittees reviewing research proposals usually look for evidence of careful ex-
perimental design. They may also desire, and it may be in the researcher’s
self-interest, that experiments be economical. Much of good experimental de-
sign is a mixture of common sense, pragmatism, and careful forethought, which
are difficult to codify. Nonetheless, some general principles for experimental
design can be laid out. In this chapter, we discuss issues special to QTL ex-
periments with the help of the R package, R/qtlDesign.

In the context of QTL experiments this would include adjusting for co-
variates potentially influencing the phenotype, performing reciprocal crosses
(if maternal effects are suspected or if the QTL is X-linked), deciding whether
to consider one sex or both, adjusting for litter or foster mom effects, etc.

Before a QTL experiment can be conducted, the experimenter has to make
many choices. What strains should be crossed, and what type of cross should
be used? What phenotypes should be measured? Should they be replicated?
What covariates should be collected? What markers should be used, and how
dense should the genotyping be? Can selective genotyping be used to save
money? How many progeny should be collected?

The calculations performed with R/qtlDesign provide quick answers to the
above questions but rely on a number of approximations that may not always
be accurate. A more cumbersome but potentially more accurate approach is
to use computer simulation. We conclude the chapter with a brief discussion
of the use of computer simulation to estimate the power to detect a QTL and
the precision of localization of QTL.

6.1 Phenotypes and covariates

The most important choice is the phenotype of interest to the experimenter.
Sometimes, the choice is natural. Someone interested in hypertension may
measure blood pressure, while someone interested in cancer may count tumors.

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 6,
© Springer Science+Business Media, LLC 2009
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Researchers studying human diseases in model systems, such as mice or rats,
have to consider what phenotype best approximates the human analog. For
example, a researcher studying anxiety in mice may use the open field test.

In addition to the primary phenotype of interest, it is useful to record
all covariates that may affect the phenotype. Sex and cross direction should
always be recorded. Whenever possible date/time of experiment, experiment
batch, technician name, cage number, litter number, and parent IDs should be
recorded. These are useful for diagnosing and correcting oddities in the data.
In addition, factors that may affect the primary phenotype of interest should
be recorded. For example, an obesity study might want to record average
room temperatures because lower temperatures might lead to greater energy
expenditure and lower body weight.

6.2 Strains and strain surveys

After the primary phenotype of interest has been chosen, the experimenter has
to decide what strains to cross. We would generally want to cross two strains
that exhibit a consistent difference in the phenotype of interest (although a
cross between strains of similar phenotype may segregate QTL). Preliminary
data in the experimenter’s laboratory might suggest natural choices for strains
to cross. In the absence of such data, an experimenter may perform a strain
survey by comparing the phenotype of interest in a number of available strains.
This may be done in one of two ways. The strain survey may be done in silico,
that is, in the comfort of one’s office with a computer, by simply surveying
published data on the phenotypes of many strains (e.g., the Mouse Phenome
Database, http://www.jax.org/phenome). Alternatively, it may be done the
hard way, by actually phenotyping all of the strains in one’s own laboratory.

The advantage of the first approach is convenience, and the ability to
survey a large number of strains relatively easily. The disadvantage is that
some phenotypes vary from lab to lab, and with time (as equipment and the
strains may slowly drift with time). A recent study showed that the stability
of phenotyping over time and space varies by phenotype, and there were no
discernible differences in stability between strains (Wahlsten et al., 2003).
The advantage of the second approach is that the experimenter has complete
control over the phenotyping protocols, and therefore more reliable data is
obtained. The disadvantage is cost, and time.

Once there is reliable data on the phenotypes of strains, if we see differ-
ences in a phenotype between two strains, then we can be confident that the
difference is genetic. Our next step would be to cross the two strains creat-
ing genetic variation, so that we can study the association between genetic
markers and the phenotype.
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6.3 Theory

Having decided which strains to cross, an investigator will have to decide what
type of cross to use (e.g., backcross, intercross, or recombinant inbred lines),
how many progeny to raise and phenotype, and the genotyping and phenotyp-
ing strategies. The ability to detect QTL and the precision of estimated QTL
effects depend on design choices through three key quantities: the variance
attributable to a given locus, the residual error variance, and the information
content of the cross. We will now review the theory behind each of these quan-
tities. This will help us understand how we can leverage cross type, number
of progeny, and genotyping strategies to our advantage.

For simplicity we assume that we wish to detect a single locus contribut-
ing to variation in the phenotype. The phenotypic variance is composed of
genetic and nongenetic components. A part of the genetic variance may be
attributable to a locus, the rest being background genetic variance which may
be due to multiple loci.

The variance attributable to a locus depends on the cross type and the
mode of inheritance. Specifically, a locus with an additive mode of action
(i.e., with the average phenotype for heterozygotes at the midpoint between
the phenotype averages for the two homozygote groups) explains twice as
much variance in an intercross, and four times as much variance in recombi-
nant inbred lines (RILs), compared to a backcross population. On the other
hand, the genetic similarity of a backcross population is greater than an inter-
cross population, which, in turn, is more similar than a RIL population. Thus
the background genetic variance is greatest in RILs, followed by intercross
populations, and least in backcross populations.

Sample size calculations for QTL experiments are usually presented in
terms of the proportion of variance explained by the locus of interest we wish to
detect (i.e., the heritability due to the QTL). This approach provides a partial
picture for comparing different cross types because the variance attributable
to a locus and the background variance depend on the cross (for an illustration
see Sec. 6.4).

Therefore, we present a complementary approach which directly considers
the effect of a locus on the phenotype, as well as the background genetic
variance in the population. To develop this approach, we begin by considering
the variance attributable to a locus, followed by a discussion of the residual
error variance which includes the background genetic variance. Finally, we
consider manipulation of information content (or the “effective sample size”)
using selective genotyping and variable marker spacing.

6.3.1 Variance attributable to a locus

Let the two strains under consideration be A and B, and let AA and BB be
the parental genotypes at a locus of interest. The possible genotypes at each
autosomal locus are AA, AB, and BB. Let μ be the overall mean, α be the
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Table 6.1. Genotype probabilities, genotype means, and the variance attributable
to a segregating locus, as a function of genetic model and cross type. BCA denotes
backcross to the A strain, and BCB denotes backcross to the B strain.

Probability

Genotype Mean Intercross BCA BCB RILs

AA μ+α−δ/2 1/4 1/2 0 1/2

AB μ+δ/2 1/2 1/2 1/2 0

BB μ−α−δ/2 1/4 0 1/2 1/2

Variance attributable to locus

Model Parameter Intercross BCA BCB RILs

General 1
4
δ2+ 1

2
α2 1

4
(α−δ)2 1

4
(α+δ)2 α2

No dominance δ=0 1
2
α2 1

4
α2 1

4
α2 α2

A dominant δ=α 3
4
α2 0 α2 α2

B dominant δ=−α 3
4
α2 α2 0 α2

No additive α=0 1
4
δ2 1

4
δ2 1

4
δ2 0

additive effect of the locus (half of the difference between the means of the
homozygotes), and δ be the dominance effect (the difference between the mean
of the heterozygotes and the average of the homozygote means). The variance
attributable to a segregating locus depends on the type of cross as well as the
genetic model (see Table 6.1).

A purely additive locus (no dominance, δ=0) segregating in a set of RILs
accounts for twice the variance compared to an intercross, and four times com-
pared to the two possible backcrosses. A dominant locus (δ=±α) segregating
in an intercross explains 75% of the variance compared to RILs. If we happen
to perform a backcross to the correct parental strain, the locus explains as
much variance as in RILs, otherwise it does not contribute to the phenotypic
variation. Thus, for a suspected dominant locus, it is safer to perform an in-
tercross, barring specific knowledge about the dominant allele. A segregating
locus would explain the most variance in RILs unless the locus is overdominant
(|δ| > α). When a locus has no additive effect, it will explain no variance in
RILs, but both an intercross and a backcross would explain the same amount
of variance. Thus, an intercross, which segregates all three genotypes, offers
the opportunity to detect the widest variety of genetic models.
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6.3.2 Residual error variance

The residual error variance is composed of background genetic variance due to
all QTL not linked to the locus of interest and the nongenetic residual variance.
If measurement error is negligible, then the nongenetic residual variance is
due to environmental effects specific to each individual. By using biological
replication (more than one individual with the same genotype), we can reduce
nongenetic residual variance. This is usually only possible for RILs, where we
can create multiple individuals with the same genotype. On a similar note,
we can reduce the measurement error contribution to the nongenetic residual
variance by replicating measurements.

Nongenetic error variance

Let the measurement error variance be σ2
M (the variance of phenotype mea-

surements in the same individual), and the environmental variance be σ2
E

(the variance of phenotypes in individuals with the same genotype, assuming
no measurement error). Assume we have m individuals per unique genotype.
For backcross and intercross populations, m=1. For RILs, we can choose m,
subject to cost constraints. Assume that we have k replicate measurements
per individual (e.g., the number of times blood pressure is measured on the
same mouse). Then the nongenetic residual error variance is (σ2

E+σ2
M/k)/m.

It is in the interest of the investigator to choose an instrument with negligi-
ble measurement error (σ2

M ), or to replicate the measurement enough times
so that σ2

M/k is small. In that case, the nongenetic residual error variance is
approximately σ2

E/m. Estimates of the measurement error variance (σ2
M ) and

the environmental variance (σ2
E) may be obtained from pilot studies.

Genetic variance

As mentioned earlier, the background genetic variance depends on the cross
type. For simplicity, assume that the variance attributable to any single locus
is small, so that the background genetic variance is approximately equal to
the genetic variance. Let c be a constant that depends on the cross type, equal
to 4 for backcrosses, 2 for intercrosses, and 1 for RILs, and let σ2

G(c) be the
corresponding genetic variance. Then, the variance attributable to an additive
locus is α2/c (see Table 6.1). If we assume that all loci are additive, then the
genetic variance in a cross is σ2

G(c) = σ2
G/c, where σ2

G is the genetic variance
in RILs. Then the residual error variance would be σ2

G/c + (σ2
E + σ2

M/k)/m.
Thus the ratio of the variance attributable to an additive locus to the residual
error variance (the “signal-to-noise ratio”), would be

α2/c

σ2
G/c + (σ2

E + σ2
M/k)/m

=
α2

σ2
G

[

1 +
c

m

(
σ2

E

σ2
G

+
σ2

M

kσ2
G

)]−1

� α2

σ2
G

(

1 +
c

m

σ2
E

σ2
G

)−1

.
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Table 6.2. Effect size multiplier by cross type, number of environmental repli-
cates per genotype (m), and the ratio of environmental relative to genetic vari-
ance, measured by σ2

E/σ2
G, where σ2

E is the within-genotype variance and σ2
G is the

between-genotype variance in RILs. We assume that all loci are additive, so that the
between-genotype variance (the genetic variance) is σ2

G/2 and σ2
G/4 in intercross

and backcross populations, respectively.

Backcross Intercross RILs

σ2
E/σ2

G m=1 m=1 m=1 m=4

1/16 0.80 0.89 0.94 0.98

1/4 0.50 0.67 0.80 0.94

1/2 0.33 0.50 0.67 0.89

1 0.20 0.33 0.50 0.80

2 0.11 0.20 0.33 0.67

4 0.06 0.11 0.20 0.50

16 0.015 0.030 0.059 0.200

The approximation holds when σ2
M/k is negligible (i.e., when technical mea-

surement error is small or we have sufficient technical replicates). It is easier
to detect a QTL when the signal-to-noise ratio is higher.

The signal-to-noise ratio depends on α2, σ2
G, σ2

E , c, and m. Of these, the
first three are determined by nature, over which the experimenter has no
control. However, by choosing the cross type (which determines c), and the
number of environmental replicates per genotype (m), the experimenter can
manipulate the signal-to-noise ratio. We focus on the effect size multiplier,
[
1+c σ2

E/(mσ2
G)

]−1
, displayed in Table 6.2 as a function of cross, number

of replicates per genotype, and the ratio of the environmental variance to the
genetic variance. As one would expect, the signal-to-noise ratio is highest when
the environmental variance is small; in this setting, there is little difference
between the different crosses. However, when the environmental variance is
high, the signal-to-noise ratio is low for all crossing designs. In this setting,
RILs are most advantageous. This advantage can be magnified by replication.

6.3.3 Information content

We have greater control over the information content of a cross compared
to our control over the effect size and the error variance. The information
content of an experiment may be interpreted as the effective sample size. It is
a fundamental quantity which affects the power to detect a QTL, the expected
LOD score, and the precision of the estimated QTL effects. We define the
information content in the sense of Fisher information (see Cox and Hinkley,
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1974): the reciprocal of the expected variance of the genetic model parameters
for unit residual variance.

The information content depends on the number of progeny, genotyping
strategies, and phenotyping strategies. Genotyping strategies that can affect
information content include marker spacing and selective genotyping (where
a fraction of the individuals with extreme phenotypes are genotyped). Pheno-
typing strategies include choosing a subset of individuals based on their geno-
type for expensive phenotyping, and replication of noisy measurements. By
making choices that maximize information content, based on the cost structure
of the experiment, the experimenter can most efficiently allocate resources.

6.4 Examples with R/qtlDesign

R/qtlDesign is an R package for facilitating experimental design choices for
QTL mapping. It may be obtained from the Comprehensive R Archive Net-
work (CRAN, http://cran.r-project.org) and installed in the same way
that the R/qtl package is installed (see App. A).

We assume that the phenotypes follow a normal distribution, that the ef-
fect size of a QTL is small relative to the residual variance, and that the sample
size is large. (A warning is printed if the effective sample size is smaller than
30.) The normality assumption facilitates analytical tractability, and the sam-
ple size assumption is needed to use χ2 approximations in power calculations.
The small effect size assumption simplifies information content calculations;
the resulting approximation is accurate for most practical situations. We also
assume that measurement error is negligible. If that is not the case, it may be
advisable to consider replicating measurements.

The package assumes that cost functions are linear; this ignores economies
of scale, but provides a useful guide. The optimal marker spacing and the
selection fraction (the proportion of extreme phenotypic individuals that are
genotyped) should therefore be seen as approximations; they are not necessar-
ily optimal. The function approximating the residual error variance assumes
that all loci are additive. This is intended as an approximation; in practice
one would consider a range of possibilities (see the examples below).

6.4.1 Functions

The main functions in the R/qtlDesign package are the following:

powercalc Calculates the power to detect a QTL given the effect size,
the residual error variance, the genome-wide LOD thresh-
old, the width of the marker interval containing the QTL,
the sample size, and the proportion of extreme individuals
genotyped (the selection fraction).
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detectable Calculates the minimum detectable QTL effect as a func-
tion of the target power and other powercalc inputs.

samplesize Calculates the minimum sample size needed to detect a
QTL effect given the desired power and other powercalc
inputs.

info Calculates the approximate expected information as a
function of the selection fraction and the marker interval
width.

optspacing Calculates the optimal marker spacing and selection frac-
tion given the genotyping cost and the genome size.

optselection Calculates the optimal selection fraction given the geno-
typing cost, marker spacing, and genome size.

error.var Calculates the residual error variance given the cross
type, environmental variance, background genetic vari-
ance, and the number of environmental replicates per
unique genotype.

thresh Calculates the genome-wide LOD threshold required for
QTL detection given the cross type, genome length, and
marker density, using the approximations of Dupuis and
Siegmund (1999).

6.4.2 Choosing a cross

Barring specific knowledge about the mode of action of the QTL, the inter-
cross is often the best cross choice. It segregates all possible genotypes, and
therefore permits detection of QTL with any mode of action (dominant, re-
cessive, additive, or overdominant). If the phenotype is noisy, with a lot of
environmental variation, then RILs (provided that they are available) are the
best choice, as we can use replicate individuals to decrease noise. If we are con-
fident of the nature of the effect, or suspect substantial genetic variance due
to epistasis, then performing a backcross would be a good choice. Sometimes
investigators will perform more than one type of cross, and then combine the
evidence from multiple populations.

Power calculations in research grant applications traditionally are pre-
sented in terms of the proportion of variance detectable with high power given
a population of a certain size. Let us explore what effects we can detect using
a backcross or intercross population with 100 individuals. We assume that we
desire 80% power in a mouse cross.

We must first load the R/qtlDesign package.

> library(qtlDesign)
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We first estimate the 5% genome-wide LOD threshold that we will use for
the mouse genome (of size 1440 cM), assuming infinitely dense markers. We
use the thresh function.

> thresh(G=1440, cross="bc", p=0.05)

[1] 3.190

We get the analogous threshold for an intercross as follows.

> thresh(G=1440, cross="f2", p=0.05)

[1] 4.183

Note that the LOD threshold for an intercross population is a bit higher. This
is because we have two degrees of freedom in an intercross (versus one in a
backcross), and because the recombination density in an intercross is twice
that of a backcross.

We can now calculate the minimum detectable effect sizes using the func-
tion detectable.

> detectable(cross="bc", n=100, sigma2=1, thresh=3.2)

effect percent.var.explained
[1,] 0.936 17.97

> detectable(cross="f2", n=100, sigma2=1, thresh=4.2)

additive.effect dominance.effect percent.var.explained
[1,] 0.726 0 20.86

Thus, we can detect loci explaining a similar percentage of variance in back-
crosses and intercrosses. However, the effect size that can be detected in an
intercross is smaller if the environmental variance is high. We will see this in
examples below.

Table 6.3 displays the approximate detectable effects (measured as the
percent variance explained by a QTL) for a range of sample sizes, in each of
a backcross and an intercross.

Suppose we are planning to map blood pressure QTL in mice by crossing
the A and B strains, whose blood pressure means are 85 mm of Hg and 105
mm of Hg, respectively. The within-strain standard deviations are 8 mm of
Hg. Let us also assume that we are interested in detecting a locus with an
additive effect of 5 mm of Hg. We will compare crossing designs assuming
that we want to detect the locus with 80% power. (For brevity, we suppress
measurement units below.) How do the choices of backcross, intercross, and
recombinant inbred lines shape up?

We estimate σ2
E , the environmental variance, by the within-strain variance,

82=64. We estimate the background genetic variance with some assumptions,
and therefore consider a range of possibilities, guiding our choices using the
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Table 6.3. The minimum percent variance attributable to a QTL for it to be
detectable with 80% power, as a function of sample size, marker spacing (in cM), and
the selection fraction (the proportion of extreme phenotypic individuals genotyped).
We use a significance threshold of 3.2 for a backcross and 4.2 for an intercross. These
are the estimated thresholds corresponding to dense markers for the mouse genome
(1440 cM). The power is calculated for a locus at the center of a marker interval
with the given spacing.

Selection fraction

100% 50%

Marker spacing in cM Marker spacing in cM

Sample size (n) 0 5 10 20 0 5 10 20

Backcross

100 17.9 18.7 19.5 21.4 19.1 19.9 20.7 22.7

200 9.9 10.3 10.8 12.0 10.5 11.0 11.6 12.8

400 5.2 5.4 5.7 6.4 5.6 5.8 6.1 6.8

Intercross

100 20.8 21.7 22.6 24.7 22.1 23.0 23.9 26.1

200 11.6 12.2 12.7 14.1 12.4 13.0 13.6 15.0

400 6.2 6.5 6.8 7.6 6.6 6.9 7.3 8.1

between-strain variance, (105− 85)2/4 = 100. This would be the genetic vari-
ance in RILs if a single QTL accounted for the strain difference. If there are
two or more QTL, the genetic variance would be smaller, assuming no epistasis
and that all QTL have effects of the same sign. Thus we consider three val-
ues of σ2

G, 25, 50, and 100 (these correspond to percent variance attributable
to the QTL equal to 14.0%, 12.3% and 9.9%, respectively). We may use the
samplesize function to get an approximate sample size. For σ2

G=25, we use:

> samplesize(cross="f2", effect=c(5,0), env.var=64, gen.var=25,

+ thresh=4.2)

sample.size percent.var.explained
[1,] 162 14.04

This gives us a sample size of 162. The additive and dominance effects we
wish to detect are given in the effect argument. The residual error variance
is approximated using our estimates of the environmental and genetic vari-
ances (alternatively one can specify the residual error variance directly). If
the genetic variance is 50 or 100, we get sample size estimates of 188 and 241,
respectively.
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> samplesize(cross="f2", effect=c(5,0), env.var=64, gen.var=50,

+ thresh=4.2)

sample.size percent.var.explained
[1,] 188 12.32

> samplesize(cross="f2", effect=c(5,0), env.var=64,

+ gen.var=100, thresh=4.2)

sample.size percent.var.explained
[1,] 241 9.881

By default, the software assumes that our target LOD threshold is 3, that our
desired power is 80%, and that all individuals are typed densely.

For a backcross population, we would need more individuals, as the fol-
lowing results show.

> samplesize(cross="bc", effect=5, env.var=64, gen.var=25,

+ thresh=3.2)

sample.size percent.var.explained
[1,] 247 8.17

> samplesize(cross="bc", effect=5, env.var=64, gen.var=50,

+ thresh=3.2)

sample.size percent.var.explained
[1,] 269 7.553

> samplesize(cross="bc", effect=5, env.var=64, gen.var=100,

+ thresh=3.2)

sample.size percent.var.explained
[1,] 312 6.562

To estimate how many RILs we would need (if such a resource existed),
we will first have to estimate the LOD threshold required. Assuming that the
RILs were created by sibling mating, we can get the threshold by using the
thresh function for a backcross population, multiplying the genome length
by 4 (because of the four-fold map expansion in RILs by sibling mating).

> thresh(G=1440*4, cross="bc", p=0.05)

[1] 3.834

RILs are most advantageous when the genetic variance is small relative to the
environmental variance. We therefore consider the setting when σ2

G is 25.

> samplesize(cross="ri", effect=5, env.var=64, gen.var=25,

+ thresh=3.8)
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sample.size percent.var.explained
[1,] 90 21.93

We would need about 90 animals, which is favorable in terms of the number
of animals needed, but might be infeasible because RIL populations of such
size are expensive to create and maintain. This assumed that we used just one
animal per line. With replication, the number of unique RILs decreases, but
to a point. We see this by using the bio.rep argument.

> samplesize(cross="ri", effect=5, env.var=64, gen.var=25,

+ thresh=3.8, bio.rep=2)

sample.size percent.var.explained
[1,] 58 30.49

> samplesize(cross="ri", effect=5, env.var=64, gen.var=25,

+ thresh=3.8, bio.rep=4)

sample.size percent.var.explained
[1,] 42 37.88

> samplesize(cross="ri", effect=5, env.var=64, gen.var=25,

+ thresh=3.8, bio.rep=16)

sample.size percent.var.explained
[1,] 30 46.3

> samplesize(cross="ri", effect=5, env.var=64, gen.var=25,

+ thresh=3.8, bio.rep=100)

sample.size percent.var.explained
[1,] 26 49.37

This indicates that, with 4–20 replicate animals per line, we can detect the
desired effects in a RIL population of modest size (30–40 lines). If we used 4
replicate animals, we would use about 168 animals. The number of intercross
animals needed is about 162, and the number of backcross animals needed is
about 247. Since the cost of breeding replicate animals is smaller for RILs,
one would conclude that using a RIL population with about 40 lines would be
a good choice if the genetic variance is small. However, the intercross is quite
competitive.

6.4.3 Genotyping strategies

Once a cross has been performed, genotyping strategies can be used to reduce
experimental cost. Because of linkage between adjacent markers on the same
chromosome, there are diminishing returns as genotyping density increases.
An investigator might want to know what genotyping density provides a good
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Figure 6.1. Expected information from a selectively genotyped backcross as a func-
tion of the selection fraction (the proportion of extreme phenotypic individuals geno-
typed), in the middle of a marker interval of length 0, 5, 10, and 20 cM. The in-
formation is plotted relative to a fully genotyped cross, where all individuals are
genotyped at a dense set of markers.

return on investment. Further, if there is a single phenotype of primary in-
terest, selective genotyping, where only extreme phenotypic individuals are
genotyped, may be used. This strategy is most effective when the cost of phe-
notyping and raising an individual is low relative to the cost of genotyping.
We will consider these issues with our design tools. First, let us take a look at
how information content (“effective sample size”) varies with marker density
and the selection fraction (the proportion of extreme phenotypic individuals
genotyped).

The expected information from a selectively genotyped backcross is dis-
played in Fig 6.1. The information is plotted relative to a fully genotyped cross
where all individuals are genotyped at a dense set of markers. We can see that
if the cross is densely genotyped, genotyping between 40% to 60% of the cross
gives us 85% to 95% of the information in the cross. The gains diminish with
wider marker spacings. The figure was created using the function info.
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Suppose we are performing an intercross, and suppose a genotyping facility
charges 10 cents per genotype, and that the animal facility per diem rate for
mice is $1.20. The total cost of housing a mouse for 25 weeks is about $30;
therefore the genotyping cost in the units of raising the mouse is about 1/300.
To find the genotyping density that gives the best information-to-cost ratio,
we use the function optspacing.

> optspacing(cost=1/300, G=1440, sel.frac=1, cross="f2")

Marker spacing (cM) Selection fraction
17.93 1.00

This suggests that relatively sparse genotyping (18 cM density) would be
adequate for detecting QTL.

If we had a single phenotype and could perform selective genotyping, we
could find the selection fraction and genotyping density combination that
give the best information to cost ratio. We do this by setting the sel.frac
argument to NULL.

> optspacing(cost=10/3000, G=1440, sel.frac=NULL, cross="f2")

Marker spacing (cM) Selection fraction
14.5573 0.6063

This suggests that the most economical option would be to genotype approx-
imately 60% of the cross at a 15 cM marker density.

6.4.4 Phenotyping strategies

For many investigators, phenotyping costs, rather than genotyping costs, are
high relative to the cost of raising an individual. Examples include behav-
ioral phenotyping or microarrays. In these settings it may be more useful to
perform selective phenotyping. Selective phenotyping involves phenotyping a
subset of individuals, chosen based on their genotype or by based on another
(inexpensive, but related) phenotype.

The idea of selective phenotyping based on observed genotypes is to select
the most genotypically diverse subset of given size. For example, we may want
to select 40 out of 200 intercross individuals for microarray phenotyping. One
can select a set of dissimilar individuals using the MMA (minimum moment
aberration) method. This method is implemented in the mma function.

We illustrate the use of the former strategy by simulating data on five
chromosomes of length 100 cM. Then we use the mma function to select 40 in-
dividuals based on chromosome 1 genotypes (where the QTL is). We compare
the LOD scores obtained by selective phenotyping to that obtained from a
random subset of 40 individuals.
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Figure 6.2. Illustration of selective phenotyping using simulated data. We com-
pare the LOD scores obtained using three different strategies: the full cross of 200
individuals (black), 40 individuals selectively phenotyped based on chromosome 1
genotypes (blue), and a random set of 40 individuals (red).

> library(qtl)

> mp <- sim.map(len=rep(100,5), n.mar=11, include.x=FALSE,

+ eq.spacing=TRUE)

> cr <- sim.cross(mp, model=c(1,50,1,0), n.ind=200, type="f2")

> idx40 <- mma(pull.geno(cr, chr=1), p=40)

> cr <- calc.genoprob(cr, step=2)

> out1 <- scanone(cr)

> out2 <- scanone(subset(cr, ind=idx40$cList))

> out3 <- scanone(subset(cr, ind=sample(1:200, 40)))

> plot(out1, out2, out3, ylab="LOD score")

This type of selective phenotyping is most effective when we have credible
knowledge about the region where the putative QTL might be. The better
the knowledge, the more effective it is. Otherwise, selectively phenotyping is
about as good as phenotyping a random subset of individuals.

6.4.5 Fine mapping

After a QTL has been detected, one will usually want to narrow the loca-
tion of the QTL. Planning for fine mapping involves different considerations
than in the detection stage discussed earlier in the chapter. It is helpful to
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have access to genotyping resources to effectively narrow the location of ev-
ery crossover in every individual. With dense genotyping, the average width
of confidence intervals is proportional to the inverse of the sample size. By
contrast, for most statistical problems, the lengths of confidence intervals are
approximately proportional to the inverse of the square root of the sample
size. This happy circumstance is tempered by the fact that the width of con-
fidence intervals varies from cross to cross depending on the configuration of
marker genotypes in the neighborhood of the true QTL. For this reason, the
R/qtlDesign function, ci.length, for calculating confidence interval widths,
reports the median confidence interval width.

The following commands give us the median width of the 95% confidence
interval for QTL location for a backcross or intercross with 250 individuals,
assuming dense genotyping. In practice, confidence intervals are likely to be
slightly wider than these calculations indicate.

> ci.length(cross="bc", n=250, effect=5, p=0.95,

+ gen.var=25, env.var=64)

[1] 13.47

> ci.length(cross="f2", n=250, effect=c(5,0), p=0.95,

+ gen.var=25, env.var=64)

[1] 7.334

We see that with an intercross we will get confidence intervals that are ex-
pected to be about half as wide as those obtained from a backcross. As with
the power for detecting QTL, the expected widths also depend on the back-
ground genetic variance, as well as the environmental variance.

6.5 Other experimental populations

Although backcrosses, intercrosses, and recombinant inbred lines are the
staples of experimental geneticists, a number of other populations are in
widespread use for QTL mapping. All of them are based on the same funda-
mental idea. We create (or assemble) a genetically diverse set of individuals,
genotype and phenotype them, and look for associations between genotype
and phenotype. Statistical methods to examine these associations depend on
the population. In the following, we briefly describe a number of other popu-
lations that might be considered for QTL mapping.

Advanced intercross lines (AIL) are constructed by intercrossing an in-
tercross population for multiple generations. At any given locus, they have
approximately the same diversity as an intercross; however the span of link-
age disequilibrium (LD) is much shorter due to the multiple generations of
recombination. They are useful for fine-mapping, but require a greater breed-
ing effort and very dense genotyping.
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Heterogeneous stock (HS) are similar in spirit to advanced intercross
lines, but are derived from multiple strains. Typically, an outbreeding mating
scheme is used to maintain heterozygosity. The genotypic diversity of HS is
greater than AIL, and the span of LD is smaller as well. In the analysis of
both HS and AIL, one generally will need to take account of familial relations
among individuals.

Introgression lines are a set of congenic strains spanning a locus, a chro-
mosome, or the whole genome. They consist of a series of introgressions from
a donor strain onto a recipient strain (i.e., a genomic segment from the donor
strain is inserted into the recipient strain by a series of crosses). Thus, they are
a collection of single-factor perturbations of a genetic system. They may be
used for either genome scanning or fine mapping. Consomic strains (or chro-
mosome substitution strains, CSS) are a special case in which the introgressed
segment consists of a whole chromosome.

Recombinant congenic strains (RCS) are like introgression lines, but each
strain may contain multiple small introgressed segments, rather than just one.

Inbred–outbred crosses between an inbred strain and an outbred popula-
tions may offer benefits of both linkage and association mapping. By tracking
identity by descent (IBD) from the parental strains, one can perform linkage
mapping (as in a backcross or intercross). By examining association between
alleles at any given locus and the phenotype, one can use historical recombi-
nations within the outbred stock to narrow down the location of a QTL.

Strain collections (association mapping) The prospect of using historical
recombination for QTL detection or fine mapping also underlies association
mapping using a collection of strains. The advantage of this method is that one
can tap the great genetic diversity of strain collections. A disadvantage is that
the complex relationships among strains may lead to spurious associations.

Natural populations also offer some of the same advantages of strain collec-
tions, especially the prospect of using historical recombination for fine map-
ping. However, one may have to contend with hidden population structure
in the collection, and the trait of interest may not be segregating in the
population.

Selection experiments apply a selective pressure on a population, and let
the population evolve for a small number of generations before genotyping.
By observing which genotypes survive the selective pressure, one can identify
loci that underly fitness to survive selection.

An affecteds-only design may be seen as a variant of the above where one
only genotypes the affected individuals (or individuals exhibiting a particu-
lar extreme of a continuous trait). By observing which genotypes are over-
represented, one can map loci for the trait of interest.

The Collaborative Cross (CC) is a proposed collection of a large number of
recombinant inbred lines derived from eight parental mouse strains. It seeks to
establish an immortal, genetically diverse set of experimental genetic factors
for mouse biology. Because it is genetically more diverse than RILs derived
from two strains and has a smaller span of linkage disequilibrium, it is expected
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to be more efficient for mapping loci than RILs. The CC lines can be used
as reference strains for complex phenotyping that generate data comparable
across laboratories or years.

6.6 Estimating power and precision by simulation

The R/qtlDesign package provides quick answers to numerous design ques-
tions. However, the calculations in R/qtlDesign rely on a number of approxi-
mations that may not always be appropriate, and so the results are not always
accurate.

An alternate approach to assessing the power to detect QTL and the pre-
cision of localization of QTL is to use computer simulation. Computer simula-
tions can be cumbersome and time consuming, but they are extremely flexible
and so allow one to address more complex questions.

In this section, we illustrate the use of computer simulation to assess the
power to detect a QTL and the precision of localization of a QTL. We focus
on the simple case of an intercross with a single QTL.

The simulation of QTL mapping data was described in Sec. 2.5. We must
start with a genetic map of marker locations. It is convenient to use the map10
object that is distributed with R/qtl. This is a genetic map modeled after the
mouse genome, with evenly spaced markers at approximately a 10 cM spacing.
(The marker spacing is slightly different on the different chromosomes so that
the markers will be evenly spaced on each chromosome but with chromosome
lengths matching those of the mouse genome.)

We first load R/qtl and get access to the map10 object.

> library(qtl)

> data(map10)

To assess the power to map a QTL, we must first obtain a significance
threshold. While one might use a permutation test for each simulated QTL
mapping data set, that would be extremely time consuming. Instead, we per-
form some initial simulations under the null model (of no QTL) to estimate
the null distribution of the genome-wide maximum LOD score.

We consider the case of an intercross with 250 individuals and assume no
crossover interference and complete marker genotype data with no genotyping
errors. We focus solely on the autosomes (chromosomes 1–19) and perform
10,000 simulation replicates.

The code to accomplish this is not too complicated, but requires a bit of
knowledge of R.

> n.sim <- 10000

> res0 <- rep(NA, n.sim)

> for(i in 1:n.sim) {

+ x <- sim.cross(map10[1:19], n.ind=250, type="f2")
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+ x <- calc.genoprob(x, step=1)

+ out <- scanone(x, method="hk")

+ res0[i] <- max(out[,3])

+ }

We first create an empty vector to contain the genome-wide maximum
LOD scores. We use a for loop to do the 10,000 simulations. We call
sim.cross to simulate the data (under the null hypothesis of no QTL). We
use calc.genoprob to calculate the QTL genotype probabilities and then
scanone to perform a genome scan. (We use Haley–Knott regression, for the
sake of speed.) We pull out the maximum LOD score with max(out[,3]),
since the LOD scores form the third column in the output.

The 95th percentile of the results serves as our estimate of the 5% genome-
wide LOD threshold. We use print in order to simultaneously assign the 95th
percentile to thr and print the value.

> print(thr <- quantile(res0, 0.95))

95%
3.582

It is interesting to compare this result to that obtained with the function
thresh in R/qtlDesign. To use thresh, we first need to calculate the length of
the genome. This may done by a call to summary.map. We add up the values
in the first 19 rows (corresponding to the autosomes) in the column labeled
“length.”

> print(G <- sum(summary(map10)[1:19,"length"]))

[1] 1568

We now use thresh to estimate the significance threshold. We use d=10
(the marker spacing) and p=0.05 (the significance level). (Note that we would
need to use library(qtlDesign) to load the R/qtlDesign package, if it had
not already been loaded.)

> thresh(G, "f2", d=10, p=0.05)

[1] 3.424

This is slightly smaller than that estimated by our simulations.
We can also make a histogram of the genome-wide maximum LOD scores.

See Fig. 6.3. We use the function rug to create, underneath the histogram,
line segments at the individual data points.

> hist(res0, breaks=100, xlab="Genome-wide maximum LOD score")

> rug(res0)
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Figure 6.3. Distribution of the genome-wide maximum LOD scores under the null
hypothesis of no QTL, for the case of an intercross with 250 individuals and with
a genome modeled after that of the mouse and with equally spaced markers at a
10 cM spacing.

With our LOD threshold in hand, we may now turn to simulations in
the presence of QTL. We will consider the simplest possible case, of a single
QTL. We will assume that the alleles act additively (that is, the average
phenotype for the heterozygote is halfway between the averages for the two
homozygotes). We will simulate a QTL responsible for 8% of the phenotypic
variance. If the average phenotypes for the two homozygotes are −α and α
and the residual variance is 1 (as assumed in sim.cross), then the heritability
due to the QTL is α2/2/(α2/2 + 1). (See Table 6.1 on page 156.) Thus, we
need α =

√
2 × 0.08/(1 − 0.08) ≈ 0.417.

We will place the QTL at 54 cM on chromosome 1 (halfway between
two markers). We may assess power and precision at the same time, and
we will also study the width and coverage of the 1.5-LOD support interval
(see Sec. 4.5). We need only simulate data for the chromosome containing the
QTL. This will save a great deal of computation time.

The code to perform the simulations is a bit more complicated than before.

> alpha <- sqrt(2*0.08/(1-0.08))

> n.sim <- 10000

> loda <- est <- lo <- hi <- rep(NA, n.sim)

> for(i in 1:n.sim) {

+ x <- sim.cross(map10[1], n.ind=250, type="f2",

+ model=c(1, 54, alpha, 0))

+ x <- calc.genoprob(x, step=1)
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+ out <- scanone(x, method="hk")

+ loda[i] <- max(out[,3])

+ temp <- out[out[,3]==loda[i],2]

+ if(length(temp) > 1) temp <- sample(temp, 1)

+ est[i] <- temp

+ li <- lodint(out)

+ lo[i] <- li[1,2]

+ hi[i] <- li[nrow(li),2]

+ }

We first calculate the effect of the QTL that corresponds to heritability of
8%. We create empty vectors that will contain the results: the maximum LOD
scores, the estimated QTL positions, and the lower and upper endpoints of the
1.5-LOD support intervals. We must be careful about the case that multiple
positions give exactly the same LOD score; in such cases, we pick a random
location (among those with the maximum LOD) as the estimated location
of the QTL. We use the lodint function to calculate the 1.5-LOD support
interval, and we again must be careful of the case that multiple positions share
the maximum LOD score. The first and last elements in the second column
of the output from lodint are the endpoints of the interval; while there are
generally three rows in the output, there can be more.

The estimated power is the proportion of the simulation replicates with
LOD score exceeding our threshold.

> mean(loda >= thr)

[1] 0.7383

This is slightly larger than the estimate provided by powercalc in R/qtl-
Design. Note that we use theta=0.09, the approximate recombination fraction
between two markers (from the Haldane map function, for a genetic distance
of 10 cM).

> powercalc("f2", 250, sigma2=1, effect=c(alpha,0), thresh=thr,

+ theta=0.09)

power percent.var.explained
[1,] 0.6855 8

We might also wish to look at the distribution of the maximum LOD
scores. In 10,000 simulation replicates, we obtained LOD scores as large as
14.7 (see Fig. 6.4).

> hist(loda, breaks=100, xlab="Maximum LOD score")

Turning to the precision of localization of the QTL, we first consider a
histogram of the estimated QTL locations.

> hist(est, breaks=100, xlab="Estimated QTL location (cM)")

> rug(map10[[1]])
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Figure 6.4. Distribution of the chromosome-wide maximum LOD scores in the
presence of a single QTL responsible for 8% of the phenotypic variance, for the case
of an intercross with 250 individuals and with equally spaced markers at a 10 cM
spacing.

We use rug(map10[[1]]) to place tick marks at the marker locations. (In
the results, in Fig. 6.5, we used a slightly fancier method for defining the
breakpoints in the histogram; see the detailed code for this and all figures in
the book in the online complements at http://www.rqtl.org/book.)

Note the large spike in the distribution at the two markers flanking the
QTL. The QTL is estimated to be at one or the other of these markers ap-
proximately 12% of the time.

The estimate of QTL location is approximately unbiased. (Recall that the
QTL was located at 54 cM.)

> mean(est)

[1] 54.37

The estimated standard error of the estimated QTL location is approxi-
mately 11.6.

> sd(est)

[1] 11.62

It is interesting to consider the precision of the estimated QTL location
among those cases in which there was significant evidence for a QTL (i.e.,
for which the LOD score exceeded our threshold, 3.58). We first create an
indicator of the cases in which the LOD score exceeded the threshold, and
then calculate the SD of the estimated QTL location among those cases.
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Figure 6.5. Estimated QTL location in 10,000 simulation replicates of an intercross
with 250 individuals, with a QTL located at 54 cM (indicated by the blue triangle)
and responsible for 8% of the phenotypic variance. The tick marks at the bottom
indicate the marker locations (∼10 cM spacing).

> sig <- (loda >= thr)

> sd(est[sig])

[1] 9.07

We see that the QTL location is more precisely estimated in the cases in which
we had significant evidence for a QTL.

Let us turn to the 1.5-LOD support intervals. We are particularly inter-
ested in the estimated coverage: the proportion of simulation replicates in
which the left endpoint was ≤ 54 and the right endpoint was ≥ 54.

> mean(lo <= 54 & hi >= 54)

[1] 0.9795

Also interesting is coverage conditional on having significant evidence for
a QTL.

> mean(lo[sig] <= 54 & hi[sig] >= 54)

[1] 0.9743

In either case, coverage is a bit higher than 95%.
Finally, let us look at the distribution of the width of the 1.5-LOD support

interval. We will focus on the cases in which there was significant evidence for
a QTL.
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Figure 6.6. Distribution of the width of the 1.5-LOD support interval, conditional
on having significant evidence for a QTL, for the case of a single QTL responsible
for 8% of the phenotypic variance, in an intercross with 250 individuals and markers
at a 10 cM spacing.

> hist(hi[sig]-lo[sig], breaks=100,

+ xlab="Width of 1.5-LOD support interval (cM)")

The median width of the 1.5-LOD support interval was 26 cM, but it
typically varied from 14 to 63 cM long (see Fig. 6.6).

In summary, while the calculations in R/qtlDesign are often accurate, they
do rely on a number of approximations. An alternative is to use computer
simulations. Simulations can be time consuming and require more detailed
knowledge of R, but are quite flexible and so may be used to address more
complex design questions.

6.7 Summary

Sound experimental design is the bedrock of good science. A QTL experi-
menter should follow the general principles of good experimental design. The
special structure of QTL experiments offer some additional choices, includ-
ing the type of cross, the number of progeny to raise, and genotyping and
phenotyping strategies. Using the package R/qtlDesign, the experimenter can
make choices based on the cost structure of the experiment and the nature
of the QTL effects one seeks to identify. The calculations in R/qtlDesign are
efficient and convenient but rely on a number of approximations and are not
always accurate. Computer simulations, while more cumbersome, can give
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more accurate estimates of the power to detect a QTL and the precision of
localization of QTL.

6.8 Further reading

The planning of experimental crosses is discussed in Silver (1995) and Lynch
and Walsh (1998). Belknap (1998) compared the sample size requirements for
recombinant inbred lines (RILs) relative to intercrosses and backcrosses by
quantifying the error variance. The advantages of selective genotyping were
analyzed by Lander and Botstein (1989) and Darvasi and Soller (1992). Dar-
vasi (1998) gave a comprehensive account of design options for model organ-
isms, including selective genotyping. Selective phenotyping was proposed and
analyzed by Jin et al. (2004). For a review reflecting recent developments,
see Flint et al. (2005). Dupuis and Siegmund (1999) discussed genome-wide
thresholds for QTL detection and confidence interval construction. Sen et al.
(2005) framed experimental design through its information content. Also see
Sen et al. (2009). The web-based program of Purcell et al. (2003) performs
power calculations for complex trait analysis, although it is not designed for
inbred line crosses. Sen et al. (2007) is the paper introducing R/qtlDesign.
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Working with covariates

It is often of interest to take account of a covariate (such as sex or an environ-
mental factor, such as diet) in QTL mapping. If such a covariate has a large
effect on the phenotype, its inclusion in the analysis will result in reduced
residual variation and so will enhance our ability to detect QTL. It is also of
interest to assess possible QTL × covariate interactions. For example, does a
QTL have different effects in the two sexes?

When there is evidence for a QTL with large effect, one may wish to include
a nearby typed marker as a covariate in further analysis, in order to reduce
the residual variation and so improve our ability to detect further QTL. This
is related to the method of composite interval mapping (CIM), and is a step
towards the multiple-QTL models that will be described in detail in Chap. 9.

In this chapter, we describe the use of covariates in interval mapping (i.e.,
in a single-QTL model), and of tests for QTL × covariate interaction. We
conclude the chapter with a discussion of composite interval mapping and the
use of genetic markers as covariates in interval mapping.

7.1 Additive covariates

The usual model for interval mapping is that yi|gi ∼ N(μgi
, σ2), where yi is

the phenotype and gi is the QTL genotype for individual i. This is the sort of
model that one sees in analysis of variance (ANOVA): that the different geno-
type groups have possibly different phenotypic means, and that the residual
variation is normally distributed with constant variance.

Just as ANOVA may be viewed as a special case of linear regression, the
above model may be equivalently expressed as a linear model. In a backcross,
take zi = −1/2 if gi = AA and zi = +1/2 if gi = AB. We then have

yi = μ + αzi + εi

where we assume that the εi are independent and are normally distributed
with mean 0 and constant variance, σ2.

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 7,
© Springer Science+Business Media, LLC 2009
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In an intercross, take zi1 = −1, 0,+1 according to whether gi is AA, AB,
BB, and take zi2 = +1 if gi = AB and zi2 = 0 otherwise. We then have

yi = μ + αzi1 + δzi2 + εi

The coding of the QTL genotypes is an annoyance, as is the need to treat
the backcross and intercross separately, and so we will generally use the fol-
lowing as short hand.

yi = μ + βgi + εi

It is to be understood that β may have two components and gi must be
recoded.

Now consider a covariate, such as sex or weight, denoted x. (We generally
code sex as x = 0 for females and x = 1 for males.) The above models could
be expanded to include the covariate as follows.

yi = μ + βxxi + βggi + εi

In this case, we call x an additive covariate. Note that the average phenotype
is linear in x, and the QTL is assumed to have constant effect, independent
of x. That is, there is no QTL × covariate interaction.

For example, consider a backcross with g = 0 for the AA genotype and g =
1 for the AB genotype, and with sex as the covariate (coded as 0 for females
and 1 for males). This is illustrated in Fig. 7.1A. The average phenotype for
females with genotype AA is μ, and the average phenotype for females with
genotype AB is μ+βg. The average phenotype for males with genotype AA is
μ+βx and the average phenotype for males with genotype AB is μ+βx +βg.
For both sexes, the effect of the QTL is βg, but the average phenotype is
allowed to be different in the two sexes. The coefficient βx is the difference
between the sexes, constant for the two QTL genotype groups. Note that we
also assume that the residual variation is the same in both sexes.

In the case of a quantitative covariate, we have two regression lines that
describe the average phenotype as a function of the covariate for individuals
with QTL genotype AA and AB, respectively (see Fig. 7.1B). With an additive
covariate, the two lines are parallel, and βx is the slope while βg is the distance
between the two lines at any fixed value of the covariate.

Covariates can often be assumed to be independent of QTL genotype. This
is true for sex (except with regard to genotypes on the X chromosome) or if
the covariate is some external environmental effect (such as dietary differences
imposed on the individuals). However, if a phenotype (such as body weight)
is to be used as a covariate, there may be loci that affect the covariate. Thus,
one should be cautious of the use of secondary phenotypes as covariates in
QTL mapping. The key issue is that the meaning of the analysis changes; we
are looking at the residual effect of QTL after accounting for the covariate.
This may be useful for evaluating a pathway: does the QTL have a direct
effect on the primary phenotype or only an indirect effect, acting through the
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Figure 7.1. Illustration of the effects of a QTL and an additive covariate in a
backcross in the case of (A) sex as the covariate and (B) a quantitative covariate.

secondary phenotype? In teasing apart such pathways, measurement error in
the phenotypes can confuse things.

For a phenotype like mass of tumor, one might consider the phenotype
relative to body weight: using yi/wi as the phenotype, where yi is tumor mass
and wi is body weight. We would consider the model

(yi/wi) = μ + βggi + εi

Note that this is quite different from considering body weight, wi, as an ad-
ditive covariate. In a backcross, the use of y/w as the phenotype implies the
model

yi =
{

μwi + ε′i if gi = 0
(μ + βg)wi + ε′i if gi = 1

where the ε′i have SD increasing linearly with wi. We thus assume that the
effect of the QTL on yi is increasing linearly with wi. This is illustrated in
Fig. 7.2.

Either of the two models (that with weight as an additive covariate, as
in Fig. 7.1B, or that based on y/w, as in Fig. 7.2) may be reasonable. Most
important is that one understands the assumptions underlying one’s choice. A
scatterplot of y versus w, with points colored by the genotype at an inferred
QTL, may be useful in assessing the appropriateness of the assumptions.

We now turn to the task of obtaining LOD scores for evidence of QTL. In
standard interval mapping, in the absence of a covariate, we obtain a LOD
score, indicating support for the presence of a QTL, as the log10 likelihood
ratio comparing the following two models.
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Figure 7.2. Illustration of the effect of a QTL as a function of w, in the model
implied by the use of y/w as the phenotype in QTL mapping.

yi = μ + βggi + εi

yi = μ + εi

If a covariate is considered, evidence for the QTL is obtained by compar-
ing the model with both the QTL and the covariate to the model with the
covariate alone.

yi = μ + βxxi + βggi + εi

yi = μ + βxxi + εi

As with standard interval mapping, this analysis would be performed at a
grid of putative QTL locations across the genome. The model with only the
covariate must be fit once. The model containing both the covariate and the
QTL is fit at each position on the grid.

Statistical significance, adjusting for the genome scan, may be established
as before. We prefer the use of a permutation test, which may be performed
essentially unchanged, though we must ensure that the relationship between
the phenotype and the covariate is preserved, just as the association among
marker genotypes should be preserved. This is accomplished by maintaining
the correspondence between the covariate data and the phenotype, but shuf-
fling the individuals’ phenotype and covariate data relative to their genotype
data. Consider Fig. 7.3. We maintain the structure of the genotype data ma-
trix and the structure of the phenotype/covariate matrix, but we shuffle the
rows in the genotype data relative to the rows in the phenotype/covariate
data.

The fit of the model with both the QTL and the covariate requires some
explanation. The QTL genotypes will generally not be known; they must be in-
ferred from the available marker genotype data. We discussed (in Chap. 4) four
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Figure 7.3. Diagram of the interval mapping process in the presence of additive
covariates.

methods for fitting the single-QTL model in the absence of a covariate: stan-
dard interval mapping, Haley–Knott regression, the extended Haley–Knott
method, and multiple imputation. These four methods may all be extended
for the case that covariates are to be included. The Haley–Knott regression
and multiple imputation methods are easily extended, as both are based on
simple linear regression.

Let us briefly describe how model fit is accomplished in the extension of
standard interval mapping to include a covariate. It is best to use matrices. Let
x continue to denote the additive covariate, and let X be a matrix containing
both the additive covariate (which will be known) and the genotypes at the
putative QTL (which will not be known). Our model is y = Xβ + ε.

If the QTL genotypes were known, we would estimate β as the solution
of the normal equations, (X ′X)β̂ = X ′y, where ′ denotes transpose. But the
QTL genotype data are generally not known, and so we again use an EM
algorithm to estimate β.

At iteration s of the EM algorithm, we have estimates β̂(s−1) and σ̂(s−1).
While X and X ′X are not known, we may calculate their expected values
(element-wise), given the available marker genotype data (denoted M), the
phenotypes, the covariate, and the current parameter estimates. This is the
E-step.

Z(s) = E(X|y, x,M , β̂(s−1), σ̂(s−1))

W (s) = E(X ′X|y, x,M , β̂(s−1), σ̂(s−1))

In the M-step, we obtain updated estimates of the parameters, β, as the
solution of the normal equations with Z used in place of X and W used in
place of X ′X.

W (s)β̂(s) =
[
Z(s)

]′
y

The updated estimate of the residual SD is obtained as follows.

σ̂(s) =
√(

y′y − y′Z(s)β̂(s)
)

/n
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We have discussed the fit of a model that contains both the covariates
and the QTL. An alternate approach is to first regress the phenotype on the
covariates and then use the residuals in standard interval mapping. If the
covariates are not correlated with the genotypes at a putative QTL, the two
approaches will provide similar results, but the simultaneous fit is preferred.

One final point, before turning to an example: when should covariates be
included in the analysis? If sex or an environmental covariate has an appre-
ciable effect on the phenotype, it should definitely be included in the QTL
analysis, as its inclusion will reduce the residual variation and so we will have
greater power to detect QTL. If the covariate has little or no effect on the
phenotype, its inclusion will not improve power, and the estimation of its ef-
fect will add noise, and so may reduce our power. If the sample size is large
and only a handful of such extraneous covariates are included, there is little
worry. But if the sample size is small and a large number of useless covariates
are included, we may seriously erode our ability to detect QTL.

Example

As an example, we consider data on gut length in a large mouse intercross. The
cross was reported in Owens et al. (2005), and the gut length phenotype was
discussed in Broman et al. (2006). These data are available in the R/qtlbook
package as the data set gutlength.

Reciprocal intercrosses were performed using the C3HeBFeJ (C3) and
C57BL/6J (B6) strains, though one of the B6 parents carried the Sox10Dom

mutation, a mouse model for Hirschsprung disease. Over 2000 intercross mice
were generated, but only the 1068 mice carrying the Sox10Dom mutation were
genotyped and are included in the data. A selective genotyping strategy was
used with these data: 323 individuals with extreme aganglionosis phenotype
(which is not the phenotype we are considering here) were genotyped at more
than 100 markers; the remaining 745 individuals were typed at fewer than 15
markers.

First, we load the necessary packages and get access to the data.

> library(qtl)

> library(qtlbook)

> data(gutlength)

All individuals are heterozygous at Sox10, located on chromosome 15,
which results in an unusual segregation pattern on that chromosome. For
simplicity, we will omit chromosome 15 from our analysis.

> gutlength <- subset(gutlength, chr = -15)

We will consider using sex and cross as additive covariates in the QTL
analysis, and so we first inspect the relationship between these covariates and
the phenotype. We can use boxplot to create boxplots of the phenotypes, split
by sex and cross. A box plot shows the median, 25th and 75th percentiles,
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Figure 7.4. Box plots of the gut length phenotype by sex and cross in the gutlength
data.

and the range of the phenotypes. We use the following code. The argument
col is used to highlight the males in blue and the females in red. The results
are shown in Fig. 7.4.

> boxplot(gutlength ~ sex*cross, data=gutlength$pheno,

+ horizontal=TRUE, xlab="Gut length (cm)",

+ col=c("red","blue"))

Note that the crosses are written as female × male. Thus, for example,
individuals from the (B6.dom×C3)×(B6×C3) cross received the Sox10Dom

mutation from their maternal grandmother.
Males generally have somewhat longer guts than females (though the indi-

vidual with the shortest gut was male), and individuals receiving the mutation
from their father (the top four groups) generally had longer guts than those
receiving the mutation from their mother (the bottom four groups).

We can confirm these features by performing an analysis of variance. The
function aov is used to perform the ANOVA, and anova is used to create the
ANOVA table.

> anova(aov(gutlength ~ sex*cross, data=gutlength$pheno))

Analysis of Variance Table

Response: gutlength
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Df Sum Sq Mean Sq F value Pr(>F)
sex 1 36 36 8.12 0.0045
cross 3 167 56 12.56 0.000000045
sex:cross 3 8 3 0.63 0.5986
Residuals 1060 4711 4

Sex and cross both show clear effects on gut length, but there is no apparent
sex × cross interaction. Note that this was done leaving the four cross groups
completely unstructured, and so we cannot tell whether the cross differences
are due to an effect of the parent-of-origin of the mutation or some other
difference. To study the cross differences more carefully, let us us separate the
four-level cross factor into two parts: whether the mutation was received from
the mother or the father, and whether the F1 individuals were created by the
cross B6×C3 (which we will call the forward direction) or C3×B6.

We create indicators of whether the mutation came from the mother or
father and whether the F1 was done in the forward direction, and we paste
these back into the phenotype data.

> cross <- as.numeric(pull.pheno(gutlength, "cross"))

> frommom <- as.numeric(cross < 3)

> forw <- as.numeric(cross == 1 | cross == 3)

> gutlength$pheno$frommom <- frommom

> gutlength$pheno$forw <- forw

We now perform the ANOVA again, using frommom and forw to get more
detail about the relationship between cross and gut length.

> anova(aov(gutlength ~ sex*frommom*forw, data=gutlength$pheno))

Analysis of Variance Table

Response: gutlength
Df Sum Sq Mean Sq F value Pr(>F)

sex 1 36 36 8.12 0.0045
frommom 1 134 134 30.06 0.000000052
forw 1 1 1 0.27 0.6062
sex:frommom 1 1 1 0.23 0.6306
sex:forw 1 2 2 0.39 0.5334
frommom:forw 1 33 33 7.49 0.0063
sex:frommom:forw 1 5 5 1.10 0.2936
Residuals 1060 4711 4

The parent-of-origin of the mutation has a large effect on gut length, and while
the cross direction has little marginal effect, it shows a strong interaction with
the parent-of-origin of the mutation (that is, the parent-of-origin effect appears
to be different in the two cross directions). There is no interaction with sex.

The large effects of cross and sex suggest that they should be included
as additive covariates in QTL mapping. This may be performed using the
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scanone function; the only tricky part is that the covariates must be strictly
numeric, while we have factors. We first convert the sex factor to a quantitative
covariate, coding females and males as 0 and 1, respectively.

> sex <- as.numeric(pull.pheno(gutlength, "sex") == "M")

We also wish to use cross as a covariate. This is a factor with four levels,
and so we need to form a matrix with three columns. It is easiest to use the
frommom and forw indicators, created above, and their product.

> crossX <- cbind(frommom, forw, frommom*forw)

Finally, we paste the two together to create a matrix with four columns.

> x <- cbind(sex, crossX)

Now we are set for interval mapping with these additive covariates. We use
the scanone function, indicating the covariates using the argument addcovar.
In the following, we perform the QTL analysis with and without the covariates.
Recall that we must first use calc.genoprob to calculate the QTL genotype
probabilities, given the available marker genotype data.

> gutlength <- calc.genoprob(gutlength, step=1,

+ error.prob=0.001)

> out.0 <- scanone(gutlength)

> out.a <- scanone(gutlength, addcovar=x)

Note that we are using standard interval mapping; we could have also
used Haley–Knott regression, the extended Haley–Knott method, or multi-
ple imputation.

A plot of the results is obtained as follows. The results appear in Fig. 7.5.
Note the use of alternate.chrid=TRUE, which allows the chromosome IDs
to be more easily distinguished.

> plot(out.0, out.a, col=c("blue", "red"), lty=1:2,

+ ylab="LOD score", alternate.chrid=TRUE)

There is a clear QTL for gut length on chromosome 5, and a possible
further QTL on the X chromosome, but the inclusion of the covariates in the
analysis makes little difference. To better see the effect of the inclusion of
covariates, we can plot the differences in the LOD scores; see Fig. 7.6. We
include a horizontal dashed line at 0.

> plot(out.a - out.0, ylab="LOD w/ covar - LOD w/o covar",

+ ylim=c(-1, 1), alternate.chrid=TRUE)

> abline(h=0, lty=2)

We now should perform permutation tests, so that we may assess the sta-
tistical significance of the putative QTL. We again must treat the autosomes
and X chromosome separately. Further, selective genotyping was used with
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these data: about 300 individuals were typed at nearly all of the 117 mark-
ers, while the remainder were genotyped at only about 10 markers. Thus it
would be best to perform a stratified permutation test: permute the genotypes
separately within the highly genotyped group and the group with very little
genotyping. (The selective genotyping was not based on the phenotype under
consideration, and so the stratified permutation test may not be necessary.)

We first create a numeric vector that indicates the two strata.

> strat <- (nmissing(gutlength) < 50)

Now we perform the permutation tests, using perm.Xsp=TRUE to indi-
cate that we wish to treat the autosomes and X chromosome separately and
perm.strata=strat to indicate that we wish to perform a stratified permu-
tation test.

> operm.0 <- scanone(gutlength, n.perm=1000, perm.Xsp=TRUE,

+ perm.strata=strat)

> operm.a <- scanone(gutlength, addcovar=x, n.perm=1000,

+ perm.Xsp=TRUE, perm.strata=strat)

Summaries of the results are somewhat easier to study if the results with
and without covariates are combined. This may be done using c.scanone for
the scanone results and cbind.scanoneperm for the permutation results, as
follows. Note the use of the labels argument to attach meaningful labels to
the results.

> out.both <- c(out.0, out.a, labels=c("nocovar", "covar"))

> operm.both <- cbind(operm.0, operm.a,

+ labels=c("nocovar", "covar"))

The 5% LOD thresholds from the permutation tests with and without the
use of the additive covariates are then the following.

> summary(operm.both, 0.05)

Autosome LOD thresholds (1000 permutations)
lod.nocovar lod.covar

5% 3.51 3.51

X chromosome LOD thresholds (16118 permutations)
lod.nocovar lod.covar

5% 3.71 3.67

The following gives a summary of the main results; we display chromo-
somes with LOD score exceeding the 20% genome-wide significance level. We
use format="allpeaks" to get the peaks for each of the two LOD scores. Only
the chromosome 5 locus meets the 5% significance level. The X chromosome
has p-value ≈ 10%. The use of the additive covariates had little effect on the
results.
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> summary(out.both, perms=operm.both, format="allpeaks",

+ alpha=0.2, pvalues=TRUE)

chr pos lod.nocovar pval pos lod.covar pval
5 5 22 6.40 0.000 20 6.59 0.0000
X X 57 3.33 0.105 58 3.33 0.0933

7.2 QTL × covariate interactions

In the previous section, we considered additive covariates, in which case the
effect of the QTL was constant for all possible values of the covariate. The
chief advantage of the inclusion of additive covariates in the QTL analysis is
to reduce the residual variation in the case that the covariate has a strong
effect on the phenotype, which will enhance our ability to detect QTL.

A covariate may interact with a QTL, meaning the effect of the QTL may
vary with the covariate. If x is an interactive covariate, we have the following
model.

yi = μ + βxxi + βggi + γxigi + εi

Note that this is again short-hand notation. In an intercross, there will be two
degrees of freedom for gi, and so also two degrees of freedom for xigi.

For example, consider a backcross with g = 0 for the AA genotype and
g = 1 for the AB genotype, and with sex (coded as 0 for females and 1 for
males) as an interactive covariate. This is illustrated in Fig. 7.7A. Then females
with genotype AA have average phenotype μ, and females with genotype AB
have average phenotype μ + βg, and so βg is the effect of the QTL in females.
Males with genotype AA have average phenotype μ + βx and males with
genotype AB have average phenotype μ+βx +βg +γ, and so the effect of the
QTL in males is βg +γ. Thus the coefficient for the QTL × sex interaction, γ,
is the difference in the QTL effect between males and females. The coefficient
βx is the effect of sex in the AA genotype group. The existence of a QTL ×
covariate interaction may depend on the scale at which the phenotype was
measured. For example, if there is no interaction on the ordinary scale, there
will be an interaction if the square-root of the phenotype is considered (unless
either sex or genotype has no effect).

If the interactive covariate, x, is quantitative (see Fig. 7.7B), then in the
model above we assume that the effect of the QTL changes linearly in x. For
each unit increase in x, the effect of the QTL changes by γ, and βg is the
effect of the QTL when x = 0.

Note that we always include the main effect for any interactive covariate.
If the xigi term is included in the model but xi is not, the coding of the QTL
genotypes, gi, becomes important. We prefer to maintain a hierarchy in such
models: whenever an interaction is included, all relevant main effects are also
included.
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Figure 7.7. Illustration of the effects of a QTL and an interactive covariate in a
backcross in the case of (A) sex as the covariate and (B) a quantitative covariate.

Regarding evidence for the presence of a QTL in the context of interac-
tive covariates, and, perhaps most interesting, evidence for QTL × covariate
interaction, there are three models that we must consider.

(Hf ) yi = μ + βxxi + βggi + γxigi + εi

(Ha) yi = μ + βxxi + βggi + εi

(H0) yi = μ + βxxi + εi

In the previous section, we considered the LOD score (log10 likelihood ra-
tio) comparing models Ha and H0. This indicates evidence for a QTL, allowing
for the effect of the additive covariate. We will call this LODa.

The LOD score comparing models Hf and H0 indicates the combined evi-
dence for the QTL and its possible interaction with the covariate. We will call
this LODf .

To assess evidence for the QTL × covariate interaction, we compare mod-
els Hf and Ha. A LOD score for this comparison may be obtained as the
difference between the above LOD scores, LODi = LODf − LODa, since the
log likelihood for the model H0 cancels out.

There are several possible approaches for testing for QTL × covariate
interactions. First, one may look for loci with clear marginal effects (LODa

is large, adjusting for the genome scan) and test for the QTL × covariate
interaction at those positions. Second, we may look for loci for which the
combined effect of the QTL and its possible interaction with the covariate is
clear (LODf is large, adjusting for the genome scan) and again test for the
QTL × covariate interaction at those positions, with no further adjustment for
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multiple testing. Finally, we may look for positions for which LODi, the LOD
score for the QTL × covariate interaction, is large, adjusting for the genome
scan. We prefer the second strategy, though it may be overly conservative, and
a large value of LODi, in isolation, may still be interesting. See the example
below, as well as the case study in Chap. 11.

A permutation test may again be used to establish LOD thresholds or
calculate p-values for LODf , adjusting for the genome scan. We use the
same strategy as described in the previous section: the connection between
the phenotype and the covariates is preserved, and the rows in the pheno-
type/covariate data are shuffled relative to the rows in the genotype data.

The same permutation test might be used to determine statistical sig-
nificance for the LODi scores, indicating evidence for the QTL × covariate
interaction. However, the permutations eliminate the effect of the QTL, and
so we must assume that the distribution of LODi (and its association along
the chromosomes) in the absence of a QTL × covariate interaction is the same,
whether or not there is a QTL with marginal effect.

The model with sex as an interactive covariate is similar to splitting on sex:
performing the QTL analysis separately in males and females. In both cases,
the phenotype averages for each QTL genotypes is allowed to vary completely
in the two sexes. The only difference is that, in the combined analysis, with
sex as an interactive covariate, the residual variance is constrained to be the
same in males and females, whereas when the sexes are analyzed separately,
the residual variances are estimated separately in the two sexes. If the two
sexes show similar residual variation, the sum of the LOD scores from the two
sexes, analyzed separately, should be very similar to the LOD score from the
combined analysis, LODf .

The combined analysis, with sex as an interactive covariate, is generally
preferred, but the separate analysis of the two sexes is perhaps more easy to
understand, and is probably more often used. The key advantage of the com-
bined analysis is that it allows one to test for the QTL × sex interaction. For
example, suppose that separate analyses are performed and there is signifi-
cant evidence for a QTL in females but that there is little evidence for a QTL
in the corresponding region in males. One should not conclude, from such a
result, that there is a female-specific QTL (that is, a QTL having effect only
in females). Indeed, one cannot even conclude, from these results alone, that
the effect of the locus is different in males and females, as the lack of evidence
of a QTL in males is not sufficient to conclude that the locus has no effect in
males. Absence of evidence is not the same as evidence of absence.

It is difficult (and perhaps impossible) to assess whether a locus is truly
female-specific, as the effect in males may be simply too small to detect. We
can, however, demonstrate that the effect of the locus is different in the two
sexes. To do so, we must use the combined analysis of both sexes, with sex
included as an interactive covariate, and inspect LODi, which, in the case of
appreciable QTL × sex interaction (that the effect of the QTL is different in
the two sexes), should be large.
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Example

We again consider the gutlength data. We will continue to use sex and cross
as additive covariates. These were placed in the matrix x, which we continue
to use here. Let us now consider sex as an interactive covariate (coded as
0 for females and 1 for males and placed in the object sex). We again use
scanone, and indicate the additive covariates with the addcovar argument
and the interactive covariates with the intcovar argument. Just as with the
additive covariates, the interactive covariates must be numeric.

> out.i <- scanone(gutlength, addcovar=x, intcovar=sex)

The LOD scores in the output are the LODf scores described above, con-
cerning the combined evidence for a QTL or its interaction with the covariate.
That is, LODf being large indicates that the locus has effect in at least one
of the sexes. The LOD scores for the QTL × sex interaction are obtained as
LODi = LODf − LODa, where LODa comes from the analysis in Sec. 7.1,
with only the additive covariates. If LODi is large, the locus is indicated to
have different effects in the two sexes.

A plot of LODf and LODi may be obtained as follows. The result appears
in Fig. 7.8.

> plot(out.i, out.i - out.a, ylab="LOD score",

+ col=c("blue", "red"), alternate.chrid=TRUE)

Note that LODi = 0 for the X chromosome, as sex is implicitly used as
an interactive covariate for the X chromosome (see Sec. 4.4). LODf is large
for the chromosome 5 locus, but LODi is small: there is strong evidence for a
QTL on chromosome 5, but there is no evidence for QTL × sex interaction.
Of particular interest are chromosomes 4 and 18, which show reasonably large
values for LODf and also large values for LODi. At these loci, there is an
indication of sex differences in the QTL effects.

To assess the statistical significance of these findings, we again perform
permutation tests. LOD thresholds for LODf may be obtained as before,
but permutation results for LODi require us to calculate the differences,
LODf − LODa, for each permutation replicate. This requires some care. We
must perform permutations with sex as an interactive covariate and then
again with sex as solely an additive covariate, and we must ensure that the
permutations are perfectly matched. This may be accomplished by setting the
“seed” for the random number generator, using the function set.seed, prior
to each set of permutations. Thus, we must rerun the permutations with sex
as a solely additive covariate.

> set.seed(54955149)

> operm.a <- scanone(gutlength, addcovar=x, n.perm=1000,

+ perm.Xsp=TRUE, perm.strata=strat)

> set.seed(54955149)

> operm.i <- scanone(gutlength, addcovar=x, intcovar=sex,
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Figure 7.8. Plot of LODf (in blue), with cross as an additive covariate and sex as
an interactive covariate, and LODi (in red), for the QTL × sex interaction, for the
gutlength data.

+ n.perm=1000, perm.Xsp=TRUE,

+ perm.strata=strat)

It is helpful to combine LODf and LODi, and their respective permutation
results, for later analysis.

> out.ia <- c(out.i, out.i - out.a, labels=c("f","i"))

> operm.ia <- cbind(operm.i, operm.i - operm.a,

+ labels=c("f","i"))

First, let us look at the loci for which LODf is greater than the 20%
genome-wide threshold.

> summary(out.ia, perms=operm.ia, alpha=0.2, pvalues=TRUE)

chr pos lod.f pval lod.i pval
c5.loc22 5 22 6.92 0.0000 0.365 0.832
cX.loc58 X 58 3.33 0.0933 0.000 1.000

Again, there is strong evidence for a QTL on chromosome 5, but no evi-
dence for a QTL × sex interaction (LODi ≈ 0.4).

Now, let us look strictly at LODi.

> summary(out.ia, perms=operm.ia, alpha=0.2, pvalues=TRUE,

+ lodcolumn=2)
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chr pos lod.f pval lod.i pval
c4.loc65 4 65.0 3.29 0.389 2.80 0.00743
18_72382360 18 48.2 3.07 0.523 1.92 0.06149

If we consider the interaction LOD score in isolation, there is good evidence
for QTL × sex interactions on chromosomes 4 and 18, but the overall LOD
scores, LODf , which indicate evidence that the loci have effect in at least
one sex, are not large. We are inclined to restrict attention to only those loci
for which LODf or LODa is large, and so view the evidence for QTL × sex
interaction on chromosomes 4 and 18 as chance variation, but this may be
overly conservative.

It is interesting to compare these results to those obtained by separate
analysis of the two sexes. In the separate analyses, we will continue to use the
cross as an additive covariate, but sex should not be included, as it will be
constant in each sex. We constructed a matrix for the cross factor, crossX, in
the previous section. We can use subset to pull out the relevant individuals
from the cross; we also need to subset the covariate matrix.

> out.m <- scanone(subset(gutlength, ind = sex==1),

+ addcovar=crossX[sex==1,])

> out.f <- scanone(subset(gutlength, ind = sex==0),

+ addcovar=crossX[sex==0,])

We may plot the results as follows; see Fig. 7.9.

> plot(out.m, out.f, col=c("blue", "red"), ylab="LOD score",

+ alternate.chrid=TRUE)

Note particularly the results for chromosome 18, which shows a peak in
females but not males. While this is suggestive of a female-specific QTL, we
cannot conclude, on the basis of these results alone, that the effect of the locus
is different in the two sexes. An assessment of the evidence for a QTL × sex
interaction requires the detailed analysis of the joint data, described above.

The sum of the LOD scores for males and females will be similar to LODf

obtained from the joint analysis, though it is not exactly the same, due to the
difference in the treatment of the residual variance. A plot of the differences
may be obtained as follows and appears in Fig. 7.10. (The functions +.scanone
and -.scanone are used to add and subtract the LOD scores.)

> plot(out.m + out.f - out.i, ylim=c(-0.5,0.5),

+ ylab="LOD(males) + LOD(females) - LODf",

+ alternate.chrid=TRUE)

> abline(h=0, lty=2)

To establish the statistical significance of the sex-specific results, we per-
form permutation tests within each of the males and females. We again need
to treat the X chromosome separately and use a stratified permutation test,
with individuals stratified by the amount of genotyping that was performed.
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Figure 7.9. Plot of LOD scores for males (in blue) and females (in red) for the
gutlength data.
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Figure 7.10. Plot of the difference between the sum of the LOD scores from the
separate analyses of males and females and LODf , from their joint analysis, for the
gutlength data.
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> operm.m <- scanone(subset(gutlength, ind = sex==1),

+ addcovar=crossX[sex==1,], n.perm=1000,

+ perm.strata=strat[sex==1], perm.Xsp=TRUE)

> operm.f <- scanone(subset(gutlength, ind = sex==0),

+ addcovar=crossX[sex==0,], n.perm=1000,

+ perm.strata=strat[sex==0], perm.Xsp=TRUE)

Again, to simplify the later summaries, we combine the male and female
results.

> out.sexsp <- c(out.m, out.f, labels=c("male","female"))

> operm.sexsp <- cbind(operm.m, operm.f,

+ labels=c("male","female"))

The 5% LOD thresholds are the following. Note that the X-chromosome-
specific threshold in the males is much lower than the others, as the linkage
test concerns just one degree of freedom, rather than two.

> summary(operm.sexsp, 0.05)

Autosome LOD thresholds (1000 permutations)
lod.male lod.female

5% 3.41 3.49

X chromosome LOD thresholds (16118 permutations)
lod.male lod.female

5% 2.62 3.27

The sex-specific results indicate strong evidence for the chromosome 5
locus, and weak evidence for a locus on chromosome 18 in females.

> summary(out.sexsp, perms=operm.sexsp, alpha=0.2,

+ pvalues=TRUE, format="allpeaks")

chr pos lod.male pval pos lod.female pval
5 5 18.7 2.508 0.302 0.0 5.45 0.000
18 18 0.0 0.499 1.000 48.2 3.08 0.120

Note that the chromosome 5 locus is significant in females but not in males;
one might conclude that that its effect is different in the two sexes, but our
previous results on the QTL × sex interaction indicated no evidence for a sex-
difference in the QTL effect. The chromosome 18 locus is now more interesting;
it may have effect in females, and our previous results indicated a potential
QTL × sex interaction.

Let us complete this study of the gutlength data with plots of the es-
timated effects of the putative QTL as a function of sex, using the function
effectplot. We first use sim.geno to impute the missing data. The averages
and SEs in the plots are based on these multiple imputations. Note the use
of constructions like "5@22" to indicate a “pseudomarker” position (on the
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grid on which interval mapping was performed) on chromosome 5 at 22 cM.
Also, while effectplot is generally used to plot the phenotype averages as
a function of genotype at putative QTL, we can also split individuals by a
covariate. Here mname1 is the name of the covariate, and since it matches one
of the phenotypes in the gutlength cross, the "sex" phenotype is used.

> gutlength <- sim.geno(gutlength, n.draws=128, step=1,

+ error.prob=0.001)

> par(mfrow=c(2,2))

> effectplot(gutlength, mname1="sex", ylim=c(15.1, 17.2),

+ mname2="4@65", main="Chromosome 4",

+ add.legend=FALSE)

> effectplot(gutlength, mname1="sex", ylim=c(15.1, 17.2),

+ mname2="5@22", main="Chromosome 5",

+ add.legend=FALSE)

> effectplot(gutlength, mname1="sex", ylim=c(15.1, 17.2),

+ mname2="18@48.2", main="Chromosome 18",

+ add.legend=FALSE)

> effectplot(gutlength, mname1="sex", ylim=c(15.1, 17.2),

+ mname2="X@58", main="X chromosome",

+ add.legend=FALSE)

The results are in Fig. 7.11. The chromosome 5 locus shows the strongest
effect, and its pattern of effect is very similar in the two sexes. The chro-
mosome 18 locus shows little effect in males but some effect in females. The
chromosome 4 locus shows some effect in both males and females, but the
pattern is different in the two sexes.

7.3 Covariates with non-normal phenotypes

Above, we assumed that the residual phenotypic variation followed a normal
distribution. In order to include covariates in the analysis of phenotypes for
which the normality assumption for the residual variation is inadequate, one
must use an extension of linear regression. There is no obvious extension of
the rank-based, nonparametric method to allow covariates. Robust versions
of linear regression are available, but we are not aware of any application
of such methods to QTL mapping, though one may find that the extended
Haley–Knott method (see Sec. 4.2.3) is sufficiently robust.

For binary phenotypes, one may use an extension of logistic regression. Let
πi = Pr(yi = 1|gi, xi), where yi is the phenotype (taking values 0 and 1), xi is
an additive covariate, and gi is the QTL genotype. While one might consider
the linear model

πi = μ + βxxi + βggi,

this model is unsatisfactory, because the left-hand side takes values between 0
and 1 which the right-hand side need not be between 0 and 1. The use of the
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Figure 7.11. Plot of the estimated phenotype averages ± 1 SE as a function of sex
(with males in blue and females in red) and genotype, at the positions nearest the
peak LOD score on four selected chromosomes, for the gutlength data. C and B
correspond to the C3HeBFeJ and C57BL/6J alleles, respectively.

logit link function, ln[π/(1 − π)], fixes this problem. We then have the model

ln[πi/(1 − πi)] = μ + βxxi + βggi

Other link functions that transform the probability, πi, to a scale without
bounds may be used. A common example is the probit link, Φ−1(π), where Φ
is the cumulative distribution function of the standard normal distribution.

The fit of this model is again made more complicated due to the fact that
the QTL genotypes, gi, are generally not observed. However, an EM algorithm
to obtain the MLEs of the parameters is relatively straightforward and has
been implemented in R/qtl. The use of interactive covariates, and tests of
QTL × covariate interactions, are conceptually the same as for the normal
model (Sec. 7.2).

The two-part model, described in Sec. 5.3, appropriate for the case of a
spike in the phenotype distribution (e.g., mass of gallstones with some indi-
viduals exhibiting no gallstones), may also be extended to include covariates,
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though it is simplest, and little information is likely to be lost, to perform
the separate analyses of the binary phenotype (e.g., presence or absence of
gallstones) and the conditional quantitative phenotype (e.g., mass of gall-
stones in those individuals exhibiting gallstones), with each analysis including
the relevant covariates.

Example

To illustrate the use of covariates in the analysis of a binary trait, we con-
sider data on neurofibromatosis type 1 (Reilly et al., 2006), included in the
R/qtlbook package as the nf1 data set. The goal was to identify modifiers of
the NPcis mutation. There are a total of 254 individuals from the backcrosses
(C57BL/6J × A/J) × C57BL/6J and C57BL/6J × (C57BL/6J × A/J), with
individuals receiving the NPcis mutation from either their mother or father.
The affected phenotype indicates whether the mice were affected (1) or unaf-
fected (0) with neurofibromatosis type 1. Mice were genotyped at 106 genetic
markers covering the autosomes.

We first need to load the data. It is contained in the qtlbook package,
and so if that package had not already been loaded, we would first need to
type library(qtlbook). The nf1 data contains one marker with completely
missing genotype data; we remove this marker using drop.nullmarkers.

> data(nf1)

> nf1 <- drop.nullmarkers(nf1)

Note the proportion of affected individuals, and that this differs according
to the parent-of-origin of the NPcis mutation. The function tapply is used
to get the proportion affected within the two strata defined by the from.mom
“phenotype.”

> mean(pull.pheno(nf1,"affected"))

[1] 0.5197

> tapply(pull.pheno(nf1,"affected"),

+ pull.pheno(nf1,"from.mom"), mean)

0 1
0.6181 0.3909

Application of a χ2 test with the function chisq.test demonstrates that
this difference is real. (One might also perform Fisher’s exact test, using the
function fisher.test.)

> chisq.test(pull.pheno(nf1,"affected"),

+ pull.pheno(nf1,"from.mom"))
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Pearson's Chi-squared test with Yates' continuity
correction

data: pull.pheno(nf1, "affected") and pull.pheno(nf1, "from.mom")
X-squared = 12.00, df = 1, p-value = 0.000533

We perform genome scans for the binary phenotype, using parent-of-origin
of the NPcis mutation first as an additive covariate and then as an inter-
active covariate; note that R/qtl uses the logit link function. We first run
calc.genoprob to get the conditional QTL genotype probabilities.

> nf1 <- calc.genoprob(nf1, step=1, error.prob=0.001)

> from.mom <- pull.pheno(nf1,"from.mom")

> out.a <- scanone(nf1, model="binary", addcovar=from.mom)

> out.i <- scanone(nf1, model="binary", addcovar=from.mom,

+ intcovar=from.mom)

We further perform permutation tests. As discussed in Sec. 7.2, we need
to use set.seed to ensure that they are matched.

> set.seed(1310709)

> operm.a <- scanone(nf1, model="binary", addcovar=from.mom,

+ n.perm=1000)

> set.seed(1310709)

> operm.i <- scanone(nf1, model="binary", addcovar=from.mom,

+ intcovar=from.mom, n.perm=1000)

We again combine the results, including the interaction LOD scores,
LODi = LODf − LODa.

> out.all <- c(out.i, out.a, out.i-out.a, labels=c("f","a","i"))

> operm.all <- cbind(operm.i, operm.a, operm.i - operm.a,

+ labels=c("f","a","i"))

We may plot the three LOD scores (LODf , LODa and LODi) as follows;
see Fig. 7.12.

> plot(out.all, lod=1:3, ylab="LOD score")

Only chromosomes 15 and 19 show large values of LODf . The chromosome
19 locus shows a clear QTL × covariate interaction, suggesting that the effect
of the locus is modified by the parent-of-origin of the NPcis mutation.

> summary(out.all, perms=operm.all, alpha=0.2, pvalues=TRUE)

chr pos lod.f pval lod.a pval lod.i pval
D15Mit111 15 13 2.92 0.110 2.22 0.121 0.703 0.356
D19Mit59 19 0 3.02 0.088 1.40 0.627 1.622 0.043

The interaction LOD score for the chromosome 15 locus is not large, but
it might be best to test for QTL × covariate interactions pointwise, rather
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Figure 7.12. Plot of LODf (in black), LODa (in blue), and LODi (in red), for the
nf1 data, with parent-of-origin of the NPcis mutation considered as a covariate.

than adjust for the genome scan. That is, we might compare the LODi = 0.7
result to its pointwise null distribution, rather than to the distribution of the
genome-wide maximum LODi under the global null hypothesis. At a specific
point, LODi × 2 ln(10) follows approximately a χ2 distribution with 1 degree
of freedom, under the null hypothesis of no QTL × covariate interaction, and
so the pointwise p-value is the following.

> pchisq(0.703 * 2 * log(10), 1, lower=FALSE)

[1] 0.07197

It is again of interest to split on the covariate: to perform a genome scan
separately in the individuals who received the NPcis mutation from their
mother and in those who received it from their father.

> out.frommom <- scanone(subset(nf1, ind=(from.mom==1)),

+ model="binary")

> out.fromdad <- scanone(subset(nf1, ind=(from.mom==0)),

+ model="binary")

We again perform permutation tests separately within the two groups.

> operm.frommom <- scanone(subset(nf1, ind=(from.mom==1)),

+ model="binary", n.perm=1000)

> operm.fromdad <- scanone(subset(nf1, ind=(from.mom==0)),

+ model="binary", n.perm=1000)
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Figure 7.13. LOD scores for the analysis of the nf1 data, split by parent-of-origin
of the NPcis mutation, with results for individuals receiving the mutation from their
mother and father in red and blue, respectively.

And again we combine the results.

> out.bypoo <- c(out.frommom, out.fromdad,

+ labels=c("mom","dad"))

> operm.bypoo <- cbind(operm.frommom, operm.fromdad,

+ labels=c("mom","dad"))

We may plot the results as follows; see Fig. 7.13.

> plot(out.bypoo, lod=1:2, col=c("red", "blue"),

+ ylab="LOD score")

The chromosome 19 locus has a significant effect in the group receiving
the NPcis mutation from their father but not in the others; the chromosome
15 locus shows the opposite effect: a large LOD score for the group receiving
the mutation from their mother but not for the others.

> summary(out.bypoo, perms=operm.bypoo, alpha=0.2, pvalues=TRUE,

+ format="allpeaks")

chr pos lod.mom pval pos lod.dad pval
15 15 13 2.590 0.056 66 0.609 1.00
19 19 24 0.265 1.000 0 2.995 0.02
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Figure 7.14. Proportion of affecteds as a function of genotype and the parent-of-
origin of the NPcis mutation, for the nf1 data.

Finally, let us look at the effects of the inferred QTL. We use effectplot;
it assumes a continuous outcome, but still gives reasonable results with our
binary phenotype. We use sim.geno to impute any missing genotype data,
and constructions like "15@13" to indicate a “pseudomarker” position (on the
grid on which interval mapping was performed) on chromosome 15 at 13 cM.
Also, while effectplot is generally used to plot the phenotype averages as
a function of genotype at putative QTL, we can also split individuals by
a covariate. Here mname1 is the name of the covariate, mark1 is the actual
covariate data, and geno1 gives labels to the levels of the covariate. We use
1-frommom so that red and blue are attached to“mom”and“dad,”respectively.

> nf1 <- sim.geno(nf1, n.draws=128, step=1, error.prob=0.001)

> par(mfrow=c(1,2))

> effectplot(nf1, mname1="NPcis", mark1=1-from.mom,

+ geno1=c("Mom", "Dad"), mname2="15@13",

+ ylim=c(0,1))

> effectplot(nf1, mname1="NPcis", mark1=1-from.mom,

+ geno1=c("Mom", "Dad"), mname2="19@0", ylim=c(0,1))

The results, in Fig. 7.14, show that the chromosome 19 locus (right panel)
has a large effect in the individuals receiving the NPcis mutation from their
father, with the heterozygotes having a lower chance of being affected, but
little effect in the individuals receiving the mutation from their mother. The
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chromosome 15 locus (left panel of Fig. 7.14) has greater effect in the indi-
viduals receiving the mutation from their mother. The chromosome 15 locus
appears to have little effect in the individuals receiving the NPcis mutation
from their father.

7.4 Composite interval mapping

We have so far only discussed single-QTL models: We imagine the presence
of a single QTL, and consider each position in the genome, one at a time, as
the location of that QTL. Such analysis works well for the identification of
loci with clear marginal effect.

In the next two chapters, we will discuss the fit and exploration of multiple-
QTL models. The advantages of the simultaneous consideration of multiple
QTL are to (a) reduce residual variation and so better detect loci of more
modest effect, (b) separate linked QTL, and (c) identify interactions among
QTL.

As an initial exploratory step, one may consider a marker near a putative
QTL as a covariate in the search for further QTL. The use of markers as
covariates fits well into the present chapter, on the use of covariates in QTL
mapping, and so we discuss it here.

The chief value of the use of a marker as a covariate is to reduce residual
variation and so clarify evidence for further QTL. The marker serves as a
proxy for nearby QTL; its inclusion in the model will remove much of the
effects of such QTL from what otherwise would appear as residual variation.
If there is a large-effect QTL near the marker, the use of the marker as a
covariate should increase our power to detect QTL on other chromosomes.
One may also include markers as interactive covariates, to identify loci that
exhibit an interaction with a locus near the marker.

An extreme case of the use of markers as covariates is the composite in-
terval mapping (CIM) strategy. While the term “composite interval mapping”
has been applied to a number of related methods, it is perhaps most com-
monly applied to a particular strategy implemented in the QTL Cartographer
software, which we will describe here and illustrate later.

One first selects a set of markers to serve as covariates. For example, one
may use forward selection at the markers to identify a set of predetermined
size—say seven markers. In forward selection, one considers each marker, one
at a time, and chooses the marker, call it m(1), that best predicts the pheno-
type (that is, gives the smallest residual sum of squares). One then considers
all models with m(1) plus one other marker, and finds a second marker, call
it m(2), that, when considered with marker m(1), gives the greatest decrease
in the residual sum of squares. The process is continued, creating a sequence
of nested models of increasing size, to the predetermined number of markers.

Once the set of markers has been chosen, one performs interval mapping
(that is, a single-QTL genome scan), with these markers as covariates: One
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calculates a LOD score comparing the model with the putative QTL in the
presence of the covariates to the model with just the covariates. There is one
wrinkle: if any of the marker covariates are within some fixed, predetermined
distance, d, of the position under test, one compares the model with the QTL
and any selected markers that are more than d away from test position to the
model with only those selected markers that are more than d away from the
test position.

Say S is the chosen set of marker covariates, and z is the putative QTL
position. Then one considers as marker covariates S ′ = S \ (z − d, z + d),
and then compares the model S ′ ∪ {z} to the model S ′. We have abused set
notation a bit here, but we hope our meaning is understood.

While the use of markers near putative QTL as covariates in the search for
additional loci is a clearly useful exploratory strategy, we recommend against
the general use of composite interval mapping. CIM attempts to turn the
multidimensional search for QTL into a single-dimensional search by first
identifying a subset of covariates. The choice of covariates is critical: if too
many or too few markers are chosen, there will be a loss of power to detect
QTL. Furthermore, the subsequent scan fails to account for the uncertainty
in the choice of relevant marker covariates and can give an overly optimistic
view of the precision of localization of QTL.

The ideas underlying composite interval mapping have been influential
in the development of more modern approaches for multiple QTL mapping.
We prefer to discard composite interval mapping in favor of its more refined
descendants, which we will describe in Chap. 9.

Example

To illustrate the use of marker covariates in QTL mapping, we return to the
hyper data. Let us reload the data, rerun calc.genoprob, and rerun the
initial genome scan.

> data(hyper)

> hyper <- calc.genoprob(hyper, step=1, error.prob=0.001)

> out <- scanone(hyper)

We had seen strong evidence for a QTL on chromosome 4. Let us first
perform a genome scan, with a marker near the inferred QTL included as an
additive covariate. The peak LOD score occurred at 29.5 cM on chromosome
4. We identify the nearest typed marker, pull out its genotype data, and ensure
that there is no missing data.

> mar <- find.marker(hyper, 4, 29.5)

> g <- pull.geno(hyper)[,mar]

> sum(is.na(g))

[1] 229
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We see that there is a lot of missing data at that marker. We could use
a nearby, fully typed marker, or we could impute the missing data at the
marker, and use the imputed genotypes as if they were observed. Let us do
the latter. We can use the function fill.geno to fill in the genotypes with a
single imputation.

> g <- pull.geno(fill.geno(hyper))[,mar]

> sum(is.na(g))

[1] 0

Because this is a backcross, we can use the g vector directly as the covari-
ate. Had this been an intercross, we would need to first create a two-column
numeric matrix encoding the genotype data. This may be done in a variety of
ways; the following is convenient: one column indicating one of the homozy-
gotes and another indicating the heterozygotes. Again, we should not do this
here, as we are dealing with a backcross rather than an intercross; we display
the following code just as an illustration.

> g <- cbind(as.numeric(g==1), as.numeric(g==2))

We now perform a genome scan with this marker as an additive covariate.

> out.ag <- scanone(hyper, addcovar=g)

We may plot the results, along with those from the genome scan without
the marker covariate, as follows; see Fig. 7.15.

> plot(out, out.ag, col=c("blue", "red"), ylab="LOD score")

The evidence for a QTL on chromosome 1 is greatly increased after ac-
counting for the chromosome 4 locus, and, while the LOD curve continues
to exhibit two peaks, the distal peak is now strongly favored. Of course, the
LOD scores on chromosome 4 shrink to near 0. The shape of the LOD curve
for chromosome 6 shows an interesting change, with a second peak near the
telomere. There are no other important differences.

One might wish to run a permutation test for the analysis that includes
the chromosome 4 marker as a covariate. In such a permutation test, it would
be best to omit chromosome 4 from the analysis. The selective genotyping in
these data again requires that we use a stratified permutation. While little
is likely to be gained from this effort, as we already had strong evidence
for a locus on chromosome 1, we will carry out such a permutation test, for
completeness.

> strat <- (ntyped(hyper) > 100)

> operm.ag <- scanone(hyper, addcovar=g, chr=-4,

+ perm.strata=strat, n.perm=1000)

The 20% and 5% LOD thresholds are as follows. These are not much
changed from those obtained for the analysis without any covariates (Sec. 4.3,
page 107).
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Figure 7.15. LOD scores for the analysis of the hyper data, with no covariates (in
blue) and with imputed genotypes at D4Mit164 included as an additive covariate
(in red).

> summary(operm.ag, alpha=c(0.2, 0.05))

LOD thresholds (1000 permutations)
lod

20% 2.09
5% 2.62

As expected, we see strong evidence for a QTL on chromosome 1, and
nothing else.

> summary(out.ag, perms=operm.ag, alpha=0.2, pvalues=TRUE)

chr pos lod pval
D1Mit94 1 67.8 5.94 0

We next consider the marker as an interactive covariate. This allows us to
detect loci that show an interaction with the chromosome 4 locus.

> out.ig <- scanone(hyper, addcovar=g, intcovar=g)

We plot the differences in the LOD scores from the analysis with the marker
as an interactive covariate and that with the marker as solely additive; see
Fig. 7.16. We see nothing interesting, and so we will not pursue this further.

> plot(out.ig - out.ag, ylab="interaction LOD score")
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Figure 7.16. Interaction LOD scores, indicating evidence for an interaction between
a QTL and the marker D4Mit164, for the hyper data.

Finally, let us investigate the use of composite interval mapping (CIM)
with these data. The function cim is a relatively crude version of the CIM
strategy discussed above: forward selection to a fixed number of markers (spec-
ified via the argument n.marcovar), followed by interval mapping, omitting
any marker covariates within some fixed distance of the position under test
(specified via the argument window, which is twice this distance, meaning the
total length of the window to surround the test position).

Of course, forward selection at the markers requires complete marker geno-
type data, but a selective genotyping strategy was used with the hyper data,
and so there is a large amount of missing genotype data on many chromosomes.
The cim function uses a single imputation to fill in any missing genotype data
prior to the forward selection procedure.

We will use three marker covariates, and window sizes of 20 and 40 cM,
as well as infinity (meaning the entire length of the chromosome).

> out.cim.20 <- cim(hyper, n.marcovar=3, window=20)

> out.cim.40 <- cim(hyper, n.marcovar=3, window=40)

> out.cim.inf <- cim(hyper, n.marcovar=3, window=Inf)

We plot the results (for selected chromosomes), along with the LOD scores
obtained by standard interval mapping, as follows. Note that the function
add.cim.covar is used to add dots indicating the locations of the selected
marker covariates.
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> chr <- c(1, 2, 4, 6, 15)

> par(mfrow=c(3,1))

> plot(out, out.cim.20, chr=chr, ylab="LOD score",

+ col=c("blue", "red"), main="window = 20 cM")

> add.cim.covar(out.cim.20, chr=chr, col="green")

> plot(out, out.cim.40, chr=chr, ylab="LOD score",

+ col=c("blue", "red"), main="window = 40 cM")

> add.cim.covar(out.cim.40, chr=chr, col="green")

> plot(out, out.cim.inf, chr=chr, ylab="LOD score",

+ col=c("blue", "red"), main="window = Inf")

> add.cim.covar(out.cim.inf, chr=chr, col="green")

The results are in Fig. 7.17. Note that the imputation of marker geno-
type data was performed separately in the three cases, but that otherwise the
selection of marker covariates was identical. Randomness in the imputations
resulted in some randomness in the choice of marker covariates (the position of
the marker on chromosome 1, and whether a locus on chromosome 6 or chro-
mosome 2 was chosen). The CIM results indicate some enhanced evidence for
the locations of QTL, but the windowing can give an artifactual improvement
in the apparent precision of QTL localization.

7.5 Summary

If a covariate (such as sex or an environmental factor) is associated with the
phenotype of interest, its consideration in QTL analyses may reduce residual
variation and so give increased power to detect QTL. One should be cautious
about the use of secondary phenotypes as covariates, as they are not necessar-
ily independent of genotype. More interesting, however, is the consideration
of interactive covariates, in order to investigate potential QTL × covariate
interactions.

While the use of a genetic marker near a large-effect QTL as a covari-
ate, in order to reduce residual variation and so clarify evidence for further
QTL, is undoubtedly a good thing, we recommend against the general use
of fully-automated composite interval mapping strategies. While composite
interval mapping seeks to convert the search for multiple QTL into a single-
dimensional scan, we prefer to tackle the multidimensional search for multiple
QTL directly. (See Chap. 9.)

7.6 Further reading

Ahmadiyeh et al. (2003) may be the first paper to discuss the assessment
of QTL × covariate interactions. See also Solberg et al. (2004). The use of
covariates in QTL mapping requires a good understanding of multiple linear
regression; for that, we recommend Draper and Smith (1998).
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Figure 7.17. Results of composite interval mapping (CIM) for the hyper data, with
forward selection to three markers and three different choices of window sizes. In
each panel, the results from standard interval mapping are in blue, and those from
CIM are in red. Selected marker covariates are indicated by green dots.

Composite interval mapping was independently developed by Zeng (1993,
1994); Jansen and Stam (1994); Jansen (1993a). There are important differ-
ences in the details of these authors’ approaches, but the central idea is the
same. We have focused on a particular approach to composite interval map-
ping that was implemented in QTL Cartographer (Basten et al., 2002).
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Two-dimensional, two-QTL scans

Most complex traits are understood to be the result of the action of multiple
genetic loci. Some loci may be linked, and the effect of some loci may depend
on the genotype at others (epistasis). In this chapter, we undertake the first
step in the direction of teasing apart the multiple linked or interacting QTL
underlying a quantitative trait, by contemplating two-dimensional, two-QTL
genome scans.

Thus far we have focused on one-dimensional genome scans, in which
one fits all possible single-QTL models. Despite the fact that such genome
scans appear to ignore the reality of complex traits (with multiple loci, pos-
sibly linked or epistatic), they have worked quite well. Part of this success
is attributable to the fact that even if multiple loci are contributing to a
trait, they are often on separate chromosomes and have marginal effects large
enough to be detectable. Because of the independent assortment of chromo-
somes (Mendel’s second law, that genotypes at loci on different chromosomes
are independent), genome scans treating the chromosomes separately give ap-
proximately the same results as would be obtained if one had conditioned
on additive QTL with small effect on other chromosomes. In this sense, one-
dimensional genome scans transcend their one-dimensional nature.

Nevertheless, there are some limitations to adopting a one-dimensional
approach to the essentially multidimensional problem of detecting multiple
QTL. The joint consideration of multiple QTL has three advantages. First,
by taking account of QTL of large effect, one may reduce the residual variation
and so better identify QTL of modest effect. Second, the separation of linked
QTL is best achieved by comparing the fit of a two-QTL model to the best
single-QTL model. (With two distinct peaks in the LOD curve for a given
chromosome, one may be tempted to infer the presence of two QTL, and there
is some literature considering the shape of LOD curves to infer the presence of
multiple linked loci, an effort that we term the phrenology of LOD curves. It is
far better to simply assess the improvement in fit that comes from a two-QTL
model.) Finally, epistasis between QTL may only be assessed via models that
explicitly consider multiple QTL.

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 8,
© Springer Science+Business Media, LLC 2009
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The obvious next step, beyond a one-dimensional genome scan, is consider-
ation of all possible two-locus QTL models in a two-dimensional genome scan.
This allows us to identify potential interactions among QTL and to assess ev-
idence for linked QTL. The interpretation of the results of two-dimensional
genome scans is less straighforward than those of one-dimensional scans. That
is the subject of this chapter.

We begin by considering two-dimensional genome scans in the context of
normally distributed traits. We then discuss the analysis of binary traits. The
special treatment of the X chromosome is covered briefly. Finally, we discuss
methods to handle covariates.

8.1 The normal model

Imagine the presence of precisely two QTL, and consider each pair of positions
in the genome as the putative locations for those QTL. Let (s, t) denote the
pair of positions, and consider the following four models; for now we assume
that the residual variation is normally distributed with constant variance.

Hf : y = μ + β1q1 + β2q2 + γ(q1 × q2) + ε
Ha: y = μ + β1q1 + β2q2 + ε
H1: y = μ + β1q1 + ε
H0: y = μ + ε

(8.1)

In the full model (Hf ), the two QTL are allowed to interact. In the additive
model (Ha), they are assumed to act additively (i.e., the effect of each locus
is the same, no matter the genotype at the other locus). We also consider all
possible single-QTL models (i.e., the results of the single-QTL genome scan),
and the null model (H0), that there are no QTL.

The fit of these models requires that we take account of the missing geno-
type data at the putative QTL, making use of the genotype data at linked
markers. This may again be accomplished in multiple ways; the four methods
discussed in Chap. 4 (maximum likelihood via the EM algorithm, Haley–Knott
regression, the extended Haley–Knott method, and multiple imputation) may
all be readily extended to the two-QTL case. In the case that the two putative
QTL are on the same chromosome, the multiple imputation approach requires
that genotypes at the two positions be drawn from their joint distribution, but
this is easily done (see Sec. D.3). The other methods require the calculation of
the joint genotype probabilities, Pr(q1, q2|M), where M is the observed mul-
tipoint marker genotype data. If one assumes no crossover interference and no
genotyping errors, and if there is complete genotype data at an intervening
marker, then the QTL genotypes will be conditionally independent, given the
marker data, and so

Pr(q1, q2|M) = Pr(q1|M) × Pr(q2|M). (8.2)
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If we wish to allow for genotyping errors, or if there is no fully typed marker
between the putative QTL, then the product rule in equation (8.2) will not
apply. However, with the assumption of no crossover interference, the joint
distribution may be calculated efficiently via the hidden Markov model tech-
nology (see Sec. D.4).

Turning now to the summary and interpretation of two-dimensional, two-
QTL genome scans, let lf (s, t) denote the log10 likelihood for the full model
with QTL at s and t, la(s, t) denote the log10 likelihood for the additive model
with QTL at s and t, l1(s) denote the log10 likelihood for the single-QTL model
with the QTL at s, and l0 denote the log10 likelihood under the null (with no
QTL).

We may immediately define several LOD scores, comparing the fit of the
four models.

LODf (s, t) = lf (s, t) − l0

LODa(s, t) = la(s, t) − l0

LODi(s, t) = lf (s, t) − la(s, t)
LOD1(s) = l1(s) − l0

LODf measures the improvement in the fit of the full two-locus model over
the null model, and indicates evidence for at least one QTL, with allowance for
interaction. Similarly, LODa measures the improvement in the fit of the two-
locus additive model, and indicates evidence for at least one QTL, assuming
no interaction. LODi measures the improvement in the fit of the full model
over that of the additive model, and so indicates evidence for interaction.
LOD1 is simply the LOD score from the one-dimensional, single-QTL genome
scan.

These LOD scores can be difficult to interpret, as LODf and LODa will
be large on any chromosome with clear evidence for a QTL. That is, if the
initial genome scan indicated strong evidence for a QTL at position s0, so that
LOD1(s0) is large, then LODf (s0, t) and LODa(s0, t) will be large for all t.

Most important, in the consideration of the results of a two-dimensional,
two-QTL genome scan, is an assessment of evidence for a second QTL: does
the two-QTL model provide sufficiently improved fit over the best single-QTL
model? We find it valuable to focus on an individual chromosome or pair
of chromosomes. Consider a pair of chromosomes (j, k), including the case
j = k, and let c(s) denote the chromosome for position s. We now consider
the maximum LOD scores over that pair of chromosomes.

Mf (j, k) = max
c(s)=j,c(t)=k

LODf (s, t)

Ma(j, k) = max
c(s)=j,c(t)=k

LODa(s, t)

M1(j, k) = max
c(s)=j or k

LOD1(s)
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So Mf (j, k) is the log10 likelihood ratio comparing the full model with QTL
on chromosomes j and k to the null model, and Ma(j, k) is the analogous thing
for the additive model. Note that the pair of positions at which the full model
is maximized may be different from the pair of positions at which the additive
model is maximized. M1(j, k) is the log10 likelihood ratio comparing the model
with a single QTL on either chromosomes j or k to the null model.

We derive three further LOD scores from the above.

Mi(j, k) = Mf (j, k) − Ma(j, k)
Mfv1(j, k) = Mf (j, k) − M1(j, k)
Mav1(j, k) = Ma(j, k) − M1(j, k)

Mi(j, k) is the log10 likelihood ratio comparing the full model with QTL on
chromosomes j and k to the additive model with QTL on chromosomes j and
k, and so indicates evidence for an interaction between QTL on chromosomes
j and k, assuming that there is precisely one QTL on each chromosome (or,
for j = k, that there are two QTL on the chromosome).

Mfv1(j, k) is the log10 likelihood ratio comparing the full model with QTL
on chromosomes j and k to the single-QTL model, with a single QTL on either
chromosome j or k. Thus, it indicates evidence for a second QTL, allowing
for the possibility of epistasis.

Mav1(j, k) is the log10 likelihood ratio comparing the additive model with
QTL on chromosomes j and k to the single-QTL model, with a single QTL
on either chromosome j or k. Thus, it indicates evidence for a second QTL,
assuming no epistasis.

We focus particularly on Mfv1 and Mav1, concerning evidence for a second
QTL. Mfv1 allows for interactions between the QTL, and so will enable the
detection of loci with limited marginal effect. However, in the absence of a
strong interaction, Mav1 would give greater power to detect a second QTL,
as the additional degrees of freedom in the Mfv1 statistic results in a greater
threshold for significance.

In order to identify loci of interest from the results of a two-dimensional,
two-QTL genome scan, we consider the distributions of the five LOD scores
(Mf (j, k), Mfv1(j, k), Mi(j, k), Ma(j, k) and Mav1(j, k)) under the global null
hypothesis, that there are no QTL. Through either computer simulation or a
permutation test, we may estimate quantiles of the null distributions of these
LOD scores, to be used as thresholds. We use the following rule: A pair of
chromosomes (j, k) is reported as interesting if either of the following holds:

{
Mf (j, k) ≥ Tf and [Mfv1(j, k) ≥ Tfv1 or Mi(j, k) ≥ Ti]

Ma(j, k) ≥ Ta and Mav1(j, k) ≥ Tav1

(8.3)

We are inclined to ignore Mi(j, k) in this rule (i.e., setting Ti = ∞) and use a
common significance level (α = 5 or 10%) for the four remaining thresholds.

The thresholds can be obtained by a permutation test (see below), but
this is extremely time-consuming. For a mouse backcross, we suggest the 5%
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thresholds (Tf , Tfv1, Ti, Ta, Tav1) = (6.0, 4.7, 4.4, 4.7, 2.6). For a mouse inter-
cross, we suggest (Tf , Tfv1, Ti, Ta, Tav1) = (9.1, 7.1, 6.3, 6.3, 3.3). These are
the estimated 95th percentiles of the null distributions of the corresponding
LOD scores, obtained by 10,000 simulations of crosses with 250 individuals,
markers at a 10 cM spacing, and analysis by Haley–Knott regression.

While we are recommending that the thresholds be derived under the
global null hypothesis of no QTL, our interest is really in evidence for a sec-
ond QTL, over and above that for a single QTL. Thus, we really should be
considering the distributions of these statistics in the presence of a single QTL:
how large will Mfv1 and Mav1 be, if there exists precisely one QTL? How-
ever, this is not a simple matter, and the answer would likely depend, to some
extent, on the location and effect of the hypothesized QTL. And so we make
the assumption that the distributions of Mfv1 and Mav1 are approximately
the same, whether there exists a single QTL or no QTL.

Our separate treatment of individual pairs of chromosomes may be con-
fusing initially. Our goal, with this approach, is to identify multiple pairs of
linked or interacting QTL across the genome, in the same way that one seeks,
in a traditional one-dimensional genome scan, to identify QTL on multiple
chromosomes, rather than just the single locus giving the largest LOD score.
Our test statistics Mfv1 and Mav1 are equivalent to the usual sort of likeli-
hood ratio statistics for comparing a model with two QTL to a model with a
single QTL.

Example

As an illustration, we return to the hyper data (see Sec. 2.3). Let us load
the data and run calc.genoprob to calculate the conditional QTL genotype
probabilities, given the available marker data. We use a more coarse grid,
step=2.5, for the sake of computational speed.

> library(qtl)

> data(hyper)

> hyper <- calc.genoprob(hyper, step=2.5, err=0.001)

The two-dimensional, two-QTL scan is accomplished with the function
scantwo, which operates much like scanone, though computation time is
greatly increased. By default, the analysis is performed by maximum like-
lihood via the EM algorithm (method="em"). We use verbose=FALSE to sup-
press tracing information.

> out2 <- scantwo(hyper, verbose=FALSE)

The output has class "scantwo", and so may be plotted with plot.scantwo
and summarized with summary.scantwo. Each of these functions includes con-
siderable flexibility. First, let us plot the two-dimensional scan results for
selected chromosomes.

> plot(out2, chr=c(1,4,6,7,15))
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Figure 8.1. LOD scores, for selected chromosomes, from a two-dimensional, two-
QTL genome scan with the hyper data. LODi is displayed in the upper left triangle;
LODf is displayed in the lower right triangle. In the color scale on the right, numbers
to the left and right correspond to LODi and LODf , respectively.

The result is shown in Fig. 8.1. By default, LODi is plotted in the upper
left triangle, and LODf is plotted in the lower right triangle. In the color scale
on the right, the numbers on the left and right correspond to LODi and LODf ,
respectively. Note that LODf (lower right triangle) is large for chromosome
4 considered with any other chromosome. These “tails” in LODf are due to
the strong evidence for a QTL on chromosome 4, and the fact that LODf

compares the full two-QTL model to the null model, and so is large in the
presence of evidence for at least one QTL. Further note the evidence for an
interaction between loci on chromosomes 6 and 15. (LODi, in the upper left
triangle, is large.)

In place of LODf , we prefer to focus on LODfv1, which indicates ev-
idence for a second QTL, allowing for epistasis. Above, we had defined
Mfv1(j, k) = Mf (j, k) − M1(j, k), for a pair of chromosomes (j, k). We now
consider LODfv1(s, t) = LODf (s, t)−M1(j, k), though replacing negative val-
ues with 0. LODav1(s, t) may be defined similarly.

We may plot LODfv1 in the lower right triangle, in place of LODf , with the
argument lower="cond-int", as follows. (One may also use lower="fv1".)
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Figure 8.2. LOD scores, for selected chromosomes, from a two-dimensional, two-
QTL genome scan with the hyper data. LODi is displayed in the upper left triangle;
LODfv1 is displayed in the lower right triangle. In the color scale on the right,
numbers to the left and right correspond to LODi and LODfv1, respectively.

> plot(out2, chr=c(1,4,6,7,15), lower="cond-int")

In the plot of LODfv1, in Fig. 8.2, the lower right triangle is cleaned up
considerably. We now see strong evidence for a pair of QTL on chromosomes
1 and 4, and on chromosomes 6 and 15. (That is, for these pairs, the fit of the
two-QTL model, with one QTL on each chromosome, considerably improves
on the fit of the best single-QTL model, with a single QTL on one or the other
chromosome.) The tails that came from the chromosome 4 locus have been
eliminated, making the figure more easily interpreted.

One may also plot LODa and/or LODav1, and what is plotted in the upper
triangle may be modified in the same way as we modified what was plotted
in the lower right triangle. For example, we may plot LODa and LODav1

as follows. To get LODav1 in the lower right triangle, we may either use
lower="cond-add" or lower="av1".

> plot(out2, chr=c(1,4,6,7,15), upper="add", lower="cond-add")

The result is displayed in Fig. 8.3. Note that LODa, like LODf , has the
same “tails” problem (with large LOD scores appearing on chromosome 4
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Figure 8.3. LOD scores, for selected chromosomes, from a two-dimensional, two-
QTL genome scan with the hyper data. LODa is displayed in the upper left triangle;
LODav1 is displayed in the lower right triangle. In the color scale on the right,
numbers to the left and right correspond to LODa and LODav1, respectively.

together with any other chromosome). Also note that, for chromosomes 6 and
15, the evidence for a second QTL has disappeared. These loci are seen as
important only when they are allowed to interact.

Recall the two peaks in the LOD curve for chromosome 1 with the hyper
data. (For example, see Fig. 4.6 on page 88.) We are thus particularly inter-
ested in evidence for a second QTL on chromosome 1. We may plot LODav1

and LODfv1 for chromosome 1 as follows.

> plot(out2, chr=1, lower="cond-int", upper="cond-add")

The results, in Fig. 8.4, indicate little evidence for a second QTL on chro-
mosome 1. Inclusion of a second locus increases the log10 likelihood by ∼ 1.5.

The plots of the results of the two-dimensional, two-QTL scan are not so
simple to interpret as those of a one-dimensional, single-QTL scan. Thus, we
place greater reliance on the numeric summaries from summary.scantwo. Use
of summary(out2) would produce a table giving a single row for each pair of
chromosomes. With 20 chromosomes, that is a table with 210 rows. That is an
unwieldy amount of information to sift through, and so it is best to provide a
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Figure 8.4. LOD scores, for chromosome 1, from a two-dimensional, two-QTL
genome scan with the hyper data. LODav1 is displayed in the upper left triangle;
LODfv1 is displayed in the lower right triangle. In the color scale on the right,
numbers to the left and right correspond to LODav1 and LODfv1, respectively.

set of thresholds, (Tf , Tfv1, Ti, Ta, Tav1); then, only those chromosomes satis-
fying the rule in equation (8.3) (page 216) will be displayed.

For example, we may use the thresholds (Tf , Tfv1, Ti, Ta, Tav1) = (6.0, 4.7,
4.4, 4.7, 2.6), suggested by simulations.

> summary(out2, thresholds=c(6.0, 4.7, 4.4, 4.7, 2.6))

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a
c1:c4 68.3 30 14.24 6.6 0.305 68.3 30.0
c6:c15 60.0 18 7.27 5.4 3.458 25.0 20.5

lod.add lod.av1
c1:c4 13.94 6.30
c6:c15 3.81 1.95

There is clear evidence for a pair of QTL on chromosomes 1 and 4, and
this is true whether or not an interaction is allowed (Mfv1 = 6.6 and Mav1 =
6.3). We see little evidence for an interaction between these loci (Mi = 0.3).
Note that (pos1f, pos2f) indicate the estimated positions of the QTL (on
chromosomes 1 and 4, respectively) under the full model, while (pos1a, pos2a)
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are the estimated positions under the additive model. These are allowed to be
different, though for the chromosomes (1,4) pair, the likelihoods for the full
and additive models happened to be maximized at the same pair of positions.

The summary also indicates strong evidence for the pair of QTL on chro-
mosomes 6 and 15, though only if an interaction is allowed (Mfv1 = 5.4 and
Mav1 = 1.9), and here the full model was maximized at a different pair of po-
sitions than the additive model. In the summary, the evidence for interaction,
Mi = 3.5 is the difference Mf − Ma, or equivalently Mfv1 − Mav1, with the
full and additive models allowed to be maximized at different positions.

As mentioned above, we are inclined to ignore the value of Mi, by setting
Ti = ∞. This is accomplished as follows, though here the same summary is
obtained.

> summary(out2, thresholds=c(6.0, 4.7, Inf, 4.7, 2.6))

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a
c1:c4 68.3 30 14.24 6.6 0.305 68.3 30.0
c6:c15 60.0 18 7.27 5.4 3.458 25.0 20.5

lod.add lod.av1
c1:c4 13.94 6.30
c6:c15 3.81 1.95

The thresholds above were obtained by simulation of a backcross with a
genome modelled after that of the mouse, markers at a 10 cM spacing, and
with Haley–Knott regression used for the analysis. While these may serve as
a reasonably general guide, it would be better to use a permutation test with
the observed data, so that the results would take account of the phenotype
distribution, marker density, and pattern of missing genotype data. A permu-
tation test may be accomplished with scantwo by specifying the argument
n.perm, though the required computation time may be daunting.

Because a selective genotyping strategy was used for the hyper data, it
is best to use a stratified permutation test, splitting the individuals into two
strata according to the amount of genotype data available, and permuting
the phenotypes relative to the genotypes separately within the strata. This
may be accomplished by creating a vector indicating the two strata, to be
specified via the perm.strata argument in scantwo. Thus, we perform the
permutation test for the two-dimensional, two-QTL genome scan as follows.

> strat <- (nmissing(hyper) > 50)

> operm2 <- scantwo(hyper, n.perm=1000, perm.strat=strat)

The permutation results have class "scantwoperm". We may use sum-
mary.scantwoperm to get estimated thresholds.

> summary(operm2)

bp (1000 permutations)
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full fv1 int add av1 one
5% 6.13 4.86 4.34 4.64 3.04 2.82
10% 5.63 4.48 3.95 4.27 2.73 2.48

The 5% thresholds are similar to those presented previously, though Tav1 is a
bit larger.

Because the computation time for the permutations can be on the order of
100 hours, one may want to split the calculations across multiple computers.
In doing so, one should be careful about the seed for the random number
generator. This is saved as the object .Random.seed in the R workspace. If
multiple sets of permutations are run in parallel from the same R workspace,
one may unintentionally use the same seed, and so obtain identical results, for
each set of permutations. Thus, one should call set.seed separately for each
set.

The permutations above could be run in two batches using the following
pieces of code.

> set.seed(85842518)

> operm2a <- scantwo(hyper, n.perm=500, perm.strat=strat)

> save(operm2a, file="perm2a.RData")

> set.seed(85842519)

> operm2b <- scantwo(hyper, n.perm=500, perm.strat=strat)

> save(operm2b, file="perm2b.RData")

The two bits can then be combined with the c.scantwoperm function.

> load("perm2a.RData")

> load("perm2b.RData")

> operm2 <- c(operm2a, operm2b)

The same technique may also be used for a permutation test in a one-
dimensional genome scan, and there is a function c.scanoneperm for combin-
ing multiple batches of permutation replicates.

We may include the permutation results in the call to summary.scantwo,
so that the thresholds are calculated automatically, and so that p-values may
be calculated. In place of thresholds, we must provide significance levels. We
may ignore the Mi values by giving a significance level of 0 (which corresponds
to Ti = ∞). Using 20% significance levels, we obtain the following.

> summary(out2, perms=operm2, alphas=c(0.2, 0.2, 0, 0.2, 0.2),

+ pvalues=TRUE)

pos1f pos2f lod.full pval lod.fv1 pval lod.int pval
c1:c4 68.3 30.0 14.24 0.000 6.60 0.003 0.305 1.00
c3:c3 37.2 44.7 4.53 0.493 3.75 0.348 0.215 1.00
c6:c15 60.0 18.0 7.27 0.013 5.40 0.023 3.458 0.25
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pos1a pos2a lod.add pval lod.av1 pval
c1:c4 68.3 30.0 13.94 0.000 6.30 0.000
c3:c3 37.2 44.7 4.32 0.092 3.53 0.011
c6:c15 25.0 20.5 3.81 0.205 1.95 0.444

Note that, if we had wanted to consider a threshold on the interaction LOD
score, Mi, we would have instead typed alphas=rep(0.2,5), or, as short
hand, simply alphas=0.2.

In addition to the loci on chromosomes 1, 4, 6 and 15, we see evidence for
a pair of linked, additive QTL on chromosome 3. But these are very tightly
linked (separated by just 7.5 cM), and so may be an artifact.

Two-dimensional, two-QTL scans often show artifacts along the diagonal
(that is, for two tightly linked QTL), particularly in cases in which two pu-
tative loci are not separated by a typed marker. One thus may find value
in the utility function clean.scantwo, which replaces LOD scores, for pairs
of positions that are not separated by at least one marker, with 0, and so
eliminates the bulk of such artifacts. This will be done automatically within
scantwo if one uses the argument clean.output=TRUE, and this is particularly
recommended for permutations.

We may plot the two-dimensional scan results for chromosome 3, zeroing
out the LOD scores for pairs of positions that are not separated by a marker,
as follows.

> plot(clean(out2), chr=3, lower="cond-add")

In the results, in Fig. 8.5, large blue squares along the diagonal correspond
to pairs of positions that are not separated by a marker. Note that the peak
in the LOD surface remains. This may also be seen in the summary of the
“cleaned” results:

> summary(clean(out2), perms=operm2,

+ alphas=c(0.2, 0.2, 0, 0.2, 0.2))

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a
c1:c4 68.3 30.0 14.24 6.60 0.305 68.3 30.0
c3:c3 37.2 44.7 4.53 3.75 0.215 37.2 44.7
c6:c15 60.0 18.0 7.27 5.40 3.458 25.0 20.5

lod.add lod.av1
c1:c4 13.94 6.30
c3:c3 4.32 3.53
c6:c15 3.81 1.95

Let us study the effects of the putative linked loci on chr 3 via the func-
tions plot.pxg and effectplot. The effectplot function requires imputed
genotype data, and so we first run sim.geno, though only for chromosome 3.

> hyperc3 <- sim.geno(subset(hyper, chr=3), step=2.5,

+ error.prob=0.001, n.draws=256)
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Figure 8.5. LOD scores, for chromosome 3, from a two-dimensional, two-QTL
genome scan with the hyper data, with values for pairs of positions that are not
separated by a marker replaced by 0. LODi is displayed in the upper left triangle;
LODav1 is displayed in the lower right triangle. In the color scale on the right,
numbers to the left and right correspond to LODi and LODav1, respectively.

We now use find.marker to find the names of the markers nearest the
two inferred QTL, for use in plot.pxg. For the function effectplot, we may
consider“pseudomarkers” (that is, the positions on the grid between markers),
which we refer may refer to directly by their chromosome and cM position.
For example, we use "3@37.2" to refer to the pseudomarker closest to 37.2 cM
on chromosome 3.

> mar <- find.marker(hyperc3, "3", c(37.2, 44.7))

Now we make the plots, which appear in Fig. 8.6. Note the use of ylim
to adjust the y-axis limits in effectplot, so that the limits in the two plots
correspond.

> par(mfrow=c(1,2))

> plot.pxg(hyperc3, marker=mar)

> effectplot(hyperc3, mname1="3@37.2", mname2="3@44.7",

+ ylim=range(pull.pheno(hyperc3,1)))
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Figure 8.6. The effect of two putative linked QTL on chromosome 3 on the blood
pressure phenotype in the hyper data. Left: a dot plot of the phenotype as a func-
tion of marker genotypes, with black dots corresponding to observed genotypes and
red dots corresponding to missing (and so imputed) genotypes. Right: estimated
phenotype averages for each of the four two-locus genotype groups, at the inferred
locations of the two putative QTL.

Figure 8.6 may require a bit of study. In the left panel, with the output
from plot.pxg, the red dots correspond to individuals missing genotypes at
one or both markers (their two-locus genotypes are imputed from the available
data), while the black dots correspond to individuals with genotype data at
both markers. Note that the two recombinant classes have quite different
phenotype averages: individuals that are BB at D3Mit11 and BA at D3Mit14
have low blood pressure, while those that are BA at D3Mit11 and BB at
D3Mit14 have high blood pressure. The same feature is seen in the output
from effectplot: the two QTL appear to have effects of opposite sign, but
of approximately the same magnitude. Two linked QTL that have effects of
opposite sign are said to be linked in repulsion. With QTL linked in repulsion,
the region will exhibit little marginal effect, but if both loci are considered,
the two may stand out clearly. With QTL linked in coupling (having effects
of the same sign), on the other hand, a marginal effect will be apparent, but
it will be difficult to separate the two loci.

We should, of course, also study the effects of the loci on chromosomes
1, 4, 6, and 15. We will again use sim.geno to impute the missing genotype
data, and effectplot to plot the estimated phenotype averages as a function
of QTL genotypes, considering just two QTL at a time.



8.1 The normal model 227

95

100

105

110

4@30.0

bp

BB BA

BB
BA

1@68.3

95

100

105

110

15@18.0

bp

BB BA

BB
BA

6@60.0

Figure 8.7. Estimated average blood pressure as a function of genotype at loci on
chromosomes 1 and 4 (left panel) or chromosomes 6 and 15 (right panel), for the
hyper data.

> hypersub <- sim.geno(subset(hyper, chr=c(1,4,6,15)), step=2.5,

+ error.prob=0.001, n.draws=256)

> par(mfrow=c(1,2))

> effectplot(hypersub, mname1="1@68.3", mname2="4@30",

+ ylim=c(95, 110))

> effectplot(hypersub, mname1="6@60", mname2="15@18",

+ ylim=c(95, 110))

As seen in Fig. 8.7, the QTL on chromosomes 1 and 4 are seen to act
approximately additively: the effect of the chromosome 4 locus is the same for
each of the two genotypes at the chromosome 1 locus, and vice versa. Also,
both loci have effects of the same sign: BB individuals have higher blood
pressure than BA individuals.

The chromosome 6 and 15 loci, on the other hand, show clear epistasis:
the chromosome 15 locus has effect only in the presence of the BA genotype
at chromosome 6. Similarly, the chromosome 6 locus has effect only in the
presence of the BB genotype at chromosome 15. In fact, only individuals that
are BB at chromosome 15 and BA at chromosome 6 show high blood pressure;
the other three genotype groups have similar, low blood pressure levels.
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8.2 Binary traits

While the discussion in the previous section assumed a continuously varying
phenotype, with residual variation following a normal distribution, the same
techniques may be applied in the case of a binary phenotype.

In the full model (with two interacting QTL), we allow a separate pen-
etrance for each two-locus genotype. That is, Pr(y = 1|q1, q2) is estimated
separately for each possible pair of QTL genotypes (q1, q2). If complete geno-
type data were available at the two putative QTL, the penetrance would
be estimated by the proportion of individuals with that particular two-locus
genotype that were affected.

In the additive QTL model, on the other hand, one must introduce a link
function, as for the use of covariates with a binary trait (Sec. 7.3). In R/qtl, the
logit link function, ln[π/(1− π)], is used. And so, taking π = Pr(y = 1|q1, q2),
the additive model is then

ln[π/(1 − π)] = μ + β1q1 + β2q2 (8.4)

The meaning of “additive” (and so the meaning of “interaction” or “epistasis”)
depends on the particular link function, just as, for a continuously varying
phenotype, the meaning depends on the choice of transformation. With the
logit link, we assume, in the additive model, that the effect of a change in
the genotype at the first QTL is to modify the log odds for being affected by
a constant multiplicative factor, independent of the genotype at the second
QTL. (The odds corresponding to a probability π is the ratio π/(1− π). And
so with a probability π = 2/3, the odds are 2:1.)

Aside from this need for a link function, the two-dimensional, two-QTL
genome scan for a binary phenotype is directly analogous to that for a contin-
uously varying phenotype with the normality assumption. We calculate the
same sorts of LOD scores, and we use the same techniques to interpret the re-
sults. The link function is used to accommodate the fact that the penetrance,
Pr(y = 1|q1, q2), takes values between 0 and 1, while the right-hand side of
equation (8.4) need not be between 0 and 1. The link function transforms the
penetrance so that both sides of equation (8.4) are unbounded.

Example

We return to the nf1 data of Reilly et al. (2006), concerning neurofibromatosis
type 1 (see Sec. 7.3). This is a backcross, with all individuals carrying the
NPcis mutation, which may have come from their mother or from their father.

We must load the R/qtlbook package, and then the data, and then we
drop one marker with completely missing genotype data.

> library(qtlbook)

> data(nf1)

> nf1 <- drop.nullmarkers(nf1)
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In the single-QTL scan results (see Fig. 7.13 on page 203), we saw a big
difference between individuals receiving the NPcis mutation from their mother
(which showed linkage to chromosome 15) and those receiving the mutation
from their father (which showed linkage to chromosome 19). Thus, we will
perform the two-dimensional scan separately in these groups.

We first calculate the conditional QTL genotype probabilities (we use a
coarse grid, for the sake of computational speed), and pull out the indicator
for the origin of the NPcis mutation from the phenotype data.

> nf1 <- calc.genoprob(nf1, step=2.5, error.prob=0.001)

> frommom <- pull.pheno(nf1,"frommom")

Now we run the two-dimensional, two-QTL genome scans. Note the use
of model="binary" to indicate analysis for a binary trait, which must take
values 0 and 1. Also note that R/qtl uses maximum likelihood via the EM
algorithm; while Haley–Knott regression or multiple imputation could also be
used to deal with missing genotype data for a binary trait, these approaches
have not yet been implemented in R/qtl.

> out.frommom <- scantwo(subset(nf1, ind=(frommom==1)),

+ model="binary")

> out.fromdad <- scantwo(subset(nf1, ind=(frommom==0)),

+ model="binary")

Before proceeding further, let us perform permutation tests, so that we
may make sense of the results. The computations take a very long time, and so
one may wish to split the calculations across multiple computers (see Sec. 8.1,
page 223).

> operm.frommom <- scantwo(subset(nf1, ind=frommom==1),

+ model="binary", n.perm=1000)

> operm.fromdad <- scantwo(subset(nf1, ind=frommom==0),

+ model="binary", n.perm=1000)

Significance thresholds may be obtained with the summary.scantwoperm
function. Note that these are a bit smaller than those obtained in Sec. 8.1 (for
the hyper data, with a normal model).

> summary(operm.frommom)

affected (1000 permutations)
full fv1 int add av1

5% 5.68 4.46 4.13 4.54 2.28
10% 5.39 4.11 3.82 4.09 2.06

> summary(operm.fromdad)

affected (1000 permutations)
full fv1 int add av1

5% 5.58 4.40 4.11 4.48 2.25
10% 5.26 4.09 3.74 4.08 2.02
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Let us study the results for the subset receiving the NPcis mutation from
their mother. We will use a significance level of α = 0.2 as a cutoff, ignoring
the interaction LOD score, Mi.

> summary(out.frommom, perms=operm.frommom, pvalues=TRUE,

+ alphas=c(0.2, 0.2, 0, 0.2, 0.2))

pos1f pos2f lod.full pval lod.fv1 pval lod.int pval
c7:c17 45 3 5.74 0.046 4.25 0.076 3.62 0.151

pos1a pos2a lod.add pval lod.av1 pval
c7:c17 40 43 2.11 0.915 0.622 1

We see some evidence for interacting QTL on chromosomes 7 and 17.
Note that linkage was previously seen to chromosome 15; it does not show up
in this summary, as no one locus, when added to the chromosome 15 locus,
sufficiently improves the fit. The chromosome 7 and 17 loci appear interesting
only when considered together.

We may plot the two-dimensional scan results for chromosomes 7, 15 and
17 as follows. The result is in Fig. 8.8. LODi appears in the upper left triangle,
and LODfv1 appears in the lower right.

> plot(out.frommom, chr=c(7,15,17), lower="cond-int")

Let us now turn to the results for the subset receiving the NPcis mutation
from their father. We again use a significance level of α = 0.2 as a cutoff.

> summary(out.fromdad, perms=operm.fromdad, pvalues=TRUE,

+ alphas=c(0.2, 0.2, 0, 0.2, 0.2))

pos1f pos2f lod.full pval lod.fv1 pval lod.int pval
c9:c19 58 0 5.52 0.055 2.53 0.933 0.504 1

pos1a pos2a lod.add pval lod.av1 pval
c9:c19 55.5 0 5.02 0.018 2.03 0.095

We see evidence for a QTL on chromosome 9, in addition to the QTL
previously identified on chromosome 19. The loci show no evidence of interac-
tion. We plot LODi and LODav1 for this pair of chromosomes as follows. See
Fig. 8.9. The evidence for an interaction is negligible.

> plot(out.fromdad, chr=c(9, 19), lower="cond-add")

Let us complete our investigations with plots of the effects of the putative
QTL pairs. We will use effectplot, though it is not ideal for a binary out-
come. We first use sim.geno to perform multiple imputations of the genotypes
at the putative QTL.

> nf1.fm <- sim.geno(subset(nf1, chr=c(7,17), ind=(frommom==1)),

+ step=2.5, error.prob=0.001, n.draws=256)

> nf1.fd <- sim.geno(subset(nf1, chr=c(9,19), ind=(frommom==0)),

+ step=2.5, error.prob=0.001, n.draws=256)
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Figure 8.8. LOD scores, for selected chromosomes, from a two-dimensional, two-
QTL genome scan with the nf1 data, for those individuals receiving the NPcis
mutation from their mother. LODi is displayed in the upper left triangle; LODfv1

is displayed in the lower right triangle. In the color scale on the right, numbers to
the left and right correspond to LODi and LODfv1, respectively.

We now create the plots, which appear in Fig. 8.10. We refer to pseudo-
markers (that is, the positions on the grid between markers), directly by their
chromosome and cM position.

> par(mfrow=c(1,2))

> effectplot(nf1.fm, mname1="7@45", mname2="17@3",

+ ylim=c(0,1))

> effectplot(nf1.fd, mname1="9@55.5", mname2="19@0",

+ ylim=c(0,1))

In the left panel of Fig. 8.10, we see that, for the individuals receiving the
NPcis mutation from their mother, those who are BB at both the chromosome
7 and 17 loci are largely unaffected, while in the other three groups, about
half are affected. The right panel shows that, for the individuals receiving
the mutation from their father, the putative QTL on chromosomes 9 and 19
display approximately additive effects. (However, recall that with the logit
link, additivity is in terms of log odds and so would not give parallel lines in
this plot.)
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Figure 8.9. LOD scores, for selected chromosomes, from a two-dimensional, two-
QTL genome scan with the nf1 data, for those individuals receiving the NPcis
mutation from their father. LODi is displayed in the upper left triangle; LODav1 is
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8.3 The X chromosome

If you thought the discussion of the X chromosome in single-QTL analysis
(Sec. 4.4) was painful, you may wish to skip this section. In a two-dimensional,
two-QTL genome scan, the two-dimensional scan within the X chromosome
needs to be treated specially, and also the scans for the X chromosome
against each autosome require special treatment. There are several technical
difficulties.

First, as in the case of the single-QTL scan, additional covariates may be
needed under the null hypothesis (see Table 4.3 on page 112), in order to avoid
spurious linkage to the X chromosome as a result of sex- or cross-direction-
differences in the phenotype. These will be needed for the case of two QTL on
the X chromosome, and for the case of one QTL on the X chromosome and
one on an autosome. Moreover, in the latter situation, we require the results
of the single-QTL scan on the autosomes with these covariates included, for
the comparison of the two-QTL models to a single-QTL model.
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Figure 8.10. Estimated proportions of affected individuals as a function of genotype
at two putative QTL for individuals receiving the NPcis mutation from their mother
(left panel) or from their father (right panel), for the nf1 data.

Table 8.1. Observed two-locus genotypes on the X chromosome, for a backcross
with both sexes.

QTL 1
QTL 2 AA AB AY BY

AA * *
AB * *
AY * *
BY * *

Second, in the case of two QTL on the X chromosome, we must recognize
that not all two-locus genotypes will be observed. For example, consider the
case of a backcross with both sexes. Females will have genotype AA or AB
at a locus on the X chromosome, and males will be hemizygous A or B. In
a single-QTL scan on the X, we consider these four groups, AA:AB:AY:BY.
But in the consideration of two QTL on the X chromosome, only eight of the
sixteen two-locus genotypes can actually be observed. (See Table 8.1.) While
this is not a complex issue, the extension of algorithms for use with the X
chromosome does require some care.

Finally, the degrees of freedom associated with our various LOD score
statistics can vary greatly among the three possible cases: both putative QTL
are on autosomes, one QTL is on an autosome and one is on the X chro-
mosome, or both QTL are on the X chromosome. For example, consider our
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Table 8.2. The number of estimated parameters for each model and the number
of degrees of freedom for each test statistic, for a two-QTL scan in the case of an
intercross with both sexes and both directions, according to the chromosome types
for the two putative QTL.

No. parameters No. df
chr type f a 1 0 f fv1 i a av1

A:A 9 5 3 1 8 6 4 4 2
A:X 18 8 6 3 15 12 10 8 2
X:X 12 9 6 3 9 3 3 6 3

most complex situation, of an intercross with both sexes and both cross di-
rections. The number of parameters for each of the four possible models and
the number of degrees of freedom for each of the five possible test statistics,
are displayed in Table 8.2. In the comparison of the full model (with two in-
teracting QTL) to the best single-QTL model, with the Mfv1 statistic, there
are six degrees of freedom if both putative QTL reside on autosomes, three
degrees of freedom if both putative QTL reside on the X chromosome, and
twelve degrees of freedom if one QTL is on an autosome and one is on the X
chromosome.

Thus, in assessing the statistical significance of the results of a two-
dimensional, two-QTL scan, one must consider these three cases (illustrated
in Fig. 8.11) separately, just as the autosomes and the X chromosome were
considered separately in the single-QTL analysis (Sec. 4.4.2). We must admit
that the details on how this should be done have not yet been worked out. For
single-QTL analysis, we considered the autosomal and X chromosome genetic
lengths. In the two-dimensional, two-QTL scan, one might consider the areas
of the relevant regions.

Example

Let us briefly return to the gutlength data, described in Sec. 7.1. These data
concern an intercross with both sexes and both directions.

We first load the data (which are contained in the R/qtlbook package),
and run calc.genoprob. We will use a 5 cM grid, for the sake of speed, and
because we will be taking only a cursory look at the results.

> data(gutlength)

> gutlength <- calc.genoprob(gutlength, step=5,

+ error.prob=0.001)

We now run scantwo, using the defaults (maximum likelihood via the EM
algorithm for the normal model).

> out.gl <- scantwo(gutlength)
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A:A A:X

X:X

Figure 8.11. Regions in a two-dimensional, two-QTL scan, with the X chromosome
included, that require separate treatment.

A plot of LODfv1 and LODi is obtained as follows. (See Fig. 8.12.) We
use alternate.chrid=TRUE so that the chromosome IDs may be more easily
distinguished.

> plot(out.gl, lower="cond-int", alternate.chrid=TRUE)

Note the high LOD scores for the X chromosome when considered with
any other chromosome: the segments for the X chromosome, on the top and
right edges of the plot, really stand out. This is largely due to the fact that
the degrees of freedom for these LOD score statistics are much larger for the
A:X case (see Table 8.2). These portions of the two-dimensional scan require
separate significance thresholds.

If we apply the simulation-derived significance thresholds for an intercross,
cited in Sec. 8.1, we obtain the following summary.

> summary(out.gl, thresholds=c(9.1, 7.1, 6.3, 6.3, 3.3))

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a
c5:cX 20 55 11.62 5.19 1.671 20 60
cX:cX 70 75 7.82 4.51 0.839 70 75

lod.add lod.av1
c5:cX 9.95 3.52
cX:cX 6.98 3.67

We see evidence for QTL on chromosomes 5 and X (seen previously in the
single-QTL scan; see Fig. 7.5 on page 188), and possibly two linked QTL on
the X chromosome. But the significance thresholds we have used are likely
inappropriate, and so these results should be viewed with a great deal of
skepticism.
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Figure 8.12. LOD scores from a two-dimensional, two-QTL genome scan with the
gutlength data. LODi is displayed in the upper left triangle; LODfv1 is displayed
in the lower right triangle. In the color scale on the right, numbers to the left and
right correspond to LODi and LODfv1, respectively.

8.4 Covariates

As discussed in Chap. 7, it may be useful to take account of covariates, such
as sex, in QTL analyses. If a covariate is associated with the phenotype, its
consideration will reduce residual variation and so can enhance our ability
to detect QTL. Additive covariates may be easily incorporated into a two-
dimensional, two-QTL genome scan. With inclusion of an additive covariate,
x, the four models in equation (8.1) (page 214) become the following.

Hf : y = μ + βxx + β1q1 + β2q2 + γ(q1 × q2) + ε
Ha: y = μ + βxx + β1q1 + β2q2 + ε
H1: y = μ + βxx + β1q1 + ε
H0: y = μ + βxx + ε

(8.5)

LOD scores may be calculated as before (see Sec. 8.1), and the inter-
pretation of the two-dimensional scan results are essentially unchanged. (As
discussed in Sec. 7.1, one should be cautious about the use of secondary phe-
notypes as covariates, as they will not necessarily be independent of QTL
genotype.)
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On the other hand, interactive covariates in a two-dimensional scan can be
cumbersome, and the results are not easy to interpret. In R/qtl, interactive
covariates in scantwo, indicated via the intcovar argument, are allowed to
interact with both QTL, as well as with the QTL × QTL interaction. And so
the four models become the following.

Hf : y = μ + βxx + β1q1 + β2q2 + γ12(q1 × q2)+
γx1(x × q1) + γx2(x × q2) + γx12(x × q1 × q2) + ε

Ha: y = μ + βxx + β1q1 + β2q2 + γx1(x × q1) + γx2(x × q2) + ε
H1: y = μ + βxx + β1q1 + γx1(x × q1) + ε
H0: y = μ + βxx + ε

(8.6)

The five LOD scores may be calculated as before, but the interpretation is
rather different, as the LOD scores incorporate evidence for QTL × covariate
interactions. Consider, for example, a binary covariate, such as sex, coded as
x = 0 (female) or 1 (male). The interaction LOD score, LODi, being large
indicates evidence for a QTL × QTL interaction in at least one of the two
sexes.

We seldom make use of interactive covariates in a two-dimensional, two-
QTL genome scan. While they may be useful, we prefer to postpone further
investigation of QTL × covariate interactions to the more general exploration
of multiple-QTL models, to be discussed in the next chapter.

Example

We return to the gutlength data, considered in the previous section and
described in Sec. 7.1. First, we construct the covariates that we had used in
Chap. 7.

> cross <- as.numeric(pull.pheno(gutlength,"cross"))

> frommom <- as.numeric(cross < 3)

> forw <- as.numeric(cross == 1 | cross == 3)

> sex <- as.numeric(pull.pheno(gutlength,"sex") == "M")

> crossX <- cbind(frommom, forw, frommom*forw)

> x <- cbind(sex, crossX)

Now, we perform the two-dimensional, two-QTL genome scan, with these
additive covariates. It may take quite a bit of time.

> out.gl.a <- scantwo(gutlength, addcovar=x)

Let us plot the differences in the LOD scores obtained with and without
the use of the additive covariates. We use allow.neg=TRUE so that the range
of values includes negative numbers. Note that the differences are calculated
via the function -.scantwo.

> plot(out.gl.a - out.gl, allow.neg=TRUE, alternate.chrid=TRUE)
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Figure 8.13. Differences in LOD scores calculated with and without the use of
covariates, from a two-dimensional, two-QTL genome scan with the gutlength data.
Differences in LODi are displayed in the upper left triangle; and differences in LODf

are displayed in the lower right triangle. In the color scale on the right, numbers to
the left and right correspond to LODi and LODf , respectively.

Note that the LOD scores have gone up and down by as much as one unit
(Fig. 8.13). However, the location of the maximum LOD score is the same,
and has not changed much with the inclusion of the covariates. (We use the
function max.scantwo, for pulling out the peak with maximum LOD score
from a two-dimensional, two-QTL genome scan.)

> max(out.gl)

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a
c5:cX 20 55 11.6 5.19 1.67 20 60

lod.add lod.av1
c5:cX 9.95 3.52

> max(out.gl.a)

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a
c5:cX 20 55 11.6 5.06 1.44 20 60

lod.add lod.av1
c5:cX 10.2 3.61
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8.5 Summary

Most QTL will be seen in the results of the traditional, single-QTL genome
scan. However, two-dimensional, two-QTL genome scans, while computation-
ally intensive, provide the opportunity to identify additional QTL, particularly
those involved in epistatic interactions. In addition, the two-dimensional scan
can give more clear evidence regarding linked QTL. This is particularly true
in the case that two QTL are linked in repulsion (having effects of opposite
sign): such QTL will show little marginal effect, but may stand out clearly
when the two loci are considered jointly.

The interpretation of the results of a two-dimensional scan is not simple.
We have described one approach to summarize the results, with an emphasis
on measuring evidence for the presence of a second QTL. It is important to
emphasize that the results of a two-dimensional scan need to be considered
in combination with the initial single-QTL analysis. Moreover, the findings
should be considered preliminary, to be used as a starting point for the fit and
exploration of multiple-QTL models.

The X chromosome presents additional difficulties in the context of a two-
dimensional genome scan. The varying degrees of freedom attached to different
LOD scores (in the case of two QTL on autosomes, two QTL on the X chro-
mosome, or one QTL on an autosome and one on the X chromosome) imply
that separate significance thresholds will be required, but how this should be
done remains a matter for research.

It is often important to consider covariates within QTL analyses. The
inclusion of additive covariates in a two-dimensional, two-QTL genome scan
is simple. Interactive covariates, however, are difficult to work with in this
context, and so we have seldom made use of them in two-dimensional scans.

8.6 Further reading

Haley and Knott (1992) were the first to propose an exhaustive search over all
two-QTL models. Sugiyama et al. (2001) applied the approach to the hyper
data, which we have used extensively as an example. Sen and Churchill (2001)
helped to solidify the use of two-dimensional, two-QTL scans as a general tech-
nique. Ljungberg et al. (2004) described an algorithm for identifying the opti-
mal pair of loci in a two-dimensional scan without performing an exhaustive
search.
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Fit and exploration of multiple-QTL models

The majority of efforts for QTL mapping have used a hypothesis testing ap-
proach. For example, in single-QTL analyses (Chap. 4), one considers each
genomic position, one at a time, and asks the question, “Is there a QTL
here?” A primary focus is on the adjustment for the number of tests (i.e., for
the scan across the genome), to control the rate of false positive declarations
of linkage.

A two-dimensional, two-QTL genome scan (Chap. 8) largely gets around
the principal weaknesses of single-QTL analysis (of separating linked QTL and
identifying interacting QTL), but again this is a hypothesis testing approach.
One considers a pair of putative QTL and asks, “Are there QTL here and
here?”

These approaches work surprisingly well, largely due to the independent
assortment of chromosomes, but they are formally correct only if a phenotype
is affected by no more than two QTL. However, we expect complex traits to be
affected by multiple loci. The single- and two-QTL analysis methods indicate
individual pieces of the complex genetic architecture that underlies the phe-
notype. To properly weigh the evidence for the QTL, one should ultimately
bring these pieces together in a single coherent model.

The primary goal of QTL mapping, to identify the set of loci that con-
tribute to the phenotypic variation, thus does not fit well into the sequence
of yes-or-no questions that forms the hypothesis testing framework. Rather,
QTL mapping is best viewed as a model selection or variable selection prob-
lem: what set of loci (and QTL × QTL interactions) are best supported by
the data?

In this chapter, we describe the key aspects of the model selection ap-
proach to multiple QTL mapping. We focus primarily on classical approaches
to the problem, though we briefly describe approaches using Bayesian statis-
tical inference, primarily to emphasize the advantages and disadvantages of
the Bayesian approach. We further describe the R/qtl functions for fitting and
exploring multiple QTL models.

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 9,
© Springer Science+Business Media, LLC 2009
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We will focus on the case of a continuously varying quantitative trait with
normally distributed residual variation. The ideas may be extended for use
with alternate types of phenotypes, including binary traits, censored survival
times, and phenotype distributions exhibiting a spike, but we will not pursue
such extensions here.

9.1 Model selection

As discussed in Chap. 1, the QTL mapping problem can be split into two
parts: the missing data problem and the model selection problem. The miss-
ing data problem arises from the fact that, while QTL may reside anywhere
in the genome, we observe individuals’ genotypes only at discrete landmarks,
the genetic markers. We thus use the observed marker genotype data to infer
the genotypes at all intervening locations. This problem, while it remains an
annoyance, has been well-solved in a number of ways (including maximum
likelihood via the EM algorithm, multiple imputation and Haley–Knott re-
gression); it concerns the fit of a QTL model in the case that genotypes at the
putative QTL are not observed.

The more important aspect of QTL mapping is the model selection prob-
lem. Imagine one could observe complete genotype data on each individual.
For example, in a backcross, imagine that we knew, at every polymorphism
at which the parental strains differ, which individuals were homozygous and
which were heterozygous. We are still confronted with the difficult problem
of identifying the subset of loci that truly influence the phenotype, and of
how they combine together to produce the phenotype. By model , we mean a
defined set of genetic loci (and, potentially, QTL × QTL interactions), and in
model selection, we seek to identify such a set of QTL that are well supported
by the observed data.

As with hypothesis testing, in selecting a set of loci that are viewed to
influence the phenotype, one can make two types of errors: we may miss
important loci (false negatives), and we may include extraneous loci (false
positives). Unlike hypothesis testing, here we can make both errors at the
same time.

QTL mapping projects are initiated for a variety of different purposes. In
evolutionary studies, one may be particularly interested in the distribution of
QTL effects and of the relative contribution of epistatic effects. In agriculture,
one may be primarily interested in obtaining information that will guide fu-
ture selection experiments. In biomedical experiments, the ultimate goal is to
identify the gene or genes (and perhaps even the individual mutations) that
contribute to phenotypic differences, in order to gain a better understanding
of the mechanism of disease and to identify potential targets for therapeutic
drugs.

We focus primarily on QTL mapping for biomedical research. In this
context, we are particularly concerned with avoiding false positives, so that
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downstream experiments to fine-map and ultimately identify the causal gene
or genes will not be conducted in vain. We thus view the goal of model se-
lection for QTL mapping to be to control the rate of inclusion of extraneous
loci, while identifying as many true QTL as possible.

Knowledge of epistatic interactions can be important, as they may influ-
ence the downstream fine-mapping experiments. For example, experiments to
dissect a QTL often begin with the construction of a congenic strain, in which
a genomic segment from one strain is introgressed into another strain, creat-
ing an inbred strain that is homozygous A everywhere except for one genomic
segment, where it is homozygous B. Information on epistatic interactions may
indicate that one type of congenic (in which a segment from the B strain is
isolated within the A background) may have no effect, while the other (in
which the A segment is isolated within the B background) may have a large
effect.

However, we are generally not so concerned with precisely identifying the
interactions between QTL, but rather we seek to identify the major players
and want to ensure that the presence of interactions does not prevent us from
identifying important loci. False inference of the presence of an interaction
that does not exist (or of the absence of an interaction that does exist) is not
so bad as missing an important locus or including an extraneous one.

While there is a large literature on the problem of model selection in linear
regression, there are some important differences in the QTL mapping prob-
lem. First, model selection in regression has often focused on the minimization
of prediction error: one expects that all covariates have some effect on the
outcome, but by eliminating some covariates from the prediction model, one
allows some bias but eliminates a great deal of variance, and so ultimately
obtains improved predictions. In QTL mapping, however, we are not inter-
ested in prediction, but rather in identifying the important elements of the
model. Second, in QTL mapping we are confronted with a continuum of po-
tential covariates (putative QTL locations along the chromosomes), though
with a great deal of missing covariate information. Related to this point, we
do not expect to identify the exact site of a QTL, but want to pick loci that
are not far from the true QTL. Finally, the correlation among the covariates
has a special structure in QTL mapping: from chromosome to chromosome,
the genotypes are independent. Moreover, along a chromosome, they display
a very simple correlation structure. In the case of no crossover interference,
genotypes along a chromosome form a Markov chain, so that, given the geno-
types at a particular locus, the genotypes at sites to the left of the locus are
conditionally independent of the genotypes at the sites to the right of the
locus. While this conditional independence does not hold in the presence of
crossover interference, the correlation structure remains relatively simple, and
in either case it is effectively known. With this simple correlation structure
among the potential covariates, procedures that have been found to perform
poorly in other contexts may actually work quite well for the QTL mapping
problem.
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In defining a model selection procedure for QTL mapping, one must make
four distinct choices. First, one must choose a class of models, such as strictly
additive QTL models, models that allow pairwise interactions between QTL,
or models that allow interactions of any order. Second, one must define a
method for model fit ; that is, for a particular QTL model, with QTL in fixed
positions and a defined set of epistatic interactions, how will the missing geno-
type data be overcome to define the fit of the model? Third, we need a method
for model search. The space of models will be far too large for the models to be
considered exhaustively; we need a procedure for exploring the model space
to identify good ones, recognizing that we will only be able to consider small
slices through the model space. Finally, and most importantly, we need a
method for model comparison. In forming a model comparison procedure, it
can be useful to imagine that we could fit all possible models; which model
would we then choose? Larger models will provide an improved fit, and so we
must balance quality of fit with model complexity. How much of an improve-
ment in fit should be required in order to incorporate an additional QTL into
the model?

We will discuss these four aspects of a model selection procedure in the
following subsections. We will then bring these separate streams of thought
back together, to emphasize the tradeoffs accompanied by any set of choices.

9.1.1 Class of models

The first choice, in forming a model selection procedure, is of the class of
models. The simplest class is that of strictly additive QTL models.

y = μ +
∑

j

βjqj + ε

With such an additive model, the effect of a QTL is constant, independent of
the genotypes at other loci.

One may also wish to include models with pairwise interactions.

y = μ +
∑

j

βjqj +
∑

j,k

βjkqjqk + ε

In doing so, we generally enforce a hierarchy, under which the inclusion of
a QTL × QTL interaction requires the inclusion of main effects for each
QTL. One advantage of such a hierarchical structure is that the coding of
QTL effects becomes immaterial. The model space is also restricted. The
enforcement of such a hierarchy is similar to the choice, in single-QTL analysis
in an intercross, to always include both degrees of freedom at any QTL, and
so not explore strictly dominant or recessive models, or models in which the
two alleles at a locus are strictly additive. The hierarchical structure can make
it difficult to identify loci with important interactions but limited marginal
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Figure 9.1. An example of a regression tree. This is a type of decision tree that
describes a QTL model. Individuals with genotype AB or BB at QTL 1 have average
phenotype 20, individuals with genotype AA at both QTL 1 and QTL 2 have average
phenotype 100, and individuals with genotype AA at QTL 1 and either AB or BB
at QTL 2 have average phenotype 80.

effects since, in an intercross, one brings in all eight degrees of freedom for a
pair of interacting loci.

One can, of course, expand the model space to include higher-order inter-
actions, including three-way interactions (in which the strength of interaction
between two loci depends on the genotype at a third locus), four-way inter-
actions, and so on. Evidence for higher-order interactions has been observed,
particularly for the case of a QTL × QTL × covariate interaction, but this
expansion of the model space can come at a severe price, in the form of a
greater false positive rate or a decrease in power (if the false positive rate
is controlled). In an intercross, it is assuredly difficult to distinguish a true
three-way interaction from three QTL with only pairwise interactions, partic-
ularly because of the 1:2:1 segregation of alleles at a locus, which makes many
three-locus genotypes quite rare and so potentially unobserved in a cross of
ordinary size. Thus, while we admit that an investigation of three-way inter-
actions in a backcross may be fruitful, we believe that it is likely best to focus,
in an intercross, on only pairwise interactions.

Related to the class of models is what might be called the “form of ex-
pression” of a model. Here we have in mind regression trees, such as that in
Fig. 9.1. This is a form of decision tree, in which terminal nodes define the
average phenotype for individuals with a particular multilocus QTL genotype.

The class of regression trees is equivalent to the class of ordinary linear
regression models that allow all orders of interactions, but the form in which
such models are expressed is radically different. The simple regression tree
in Fig. 9.1 would be cumbersome to write with a linear model, but then an
additive QTL model would make a more complex regression tree.
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Regression trees have not been used much in genetics, but the natural way
in which complex interactions can be expressed through regression trees does
make them intriguing. However, the enormous model space is forbidding.

One final point: it is sometimes necessary to restrict the model space in
order to avoid artifacts or to speed up computations. For example, we often
assume that any interval between markers contains at most one QTL. One
may further require that any two QTL are separated by at least two markers.
This is done because a model with two tightly linked QTL in repulsion (that is,
having effects of opposite signs) can occasionally provide a spuriously good fit.
This is particularly the case when there are a few individuals with outlying
phenotype values. It is related to difficulties along the diagonal in a two-
dimensional, two-QTL genome scan.

Another way to restrict model space is to assume that putative QTL must
reside at the marker locations. In the case of high-density genotype data, this
can be a reasonable approximation, and can allow great speed-up in the com-
putations, particularly if the marker genotype data are relatively complete.
Related to this is the density of the grid (i.e., the step size) in standard inter-
val mapping: a more coarse grid gives less precise results but the calculations
are much faster.

9.1.2 Model fit

A central part of any QTL mapping procedure is a method for fitting QTL
models. In the case of complete genotype data at the putative QTL, one would
use linear regression. (Recall that we are focusing, in this chapter, on contin-
uously varying quantitative traits with normally distributed residual varia-
tion.) The fit of a model could be described by the residual sum of squares,
RSS(γ) =

∑
i(yi − ŷi)2, where γ denotes a model, yi is the phenotype for

individual i and ŷi is the corresponding fitted value under the model. Equiv-
alently, one could use the LOD score, LOD(γ) = (n/2) log10[RSS0/RSS(γ)],
where RSS0 =

∑
i(yi − ȳ)2 is the residual sum of squares for the null model.

Again, the good models are those for which RSS(γ) is small and so LOD(γ)
is large.

In general, one will have no genotype data at the putative QTL, and will
need to use data at linked markers to infer the QTL genotypes. This is the
missing data problem, which we have now rolled into the model selection
problem.

The various methods for fitting a single-QTL model (described in Chap. 4)
are all readily extended to the case of a multiple-QTL model, though with
different degrees of difficulty. The relative advantages and disadvantages of the
different methods largely remain, though the multiple imputation approach is
finally given an opportunity to shine in the context of multiple-QTL models.

The simplest method is Haley–Knott regression. We replace the indicators
for QTL genotypes with their expected values, given the available marker
data, and so perform linear regression of the phenotype on the multiple QTL
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genotype probabilities. The great advantage of this approach is computational
speed: we perform a single regression for each QTL model of interest. The
disadvantage of the approach is that it again fails to make complete use of the
available genotype data, and it can give spuriously large evidence for linkage
in the presence of selectively genotyped data. But in the case of relatively
dense markers and relatively complete marker genotype data, Haley–Knott
regression is clearly the preferred method.

The multiple imputation approach extends to the case of multiple-QTL
models without modification, and while with single- and two-QTL models the
computation time for the imputations and for the fixed set of linear regressions
to be performed at each putative QTL or QTL pair weakened the value of the
approach, the imputations are performed just once, and so in the exploration
of multiple-QTL models, the multiple imputation approach is quite valuable.

The extended Haley–Knott method can be applied for the case of multiple-
QTL models, but it has not yet been implemented in software. While we
expect that its speed and robustness properties will carry over to the case of
multiple-QTL models, this remains to be tested.

The extension of standard interval mapping (maximum likelihood via an
EM algorithm) to the case of multiple QTL models is called multiple inter-
val mapping (MIM). The theory is straightforward, though there are some
practical difficulties. We seek to fit a model of the form

y = Xβ + ε

where X is a matrix of QTL genotype indicators (and possibly indicators for
QTL × QTL interactions), which are not observed. The EM algorithm to de-
rive maximum likelihood estimates under this model involves first calculating
the expected value of the X and X ′X matrices, given the observed phenotype
and marker genotype data, and given current estimates for the parameters β
and σ:

Z(s) = E(X|y,M, β̂(s−1), σ̂(s−1))

W (s) = E(X ′X|y,M, β̂(s−1), σ̂(s−1))

With Z(s) and W (s) in hand, the M-step of the EM algorithm is relatively
easy. Updated estimates of the model parameters, β, are obtained by solving
the normal equations, with X and X ′X replaced by their expected values:

W (s)β̂(s) =
[
Z(s)

]′
y

The updated estimate of the residual SD is obtained as follows.

σ̂(s) =
√(

y′y − y′Z(s)β̂(s)
)

/n

It is the E-step (calculating Z and W ) that is difficult. Part of the prob-
lem, particularly for calculating W , is one of bookkeeping: handling arbitrary
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models with an arbitrary number of QTL and an arbitrary set of epistatic
interactions. But with that aside, there remains the difficulty, in the case of p
QTL, of summing over the 2p possible multilocus QTL genotypes in a back-
cross (or 3p in an intercross). This must be done for each individual and at
each iteration of the EM algorithm, and so for models with a large number of
QTL, the computational demands can be great. One technique that has been
used is to trim multilocus QTL genotypes that have low prior probability,
say < 0.001. By prior probability, we mean the probability of a multilocus
genotype pattern conditional on the available marker genotype data (but not
conditional on the observed phenotypes and the current estimates of the model
parameters). This trimming can greatly reduce the number of possible multi-
locus QTL genotypes; the result is an approximation to the true likelihood,
but it can give a great gain in computational speed.

With any of the four methods for fitting a QTL model (which we will
denote γ), we will characterize model fit by the LOD score: the log10 likelihood
ratio comparing the model γ to the null model (denoted ∅).

9.1.3 Model search

The model space is far too large for all models to be considered exhaustively.
If we restrict ourselves to the marker positions and to additive QTL models,
with 100 markers there are 2100 ≈ 1030 models. If we assume that there are
no more than 25 QTL but allow pairwise interactions between QTL, there are
about 10113 possible models.

The enormous size of the model space thus requires a search algorithm,
so that we may identify the good models even though we may visit only a
minuscule proportion of the possible models. Let us focus initially on additive
QTL models.

The simplest algorithm is forward selection. We begin by considering all
possible single-QTL models, and we pick the best of these (i.e., that giving
the largest LOD score), say γ1 = {λ1}. We then consider all two-QTL models
that include our first QTL, and pick the locus that gives the greatest increase
in LOD, to obtain γ2 = {λ1, λ2}. Next, we consider all three-QTL models that
include the first two QTL identified, to obtain γ3 = {λ1, λ2, λ3}. We continue
in this way, building a nested sequence of models of increasing size. In the
case of 100 putative QTL locations and additive QTL models, we would visit
a set of 5051 models (out of the total of ∼ 1030 models).

Forward selection has a rather poor reputation in the statistical literature,
as once a term enters the model, it is never removed. And in many cases one
will find that, even with an extremely large data set, a single covariate that
does not belong in the model may mimic a pair of covariates that do belong
in a way that the single false covariate will always enter the model before
either of the pair of covariates that truly belong. However, with the simple
correlation structure among genotypes at putative QTL locations, one can
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show that in the case of additive QTL models, this problem will not occur, at
least for very large data sets.

The reverse of forward selection is backward elimination. One begins with a
large model (perhaps obtained by forward selection), and drops the covariates
from the model one at a time, at each step dropping the covariate that results
in the smallest decrease in the LOD score. Thus we construct a nested sequence
of models of decreasing size.

One may similarly construct stepwise algorithms that include some forward
and some backward steps. There are also numerous randomized algorithms
(including Markov chain Monte Carlo, simulated annealing, and genetic algo-
rithms) that take a random walk through model space, and generally do not
require a strict improvement in the LOD score at each step.

In the case that pairwise interactions between loci are to be considered, a
forward selection algorithm would also consider the addition of an interaction
between the loci in the current model, and of a new locus that interacts with
one of the loci in the current model. One may also wish to include two-step
jumps, in which at each step of forward selection, a two-dimensional scan
is performed, and so two novel QTL (whether additive or interacting) may
be brought into the model together. This would be particularly useful for
identifying a pair of interacting loci that show no marginal effects, or for a
pair of loci linked in repulsion (having effects of opposite signs); in both of
these cases, the two loci may not appear interesting individually, and so would
likely be missed by a single-step forward selection algorithm.

It can be useful, in a search algorithm for multiple QTL mapping, to con-
sider a refinement of the QTL locations at each step of a stepwise algorithm, as
the likely position for a QTL may change as additional QTL are brought into
the model. A simple but effective algorithm is formed by refining the location
of each QTL in the model one at a time, keeping the locations of all other
QTL fixed. The QTL are not moved between chromosomes, and the order of
the QTL within a chromosome is not altered, and so in refining the position
of a given QTL, one scans across its chromosome, or along the interval de-
fined by the positions of the flanking QTL, if there are multiple QTL on the
chromosome. We would generally consider the QTL in a random order, and
would iterate the refinement process until no further change in QTL position
is observed.

In general, we would prefer the most exhaustive search possible, though
more extensive searches are accompanied by greater computation time and
may give no improvement, in that the optimal model might be found with a
simpler and less computationally intensive search.

Our preferred approach is to use forward selection to a model of moderate
size (say 10 or 20 QTL), followed by backward elimination all the way to the
null model. The chosen model would be that which optimized the model com-
parison criterion (see the next section), among all models visited. A simple and
effective search algorithm, allowing for the possibility of pairwise interactions
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(implemented in the stepwiseqtl function in R/qtl; see Sec. 9.3.7), is the
following.

1. Start by performing a single-QTL genome scan, and choose the position
giving the largest LOD score.

2. With a fixed QTL model in hand:
a. Scan for an additional additive QTL.
b. For each QTL in the current model, scan for an additional interacting

QTL.
c. If there are ≥ 2 QTL in the current model, consider adding one of the

possible pairwise interactions.
d. Optionally perform a two-dimensional, two-QTL scan, seeking to add

a pair of novel QTL, either additive or interacting.
e. Step to the model that gives the largest value for the model comparison

criterion, among those considered at the current step.
3. Refine the locations of the QTL in the current model.
4. Repeat steps 2 and 3 up to a model with some predetermined number of

loci.
5. Perform backward elimination, all the way back to the null model. At

each step, consider dropping one of the current main effects or interactions;
move to the model that maximizes the model comparison criterion, among
those considered at this step. Follow this with a refinement of the locations
of the QTL.

6. Finally, choose the model having the largest model comparison criterion,
among all models visited.

In this forward/backward algorithm, it is likely best to build up to an
overly large model and then prune it back. Note that there is no “stopping
rule;” the chosen model is that which optimizes the model comparison cri-
terion, among all models visited. The search can be time consuming, par-
ticularly if a two-dimensional scan is performed at each forward step. Such
two-dimensional scans may be useful for identifying QTL linked in repulsion
(having effects of opposite sign) or interacting QTL with limited marginal ef-
fects, but our limited experience suggests that they are not necessary; impor-
tant linked or interacting QTL pairs can be picked up in the forward selection
to a large model, and will be retained in the backward elimination phase.

9.1.4 Model comparison

By far the most important aspect of the QTL mapping problem is the criterion
for choosing among possible QTL models. For models of the same size, we
would choose that with the largest LOD score (i.e., that with the maximum
likelihood). However, the LOD score can always be increased by adding an
additional QTL to a model. Thus, we must seek some balance between the
fit of a model (represented by the LOD score), and the complexity of the



9.1 Model selection 251

model (the number of QTL and interactions). Our goal is to define a criterion
that will appropriately balance the false positive and false negative rates.
In particular, we seek to control the false positive rate (that is, the rate of
inclusion of extraneous loci) at some chosen level and then identify as many
true QTL as possible.

We will not attempt to discuss this issue in detail, but rather will focus
on a single approach that we consider most appropriate for the QTL mapping
problem in biomedical research.

Much of the literature on model selection criteria has focused on minimiz-
ing prediction error; while these approaches may also work well for identifying
the important players (which is our goal), in general they tend to produce
overly large models, as the inclusion of a few extraneous covariates will not
weaken predictions so much as missing a few important covariates. Also, much
work has focused on the asymptotic behavior of the criteria (that is, the case
of an infinitely large sample), but in the large sample case, some important
features of the data (such as the number of potential covariates) are no longer
seen to matter, and so the asymptotic behavior of a procedure can be a poor
guide to its small sample performance.

Let us begin by considering additive QTL models. We prefer to use a
penalized LOD score.

pLODa(γ) = LOD(γ) − T |γ| (9.1)

where γ denotes a model, |γ| is the number of QTL in the model, and T is a
penalty on the size of the model.

We seek a penalty T that will control the rate of inclusion of extraneous
loci at some chosen rate (e.g., 5%). We would like the rate to be controlled no
matter the true model, but consider, in particular, the case of the null model,
∅, and that we perform a single-QTL genome scan. The penalized LOD for
the null model is pLODa(∅) = 0, since the LOD score is defined relative to
the null model and |∅| = 0. The penalized LOD for a single-QTL model is
pLODa({λ}) = LOD(λ) − T , where {λ} is the model with a single QTL at
position λ and LOD(λ) is the LOD score from a single-QTL scan at position λ.

We would choose the model {λ} over the null model when LOD(λ) > T .
This suggests setting T to be the 95th percentile of the genome-wide maximum
LOD score under the global null hypothesis (of no QTL anywhere), which
may be estimated via a permutation test. This extends the usual procedure
for single-QTL analysis to a criterion useful for choosing among additive QTL
models of any size. The choice of penalty guarantees the control of the false
positive rate at the target level only for the case that the truth is the null
model and that the search considers models with no more than one QTL.
But computer simulation experiments indicate that the false positive rate is
maintained reasonably well for larger models and for more extensive searches.

To extend this approach to the case of pairwise interactions among QTL,
we could apply separate penalties on the main effects and the interactions,
Tm and Ti:



252 9 Multiple-QTL models

pLOD(γ) = LOD(γ) − Tm|γ|m − Ti|γ|i (9.2)

where |γ|m is the number of QTL in the model and |γ|i is the number of
interaction terms. We will focus on the case that a hierarchical structure
is imposed on the model, with the inclusion of an interaction requiring the
inclusion of both of the corresponding main effects.

We take Tm to be the significance threshold from a single-QTL genome
scan, as before. With this choice, the extended criterion in equation (9.2) is
equivalent to that in equation (9.1) if one restricts the search to additive QTL
models.

We are left with the choice of the penalty on interaction terms. We can
apply the same sort of logic that led us to the penalty on main effects. Imagine
there are two additive QTL, and that we perform a two-dimensional, two-QTL
genome scan. We could then define the interaction penalty as follows:

TH
i = 95th percentile of [max

λ1,λ2
LODf (λ1, λ2) − max

λ1,λ2
LODa(λ1, λ2)] (9.3)

where LODf and LODa are the LOD scores for full and additive two-QTL
models, respectively (see Chap. 8). With this choice, we would control the rate
of inclusion of an extraneous interaction at our target rate. While ideally one
would determine the distribution of max LODf − max LODa in the presence
of two additive QTL, it is not likely to be too different from the distribution
under the null hypothesis of no QTL, and so we may use a permutation test in
a two-dimensional genome scan to estimate Ti. We call this choice the heavy
penalty, TH

i , as we will introduce a light penalty next.
If the logic in the previous paragraph is reasonable, why not extend it?

Imagine that there is a single QTL, and that we perform a two-dimensional,
two-QTL scan. To control the rate of inclusion of a false interacting QTL, we
define a light interaction penalty, TL

i , through the equation

Tm + TL
i = 95th percentile of [max

λ1,λ2
LODf (λ1, λ2) − max

λ
LOD1(λ)] (9.4)

where LODf is the LOD score for the full model, with two interacting QTL,
and LOD1 is the LOD score for a single-QTL model. With the interaction
penalty defined in this way, we ensure that, in the case of a single QTL,

Table 9.1. Estimated penalties, derived by computer simulation, for a genome
modeled after the mouse and with markers at a 10 cM spacing.

Cross

Penalty Backcross Intercross

Tm 2.69 3.52

T H
i 2.62 4.28

T L
i 1.19 2.69
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Figure 9.2. Graphical depictions of QTL models, with nodes corresponding to QTL
and edges indicating interactions. A: Two interacting QTL. B: Three QTL, of which
two interact. C: Three QTL with all pairs interacting. D: A seven-QTL model, with
one QTL exhibiting pairwise interactions with each of the other QTL.

the rate of inclusion of a second, interacting QTL is controlled at the chosen
rate. In the presence of two additive QTL, the interaction term will be falsely
included at a much higher rate, but we are less concerned about such errors
and seek principally to control the rate of false positive QTL.

In thinking about these penalties, and the difference between the heavy
and light interaction penalties, it is good to have some particular numbers in
mind. Estimated penalties, derived via computer simulation of backcrosses and
intercrosses with genomes modeled after that of the mouse and with markers
at a 10 cM spacing, are shown in Table 9.1. The light interaction penalty is
much smaller than the heavy interaction penalty.

It is useful, in the consideration of QTL models with possible pairwise
interactions (and with our imposed hierarchical structure that requires the
inclusion of both main effects along with any interaction term), to depict such
models as graphs, with nodes (i.e., dots) corresponding to QTL and edges
(i.e., line segments between QTL) indicating interactions. Consider Fig. 9.2.
Model A has two interacting QTL. Model B has three QTL, of which two
interact. Model C has three QTL with all possible pairwise interactions. In
model D, there are seven QTL, with one QTL interacting with each of the
other six.

In the analysis of QTL data with the exclusive use of the light interac-
tion penalty, TL

i , we often identified models like that in Fig. 9.2D, with a
single QTL interacting with many others. This seems implausible. Computer
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simulation experiments confirmed this sentiment: in the case of an additive
QTL model with many QTL, the exclusive use of the light interaction penalty
will often result in the identification of an extraneous locus, interacting with
many or all of the true loci. The problem is that, with the light interaction
penalty, we imagine that the truth is a “dot” (one QTL), and we control the
rate of inclusion of an extraneous “pin” (an additional, interacting QTL). But
in the presence of multiple QTL, an extraneous locus can purchase its entry
into the chosen model via numerous lightly weighted interactions: we apply
too small a penalty to multipronged pins.

An ad hoc modification of our penalized LOD score can eliminate this
undesired behavior. Consider the graph corresponding to a particular model.
(For example, imagine that the four parts of Fig. 9.2 formed a single model,
with a total of 15 QTL and 11 pairwise interactions.) For each connected
component of the graph (that is, for each cluster of interacting QTL), we
apply a single light interaction penalty and give all other interactions the heavy
penalty. (For the model formed from all parts of Fig. 9.2, there would be 15
main effect penalties, Tm, four light interaction penalties, TL

i , and seven heavy
interaction penalties, TH

i .) This approach serves as a compromise between
using only heavy interaction penalties (which would result in low power to
detect interacting loci) and only light interaction penalties (which can lead to
a high rate of extraneous loci).

The use of this model comparison criterion is guaranteed to control the rate
of inclusion of extraneous loci only in the presence of one or two QTL, and with
the model search not extending beyond two QTL. Moreover, we should expect
that the inclusion of extraneous loci will increase with the size of the model,
as in the presence of many QTL, there are many more ways to incorporate
an additional extraneous interacting locus (i.e., to attach an extraneous “pin”
to the model). But such behavior can probably not be eliminated and is not
unreasonable; having one extraneous locus among nine identified QTL is not
so bad as one extraneous locus among three identified QTL.

9.1.5 Further discussion

A model selection procedure for QTL mapping has four parts: a choice of
the class of models, a method for model fit, a method for model search, and
a criterion for comparing models. We prefer to keep these pieces distinct.
In particular, we are opposed to the use of “stopping rules,” which combine
model search and model comparison; rather, a model comparison criterion
should be chosen, imagining one could visit all possible models in the class
under consideration, and the aim of the model search algorithm should be to
optimize this criterion.

Some strategies seek to restrict the search over models in order to increase
power. The argument is that, if a smaller number of models are visited, the
adjustment for the range of models visited will be less severe and so a more
permissive model comparison criterion may be used. We prefer instead to
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restrict the class of models (e.g., focusing solely on additive QTL models).
If the truth is approximately additive, greater power to detect QTL (and a
reduced false positive rate) can then be achieved by not allowing the possibility
of interactions. However, if there exist large interactions and important loci
with limited marginal effect, a search over additive models will have low power
to detect such QTL.

The model comparison criterion is by far the most important aspect of a
model selection procedure. Still, the model search procedure remains impor-
tant. One will ideally identify optimal models with the shortest computation
time. In the case of a single phenotype, a more extensive search may be fea-
sible. But if a model selection approach is to be applied to many phenotypes,
a reduced search may be required in order that the computations may be
performed in a reasonable amount of time.

The penalized LOD criterion defined in Sec. 9.1.4 fails to consider covari-
ates and QTL × covariate interactions. It is a simple matter to include a fixed
set of additive covariates, but if one wishes to choose among a larger set of
covariates or if one seeks to identify potential QTL × covariate interactions,
the criterion would need to be modified, with special penalties for such terms.

In addition, the X chromosome generally requires special treatment. As de-
scribed in Sec. 4.4, the potentially different number of parameters for a QTL
on the X chromosome requires an X-chromosome-specific threshold, and so
X-linked QTL may require a separate penalty. Similarly, epistatic interactions
between QTL on the X chromosome, and between a QTL on the X chromo-
some and one on an autosome, also require special penalties (see Sec. 8.3).

Finally, linked QTL may deserve special treatment, as one may wish to be
more permissive in identifying multiple linked QTL. The existence of multiple
linked QTL can be extremely important in defining the course of fine-mapping
experiments. Our penalized LOD criterion is quite strict in requiring strong
evidence for an additional QTL, in order to control the rate of inclusion of
extraneous loci. A more liberal approach for linked QTL could be valuable.

9.2 Bayesian QTL mapping

Our description of model selection in QTL mapping has followed a relatively
traditional approach (though with some important differences). However,
there has been much interest in, and important developments of, Bayesian
methods for QTL mapping, for the most part relying on Markov chain Monte
Carlo (MCMC). While we view a complete description of the Bayesian meth-
ods and their application as beyond the scope of this book, we would be lax
to not include at least a brief description of these methods. In this section, we
seek to highlight some of the advantages and disadvantages of the Bayesian
methods for multiple QTL mapping.

Let y denote the phenotype, M the marker genotypes, q the unknown
QTL genotypes, γ a QTL model (possibly with interactions), λ the locations
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of the QTL, and μ all other model parameters (including QTL effects and the
residual SD). The classical and Bayesian methods rely on the same likelihood
function

L(λ, μ, γ|y,M) = Pr(y|M,λ, μ, γ)
=

∑
q Pr(y, q|M,λ, μ, γ)

=
∑

q Pr(q|M,λ, γ) Pr(y|q, μ, γ)

Note that, given the QTL genotypes q, the likelihood separates into two parts.
Pr(q|M,λ, γ) concerns the relationship between the marker and QTL geno-
types; Pr(y|q, μ, γ) is the phenotype model.

In the classical approach, one maximizes over λ and μ (QTL positions and
effects) to obtain the likelihood for a QTL model.

L(γ|y,M) = maxλ,μ L(λ, μ, γ|y,M)

One chooses among QTL models, γ, by considering this likelihood, penalized
for model complexity.

In the Bayesian approach, one specifies a prior distribution on QTL models
and on QTL positions and effects, Pr(λ, μ, γ). The prior is intended to capture
one’s initial uncertainty in the state of nature. Inference is then conducted
through the posterior distribution, given the data.

Pr(γ, λ, μ|y,M) ∝ L(λ, μ, γ|y,M)Pr(λ, μ, γ)

In particular, one may consider the marginal posterior on QTL models, aver-
aging (i.e., integrating) out QTL positions and effects.

There are thus two key distinctions between the classical and Bayesian
approaches to QTL mapping. First, in the classical approach one maximizes
over QTL positions and effects, while in the Bayesian approach one averages
over these unknown parameters, using a suitable prior. Second, in the classical
approach one considers the maximized likelihood for a model, penalized by
model complexity, while in the Bayesian approach, one specifies a prior dis-
tribution on QTL models and then considers the posterior distribution given
the data.

The key technical issue in the Bayesian approach concerns the calculation
of the posterior distribution. The distribution is too complex to be described
directly, and so we instead sample from the distribution and use the distribu-
tion across samples as an approximation to the posterior. Independent random
samples are not feasible, and so we form a Markov chain whose stationary
distribution is the target posterior distribution. (This is called Markov chain
Monte Carlo, MCMC.) Let θ = (λ, μ, γ). We form a Markov chain θ1, θ2, θ3, . . .
(that is, a sequence of random draws such that the distribution of θi depends
only on θi−1 and not on the entire history), whose limiting distribution is the
target posterior, limi→∞ Pr(θi) = Pr(θ|y,M).
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There are a variety of techniques for constructing such a Markov chain.
While constructing such a chain is relatively easy, great care is required to
identify a chain with appropriate mixing properties (to reduce serial depen-
dence and ensure rapid convergence to the stationary distribution). Such de-
tails are often confusing to the novice, and so we will omit them. The essence
of the approach is that one obtains a sequence of draws, θ1, . . . , θk, which we
may view as a dependent sample from the posterior distribution, Pr(θ|y,M).
We may then derive a number of valuable summaries, including the posterior
distribution of the number of QTL, the posterior probability that a particular
genomic location is involved in the phenotype, and the posterior probability
for a particular QTL model.

In the classical approach, we consider a quite strict definition for a QTL
model, with the QTL in defined positions. In the Bayesian approach, with
the locations of QTL varying across MCMC samples, it is best to soften one’s
view of a QTL model, and speak instead of a QTL pattern, such as “two QTL
on chromosome 1, one on chromosome 4, and one on each of chromosomes
6 and 15, with the QTL on chromosomes 6 and 15 interacting.” One may
approximate the posterior probability of such a pattern by the proportion of
MCMC samples for which the QTL model fits that pattern. One might then
choose the pattern with the largest estimated posterior probability.

The Bayesian approach to QTL mapping has a number of advantages.
It unifies all aspects of the problem (model fit, search and comparison), it
provides a more natural expression of uncertainty in the results (particularly
regarding the chance that a particular locus contributes to the phenotype), it
more fully captures uncertainty (e.g., the estimated QTL effects take account
of uncertainty in QTL positions), and extensions to include QTL × covariate
interactions or alternate phenotype models are relatively straightforward.

The key difficulty concerns the specification of the prior distribution (par-
ticularly regarding the number of QTL and the number of interactions). In a
sense, the choice of such a prior is equivalent to specification of the target false
positive rate (e.g., increasing the expected number of QTL or interactions in
the prior will lead to higher false positive rates), but the exact relationship
is not easy to anticipate. In addition, a particular QTL model may be seen
in only a small proportion of the MCMC samples, and not in the best pos-
sible light (as the QTL effects are also sampled). This is not a problem, if
one focuses on the posterior probability for specific features of the underlying
genetic architecture (such as the chance that a particular locus is involved),
but it can make it difficult to define more complex features of the QTL model
and so to compare the results of the Bayesian analysis to the results of the
classical approach to the problem.

We prefer to say that the classical and Bayesian approaches to QTL map-
ping are complementary, with different features and different goals, but it may
be that we are just being nice to our Bayesian colleagues or failing to admit
the defeat of the classical approach.
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In summary, the Bayesian approach to QTL mapping can provide a more
satisfying set of results, with a more natural expression of the uncertainty
in the inferential statements, but the specification of prior distributions is
more difficult than the specification of false positive rates (as required for
the classical approach). Moreover, the construction of appropriate MCMC
algorithms requires great care, and use of MCMC in practice may require
considerable training.

9.3 Multiple QTL mapping in R/qtl

R/qtl contains a variety of functions for the fit and exploration of multiple-
QTL models, using the classical approach described in Sec. 9.1. [For Bayesian
QTL mapping, consider the R/qtlbim package (Yandell et al., 2007).] We
will first give a brief overview of the available functions. In the following
subsections, we provide a detailed illustration of their use.

Only multiple imputation and Haley–Knott regression are currently im-
plemented for the fit of a multiple-QTL model. The use of multiple interval
mapping (MIM) and extended Haley–Knott regression, once implemented,
will follow that of Haley–Knott regression, with any instances of method="hk"
replaced by method="em" (for MIM) or method="ehk" (for extended Haley–
Knott).

The two most basic functions are makeqtl and fitqtl. The function make-
qtl is used to create a “QTL object” (of class "qtl"); this specifies the lo-
cations of a set of putative QTL to be considered. The function fitqtl is
used to fit a defined QTL model, with QTL in fixed positions and with a
defined set of covariates and potentially QTL × QTL and QTL × covari-
ate interactions. The form of the QTL model is specified through a formula,
such as y~Q1+Q2+Q3*Q4. The fitqtl function is particularly important, as
it can be used to obtain estimates of QTL effects. One may also perform a
“drop-one-QTL-at-a-time” analysis, to assess the support for individual loci
and interactions.

The function refineqtl is used to refine the locations of QTL in the
context of a multiple QTL model. It uses an iterative algorithm with the aim
of obtaining the maximum likelihood estimates of the QTL positions. If the
function is called with keeplodprofile=TRUE, one may then use the function
plotLodProfile to plot LOD profiles for each QTL, again in the context of
the multiple-QTL model, as is commonly used in multiple interval mapping.

With the function addqtl, one may scan for a single QTL to be added
to a multiple-QTL model; with addpair, one may scan for an additional pair
of QTL to be added. The output of these functions is of the forms produced
by scanone and scantwo, and so one may use the corresponding plot and
summary functions to inspect the results. The functions addqtl and addpair
make use of a more basic and highly flexible function, scanqtl, for performing
general, multidimensional scans in the context of a multiple-QTL model. The



9.3 Multiple QTL mapping in R/qtl 259

output of scanqtl can be quite complicated to interpret, and, for most users,
addqtl and addpair are sufficient, and so we will not discuss the use of
scanqtl in this book.

The function addint may be used to test all possible pairwise interactions
among the QTL in a multiple-QTL model.

There are several functions for manipulating a QTL object (created by
makeqtl). The function addtoqtl is used to add additional QTL to an object,
dropfromqtl is used to remove QTL from an object, replaceqtl is used to
move QTL to new positions, and reorderqtl is used to change the order of
loci within a QTL object.

Finally, the function stepwiseqtl provides a fully automated model selec-
tion algorithm, using the search algorithm described in Sec. 9.1.3 to optimize
the penalized LOD score criterion described in Sec. 9.1.4.

9.3.1 makeqtl and fitqtl

We again return to the hyper data of Sugiyama et al. (2001) (see Sec. 2.3).
We will use multiple imputation, as Haley–Knott regression performs poorly
in the case of selectively genotyping, which was used for these data.

First we need to load the package and the data.

> library(qtl)

> data(hyper)

We must first run sim.geno to perform the imputations. We’ll use 128 im-
putations; this is insufficient for the current data, which has extensive missing
genotype information, but suffices to illustrate the methods. In practice, it is
a good idea to repeat the analysis with independent imputations. If the re-
sults are much changed, increase the number of imputations. We will perform
calculations on a 2 cM grid; a finer grid would provide more precise results
but at the expense of greater computation time.

> hyper <- sim.geno(hyper, step=2, n.draws=128, err=0.001)

The results of scanone and scantwo, which we won’t revisit, indicated
QTL on chr 1, 4, 6 and 15, with an interaction between the QTL on chr 6 and
15, and the possibility of a second QTL on chr 1. (See Sec. 4.2.1 and 8.1.) We
will begin by fitting this four-QTL model. (We take the QTL locations from
the scantwo results on page 221.) The function makeqtl is used to create a
QTL object; it pulls out the imputed genotypes at the selected locations.

> qtl <- makeqtl(hyper, chr=c(1, 4, 6, 15),

+ pos=c(68.3, 30, 60, 18))

Note that if you type the name of the QTL object, you get a brief summary.
The QTL locations are not exactly as requested, as we are using a different
step size.

> qtl
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name chr pos n.gen
Q1 1@67.8 1 67.8 2
Q2 4@30.0 4 30.0 2
Q3 6@60.0 6 60.0 2
Q4 15@17.5 15 17.5 2

Also, there is a plot function for displaying the locations of the QTL on
the genetic map. See Fig. 9.3.

> plot(qtl)

We may now use fitqtl to fit the model (with QTL in fixed positions).
We use a model formula to indicate the model; in particular, we use Q3*Q4
to indicate that QTL 3 and 4 should interact. (More on this shortly; see
page 263.) The function summary.fitqtl is used to get a summary of the
results.

> out.fq <- fitqtl(hyper, qtl=qtl, formula=y~Q1+Q2+Q3*Q4)

> summary(out.fq)

Full model result
----------------------------------
Model formula: y ~ Q1 + Q2 + Q3 + Q4 + Q3:Q4
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df SS MS LOD %var Pvalue(Chi2) Pvalue(F)
Model 5 5870 1174.01 21.92 33.22 0 0
Error 244 11799 48.36
Total 249 17669

Drop one QTL at a time ANOVA table:
----------------------------------

df Type III SS LOD %var F value
1@67.8 1 1319.608 5.755 7.469 27.289
4@30.0 1 2940.393 12.079 16.642 60.807
6@60.0 2 1615.617 6.967 9.144 16.705
15@17.5 2 1464.060 6.350 8.286 15.138
6@60.0:15@17.5 1 1174.205 5.150 6.646 24.282

Pvalue(Chi2) Pvalue(F)
1@67.8 0.0000002629244384 0.000000375579930
4@30.0 0.0000000000000876 0.000000000000183
6@60.0 0.0000001079672044 0.000000158669280
15@17.5 0.0000004468012174 0.000000634616856
6@60.0:15@17.5 0.0000011153038687 0.000001536448359

The initial table indicates the overall fit of the model; the LOD score of
21.9 is relative to the null model (with no QTL). The sums of squares (SS)
and mean square (MS) are as from an analysis of variance. The percent vari-
ance explained (%var) is the estimated proportion of the phenotype variance
explained by all terms in the model.

In the second table, each locus is dropped from the model, one at a time,
and a comparison is made between the full model and the model with the
term omitted. If a QTL is dropped, any interactions it is involved in are also
dropped, and so the loci on chr 6 and 15 are associated with 2 degrees of
freedom, as the 6×15 interaction is dropped when either of these QTL is
dropped.

The results indicate strong evidence for all of these loci as well as for the
interaction. Let us briefly describe the columns in the table. Most important
are the LOD scores, which are the log10 likelihood ratios comparing the full
model (with all terms) to the reduced models (with one term omitted); the
“Type III sums of squares” indicates the increase in the sum of the squared
residuals accompanied by omitting the term. The F statistics are the ratio of
the mean square (the sum of squares divided by the degrees of freedom) to
the error mean square from the first table. The percent variance explained
(%var) is the estimated proportion of the phenotypic variance explained by
that term. Two pointwise p-values are provided. The first, Pvalue(Chi2), is
based on the LOD score, with the assumption that LOD×(2 ln 10) follows a χ2

distribution with the appropriate degrees of freedom. The second, Pvalue(F),
is based on the F statistic. Both p-values should be considered with caution,
as they are pointwise and so do not account for the search over the genome
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that led us to the current model. If the summary.fitqtl function is called
with pvalues=FALSE, the two columns of p-values are omitted.

The “drop-one” analysis is particularly valuable for studying the support
for the individual terms in the model. Another important use of fitqtl is to
get estimated QTL effects. This is obtained with the use of get.ests=TRUE.
We may use dropone=FALSE to suppress the drop-one analysis.

> out.fq2 <- fitqtl(hyper, qtl=qtl, formula=y~Q1+Q2+Q3*Q4,

+ dropone=FALSE, get.ests=TRUE)

> summary(out.fq2)

Full model result
----------------------------------
Model formula: y ~ Q1 + Q2 + Q3 + Q4 + Q3:Q4

df SS MS LOD %var Pvalue(Chi2) Pvalue(F)
Model 5 5870 1174.01 21.92 33.22 0 0
Error 244 11799 48.36
Total 249 17669

Estimated effects:
-----------------

est SE t
Intercept 101.5642 0.4533 224.042
1@67.8 -4.7428 0.9159 -5.178
4@30.0 -7.0314 0.9191 -7.650
6@60.0 3.8161 0.9545 3.998
15@17.5 -2.3571 0.9197 -2.563
6@60.0:15@17.5 -9.0567 1.8941 -4.781

The estimated effects are derived by coding the homozygous and heterozy-
gous genotypes (in a backcross) as −0.5 and +0.5, respectively. Thus, the es-
timated effect for a QTL is the difference between the phenotype averages for
the heterozygotes and homozygotes. The hyper data come from the backcross
(B × A) × B, with A and B being the A/J and C57Bl/6J mouse strains. The
estimated effects for the chr 1, 4 and 15 loci being negative indicates that the
A allele results in a decrease in blood pressure (i.e., heterozygotes, AB, have
lower blood pressure than homozygous, BB). (And note that the A strain has
lower blood pressure than the B strain.) The chr 6 locus is a so-called trans-
gressive QTL; the A allele is associated with an increase in blood pressure.
(See also Fig. 8.7 on page 227.)

The interaction effect for the loci on chr 6 and 15 is large and negative.
It is based on the product of the genotype columns for the two QTL. It can
be interpreted as the difference in the effect of the chr 6 locus, according to
whether an individual is heterozygous or homozygous at the chr 15 locus (and
vice versa).
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In the above, we have used multiple imputation for the calculations.
To use Haley–Knott regression for such calculations, one must first call
calc.genoprob (to calculate the conditional QTL genotype probabilities,
given the marker data) rather than sim.geno. Then, in the call to makeqtl,
one must use the argument what="prob", to define QTL based on the geno-
type probabilities rather than the imputations. Finally, in the calls fitqtl
(and the related functions, described below), one must use the argument
method="hk".

Model formulas deserve further explanation. Such formulas are used widely
in R (see the R help file for formula); R/qtl uses a restricted version. First
note that we always write “y ~” (to be read as “the phenotype y is modeled
as...”) at the beginning of a QTL formula. QTL are indicated by their numeric
index with the QTL object (Q1, Q2, etc.). Interactions between QTL may
be specified using a colon; for example, Q3:Q4 indicates that the interaction
between QTL 3 and 4 should be included, and Q1:Q3:Q4 indicates the three-
way interaction between QTL 1, 3 and 4. An asterisk is similar, but indicates
that all lower order interactions should also be included. For example, the
term Q3*Q4 is equivalent to Q3+Q4+Q3:Q4, and the term Q1*Q3*Q4 indicates
all first-order terms, all pairwise interactions, and the three-way interaction.
That is, Q1*Q3*Q4 is equivalent to Q1+Q3+Q4+Q1:Q3+Q1:Q4+Q3:Q4+Q1:Q3:Q4.

In all cases, we enforce a hierarchy in the QTL models, so that the inclusion
of a pairwise interaction requires the inclusion of both of the corresponding
main effects, and the inclusion of a three-way interaction requires the inclusion
of the main effects and all pairwise interactions.

Covariates may be included in the QTL model fit by fitqtl. As with
scanone and scantwo, the covariates must be strictly numeric. (See Chap. 7
and Sec. 8.4.) And here the set of covariates, which will be indicated through
the argument covar, must form a matrix (or data frame). Rather than sep-
arately indicating additive and interactive covariates, one refers to covariates
and QTL × covariate interactions in the model formula. Refer to the covari-
ates in the formula by their column names.

9.3.2 refineqtl

The function refineqtl allows us to get improved estimates of the locations of
the QTL. The position for each QTL is varied, one at a time, keeping all other
QTL locations fixed, and keeping the chromosome assignments and order of
QTL fixed. The process is iterated to convergence. We use verbose=FALSE to
suppress the display of tracing information.

> rqtl <- refineqtl(hyper, qtl=qtl, formula=y~Q1+Q2+Q3*Q4,

+ verbose=FALSE)

The output is a modified QTL object, with loci in new positions. We can
type the name of the new QTL object to see the new locations.

> rqtl
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name chr pos n.gen
Q1 1@67.8 1 67.8 2
Q2 4@30.0 4 30.0 2
Q3 6@66.7 6 66.7 2
Q4 15@17.5 15 17.5 2

The locus on chr 6 changed position slightly. Let us use fitqtl to assess
the improvement in fit; we’ll skip the drop-one analysis.

> out.fq3 <- fitqtl(hyper, qtl=rqtl, formula=y~Q1+Q2+Q3*Q4,

+ dropone=FALSE)

> summary(out.fq3)

Full model result
----------------------------------
Model formula: y ~ Q1 + Q2 + Q3 + Q4 + Q3:Q4

df SS MS LOD %var Pvalue(Chi2) Pvalue(F)
Model 5 5893 1178.64 22.03 33.35 0 0
Error 244 11776 48.26
Total 249 17669

The LOD score comparing the full model to the null model has increased
by 0.1, from 21.9 to 22.0.

By default, refineqtl saves the LOD traces at the last iteration, which
can then be plotted with plotLodProfile, as follows.

> plotLodProfile(rqtl, ylab="Profile LOD score")

The LOD profiles in Fig. 9.4 are similar to the usual LOD curves, but
instead of comparing a model with a single QTL at a particular position to
the null model, we compare, at each position for a given QTL, the model with
the QTL of interest at that particular position (and with the positions of all
other QTL fixed at their maximum likelihood estimates) to the model with
the QTL of interest omitted (and with the positions of all other QTL fixed at
their maximum likelihood estimates). For the loci on chr 6 and 15, the 6×15
interaction is omitted when either of the two loci is omitted.

And so in the LOD profile for the locus on chr 1, we compare the four-QTL
model (including the 6 × 15 interaction and with the position of the chr 1
QTL varying but with the other three QTL fixed at their estimated locations)
to the three-QTL model with the chr 1 locus omitted. In the LOD profile on
chr 15, we compare the four-QTL model (with the position of the chr 15 locus
varying but with the other three QTL fixed at their estimated locations) to
the three-QTL additive model (that is, without the chr 15 locus and without
the 6 × 15 interaction). Note that the maximum LOD for each of the LOD
profiles should be the value observed in the drop-one analysis from fitqtl.

These profile LOD curves are useful for the assessment of both the evidence
for the individual QTL and the precision of localization of each QTL, but note
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Figure 9.4. LOD profiles for a four-QTL model with the hyper data.

that they fail to take account of the uncertainty in the location of the other
QTL in the model.

The functions lodint and bayesint (see Sec. 4.5) can be used to derive
approximate confidence intervals for the locations of the QTL, using the LOD
profiles calculated by refineqtl. However, these should be viewed with some
caution, as they are calculated assuming that the locations of the other QTL
are known without error (that is, they fail to account for the uncertainty in
the locations of the other QTL), and the performance of these approximate
intervals in the context of a multiple-QTL model is not well understood. Thus,
they are sure to be overly liberal (that is, their coverage probabilities are likely
less than 95%).

To calculate a 1.5-LOD support interval and an approximate 95% Bayesian
credible interval for the QTL on chr 4, we refer to the QTL, in lodint and
bayesint, by its numeric index (in this case, 2).

> lodint(rqtl, qtl.index=2)

chr pos lod
D4Mit288 4 28.4 9.83
c4.loc30 4 30.0 12.24
D4Mit80 4 31.7 9.18

> bayesint(rqtl, qtl.index=2)
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chr pos lod
D4Mit164 4 29.5 12.17
c4.loc30 4 30.0 12.24
D4Mit178 4 30.6 11.55

These intervals are much more narrow than the intervals calculated in the
context of a single-QTL model (see Sec. 4.5). The 1.5-LOD support interval
is 3.3 cM long (versus 12.0 cM), and the approximate 95% Bayesian credible
interval is. 1.1 cM long (versus 13.1 cM).

9.3.3 addint

The function addint is used to test, one at a time, all possible QTL × QTL
interactions that are not already included in a model. For our model with loci
on chr 1, 4, 6 and 15, and with a 6×15 interaction, we consider each of the
five other possible pairwise interactions, and compare the base model (with
the four QTL and just the 6×15 interaction) to the model with the additional
interaction included.

The syntax of the function is similar to that of fitqtl. The output is a
table of results similar to that provided by the drop-one analysis of fitqtl.
As with fitqtl, by default two columns of pointwise p-values are provided:
one based on the assumption that, under the null hypothesis, LOD× (2 ln 10)
follows a χ2 distribution with the appropriate degrees of freedom, and a second
based on the F statistic. As in fitqtl, the p-values should be considered with
caution, as they are pointwise and so do not account for the search over the
genome that led us to the current model. To save space, we will omit the
p-values from the tabular results via pvalues=FALSE.

> addint(hyper, qtl=rqtl, formula=y~Q1+Q2+Q3*Q4, pvalues=FALSE)

Model formula: y ~ Q1 + Q2 + Q3 + Q4 + Q3:Q4

Add one pairwise interaction at a time table:
--------------------------------------------

df Type III SS LOD %var F value
1@67.8:4@30.0 1 61.380843 0.283709 0.347394 1.273
1@67.8:6@66.7 1 1.402998 0.006468 0.007940 0.029
1@67.8:15@17.5 1 71.144546 0.328975 0.402653 1.477
4@30.0:6@66.7 1 64.916064 0.300094 0.367402 1.347
4@30.0:15@17.5 1 16.225653 0.074853 0.091832 0.335

There is little evidence for any of these interactions.
Different results are obtained if we use as the formula y~Q1+Q2+Q3+Q4

(that is, omitting the 6×15 interaction).

> addint(hyper, qtl=rqtl, formula=y~Q1+Q2+Q3+Q4, pvalues=FALSE)
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Model formula: y ~ Q1 + Q2 + Q3 + Q4

Add one pairwise interaction at a time table:
--------------------------------------------

df Type III SS LOD %var F value
1@67.8:4@30.0 1 60.30574 0.25455 0.34131 1.147
1@67.8:6@66.7 1 11.62534 0.04898 0.06580 0.220
1@67.8:15@17.5 1 86.59440 0.36589 0.49009 1.650
4@30.0:6@66.7 1 39.81677 0.16793 0.22535 0.756
4@30.0:15@17.5 1 58.92350 0.24870 0.33349 1.120
6@66.7:15@17.5 1 1115.46429 4.91316 6.31314 23.113

The 6×15 interaction is also tested, and the LOD scores for the other in-
teractions are somewhat different, as they concern comparisons between the
four-locus additive model and the model with that one interaction added.

9.3.4 addqtl

The addqtl function is used to scan for an additional QTL, to be added to
the model. By default, the new QTL is strictly additive.

> out.aq <- addqtl(hyper, qtl=rqtl, formula=y~Q1+Q2+Q3*Q4)

The output of addqtl has the same form as that from scanone, and so we
may use the same summary and plot functions. For example, we can identify
the genome-wide maximum LOD score with max.scanone.

> max(out.aq)

chr pos lod
D5Mit31 5 66.7 1.58

We may plot the results with plot.scanone; see Fig. 9.5.

> plot(out.aq, ylab="LOD score")

The LOD scores compare the base model to the model with one additional
QTL. There is a suggestion of an additional QTL on chr 5, but the evidence
is not strong.

We may also use addqtl to scan for an additional QTL, interacting with
one of the current loci. This is done by including the additional QTL in the
model formula, with the relevant interaction term. For example, let’s scan for
an additional QTL interacting with the chr 15 locus.

> out.aqi <- addqtl(hyper, qtl=rqtl,

+ formula=y~Q1+Q2+Q3*Q4+Q4*Q5)

We plot the results as follows; see Fig. 9.6.

> plot(out.aqi, ylab="LOD score")
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Figure 9.5. LOD curves for adding one QTL to the four-QTL model, with the
hyper data.
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Figure 9.6. LOD curves for adding one QTL, interacting with the chr 15 locus, to
the four-QTL model, with the hyper data.
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Figure 9.7. Interaction LOD curves in the scan for an additional QTL, interacting
with the chr 15 locus, to be added to the four-QTL model, with the hyper data.

Also of interest are the LOD scores for the interaction between the chr 15
locus and the new locus being scanned, which are the differences between the
LOD scores in out.aqi and out.aq. See Fig. 9.7.

> plot(out.aqi - out.aq, ylab="LOD score")

There is nothing particularly exciting in either of these plots (though there
is a suggestion of a QTL on chr 7, interacting with the QTL on chr 15).

9.3.5 addpair

The function addpair is similar to addqtl, but it performs a two-dimensional
scan to seek a pair of QTL to add to a multiple-QTL model. By default,
addpair performs a two-dimensional scan analogous to that of scantwo: for
each pair of positions for the two putative QTL, it fits both an additive model
and a model including an interaction between the two QTL.

Recall that in the single-QTL analysis with the hyper data, there were two
peaks in the LOD curve on chr 1, indicating that there may be two QTL on
that chromosome. In the context of our multiple-QTL model, the LOD profile
on chr 1 (see Fig. 9.4) still shows two peaks, though the distal peak is more
prominent.

We may use addpair to investigate the possibility of a second QTL on
chr 1. To do so, we omit the chr 1 locus from our formula, and perform a
two-dimensional scan just on chr 1.

> out.ap <- addpair(hyper, qtl=rqtl, chr=1, formula=y~Q2+Q3*Q4,

+ verbose=FALSE)
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The output is of the same form as that produced by scantwo, and so we
may use the same summary and plot functions.

> summary(out.ap)

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a
c1:c1 43.3 73.3 7.83 1.98 0.458 45.3 77.3

lod.add lod.av1
c1:c1 7.37 1.52

There is little evidence for an interaction, and the LOD score comparing
the model with two additive QTL on chr 1 to that with a single QTL on chr 1
is 1.52, indicating relatively weak evidence for a second QTL on chr 1.

Let us also plot the results. We’ll focus on the evidence for a second QTL
on the chromosome, displaying LODfv1 (evidence for a second QTL, allowing
for an interaction) and LODav1 (evidence for a second QTL, assuming the
two are additive). See Fig 9.8.

> plot(out.ap, lower="cond-int", upper="cond-add")

There is a good deal of flexibility in the way that addpair may be used.
As in addqtl, where one can scan for loci that interact with a particular locus
in the model, we can use addpair to scan for an additional pair, with any
prespecified set of interactions.

For example, we may retain the loci on chr 1, 4 and 6, and scan for an
additional pair of interacting loci, one of which also interacts with chr 6. This
would be useful for assessing evidence for an additional QTL interacting with
the chr 15 locus, but allowing the location of the locus on chr 15 to vary. We
use the formula y~Q1+Q2+Q3+Q5*Q6+Q3:Q5, as we will omit the chr 15 locus
(Q4), scan for an additional interacting pair (Q5*Q6), and allow the first QTL
in the additional pair to interact with the chr 6 locus (Q3). Note that the
positions of the chr 1, 4 and 6 loci are assumed known. A three-dimensional
scan could be performed with the scanqtl function, but we do not discuss
such searches in this book.

To save time, we will focus just on chr 7 and 15.

> out.ap2 <- addpair(hyper, qtl=rqtl, chr=c(7,15), verbose=TRUE,

+ formula=y~Q1+Q2+Q3+Q5*Q6+Q3:Q5)

Because we are using a special formula here, with one of the new QTL
interacting with the chr 6 locus, the results are similar to, but not quite
the same as, those from scantwo. Rather than fitting an additive and an
interactive model at each pair of positions, we fit just the single model specified
in the formula. And note that as the formula is not symmetric in Q5 and Q6,
we must do a full 2-dimensional scan, rather than just scan the triangle. (That
is, we need Q5 and Q6 assigned to chromosomes (7,15) as well as (15,7).)

The summary of the results are somewhat different here. For each pair of
chromosomes, a set of three LOD scores are presented. lod.2v0 compares the
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Figure 9.8. Results of a two-dimensional, two-QTL scan on chr 1, in the context of
a model with additional QTL on chr 4, 6 and 15, and a 6×15 interaction, with the
hyper data. LODav1 is in the upper left triangle, and LODfv1 is in the lower right
triangle. In the color scale on the right, numbers to the left and right correspond to
LODav1 and LODfv1, respectively.

full model to the model with neither of the two new QTL included, lod.2v1b
compares the full model to the model with the first of the two new QTL
omitted, and lod.2v1a compares the full model to the model with the second
QTL omitted. When a QTL is omitted, any interactions involving that QTL
are also omitted.

> summary(out.ap2)

pos1a pos2a lod.2v0 lod.2v1b lod.2v1a
c7 :c7 29.1 25.1 2.89 2.54 1.55
c7 :c15 51.1 15.5 3.84 2.51 2.51
c15:c7 17.5 53.1 8.08 7.72 2.01
c15:c15 17.5 31.5 7.59 6.26 1.52

Note that, because of the lack of symmetry in the formula we used in
addpair, separate results are provided for the two cases c7:c15 (in which the
chr 7 locus interacts with the chr 6 locus) and c15:c7 (in which the chr 15
locus interacts with the chr 6 locus). The c15:c7 row is most interesting,
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but lod.2v1a is 2.01, indicating little evidence for a chr 7 locus. (Note that
lod.2v1a here concerns both the chr 7 locus and the 7×15 interaction.) This
is the same as the peak on chr 7 in Fig. 9.6, in which we scanned for an
additional locus, interacting with the chr 15 locus. While here we allowed the
location of the chr 15 locus to vary, the estimated location was 17.5 cM, as
before.

With this sort of addpair output, the thresholds argument should have
length just 1 or 2 (which is different from the usual case for summary.scantwo).
Rows will be retained if lod.2v0 is greater than thresholds[1] and either
of lod.2v1a or lod.2v1b is greater than thresholds[2]. (If a single thresh-
olds is given, we assume that thresholds[2]==0.) Note that, of the other
arguments to summary.scantwo, all but allpairs is ignored.

The plot of the output from addpair, in the case of a special formula, is
also different from the usual scantwo plot.

> plot(out.ap2)

The plot, shown in Fig. 9.9, contains LOD scores comparing the full five-
QTL model to the three-QTL model (having loci on chr 1, 4 and 6). The
x-axis corresponds to the first of the new QTL (Q5), which is the one that
interacts with the chr 6 locus. The y-axis corresponds to the second of the
new QTL (Q6). Clearly, the QTL interacting with the chr 6 locus wants to be
on chr 15.

Note that the lower and upper arguments to plot.scantwo are ignored
in this case.

9.3.6 Manipulating qtl objects

Our analysis of the hyper data, above, did not indicate much evidence for
any further QTL. If we had seen evidence for additional loci, we would want
to add them to the QTL object and repeat our explorations with fitqtl,
addint, addqtl, and addpair.

The functions addtoqtl, dropfromqtl and replaceqtl can be used to
facilitate such analyses. Rather than recreating a QTL object from scratch
with makeqtl, one can use addtoqtl to add an additional locus to a QTL
object that was previously created. For example, if we were satisfied with the
evidence for an additional QTL on chr 1, it could be added to the QTL object
rqtl as follows. We use print to simultaneously assign the result to an object
and print it.

> print( rqtl2 <- addtoqtl(hyper, rqtl, 1, 43.3) )

name chr pos n.gen
Q1 1@67.8 1 67.8 2
Q2 4@30.0 4 30.0 2
Q3 6@66.7 6 66.7 2



9.3 Multiple QTL mapping in R/qtl 273

Chromosome

C
hr

om
os

om
e

7

7

15

15

0

2

4

6

8

0

2

4

6

8

Figure 9.9. Results of a two-dimensional, two-QTL scan on chr 7 and 15, in the
context of a model with additional QTL on chr 1, 4, and 6, with the hyper data.
The two QTL being scanned were allowed to interact, and the first of them interacts
with the chr 6 locus. The LOD scores displayed are for the five-QTL model relative
to the three-QTL model. The x-axis corresponds to the first of the new QTL (which
interacts with the chr 6 locus); the y-axis corresponds to the second of the new QTL.

Q4 15@17.5 15 17.5 2
Q5 1@43.3 1 43.3 2

The syntax of addtoqtl is much like that of makeqtl, though one also
provides the QTL object to which additional QTL are to be added.

If we want to move the first QTL on chr 1 to a different position (say to
77.3 cM rather than 67.8 cM), we may use replaceqtl. We refer to the QTL
that are to be replaced by their numeric index, with the argument index.
(That is the first 1 below; the second 1 indicates the chromosome.)

> print( rqtl3 <- replaceqtl(hyper, rqtl2, 1, 1, 77.3) )

name chr pos n.gen
Q1 1@77.3 1 77.3 2
Q2 4@30.0 4 30.0 2
Q3 6@66.7 6 66.7 2
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Q4 15@17.5 15 17.5 2
Q5 1@43.3 1 43.3 2

If we wish to reorder the QTL (e.g., according to their map positions), we
may use reorderqtl. We may provide a vector of numeric indices specifying
the new order.

> print( rqtl4 <- reorderqtl(rqtl3, c(4,3,2,1,5)) )

name chr pos n.gen
Q1 15@17.5 15 17.5 2
Q2 6@66.7 6 66.7 2
Q3 4@30.0 4 30.0 2
Q4 1@77.3 1 77.3 2
Q5 1@43.3 1 43.3 2

Alternatively, if reorderqtl is called with only the QTL object, the QTL are
ordered according to their genomic positions.

> print( rqtl5 <- reorderqtl(rqtl4) )

name chr pos n.gen
Q1 1@43.3 1 43.3 2
Q2 1@77.3 1 77.3 2
Q3 4@30.0 4 30.0 2
Q4 6@66.7 6 66.7 2
Q5 15@17.5 15 17.5 2

Finally, dropfromqtl is used to drop a locus from a QTL object. To drop
the proximal locus on chr 1 (now the first QTL in the object), we would do
the following.

> print( rqtl6 <- dropfromqtl(rqtl5, 1) )

name chr pos n.gen
Q1 1@77.3 1 77.3 2
Q2 4@30.0 4 30.0 2
Q3 6@66.7 6 66.7 2
Q4 15@17.5 15 17.5 2

In dropfromqtl, we may refer to the QTL to be dropped either by their
numeric index (through the argument index), by their chromosome and po-
sition (through the arguments chr and pos), or by their name (through the
argument qtl.name).

9.3.7 stepwiseqtl

With the function stepwiseqtl, one may use the forward/backward stepwise
search algorithm described in Sec. 9.1.3 to optimize the penalized LOD score
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criterion described in Sec. 9.1.4. In this section, we illustrate the use of this
function through application to the hyper data.

We must first derive the appropriate penalties for the penalized LOD score.
This requires a permutation test with a two-dimensional, two-QTL genome
scan. While we had performed such permutations in Sec. 8.1, there we had used
maximum likelihood via the EM algorithm to deal with missing genotype data,
and here we are using multiple imputation. As the results may be somewhat
different with the two approaches, we must rerun the permutation analysis.
Extremely hefty computations are required, on the order of 100 hours, in
total. Thus it is best to split the permutations into batches to be performed in
parallel using multiple processors. Such parallel computations were described
in Sec. 8.1; see page 223.

Recall that, due to the selective genotyping, it is best to do a stratified
permutation test (permuting separately within the two strata defined by the
extent of genotype data available). And so we first define these strata, and
then perform the permutation test with scantwo.

> strat <- (nmissing(hyper) > 50)

> operm2 <- scantwo(hyper, method="imp", n.perm=1000,

+ perm.strat=strat)

The summary.scantwoperm function may be used to obtain estimated
thresholds.

> summary(operm2)

bp (1000 permutations)
full fv1 int add av1 one

5% 5.41 4.19 3.79 4.34 2.29 2.55
10% 5.09 3.91 3.51 3.97 2.05 2.28

The function calc.penalties is used to derive the penalties from the
permutation results. By default, we use a significance level of 5%. We use
print in the following so that we may simultaneously assign the penalties to
an object and print the results.

> print(pen <- calc.penalties(operm2))

main heavy light
2.553 3.793 1.641

Note that these are quite different from the penalties presented in Sec. 9.1.4
(Table 9.1 on page 252), derived by computer simulation (in an admittedly
artificial situation). In particular, the heavy interaction penalty is quite a bit
larger (3.8 vs. 2.6).

The penalties corresponding to multiple significance levels can be derived
at the same time.

> calc.penalties(operm2, alpha=c(0.05, 0.20))
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main heavy light
5% 2.553 3.793 1.641
20% 1.983 3.197 1.610

With these penalties in hand, we are now prepared to apply the fully
automated model search algorithm with stepwiseqtl. The search algorithm
uses forward selection to a model with a fixed number of QTL, at each step
searching for an additional additive QTL, or an additional QTL interacting
with one of the QTL in the current model. The forward selection process is
followed by backward elimination to the null model. The final chosen model
is that with the maximal penalized LOD score, among all models visited.

> outsw1 <- stepwiseqtl(hyper, max.qtl=8, penalties=pen,

+ verbose=FALSE)

The output is a QTL object (of class "qtl", as created by the function
makeqtl) defining the chosen model.

> outsw1

name chr pos n.gen
Q1 1@67.8 1 67.8 2
Q2 4@30.0 4 30.0 2
Q3 6@66.7 6 66.7 2
Q4 15@17.5 15 17.5 2

Formula: y ~ Q1 + Q2 + Q3 + Q4 + Q3:Q4
pLOD: 10.18

This is identical to the model obtained in Sec. 9.3.2 (page 264).
If stepwiseqtl is run with the argument keeplodprofile=TRUE, one may

obtain the LOD profiles for the four QTL in the model (as with the function
refineqtl), which may then be plotted with plotLodProfile (see Sec. 9.3.2).

With the argument keeptrace=TRUE, the output will include the sequence
of models visited in the forward/backward search algorithm. (That is, we
retain information on the single best model at each step of forward selection
and backward elimination.)

Let us rerun stepwiseqtl with these options, and visualize the results.

> outsw2 <- stepwiseqtl(hyper, max.qtl=8, penalties=pen,

+ verbose=FALSE, keeplodprofile=TRUE,

+ keeptrace=TRUE)

The LOD profiles may be displayed as follows. As the model is identical to
that considered in Sec. 9.3.2, the LOD profiles are identical to those displayed
in Fig. 9.4 on page 265, and so the plot will not be repeated.

> plotLodProfile(outsw2)
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The sequence of models visited by stepwiseqtl are retained as an attribute
(called "trace") of the output, outsw2. Attributes are a way of hiding addi-
tional information within an object. The entire set of attributes for an object
may be obtained with the attributes function. It is often useful to just look
at the names of the attributes.

> names(attributes(outsw2))

[1] "names" "class" "map" "lodprofile"
[5] "formula" "pLOD" "trace"

Individual attributes may be obtained with the attr function. So we can
pull out the trace of models with the following. This is a long list, with each
component being a compact representation of a QTL model, and so we will
print just the first of them.

> thetrace <- attr(outsw2, "trace")

> thetrace[[1]]

chr pos
Q1 4 29.5

Formula: y ~ Q1
pLOD: 5.539

It is nicer to look at a sequence of pictures rather than a long list of models.
The function plotModel may be used to plot a graphical representation of a
model, with nodes (i.e., dots) representing QTL and edges (i.e., line segments
connecting two nodes) representing pairwise interactions among QTL. The
argument chronly is used to print just the chromosome ID for each QTL
(rather than chromosome and position). The penalized LOD score for each
model is saved as an attribute, "pLOD"; we include them in the title of each
subplot, but this requires another call to attr.

> par(mfrow=c(6,3))

> for(i in seq(along=thetrace))

+ plotModel(thetrace[[i]], chronly=TRUE,

+ main=paste(i, ": pLOD =",

+ round(attr(thetrace[[i]], "pLOD"), 2)))

As seen in Fig. 9.10, our chosen model is identified immediately (at step
4). Note that the model at step 3 (with additive QTL on chr 1, 4 and 6) has a
lower penalized LOD score than the model at step 2 (with just the chr 1 and
4 QTL), but then the inclusion of the chr 15 QTL and the 6 × 15 interaction
gave the largest penalized LOD score, among all models visited. With the
addition of a QTL on chr 5 (at step 5), the pLOD decreased somewhat; the
LOD score for the model increased, but not as much as the main effect penalty.

In the above, we used the penalized LOD score criterion that balances
the use of the heavy and light interaction penalties (see Sec. 9.1.4). If we call
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stepwiseqtl with just the first two penalties (the main effect penalties and
the heavy interaction penalty), the light interaction penalty will be taken to
be the same as the heavy interaction penalty, and so all pairwise interactions
will be assigned the same penalty.

> outsw3 <- stepwiseqtl(hyper, max.qtl=8, penalties=pen[1:2],

+ verbose=FALSE)

With only heavy interaction penalties, we choose the model with just the
QTL on chr 1 and 4, and with no interactions.

> outsw3

name chr pos n.gen
Q1 1@67.8 1 67.8 2
Q2 4@29.5 4 29.5 2

Formula: y ~ Q1 + Q2
pLOD: 8.897

We could also consider more liberal penalties, such as those corresponding
to a significance level of 20%.

> liberalpen <- calc.penalties(operm2, alpha=0.2)

> outsw4 <- stepwiseqtl(hyper, max.qtl=8, penalties=liberalpen,

+ verbose=FALSE)

No additional QTL are obtained with these more liberal penalties. The
penalties based on a significance level of 5% are conservative; the more liberal
penalties can lead to a larger model (though, as seen here, not necessarily),
but the false positive rate (the chance of extraneous loci being included in the
chosen model) will be higher.

> outsw4

name chr pos n.gen
Q1 1@67.8 1 67.8 2
Q2 4@30.0 4 30.0 2
Q3 6@66.7 6 66.7 2
Q4 15@17.5 15 17.5 2

Formula: y ~ Q1 + Q2 + Q3 + Q4 + Q3:Q4
pLOD: 12.48

The stepwiseqtl function has a number of additional arguments. With
additive.only=TRUE, one may consider only additive QTL models (allowing
no interactions among QTL). With scan.pairs=TRUE, one may perform a
two-dimensional, two-QTL scan at each step of forward selection. This could
enhance our ability to identify interacting loci with limited marginal effects
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and pairs of loci that are linked in repulsion (having effects of opposite signs).
However, the computational effort is great, and our limited experience suggests
that it may not be necessary.

We won’t explore the use of scan.pairs=TRUE, but let us see what happens
when we focus solely on additive QTL models.

> outsw5 <- stepwiseqtl(hyper, max.qtl=8, penalties=pen,

+ additive.only=TRUE, verbose=FALSE)

The chosen model then contains only the QTL on chr 1 and 4.

> outsw5

name chr pos n.gen
Q1 1@67.8 1 67.8 2
Q2 4@29.5 4 29.5 2

Formula: y ~ Q1 + Q2
pLOD: 8.897

Finally note that while, in the above, we started forward selection at the
null QTL model, one may also begin the algorithm at any defined QTL model.
For example, we could start at the first model that we considered in Sec. 9.3.1,
determined from the results of scanone and scantwo. The starting model is
indicated through the arguments qtl (a QTL object, created with makeqtl)
and formula (a model formula).

> qtl <- makeqtl(hyper, chr=c(1, 4, 6, 15),

+ pos=c(68.3, 30, 60, 18))

> outsw6 <- stepwiseqtl(hyper, max.qtl=8, penalties=pen,

+ qtl=qtl, formula=y~Q1+Q2+Q3*Q4,

+ verbose=FALSE)

We get almost the same result, though we get to it slightly faster, as we
skip the first few steps of forward selection.

> outsw6

name chr pos n.gen
Q1 1@67.8 1 67.8 2
Q2 4@29.5 4 29.5 2
Q3 6@60.0 6 60.0 2
Q4 15@17.5 15 17.5 2

Formula: y ~ Q1 + Q2 + Q3 + Q4 + Q3:Q4
pLOD: 10.13
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9.4 Summary

The QTL mapping problem is best viewed as one of model selection: we seek
to identify the set of QTL and epistatic interactions that are best supported
by the data. While the sequence of hypothesis tests used for single- and two-
QTL genome scans are a useful technique and often are sufficient, multiple-
QTL mapping methods have the advantages of providing potentially increased
power to detect QTL, of better separating linked QTL, and of more clearly
defining epistatic interactions, and the hypothesis testing approach falls apart
when one is faced with multiple-QTL models.

The most important aspect of the model selection approach to QTL map-
ping is the criterion for comparing models. We have described a penalized
LOD score approach, with the aim to identify as many true QTL as possible
while controlling the rate of inclusion of extraneous loci.

Bayesian methods for QTL mapping have a number of advantages over our
more classical approach to the problem. They unify all aspects of the model
selection problem, they provide a more natural expression of uncertainty in the
results, and they more fully capture the uncertainty. However, the specification
of a prior distribution on QTL models is difficult; specifying a target false
positive rate, as is done in the classical approach, is arguably more natural.
Moreover, the construction of the MCMC algorithms needed for the Bayesian
methods requires great care, and their use in practice may require considerable
training.

R/qtl includes a number of functions for the fit and exploration of multiple-
QTL models. In addition to a fully automated method (stepwiseqtl), there
are a number of functions for exploratory analyses.

9.5 Further reading

For general discussions of model selection, see Miller (2002) and Hastie et al.
(2009). For a review of the model selection aspects of QTL mapping, see
Sillanpää and Corander (2002).

The original papers describing multiple interval mapping (Kao and Zeng,
1997; Kao et al., 1999; Zeng et al., 1999) used a CEM algorithm (Meng and
Rubin, 1993), in which each model parameter is updated one at a time. The
implementation of a full EM algorithm (Dempster et al., 1977) for this problem
is straightforward (Ljungberg et al., 2002; Chen, 2005), but it has not been
widely used. Zeng et al. (1999) described the technique for trimming multi-
locus QTL genotypes; they also described a useful model search algorithm, on
which the method described in Sec. 9.1.3 was based.

Doerge and Churchill (1996) described the use of sequential permutation
tests for mapping multiple QTL in the context of forward selection. The pe-
nalized LOD score for additive QTL models is equivalent to the BICδ criterion
proposed by Broman and Speed (2002). Bogdan et al. (2004) and Baierl et al.
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(2006) proposed alternative modifications to the BIC criterion for the consid-
eration of epistatic interactions. The penalized LOD score for multiple QTL
mapping with epistasis was described in Manichaikul et al. (2009).

For a discussion of the most recent approaches for Bayesian QTL mapping
using Markov chain Monte Carlo, see Yi (2004), Yi et al. (2005, 2007), and the
recent review of Yi and Shriner (2008). The key software package to consider
is R/qtlbim (Yandell et al., 2007), which works in conjunction with R/qtl. See
http://www.qtlbim.org.
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Case study I

In this chapter and the next, we present two case studies to illustrate the
QTL mapping process in its entirety. We bring together tools from previous
chapters and demonstrate their combined use to solve two moderately difficult
problems. Both case studies have features that require special handling. In
this sense they are not typical. On the other hand, almost every dataset has
quirks that require an alert analyst to recognize them and respond accordingly.
Our case studies illustrate the investigative process of QTL data analysis and
improvisation using R/qtl.

In this chapter, we will consider the data of Orgogozo et al. (2006), included
in the R/qtlbook package as the data set ovar. This is from a cross between
two Drosophila species: D. simulans was crossed to D. sechellia, and the F1

hybrid was crossed back to D. simulans. The phenotype of interest was ovariole
number in females, a measure of fitness.

An initial cross produced 402 progeny; 383 had complete phenotype data.
Initial genotyping focused on 94 individuals with extreme phenotype, though
all individuals were genotyped for five morphological markers.

To increase the resolution of a major QTL identified on chromosome 3, an
additional set of approximately 7000 flies were generated, and the 1050 indi-
viduals showing a recombination event between two morphological markers, st
(bright red eyes) and e (dark brown body), were phenotyped and genotyped;
1038 individuals had complete phenotype data. The aim was to oversample
recombinants in the QTL region, thereby increasing the fine mapping resolu-
tion.

There are genotype data for 24 markers on 3 chromosomes. (The fourth
chromosome had one marker, but it showed no effect and was excluded from
further consideration.)

We begin with data diagnostics that show us the special features of these
data: the selective genotyping and phenotyping strategies that were employed.
We will then analyze the initial cross, followed by a combined analysis of both
crosses. Finally, we discuss the strengths and limitations of the conclusions.

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 10,
© Springer Science+Business Media, LLC 2009
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10.1 Diagnostics

Before jumping into QTL mapping analyses, it is useful to perform exploratory
analyses of the phenotype and genotype data. This will familiarize us with the
data and help diagnose potential artifacts. It is not uncommon to devote half
of the intellectual effort of a project on data diagnostics. The use of the various
diagnostic tools described in Chap. 3 should become routine.

We must first load the R/qtl and R/qtlbook packages, and then the data
set, ovar.

> library(qtl)

> library(qtlbook)

> data(ovar)

We first get a quick overview of the data.

> summary(ovar)

Backcross

No. individuals: 1452

No. phenotypes: 4
Percent phenotyped: 97.9 99 98.1 100

No. chromosomes: 3
Autosomes: 1 2 3

Total markers: 24
No. markers: 2 9 13
Percent genotyped: 29.5
Genotypes (%): II:50.1 IE:49.9

There are a total of 1452 backcross individuals, with four phenotypes and geno-
types at 24 markers. More than two-thirds of the genotype data are missing.
The alleles I and E correspond to D. simulans and D. sechellia, respectively.

We make a summary plot as follows; see Fig. 10.1.

> plot(ovar)

The genetic map has some large gaps, with markers separated by as much
as 40 cM. The phenotypes on1 and on2 are the ovariole counts for the two
gonads. The phenotype onm is the average of the two counts. For several
individuals, the ovariole count for one of the two gonads was missing, and so
onm is missing. The fourth phenotype, cross, indicates which individuals were
from the initial cross and which were from the second, selectively phenotyped
cross.
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Figure 10.1. The summary plot of the ovar data provided by the plot.cross func-
tion, including the pattern of missing genotype data (upper left; black pixels indicate
missing data), the genetic map of the typed markers (upper right), histograms of
the three phenotypes, onm (average ovariole count), and on1 and on2 (gonad-specific
ovariole counts), and a bar plot of the cross phenotype, indicating the numbers of
individuals from the initial cross and from the second, selectively phenotyped cross.

Let us plot the two gonad-specific ovariole counts against each other. We
use the function jitter to add a small amount of random noise to the counts
so that we can distinguish multiple individuals with the same ovariole counts.

> plot(jitter(on2) ~ jitter(on1), data=ovar$pheno,

+ xlab="on1", ylab="on2", cex=0.6,

+ xlim=c(6.66, 17.53), ylim=c(6.66, 17.53))

We use cex to make the points smaller, and xlim and ylim to force the x-
and y-axis limits to be the same.

Figure 10.2 indicates clear but not overly strong association between the
two counts. We may use cor to calculate the sample correlation between the
two counts. The argument use="complete" is required due to the missing
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Figure 10.2. Scatterplot of on1 and on2, the gonad-specific ovariole counts in
the ovar data, with points randomly jittered so that overlapping points may be
distinguished.

data; the correlation is then calculated using only those individuals with com-
plete data.

> cor(pull.pheno(ovar,"on1"), pull.pheno(ovar,"on2"),

+ use="complete")

[1] 0.582

The phenotype onm should be the average of on1 and on2. It is a good
idea to check this.

> max(abs(pull.pheno(ovar,"onm") -

+ (pull.pheno(ovar,"on1")+pull.pheno(ovar,"on2"))/2),

+ na.rm=TRUE)

[1] 0

The phenotype onm should be missing if either on1 or on2 is missing. We
should check this, too.

> table(apply(is.na(pull.pheno(ovar,1:3)), 1, paste,

+ collapse=":"))
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Figure 10.3. Box plot of onm for the two crosses forming the ovar data.

FALSE:FALSE:FALSE FALSE:TRUE:FALSE TRUE:FALSE:TRUE
1419 2 19

TRUE:TRUE:FALSE TRUE:TRUE:TRUE
3 9

The three TRUE/FALSE values indicate whether the onm, on1 and on2 phe-
notypes, respectively, are missing or not. There are 1419 individuals with no
missing phenotype, 19 individuals missing onm and on2, 3 individuals missing
onm and on1, and 9 individuals missing all three phenotypes. There are also
two individuals for which onm is not missing but on1 is missing.

> ovar$pheno[!is.na(ovar$pheno$onm) & is.na(ovar$pheno$on1),]

onm on1 on2 cross
1300 13 NA 13 2
1325 12 NA 12 2

We will fix these.

> ovar$pheno$onm[is.na(ovar$pheno$on1)] <- NA

A boxplot of the onm phenotypes in the two crosses will indicate whether
there are systematic differences.

> boxplot(onm ~ cross, data=ovar$pheno, horizontal=TRUE,

+ xlab="Ovariole count", ylab="Cross")

As seen in Fig. 10.3, the ovariole counts were quite a bit smaller in the
second cross. A t test will indicate whether this could reasonably ascribed to
chance variation (though the figure is sufficiently convincing).

> t.test(onm ~ cross, data=ovar$pheno)
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Figure 10.4. Plot of ovariole count against number of typed marker genotypes for
the initial cross in the ovar data. On the right are points corresponding to the 94
genotyped individuals; on the left are the remaining individuals, for which only five
morphological markers were scored.

Welch Two Sample t-test

data: onm by cross
t = 11.75, df = 710.2, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.6590 0.9235
sample estimates:
mean in group 1 mean in group 2

13.64 12.85

Let us now study the genotype data in the first cross. We first use sub-
set.cross to pull out the individuals from the first cross.

> ovar1 <- subset(ovar, ind=(pull.pheno(ovar, "cross")==1))

Note the selective genotyping.

> plot(jitter(ntyped(ovar1)),jitter(pull.pheno(ovar1,"onm")),

+ xlab="No. genotypes", ylab="Ovariole count")

As seen in Fig. 10.4, the individuals with the most genotype data have
high (≥ 14.5) or low (≤ 13) phenotype, but there were no strict cutoffs: there
is some overlap between the more and less highly genotyped groups.
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Figure 10.5. Plot of estimated recombination fractions (upper left) and LOD scores
for a test of r = 1/2 (lower right) for all pairs of markers in the initial cross in
the ovar data. Red indicates linkage, blue indicates no linkage, and gray indicates
missing values (for marker pairs that were not both typed in any one individual).

The extensive missing genotype data cause some odd patterns in the esti-
mated recombination fractions between markers, but it is nevertheless useful
to plot these (see Sec. 3.4.1).

> ovar1 <- est.rf(ovar1)

> plot.rf(ovar1)

In Fig. 10.5, the LOD scores (in the lower right triangle) indicate no evi-
dence for linkage between markers on different chromosomes.

The map associated with the data was established based on Macdonald
and Goldstein (1999). It is a good idea to reestimate the intermarker distances,
using the observed data, keeping marker order fixed, and plot the estimated
map against that which came with the data.

> newmap <- est.map(ovar1, error.prob=0.001, verbose=FALSE)

> plot.map(ovar1, newmap)

There is some evidence for map expansion (see Fig. 10.6), though this
may be partly due to the choice of map function. By default, est.map uses
the Haldane map function to convert estimated recombination fractions to
genetic distances. The choice of map function has a greater effect on larger
marker intervals.
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Figure 10.6. The genetic map in the ovar data plotted against the map estimated
from the individuals in the initial cross. For each chromosome, the line on the left
is the map provided with the data, and the line on the right is the map estimated
using the Haldane mapping function; line segments connect the positions for each
marker.

If we use the Kosambi map function (rather than the Haldane map func-
tion), the chromosomes are quite a bit smaller.

> newmap.k <- est.map(ovar1, err=0.001, map.function="kosambi")

> summary(newmap)

n.mar length ave.spacing max.spacing
1 2 98.2 98.2 98.2
2 9 196.2 24.5 90.3
3 13 205.5 17.1 108.3
overall 24 500.0 23.8 108.3

> summary(newmap.k)

n.mar length ave.spacing max.spacing
1 2 64.6 64.6 64.6
2 9 147.1 18.4 60.3
3 13 153.8 12.8 70.0
overall 24 365.5 17.4 70.0

We will stick with the map that came with the data, and we will use the
Kosambi map function in our QTL analyses. There is not a compelling reason
to replace the original map, and since crossover interference is known to exist
in Drosophila, it seems prudent to use the Kosambi map function.
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Finally, let us consider the chromosome 3 genotypes for the individuals in
the second cross (which were selected to be recombinant between the markers
st and e). The function geno.crosstab can be used to create a table of two-
locus genotypes.

> ovar2 <- subset(ovar, ind=(pull.pheno(ovar,"cross")==2))

> geno.crosstab(ovar2, "st", "e")

e
st - II IE
- 0 1 0
II 0 0 566
IE 0 481 2

There are two individuals that are not recombinant (these might be errors)
and one individual that has missing genotype for the st marker.

Consider the same cross-tabulation for the first cross.

> geno.crosstab(ovar1, "st", "e")

e
st - II IE
- 0 1 0
II 0 146 72
IE 0 47 136

There were 30% recombinants in the first cross.
Let us plot the chromosome 3 genotypes for a random set of 15 individuals

from the second cross.

> toplot <- sort(sample(nind(ovar2), 15))

> plot.geno(ovar2, chr=3, ind=toplot)

As seen in Fig. 10.7, these individuals were genotyped just within the
region of the selected recombination event.

10.2 Initial cross

We now turn to QTL mapping. We first focus on the initial cross of 402
individuals (of which 383 have complete phenotype data). In the last section,
we created a cross object, ovar1, with just those individuals. To avoid repeated
warning messages, we omit individuals for which the onm phenotype is missing.

> ovar1 <- subset(ovar1, ind=!is.na(pull.pheno(ovar1,"onm")))

We will use multiple imputation for the QTL mapping, because of the
selective genotyping and our desire to fit multiple-QTL models (see Sec. 4.2.4).
The extensive missing genotype data suggests that we should perform a large
number of imputations; we will use 512. (We like powers of 2.) We begin with
a call to sim.geno, to do the imputations.
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Figure 10.7. Chromosome 3 genotypes for a random set of individuals from the sec-
ond ovar cross, showing the selective genotyping of recombinants. Blue ×’s indicate
recombination events.

> ovar1 <- sim.geno(ovar1, n.draws=512, step=2, err=0.001,

+ map.function="kosambi")

We now use scanone to perform a single-QTL genome scan by the multiple
imputation approach.

> out1 <- scanone(ovar1, method="imp")

A quick summary and plot of the genome scan results (Fig. 10.8) indicates
strong evidence for a QTL on chr 3, and some evidence for an additional QTL
on chr 2.

> summary(out1)

chr pos lod
per 1 4.5 0.213
SRPK 2 87.3 2.228
cpo 3 82.4 14.010

> plot(out1, ylab="LOD score")

The evidence for the QTL on chr 3 (with a LOD score of 14.01) is clear.
It is worthwhile considering the estimated effect of this QTL. We can make a
plot with effectplot, or we could get a numerical estimate of the effect with
fitqtl. Let us do both.

First, we use effectplot to plot the estimated phenotype averages for
each of the two QTL groups (see Sec. 4.6).
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Figure 10.8. LOD curves from a genome scan by multiple imputation for the initial
cross in the ovar data.

> effectplot(ovar1, mname1="cpo")

The plot, in Fig. 10.9, indicates that the D. simulans allele (I) is associated
with one additional ovariole per gonad.

To use fitqtl to get a numerical estimate of the QTL effect, we first use
makeqtl to create a QTL object and then call fitqtl with dropone=FALSE,
as we can skip the drop-one-QTL analysis, and get.ests=TRUE, to get the
estimates (see Sec. 9.3.1).

> qtl <- makeqtl(ovar1, chr=3, pos=82.4)

> summary(fitqtl(ovar1, qtl=qtl, dropone=FALSE, get.ests=TRUE))

Full model result
----------------------------------
Model formula: y ~ Q1

df SS MS LOD %var Pvalue(Chi2) Pvalue(F)
Model 1 73.3 73.296 14.01 15.50 9.992e-16 1.110e-15
Error 381 399.5 1.049
Total 382 472.8

Estimated effects:
-----------------



294 10 Case study I

13.2

13.4

13.6

13.8

14.0

14.2

cpo

on
m

II IE

Figure 10.9. Estimated phenotype averages for the two groups defined by genotypes
at marker cpo, for the initial cross in the ovar1 data. Error bars are ± 1 SE.

est SE t
Intercept 13.65411 0.05323 256.499
3@82.4 -0.89491 0.10602 -8.441

The estimated effect of the chr 3 QTL is −0.89 ± 0.11.
Given the large effect of the chr 3 QTL, let us repeat the genome scan,

controlling for this locus. If we had complete genotype data at the inferred
QTL, we could include it as an additive covariate in scanone. But in the
current situation, with considerable missing data at the inferred QTL, we
use addqtl to scan for an additional QTL using multiple imputation (see
Sec. 9.3.4).

> out1.c3 <- addqtl(ovar1, qtl=qtl)

Again, we make a quick summary and plot (Fig. 10.10).

> summary(out1.c3)

chr pos lod
c1.loc32 1 36.5 0.173
c2.loc90 2 90.0 3.531
slo 3 121.3 2.543

> plot(out1.c3, ylab="LOD score")
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Figure 10.10. LOD curves from a genome scan by multiple imputation for the
initial cross in the ovar data, adjusting for an inferred QTL at the marker cpo.

We have improved evidence for a QTL on chr 2 (the LOD increased from
2.23 to 3.53), and there is some evidence for an additional QTL at the distal
end of chr 3.

Let us perform a two-dimensional, two-QTL scan on chr 3, to assess the
evidence for a second QTL on the chromosome. We will include the inferred
QTL on chr 2 as an additive covariate. This requires that we first create a new
QTL object (containing just the chr 2 QTL) and run addpair (see Sec. 9.3.5).

> qtl2 <- makeqtl(ovar1, 2, 90)

> out1.ap <- addpair(ovar1, qtl=qtl2, chr=3, verbose=FALSE)

We can use summary.scantwo to pick off the largest peak for both a full
model (with two interacting QTL) and an additive model (see Sec. 8.1).

> summary(out1.ap)

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a
c3:c3 82.8 121 17.6 2.30 0.143 82.8 121

lod.add lod.av1
c3:c3 17.5 2.16

The evidence for a second QTL on chr 3 remains, but it is not strong, and
actually the evidence is weaker once the QTL on chr 2 is considered. (The LOD
for two additive QTL on chr 3, versus a single QTL near the cpo marker, is
2.16 when the chr 2 locus is included in the model and is 2.54 when the chr 2
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Figure 10.11. Profile LOD curves for a three-QTL model, for the initial cross in
the ovar data.

locus is not included.) There is no evidence for an interaction between the loci
on chr 3.

We now bring all three putative QTL into one model, and use refineqtl
to improve our estimates of the QTL positions (see Sec. 9.3.2).

> qtl <- makeqtl(ovar1, c(2, 3, 3), c(90, 82.8, 121))

> rqtl <- refineqtl(ovar1, qtl=qtl, verbose=FALSE)

The QTL moved slightly:

> rqtl

name chr pos n.gen
Q1 2@92.4 2 92.4 2
Q2 3@82.8 3 82.8 2
Q3 3@121.3 3 121.3 2

We may use plotLodProfile to plot LOD profiles for the three QTL (see
Sec. 9.3.2). The results appear in Fig. 10.11.

> plotLodProfile(rqtl, col=c("black","red","blue"),

+ ylab="Profile LOD score")

We are particularly interested in deriving a confidence interval for the
location of the proximal QTL on chr 3, as the selective phenotyping in the
second cross in these data was performed with the aim of more precisely
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mapping this locus. As described in Sec. 9.3.2, we may use lodint or bayesint
to derive an approximate confidence interval for QTL location, based on the
LOD profile calculated by refineqtl. These intervals need to be viewed with
some caution, however, as they fail to account for the uncertainty in the
location of the other QTL, and the performance of these intervals in the
context of a multiple-QTL model is not well understood.

In the use of lodint and bayesint, we refer to the QTL by their numeric
index within the QTL object. The proximal QTL on chr 3 is the second locus
within rqtl, and so we use qtl.index=2.

> lodint(rqtl, qtl.index=2)

chr pos lod
nos 3 77.8 15.66
c3.loc70 3 82.8 17.48
c3.loc74 3 86.8 15.62

> bayesint(rqtl, qtl.index=2)

chr pos lod
c3.loc66 3 78.8 16.13
c3.loc70 3 82.8 17.48
c3.loc72 3 84.8 16.53

These intervals are reasonably small. (The 1.5-LOD support interval is
9.0 cM long, and the approximate 95% Bayesian credible interval is 6.0 cM
long.)

It is surprising that the intervals start at 77.8 cM and so do not cover the
region used to select recombinants in the second cross: selected individuals
showed a recombination event between markers st (at 55.2 cM) and e (at
72.9 cM). If our confidence intervals are accurate, the selective phenotyping
should not be expected to narrow the location of the QTL, as the selected
recombination events will be flanking the QTL, rather than covering it. The
region used to select recombinants was chosen based on an initial analysis with
a simpler model and with the QTL Cartographer software, which indicated a
QTL peak to the left of the e marker; see Fig. 2B in Orgogozo et al. (2006).
Moreover, the e marker was the most distal morphological marker available
in the D. simulans strain that was used for these crosses.

We have neglected to be precise about the strength of evidence for the
three inferred QTL. The proximal QTL on chr 3 (with LOD score ∼14) is
clear, but in considering the other two QTL, we must take this large-effect
QTL into account. Let us apply the multiple-QTL model comparison criterion
described in Sec. 9.1.4.

We must first derive appropriate penalties for the penalized LOD score
criterion, using a permutation test with a two-dimensional, two-QTL genome
scan. The computational effort is forbidding, but it can be made feasible by the
parallel use of multiple computers (see Sec. 8.1, page 223). The permutation
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test here took about four days of computer time, but we split it across 16
processors, so it took about six hours in real time.

Due to the selective genotyping in this initial cross (only 94 individuals
chosen by their relatively extreme phenotypes were typed at most markers),
it is best to perform a stratified permutation test (see Sec. 4.4.3).

> strat <- (nmissing(ovar1) < 15)

> operm <- scantwo(ovar1, method="imp", n.perm=1000,

+ perm.strata=strat)

The significance thresholds can be calculated as follows.

> summary(operm)

onm (1000 permutations)
full fv1 int add av1 one

5% 3.83 2.87 2.09 3.01 1.77 1.70
10% 3.46 2.47 1.83 2.61 1.49 1.45

Most importantly, we may calculate the penalties as follows. Note the use
of print to simultaneously print the results and assign them to the object
pen.

> print(pen <- calc.penalties(operm))

main heavy light
1.698 2.085 1.176

The significance thresholds and penalties are much smaller than others
we have seen in this book, but keep in mind that the null distributions of
the various LOD scores depend on not just the type of LOD score (e.g., the
LOD score from a single-QTL genome scan versus the “full” LOD, comparing
a model with two interacting loci to the null model, in a two-dimensional,
two-QTL genome scan) and the type of cross (backcross versus intercross),
but also on the genetic length of the genome. Drosophila has a much smaller
genetic map than the mouse (which has been the focus of all of our previous
examples), and so the significance thresholds and penalties are much smaller.
Here, the penalty on main effects is just 1.70, and so all three of our QTL
would be selected.

Let us complete our analysis of the initial cross in the ovar data by ap-
plying the stepwise model search algorithm described in Sec. 9.1.3, using the
function stepwiseqtl. We can start forward selection at our current model,
defined by rqtl.

> stepout1 <- stepwiseqtl(ovar1, penalties=pen, qtl=rqtl,

+ max.qtl=8, verbose=FALSE)

> stepout1
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name chr pos n.gen
Q1 2@92.4 2 92.4 2
Q2 2@94.2 2 94.2 2
Q3 2@112.0 2 112.0 2
Q4 3@82.8 3 82.8 2
Q5 3@121.3 3 121.3 2

Formula: y ~ Q1 + Q2 + Q3 + Q4 + Q5 + Q1:Q2
pLOD: 14.82

It is a bit of a surprise to see three QTL on chr 2, and the two tightly
linked epistatic loci on chr 2 are rather suspicious. We often have difficulty
with tightly linked QTL, particularly if they are allowed to interact. Let’s look
at a couple of plots of the phenotypes against the two-locus genotypes, using
both effectplot and plot.pxg, to see what’s going on. We use find.marker
to find the marker closest to each QTL, for use in plot.pxg. In effectplot,
we may refer directly to pseudomarkers (that is, the positions on the grid
between markers), by their chromosome and cM position.

> mar <- find.marker(ovar1, 2, c(92.4, 94))

> par(mfrow=c(1,2))

> effectplot(ovar1, mname1="2@92.4", mname2="2@94")

> plot.pxg(ovar1, marker=mar)

The right panel in Fig. 10.12 suggests that the phenotypes for just a few
individuals are leading to the large LOD score. (There are just three individ-
uals with genotypes IE at marker Amy-d and II at marker grh. No individual
has observed genotypes II at marker Amy-d and IE at marker grh; the points
in the plot come from a single imputation, using data from surrounding mark-
ers.) Thus, we should discount the evidence for the two tightly linked QTL.

Let’s omit the QTL at 94.2 cM (using dropfromqtl) and run refineqtl
to refine the locations of the other QTL.

> qtl <- dropfromqtl(stepout1, 2)

> qtl <- refineqtl(ovar1, qtl=qtl, verbose=FALSE)

We can print the object to see if the QTL moved.

> qtl

name chr pos n.gen
Q1 2@92.4 2 92.4 2
Q2 2@94.0 2 94.0 2
Q3 3@82.8 3 82.8 2
Q4 3@121.3 3 121.3 2

The distal locus on chr 2 moved back to the 94 cM position, which we
don’t trust! We should probably stick with the three-QTL model, with just
one QTL on chr 2.
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Figure 10.12. Plot of the onm phenotype against genotype at the two tightly linked
loci on chr 2, for the initial cross in the ovar data. Red dots in the right panel are
for imputed genotypes. Error bars are ± 1 SE.

10.3 Combined data

We now turn to an analysis of the combined data, including the second cross
of 1050 individuals (of which 1038 have complete phenotype data) that were
selected to be recombinant between the morphological markers, st (bright red
eyes) and e (dark brown body).

Imputed genotypes (from sim.geno) take up a great deal of memory, and
so it might be best to either remove them from the ovar1 object (which we
were working with in the last section) using clean.cross, or just remove the
ovar1 object from our workspace (using rm). One may use object.size to
estimate the amount of memory (in bytes) that an object is taking up. Another
useful tool is the function gc, which tells R to perform “garbage collection” to
clean up memory and also gives information about R’s current memory usage.

> object.size(ovar1)

[1] 237010992

Dividing by 10242 gives the result in megabytes (Mb).

> object.size(ovar1)/1024^2

[1] 226.0
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We now use clean to remove all of the intermediate calculations from the
object, and check the new size, in bytes.

> ovar1 <- clean(ovar1)

> object.size(ovar1)

[1] 103304

Dividing by 1024 gives the result in kilobytes (kb).

> object.size(ovar1)/1024

[1] 100.9

And so, by removing the intermediate calculations, the space used by ovar1
went from 226 Mb to 101 kb.

We turn now to the full data, ovar. Let us first remove individuals missing
the onm phenotype.

> ovar <- subset(ovar, ind=!is.na(pull.pheno(ovar,"onm")))

We use sim.geno to perform the multiple imputations. We will use the
same settings as we had used for ovar1 in the previous section.

> ovar <- sim.geno(ovar, n.draws=512, step=2, err=0.001,

+ map.function="kosambi")

Because of the systematic difference in ovariole counts between the two
crosses (see Fig. 10.3 on page 287), it would be best to include a cross indicator
as an additive covariate in our analyses. In doing so, we assume that the effects
of QTL are the same in the two crosses, but that there is an overall shift in
the mean phenotype. The covariate must be numeric, but the coding of the
two crosses (e.g., 0/1 or 1/2) has no influence on the LOD scores or estimated
QTL effects that we calculate.

> cross <- pull.pheno(ovar, "cross")

> outc <- scanone(ovar, method="imp", addcovar=cross)

We will perform the same genome scan with just the individuals from the
second cross, for comparison purposes. We do not need to rerun sim.geno, as
the imputations will be retained in the output of subset.cross.

> out2 <- scanone(subset(ovar, ind=(cross==2)), method="imp")

We now plot the results for the combined data and for the two individual
crosses.

> plot(outc, out1, out2, ylab="LOD score")

In the LOD curves in Fig. 10.13, we see that the results for the combined
data (the black curves) are similar to those for the initial cross (the blue
curves), though the LOD scores are much larger and the location of the QTL
on chr 3 appears to be shifted to the left slightly. On chr 3, the LOD curve for
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Figure 10.13. LOD curves from a genome scan by multiple imputation for the ovar
data. The black curves are for the combined data, the blue curves are for the initial
cross, and the red curves are for the second cross.

the second cross (the red curve) has an odd double peak. As the individuals
were selected to be recombinant in the region between markers st and e, they
have exactly opposite genotypes on either side of that region (and recall that
they were not genotyped outside the region), and so a QTL to one side will
show a mirror image on the other side (with the apparent QTL on the other
side having an effect of the opposite sign).

We note the location of the maximum LOD score from the single-QTL
genome scan, for the combined data.

> max(outc)

chr pos lod
e 3 72.9 31.7

The QTL has moved to the left, from 82.4 cM (as inferred with the initial
cross) to 72.9 cM (as inferred from the combined data).

Let us again adjust for this major locus, and scan for a second QTL. We
will again consider the combined data as well as the second cross, on its own,
and we will compare the results to those from the initial cross. Note that for
addqtl, the covariates need to form a matrix or data frame, and so in the first
line we convert our cross covariate to a data frame.

> cross <- data.frame(cross=cross)

> qtlc <- makeqtl(ovar, chr=3, pos=72.9)
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Figure 10.14. LOD curves from a genome scan by multiple imputation for the ovar
data, adjusting for an inferred QTL on chr 3. The black curves are for the combined
data, the blue curves are for the initial cross, and the red curves are for the second
cross. Note that the position of the inferred QTL (on which we are conditioning) is
different for the initial cross versus for the combined data and for the second cross.

> outc.c3 <- addqtl(ovar, qtl=qtlc, covar=cross)

> qtl2 <- makeqtl(subset(ovar, ind=(cross==2)), chr=3, pos=72.9)

> out2.c3 <- addqtl(subset(ovar, ind=(cross==2)), qtl=qtl2)

A plot of the LOD curves, controlling for the major locus on chr 3, is
obtained as follows; see Fig. 10.14.

> plot(outc.c3, out1.c3, out2.c3, ylab="LOD score")

The results on chr 3 are quite different for the combined data; we now have
clear evidence for a second QTL on chr 3. There remains strong evidence for
a QTL on chr 2 (and possibly there are two QTL on chr 2).

Before proceeding further, let’s run the necessary permutation tests that
will help us to make sense of the statistical significance of our results. We
will perform a permutation test with a two-dimensional, two QTL scan. It
will be best to perform a stratified permutation test, as we had done for the
permutation test with the data from initial cross in the last section. Here we
will want three strata: the individuals from the initial cross that were selected
for the initial genotyping, the other individuals from the initial cross, and the
individuals from the second cross.
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The perm.strata argument in scantwo should be a vector of indices that
indicate which individuals are in which stratum. We can create such a vector
as follows.

> strat <- pull.pheno(ovar, "cross")

> strat[strat==1 & nmissing(ovar)<15] <- 3

> table(strat)

strat
1 2 3

289 1036 94

The particular numeric codes that we assign to the three strata can be any-
thing, and so we do whatever is most convenient.

We now are ready to perform the permutation test. We should again em-
phasize that the computation time is long, and so it is best to split the per-
mutations into batches using multiple computers running in parallel. (These
computations took 30 days of CPU time.)

> opermc <- scantwo(ovar, method="imp", addcovar=cross,

+ n.perm=n.perm, perm.strata=strat)

We obtain the estimated significance thresholds and penalties for our
multiple-QTL model comparison criterion as follows.

> summary(opermc)

onm (1000 permutations)
full fv1 int add av1 one

5% 3.01 1.99 1.53 2.46 1.090 1.63
10% 2.72 1.79 1.33 2.06 0.896 1.33

> print(penc <- calc.penalties(opermc))

main heavy light
1.6285 1.5346 0.3603

The significance thresholds and penalties (particularly the interaction
penalties) are quite a bit smaller than we had obtained based on the initial
cross alone (see page 298).

Returning to the QTL analyses, we have reasonable evidence for at least
one QTL on chr 2 and likely two QTL on chr 3. A simple approach to explore
these models would be to perform two-dimensional, two-QTL scans on each
chromosome, controlling for the major locus on the other chromosome. Let’s
begin with chromosome 3. We first create a QTL object containing the chr 2
locus, and then use addpair to scan for a pair of QTL on chr 3.

> qtl.c2 <- makeqtl(ovar, 2, 115)

> out.ap.c3 <- addpair(ovar, qtl=qtl.c2, chr=3, covar=cross,

+ verbose=FALSE)
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Figure 10.15. LOD scores from a two-dimensional, two-QTL scan on chr 3, con-
trolling for a locus on chr 2, for the ovar data. LODi is displayed in the upper left
triangle; LODfv1 is displayed in the lower right triangle. In the color scale on the
right, numbers to the left and right correspond to LODi and LODfv1, respectively.

The summary of the results indicates strong evidence for two interacting
QTL on chr 3.

> summary(out.ap.c3)

pos1f pos2f lod.full lod.fv1 lod.int pos1a pos2a
c3:c3 62.8 74.8 42.9 7.33 4.68 62.8 74.8

lod.add lod.av1
c3:c3 38.3 2.65

A plot of the LOD scores from the two-dimensional scan is useful for assess-
ing the precision of localization of the two QTL. We will plot the interaction
LOD scores in the upper left triangle (the default); in the lower right triangle,
let us plot LOD scores comparing the full model (with two interacting loci)
to the best single-QTL model.

> plot(out.ap.c3, lower="cond-int")

As seen in Fig. 10.15, the locations of the QTL are reasonably well defined.
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We use a similar two-dimensional, two-QTL scan on chr 2, controlling for
the major locus on chr 3.

> out.ap.c2 <- addpair(ovar, qtl=qtlc, chr=2, covar=cross,

+ verbose=FALSE)

In summarizing the output of the two-dimensional, two-QTL scan on chr 2,
we will include the permutation results to get approximate p-values. The per-
mutation results do not formally apply to the present situation, as they con-
cern the global null hypothesis (of no QTL), while the scan was conditional
on the major locus on chr 3. However, they provide useful landmarks for
evaluating the evidence.

> summary(out.ap.c2, perms=opermc, pval=TRUE)

pos1f pos2f lod.full pval lod.fv1 pval lod.int pval
c2:c2 80 114 9.13 0 1.24 0.467 0.227 1

pos1a pos2a lod.add pval lod.av1 pval
c2:c2 4 114 8.9 0 1.01 0.064

We see some evidence for a second QTL on chr 2, with p-value = 6%; surpris-
ingly, the two inferred QTL are on opposite ends of the chromosome, rather
than at the two distal peaks seen in Fig. 10.14. There is no evidence for an
interaction between the putative QTL on chr 2.

We plot the LOD scores to get a sense of the precision of localization of
the two QTL. We will look at the LOD scores comparing two-locus models to
the best single-locus model.

> plot(out.ap.c2, lower="cond-int", upper="cond-add")

The upper left triangle in Fig. 10.16, with LOD scores comparing models with
two additive QTL to the best single-QTL model, are most interesting. While
the location of the distal QTL (at around 114 cM) is quite well defined, the
location of the proximal QTL is not at all well defined. It is inferred to be at
the proximal tip of the chromosome, but large LOD scores are also seen at
around 80–90 cM.

Let us bring the four QTL together into a single model and run refineqtl
to refine the QTL positions.

> qtl <- makeqtl(ovar, c(2, 2, 3, 3), c(4, 114, 62.8, 74.8))

> rqtl <- refineqtl(ovar, qtl=qtl, covar=cross, verbose=FALSE,

+ formula=y~cross+Q1+Q2+Q3+Q4+Q3:Q4)

The proximal QTL on chr 3 moved slightly.

> rqtl

name chr pos n.gen
Q1 2@4.0 2 4.0 2
Q2 2@114.0 2 114.0 2
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Figure 10.16. LOD scores from a two-dimensional, two-QTL scan on chr 2, con-
trolling for a locus on chr 3, for the ovar data. LODav1 is displayed in the upper left
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right, numbers to the left and right correspond to LODav1 and LODfv1, respectively.

Q3 3@63.6 3 63.6 2
Q4 3@74.8 3 74.8 2

We use fitqtl to perform a drop-one-QTL analysis with this four-QTL
model. Note the use of pvalues=FALSE to omit the two columns of p-values.

> summary(fitqtl(ovar, qtl=rqtl, covar=cross,

+ formula=y~cross+Q1+Q2+Q3+Q4+Q3:Q4),

+ pvalues=FALSE)

Full model result
----------------------------------
Model formula: y ~ cross + Q1 + Q2 + Q3 + Q4 + Q3:Q4

df SS MS LOD %var
Model 6 450.8 75.139 76.63 22.02
Error 1412 1596.7 1.131
Total 1418 2047.5
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Figure 10.17. Profile LOD curves for a four-QTL model, for the full ovar data;
the two QTL on chr 3 were allowed to interact.

Drop one QTL at a time ANOVA table:
----------------------------------

df Type III SS LOD %var F value
cross 1 193.8113 35.3001 9.4656 171.391
2@4.0 1 6.3004 1.2135 0.3077 5.572
2@114.0 1 45.3005 8.6203 2.2124 40.060
3@63.6 2 42.7445 8.1403 2.0876 18.900
3@74.8 2 162.0437 29.7841 7.9141 71.649
3@63.6:3@74.8 1 27.0815 5.1823 1.3226 23.949

The evidence for the proximal QTL on chr 2 looks weak, but there is strong
evidence for the others.

We may plot LOD profiles, to get another view of the localization of the
QTL.

> plotLodProfile(rqtl, col=c("red","blue","red","blue"),

+ ylab="Profile LOD score")

In Fig. 10.17, we again see that the location of the proximal QTL on chr 2 is
poorly defined. Perhaps we are being overly generous in calling this a QTL.

We might consider adding additional terms to our QTL model. First, let us
use addint to explore the possibility of additional interactions (see Sec. 9.3.3).
We use pvalues=FALSE to omit the two columns of p-values.
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> addint(ovar, qtl=rqtl, covar=cross,

+ formula=y~cross+Q1+Q2+Q3+Q4+Q3:Q4,

+ pvalues=FALSE)

Model formula: y ~ cross + Q1 + Q2 + Q3 + Q4 + Q3:Q4

Add one pairwise interaction at a time table:
--------------------------------------------

df Type III SS LOD %var F value
cross:2@4.0 1 9.18153 1.77696 0.44842 8.161
cross:2@114.0 1 0.54432 0.10506 0.02658 0.481
cross:3@63.6 1 0.49906 0.09632 0.02437 0.441
cross:3@74.8 1 0.26691 0.05151 0.01304 0.236
2@4.0:2@114.0 1 0.31004 0.05984 0.01514 0.274
2@4.0:3@63.6 1 2.91815 0.56366 0.14252 2.583
2@4.0:3@74.8 1 0.34807 0.06718 0.01700 0.308
2@114.0:3@63.6 1 1.86901 0.36089 0.09128 1.654
2@114.0:3@74.8 1 3.31378 0.64016 0.16184 2.934

Note that QTL × covariate interactions are considered as well as QTL × QTL
interactions. There appears to be some evidence for a difference in the effect
of the proximal chr 2 locus in the two crosses; otherwise, we see no evidence
for additional interactions.

Let us also use addqtl once more, to scan for an additional QTL.

> onemore <- addqtl(ovar, qtl=rqtl, covar=cross,

+ formula=y~cross+Q1+Q2+Q3+Q4+Q3:Q4)

The summary of the results indicates the possibility of yet another QTL
on chr 2; the conditional LOD score is the same as what we have for the
proximal QTL on chr 2.

> summary(onemore)

chr pos lod
c1.loc30 1 34.5 0.423
acc004516 2 89.1 1.164
slo 3 121.3 0.598

Let us add this additional QTL to the model, reorder the QTL according to
their positions in the genome, and run refineqtl to refine the QTL positions.

> qtl2 <- addtoqtl(ovar, rqtl, 2, 89.1)

> qtl2 <- reorderqtl(qtl2)

> rqtl2 <- refineqtl(ovar, qtl=qtl2, covar=cross, verbose=FALSE,

+ formula=y~cross+Q1+Q2+Q3+Q4+Q5+Q4:Q5)

The distal QTL on chr 2 shifted by 1 cM.

> rqtl2
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name chr pos n.gen
Q1 2@4.0 2 4.0 2
Q2 2@89.1 2 89.1 2
Q3 2@115.0 2 115.0 2
Q4 3@63.6 3 63.6 2
Q5 3@74.8 3 74.8 2

We perform the drop-one-QTL analysis again, to assess the evidence for
each QTL in the context of this five-QTL model.

> summary(fitqtl(ovar, qtl=rqtl2, covar=cross,

+ formula=y~cross+Q1+Q2+Q3+Q4+Q5+Q4:Q5),

+ pvalues=FALSE)

Full model result
----------------------------------
Model formula: y ~ cross + Q1 + Q2 + Q3 + Q4 + Q5 + Q4:Q5

df SS MS LOD %var
Model 7 457.2 65.314 77.86 22.33
Error 1411 1590.3 1.127
Total 1418 2047.5

Drop one QTL at a time ANOVA table:
----------------------------------

df Type III SS LOD %var F value
cross 1 194.6205 35.5733 9.5051 172.673
2@4.0 1 6.8879 1.3317 0.3364 6.111
2@89.1 1 6.6325 1.2824 0.3239 5.885
2@115.0 1 11.5318 2.2262 0.5632 10.231
3@63.6 2 41.8306 8.0000 2.0430 18.557
3@74.8 2 160.6383 29.6505 7.8454 71.261
3@63.6:3@74.8 1 26.5197 5.0959 1.2952 23.529

The evidence for each of the QTL on chr 2 is weak but non-negligible. With
the QTL on chr 2 at 89 cM in the model, there is a big drop in the residual
evidence for the most distal chr 2 locus.

Finally, let us apply our automated stepwise model selection procedures
with stepwiseqtl.

> stepout1 <- stepwiseqtl(ovar, covar=cross, pen=pen,

+ max.qtl=8, verbose=FALSE)

> stepout1

name chr pos n.gen
Q1 2@89.1 2 89.1 2
Q2 2@92.4 2 92.4 2
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Q3 2@94.2 2 94.2 2
Q4 2@110.0 2 110.0 2
Q5 3@63.6 3 63.6 2
Q6 3@76.8 3 76.8 2

Formula: y ~ cross + Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q5:Q6 +
Q2:Q3

pLOD: 43.96

The results are much like what we obtained above, though without the most
proximal chr 2 locus, and with the addition of that untrustworthy pair of
tightly linked epistatic loci on chr 2 seen in the analysis of the initial cross
(see page 299).

Let us run stepwiseqtl again, this time using exclusively heavy interac-
tion penalties.

> stepout2 <- stepwiseqtl(ovar, covar=cross, pen=pen[1:2],

+ max.qtl=8, verbose=FALSE)

The results, with the exclusive use of heavy penalties, are identical to what
we obtained above, with the mixture of heavy and light penalties.

> stepout2

name chr pos n.gen
Q1 2@89.1 2 89.1 2
Q2 2@92.4 2 92.4 2
Q3 2@94.2 2 94.2 2
Q4 2@110.0 2 110.0 2
Q5 3@63.6 3 63.6 2
Q6 3@76.8 3 76.8 2

Formula: y ~ cross + Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q5:Q6 +
Q2:Q3

pLOD: 41.61

10.4 Discussion

Our principal aim in this case study was to illustrate many of the techniques
for exploring multiple-QTL models. We have focused on the analysis tech-
niques rather than the biological interpretation of the results; for the latter,
see the original article describing these data (Orgogozo et al., 2006).

Our primary tools include single- and two-dimensional scans for QTL. We
repeat these, controlling for major loci, to identify additional QTL. A variety
of paths may be taken. Hopefully, they all lead to similar conclusions.
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The assessment of evidence for individual loci and epistatic interactions,
in the context of a multiple-QTL model, can be difficult. We use the results
of permutation tests as our guide, even though they formally apply only in
a restricted context (a single- or two-QTL model). The independent segre-
gation of chromosomes is extremely useful, in this regard, as it ensures that
the null distribution of a maximized LOD score is approximately the same,
whether or not one has controlled for the presence of additional QTL on other
chromosomes.

There is extensive missing genotype information in the data of Orgogozo
et al. (2006), due to selective genotyping in the initial cross and selective phe-
notyping (and incomplete genotyping) in the second cross. This is a nuisance
when it comes to the QTL analysis; with the multiple imputation approach,
a large number of imputations are required and so computation times can
be great. The limited genotype information can make it difficult to separate
multiple linked loci, and it exacerbates the common problem that is seen with
tightly linked loci. One should be cautious about the fit of large QTL models
in the presence of appreciable missing genotype information.

The selective phenotyping strategy used in the second cross can be ex-
tremely valuable for the fine-mapping of a QTL, but we were a bit discon-
certed to see that our analysis of the initial cross placed the QTL outside of
the interval that was used to select recombinants. With the combined data, we
did infer the presence of a QTL within this selected region, and the estimated
location of the major QTL moved closer to the region, but we must admit
lingering concern that the extensively missing genotype information results in
some bias in the estimated locations of the QTL.

QTL analysis is a complex model-building exercise. Our fully automated
system for model selection may be useful to many scientists, but the ex-
ploratory tools are important supplements, and in either case, the final con-
clusions can be subject to considerable uncertainty.
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Case study II

In this chapter, we present a second case study. This case study illustrates an
investigation of interactions between QTL and a covariate. It also shows how
we may deal with genotype data organized in linkage groups (as opposed to
chromosomes). Data of that type are rare for established model organisms,
but common for emerging ones without extensive genomic resources. As with
the case study in Chap. 10, there are some unusual features here, but most
QTL analyses will be unusual in one way or another.

We consider the data of Nichols et al. (2007), included in the R/qtlbook
package as the data set trout. This is a set of doubled haploid individuals
derived from a cross between the Oregon State University (OSU) and Clearwa-
ter (CW) River rainbow trout (Oncorhynchus mykiss) clonal lines. Doubled
haploids are similar to a backcross, but with a single recombinant genome
being doubled (rather than matched to a nonrecombinant genome), so that
at any genomic position, individuals are homozygous for one of two possible
genotypes.

Eggs from one of eight outbred females, two from Troutlodge (TL) and six
from the Spokane (SP) hatchery, were irradiated to destroy maternal nuclear
DNA and fertilized with sperm from a single F1 male. The first embryonic
cleavage was blocked by heat shock to restore diploidy. There are a total of
554 individuals, with between 8 and 168 individuals from each of the eight
females.

The primary phenotype is time to hatch (tth). An additional “phenotype,”
female, indicates the maternal cytoplasmic environment (MCE; the source of
the egg).

There are data on 171 markers on 28 linkage groups. The linkage groups
are named as in Nichols et al. (2003), though a pair of markers are assigned
to linkage group “un,” as they do not connect to any of the linkage groups in
Nichols et al. (2003). Some care is required in referring to the linkage groups
in R/qtl code; in some cases we will need to refer to the linkage group names
in double-quotes (e.g., "1").

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 11,
© Springer Science+Business Media, LLC 2009



314 11 Case study II

As with all QTL data analyses, we begin with an exploration of the phe-
notype and genotype data. In this case, further light is shed on the linkage
groups, and on MCE. Next, we analyze the data for QTL without regard to
interactions with MCE. We follow by considering QTL × MCE interactions,
and we conclude with a discussion of the analysis.

11.1 Diagnostics

We begin by exploring the phenotype and genotype data. We must first load
the R/qtl and R/qtlbook packages, and then the data set, trout.

> library(qtl)

> library(qtlbook)

> data(trout)

Note that the cross type is "dh", indicating doubled haploids. In R/qtl,
they are treated just like a backcross, except in references to the names of the
genotypes.

> class(trout)

[1] "dh" "cross"

If one were to import such data into R using read.cross, it would initially
be read as a backcross. One would use code something like the following.

> trout <- read.cross("csv", file="trout.csv",

+ genotypes=c("C","O"), alleles=c("C","O"))

One would then need to change the cross type to "dh", as follows.

> class(trout)[1] <- "dh"

Turning back to the data, let us first consider a quick summary.

> summary(trout)

Doubled haploids

No. individuals: 554

No. phenotypes: 2
Percent phenotyped: 100 100

No. chromosomes: 28
Autosomes: 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 27 29 31 un

Total markers: 171
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Figure 11.1. The summary plot of the trout data provided by the plot.cross func-
tion, including the pattern of missing genotype data (upper left; black pixels indicate
missing data), the genetic map of the typed markers (upper right), a histogram of
the tth phenotype (time to hatch), and a bar plot of the female phenotype, which
indicates the maternal cytoplasmic environment (MCE; the source of the egg for
each individual).

No. markers: 4 4 3 4 11 5 13 12 4 3 8 5 10 8 3 2 2 7
8 8 2 7 6 8 13 3 6 2

Percent genotyped: 95.2
Genotypes (%): CC:50 OO:50

This is just as described above. The C and O alleles refer to the CW and OSU
clonal lines, respectively.

We make a summary plot as follows; see Fig. 11.1.

> plot(trout)

There are some very large gaps in the genetic map, but the marker genotype
data are remarkably complete.

We first investigate whether there are differences in the tth phenotype,
among the eight sources for eggs. We begin with a set of box plots.
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Figure 11.2. Box plots of the tth phenotype (time to hatch) according to the
female source of the egg for the individuals, for the trout data.

> boxplot(tth ~ female, data=trout$pheno,

+ xlab="Female", ylab="Time to hatch")

There are clear differences among the females (see Fig. 11.2), particularly in
that tth is larger for individuals whose egg came from the TL1 female.

An analysis of variance (ANOVA) will make clear that the observed dif-
ferences cannot reasonably be ascribed to chance variation.

> anova(aov(tth ~ female, data=trout$pheno))

Analysis of Variance Table

Response: tth
Df Sum Sq Mean Sq F value Pr(>F)

female 7 12757 1822 13.5 3.6e-16
Residuals 546 73510 135

Turning now to the genotype data, we first look at the segregation pat-
terns for each marker with geno.table. Since there are 171 markers, this will
make quite a long table, and so we focus on those markers for which the two
genotypes deviate significantly from the expected 1:1 ratio. Applying a Bon-
ferroni correction for the number of markers, we pull out the unusual ones as
follows.

> gt <- geno.table(trout)

> gt[gt$P.value < 0.05/totmar(trout),]
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chr missing CC OO P.value
AGCCGT8 8 11 320 223 3.145e-05
agcagc11 13 49 187 318 5.562e-09
ACCAAG16 19 15 396 143 1.185e-27

There are three markers that are behaving oddly, with marker ACCAAG16
segregating closer to 3:1 than 1:1. We do not know whether this is due to
segregation distortion or genotyping error (in which case we might omit these
markers), and so we will leave them in, but we should pay attention to these
regions in the later results.

We next turn to the estimated recombination fractions between all pairs
of markers, estimated via est.rf and plotted via plot.rf. We use alter-
nate.chrid=TRUE to make the names of the many linkage groups more easily
distinguished.

> trout <- est.rf(trout)

> plot.rf(trout, alternate.chrid=TRUE)

The results (Fig. 11.3) are a bit of a surprise. There are five pairs of linkage
groups that are quite tightly associated (with large LOD scores, in red), but
not tightly linked (estimated recombination fractions > 0.5, in blue). Namely,
the pairs of linkage groups 2 and 29, 10 and 18, 12 and 16, 14 and 20, and
27 and 31, all look to be tightly associated. We can focus on just these ten
linkage groups, to make the observation more clear (see Fig. 11.4).

> plot.rf(trout, chr=c(2,29, 10,18, 12,16, 14,20, 27,31),

+ alternate.chrid=TRUE)

Let’s look at a table of two-locus genotypes for a marker from a couple of
these linkage groups, to figure out what is going on. We can use find.marker
to pull out the first marker on each of linkage groups 10 and 18, and then use
geno.crosstab to create a table of the two-locus genotypes.

> mar <- find.marker(trout, c(10,18), c(0,0))

> geno.crosstab(trout, mar[1], mar[2])

AGCCAG12
agcagc9 - CC OO

- 0 4 4
CC 7 33 235
OO 15 204 52

We see that most individuals have opposite genotypes at these two markers.
While we were surprised by these results, with a more complete under-

standing of the genome of this organism, they might have been anticipated.
As described in Nichols et al. (2003), an ancestor of this species experienced an
autotetraploidy event (a duplication of the genome). While diploidy has since
been restored, a number of pairs of linkage groups are homeologous (meaning
partially homologous), including the five pairs that we see to exhibit this odd
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Figure 11.3. Plot of estimated recombination fractions (upper left) and LOD scores
for a test of r = 1/2 (lower right) for all pairs of markers for the trout data. Red
indicates linkage; blue indicates no linkage.

“reverse linkage.” Johnson et al. (1987) observed this phenomemon in related
species, of pseudolinkage between loci in separate linkage groups, with recom-
binants being more frequent than the parental types. It appears that these
homeologous chromosomes are pairing at meiosis, though in a special way.

While we might leave things as they are, the tight negative association
between these pairs of linkage groups would make the interpretation of QTL
mapping results rather confusing, as a QTL on one linkage group could give
a linkage signal on a second linkage group.

Alternatively, we could swap the genotypes in one of each of these pairs,
and then merge the linkage groups. This would have the advantage of en-
suring that a single QTL would show only one linkage signal, but the disad-
vantage that the parental origins of the alleles will not be clear. Moreover,
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Figure 11.4. Plot of estimated recombination fractions (upper left) and LOD scores
for a test of r = 1/2 (lower right) for all pairs of markers on selected linkage groups,
for the trout data. Red indicates linkage; blue indicates no linkage.

our assumption, that the chromosomes are essentially joined end-to-end at
meiosis, may be wrong. Nevertheless, we will follow this line of thinking. We
will start by swapping the genotypes for the second of each of these pairs of
linkage groups. (Note that the genotypes are coded 1 and 2, and so 3− g will
swap 1 for 2 and 2 for 1.)

> trout$geno[["29"]]$data <- 3 - trout$geno[["29"]]$data

> trout$geno[["18"]]$data <- 3 - trout$geno[["18"]]$data

> trout$geno[["16"]]$data <- 3 - trout$geno[["16"]]$data

> trout$geno[["20"]]$data <- 3 - trout$geno[["20"]]$data

> trout$geno[["31"]]$data <- 3 - trout$geno[["31"]]$data

The next step is to merge the pairs and then seek to establish marker order
within the merged linkage groups.

We start with linkage groups 10 and 18, as they each have a small number
of markers. First, we use markernames to obtain the names of the markers
on linkage group 18 and then movemarker to move the markers from linkage
group 18 to linkage group 10.
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> lg18mar <- markernames(trout, 18)

> for(i in lg18mar)

+ trout <- movemarker(trout, i, 10)

We also change the name of the merged linkage group to “10.18.”

> nam <- names(trout$geno)

> nam[nam=="10"] <- "10.18"

> names(trout$geno) <- nam

We now use ripple to consider all possible orders of the markers. Since
there are only 6 markers (and so 360 possible marker orders), we will do a
full likelihood analysis. We use the Kosambi map function and assume a 1%
genotyping error rate.

> rip <- ripple(trout, chr="10.18", window=6, method="lik",

+ error.prob=0.01, map.function="kosambi",

+ verbose=FALSE)

Note that we referred to the chromosome ID in double-quotes. Chromo-
some identifiers are matched by name, with numbers being converted to char-
acter strings, and so one might use, for example chr=5 in place of chr="5".
However, with the more complex chromosome names that we will be forming,
it will be best to surround them in double-quotes, though we can actually mix
numbers and character strings (and we will do so).

The summary of the ripple results indicates that we should switch the
order of the markers. (We merged the groups at the wrong ends, and we might
also switch the order of the third and fourth markers on linkage group 10.)

> summary(rip)

LOD chrlen
Initial 1 2 3 4 5 6 0.0 28.1
1 3 4 2 1 5 6 3.7 28.7
2 4 3 2 1 5 6 3.1 28.7
3 3 4 1 2 5 6 2.6 28.5
4 4 3 1 2 5 6 1.7 28.3
5 3 2 4 1 5 6 1.7 28.4
... [ 6 additional rows] ...

We use switch.order to switch the order of the markers to that with the
maximum likelihood. The arguments error.prob and map.function are used
in estimating the genetic map with the new order.

> trout <- switch.order(trout, "10.18", rip[2,],

+ error.prob=0.01, map.function="kosambi")

The genetic map of the newly merged linkage groups is reasonably tight
(with just a 15 cM gap between the two groups), which gives us some comfort
that we are doing the right thing.
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> pull.map(trout, chr="10.18")

ACGACA11 AGCAGT15 ACCAAG6 agcagc9 AGCCAG12 AGCCAG13
0.000 1.992 2.754 3.445 18.031 28.692

We will omit most of the details for dealing with the other four pairs of
linkage groups. The techniques are similar, though with many markers on a
linkage group, an iterative process is required in establishing marker order
(see Sec. 3.4.2). In the following, we merge the linkage groups and switch the
orders to the best that we could find.

> lg29mar <- markernames(trout, 29)

> for(i in lg29mar)

+ trout <- movemarker(trout, i, 2)

> lg16mar <- markernames(trout, 16)

> for(i in lg16mar)

+ trout <- movemarker(trout, i, 12)

> trout <- switch.order(trout, chr=12, c(1:8,10,11,9),

+ error.prob=0.01, map.function="kosambi")

> lg20mar <- markernames(trout, 20)

> for(i in lg20mar)

+ trout <- movemarker(trout, i, 14)

> trout <- switch.order(trout, chr=14, error.prob=0.01,

+ c(10:1,14,16,15,17,18,13:11),

+ map.function="kosambi")

> lg31mar <- markernames(trout, 31)

> for(i in lg31mar)

+ trout <- movemarker(trout, i, 27)

> trout <- switch.order(trout, chr=27, error.prob=0.01,

+ c(1:6,8,7,9:13,15:18,14,19),

+ map.function="kosambi")

Finally, we change the names of the linkage groups that have been merged.

> nam <- names(trout$geno)

> nam[nam=="2"] <- "2.29"

> nam[nam=="12"] <- "12.16"

> nam[nam=="14"] <- "14.20"

> nam[nam=="27"] <- "27.31"

> names(trout$geno) <- nam

There are a few remaining issues in the pairwise marker linkages: there
is a marker on linkage group 19 that appears to be linked to linkage group
13, and there is a marker on linkage group 25 that appears to be linked to
linkage group “12.16.” Let us plot the estimated recombination fractions for
those four linkage groups.

> plot.rf(trout, chr=c(13, 19, "12.16", 25))
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Figure 11.5. Plot of estimated recombination fractions (upper left) and LOD scores
for a test of r = 1/2 (lower right) for all pairs of markers on linkage groups 13, 19,
“12.16” and 25, for the trout data. Red indicates linkage; blue indicates no linkage.

The potentially problematic markers (see Fig. 11.5) are linked to another
linkage group only weakly, but the large number of individuals results in rea-
sonably large LOD scores. This may indicate that these linkage groups should
also be merged, but it is likely best to keep these linkage groups separate,
though we should keep in mind that a single QTL has the potential to result
in LOD peaks on multiple linkage groups.

Let us reestimate the intermarker distances, using the observed data, keep-
ing marker order fixed, and plot the estimated map against that which came
with the data. We will use the Kosambi map function, as in Nichols et al.
(2007).

> newmap <- est.map(trout, error.prob=0.01, verbose=FALSE,

+ map.function="kosambi")

> plot.map(trout, newmap, alternate.chrid=TRUE)

As seen in Fig. 11.6, many linkage groups become slightly shorter, though
overall there is good agreement. (The linkage groups that we had modified
show no differences, but this is because, in switching the orders of markers,
we have replaced the maps with those estimated from these data.) There are
a few places (e.g., linkage group 8) where a number of markers appear to be
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Figure 11.6. The genetic map in the trout data plotted against the map estimated
from the genotype data. For each linkage group, the line on the left is that map
provided with the data, and the line on the right is the estimated map; line segments
connect the positions for each marker.

moved closer together. Overall, the estimated map is 1144 cM, while the initial
map was 1328 cM (a difference of 14%).

We will replace the map in the data with our newly estimated one.

> trout <- replace.map(trout, newmap)

While more might be done to investigate the genotype data, let us trust
the data and the genetic map and move on to the QTL mapping.

11.2 Initial QTL analyses

We will begin with the simpler aspects of the QTL analysis. In Sec. 11.3, we
will investigate the possibility of QTL × MCE interactions. Since the marker
genotype data are quite complete (though, admittedly, with a few large gaps
between markers), we will use Haley–Knott regression (see Sec. 4.2.2). We
must first calculate the conditional QTL genotype probabilities, given the
available marker data.
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> trout <- calc.genoprob(trout, step=1, err=0.01,

+ map.function="kosambi")

While we will postpone the investigation of QTL × MCE interactions to
the next section, the systematic differences in the phenotype among MCE
groups (see Fig. 11.2 on page 316) suggests that we should include MCE as a
set of additive covariates in the QTL mapping. In doing so, we assume that
the effects of any QTL are the same in the eight groups, but we allow shifts
in the average phenotype between the groups.

We form a matrix of indicators, with a column for each of the MCE groups
except the first one.

> female <- pull.pheno(trout, "female")

> lev <- levels(female)

> nlev <- length(lev)

> femcov <- matrix(0, nrow=nind(trout), ncol=nlev-1)

> colnames(femcov) <- lev[-1]

> for(i in 2:nlev)

+ femcov[female==lev[i],i-1] <- 1

We now perform the genome scan, including femcov as a set of additive
covariates.

> out <- scanone(trout, method="hk", addcovar=femcov)

We plot the LOD curves as follows.

> plot(out, ylab="LOD score", alternate.chrid=TRUE)

The results (see Fig. 11.7) indicate overwhelming support for a QTL on
linkage group 8, with maximum LOD score = 43.2.

Let us perform a quick permutation test. With Haley–Knott regression,
the permutations are quite fast, and so we will use 4000 permutations. As
in the next section we will want to investigate the presence of QTL × MCE
interactions, which will require matched permutation tests, with and without
MCE as a set of interactive covariates, we use set.seed to define the seed
for the random number generator, so that this can be repeated with the same
permutations.

> set.seed(523938)

> operm <- scanone(trout, method="hk", addcovar=femcov,

+ n.perm=4000)

We can now pull out the results from our initial scan that meet a 10%
genome-wide significance threshold.

> summary(out, perms=operm, alpha=0.1, pvalues=TRUE)

chr pos lod pval
OmyFGT12 8 9.11 43.18 0.00000
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Figure 11.7. LOD curves from a genome scan by Haley–Knott regression for the
trout data, with MCE groups included as additive covariates.

c9.loc20 9 20.00 2.76 0.03775
c10.18.loc13 10.18 13.00 4.97 0.00025
AGCAGT11 14.20 0.00 2.49 0.06950

In addition to the clear QTL on linkage group 8, we see evidence for QTL on
linkage groups 9, 10.18, and 14.20.

Let us repeat the genome scan, controlling for the locus on linkage group
8. We use makeqtl to create a QTL object; as we will be performing Haley–
Knott regression, we call makeqtl with what="prob" (rather than the default,
what="draws"). We use addqtl to perform the scan.

> qtl <- makeqtl(trout, 8, 9.11, what="prob")

> out.c8 <- addqtl(trout, qtl=qtl, method="hk", covar=femcov)

While our permutation results do not formally apply in the present case,
in which we are controlling for the locus on linkage group 8, they nevertheless
provide a reasonable guide.

> summary(out.c8, perms=operm, alpha=0.1, pvalues=TRUE)

chr pos lod pval
c9.loc21 9 21 2.59 0.05575
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Figure 11.8. LOD curves from a genome scan by Haley–Knott regression for the
trout data, with MCE groups included as additive covariates. The curves in blue
are as in Fig. 11.7; those in red were calculated controlling for a QTL on linkage
group 8.

c10.18.loc10 10.18 10 5.44 0.00025
AGCAGT11 14.20 0 2.78 0.03575
c17.loc20 17 20 2.36 0.09150
c24.loc44 24 44 4.03 0.00125

We see evidence for additional QTL on linkage groups 17 and 24. The three
previously-identified QTL remain on the list, though their LOD scores have
changed slightly.

We can plot the LOD curves, with and without controlling for the QTL
on linkage group 8, as follows.

> plot(out, out.c8, chr = -8, col=c("blue","red"),

+ ylab="LOD score", alternate.chrid=TRUE)

Note the use of chr = -8 to plot all but linkage group 8. The minus sign
may also be used with character strings. For example, use of chr="-un" would
result in a plot of all linkage groups except "un".

As seen in Fig. 11.8, controlling for the QTL on linkage group 8 leads to
a great increase in the evidence for a QTL on linkage group 24, and small
increases and decreases in the LOD scores on many other linkage groups.
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Let us bring all of the terms together into one model, and then refine our
estimates of the locations of the QTL with refineqtl.

> qtl <- makeqtl(trout, c(8, 9, "10.18", "14.20", 17, 24),

+ c(9.11, 21, 10, 0, 20, 44), what="prob")

> rqtl <- refineqtl(trout, qtl=qtl, covar=femcov,

+ method="hk", verbose=FALSE)

The location of the QTL changed just slightly.

> options(width=64)

> rqtl

name chr pos n.gen
Q1 8@9.1 8 9.112 2
Q2 9@11.0 9 11.040 2
Q3 10.18@11.0 10.18 11.000 2
Q4 14.20@0.0 14.20 0.000 2
Q5 17@23.0 17 23.000 2
Q6 24@46.0 24 46.000 2

Let us fit the multiple-QTL model and perform a drop-one-QTL analysis
with fitqtl. We do not find the two columns of p-values calculated by fitqtl
to be particularly informative (as they fail to account for the scan across
the genome), and they take up a lot of space, and so we omit them, using
pvalues=FALSE in the summary.fitqtl function.

> summary(fitqtl(trout, qtl=rqtl, covar=femcov, method="hk"),

+ pvalues=FALSE)

Full model result
----------------------------------
Model formula: y ~ Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + TL3 + SP1 + SP2

+ SP3 + SP4 + SP5 + SP6

df SS MS LOD %var
Model 13 41504 3192.6 78.92 48.11
Error 540 44762 82.9
Total 553 86266

Drop one QTL at a time ANOVA table:
----------------------------------

df Type III SS LOD %var F value
8@9.1 1 21199.7196 46.6416 24.5748 255.747
9@11.0 1 911.2975 2.4245 1.0564 10.994
10.18@11.0 1 1972.8624 5.1886 2.2870 23.800
14.20@0.0 1 879.4502 2.3406 1.0195 10.609
17@23.0 1 840.3175 2.2374 0.9741 10.137



328 11 Case study II

24@46.0 1 1437.5384 3.8027 1.6664 17.342
TL3 1 4876.5995 12.4400 5.6530 58.830
SP1 1 2592.7989 6.7738 3.0056 31.279
SP2 1 5167.0989 13.1420 5.9897 62.334
SP3 1 4184.0042 10.7497 4.8501 50.475
SP4 1 327.2468 0.8763 0.3793 3.948
SP5 1 2534.1374 6.6247 2.9376 30.571
SP6 1 10414.5254 25.1638 12.0726 125.638

Note that our major locus on linkage group 8 is responsible for an estimated
25% of the variation in the phenotype. The conditional LOD scores for the
other five QTL are reduced a bit relative to what we had seen when they were
considered individually, though still controlling for the QTL on linkage group
8. The evidence for QTL on linkage groups 10.18 and 24 remains strong. The
evidence for the other three loci is much weaker, but they are still interesting.

We have not yet considered the possibility of epistatic interactions among
QTL, and so we now use addint to look for epistatic interactions among the
identified QTL; qtl.only=TRUE indicates that QTL × covariate interactions
should not be considered.

> addint(trout, qtl=rqtl, qtl.only=TRUE, method="hk",

+ covar=femcov, pvalues=FALSE)

The output was extensive and not too interesting, and so we do not display
it here. There is little evidence for interactions among any of these QTL; the
largest interaction LOD score was 1.1, for the QTL on linkage groups 8 and 17.

Of course, we should also perform a two-dimensional, two-QTL genome
scan, which will allow us to identify additional QTL with important inter-
actions and also potential pairs of linked QTL (particularly those linked in
repulsion, with effects of opposite sign, which would generally not show up in
a single-QTL genome scan).

To make sense of the results of a two-dimensional genome scan, we will
want results from a permutation test, which will be quite time consuming,
and so let’s get that going. [The computations took a total of about 7 days
of CPU time; split across 16 processors (see Sec. 8.1, page 223), it took about
10 hours in real time.]

> operm2 <- scantwo(trout, method="hk", addcovar=femcov,

+ n.perm=1000)

Interestingly, the significance thresholds are similar to what we had seen
for the hyper data in Sec. 8.1.

> summary(operm2)

tth (1000 permutations)
full fv1 int add av1 one

5% 5.43 4.42 3.99 4.40 2.64 2.71
10% 5.12 4.05 3.72 4.04 2.39 2.32
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Let us now perform the actual two-dimensional scan with the data. We
use the argument incl.markers=TRUE so that calculations are performed at
the markers as well as on the evenly-spaced grid.

> out2 <- scantwo(trout, method="hk", addcovar=femcov,

+ incl.markers=TRUE)

The tabular summary of the two-dimensional scan output is simplest to
interpret, so we will start with that. The p-values take up a lot of space, so
we won’t include them.

> summary(out2, perms=operm2, alpha=0.05)

pos1f pos2f lod.full lod.fv1 lod.int pos1a
c7 :c7 11.52 16.00 6.65 5.13 1.3915 11.52
c8 :c8 9.11 29.00 55.76 12.57 10.7777 9.11
c8 :c10.18 9.11 9.00 48.92 5.74 0.2927 9.11
c8 :c14.20 9.11 0.00 46.09 2.91 0.1275 9.11
c8 :c24 9.11 44.00 47.24 4.06 0.0232 9.11
c9 :c10.18 18.00 13.00 8.45 3.47 0.7140 9.77
c12.16:c12.16 2.00 6.95 8.10 6.76 6.1503 3.00
c13:c13 0.00 23.00 5.76 5.31 4.7070 8.00

pos2a lod.add lod.av1
c7 :c7 15 5.26 3.741
c8 :c8 23 44.98 1.797
c8 :c10.18 10 48.63 5.444
c8 :c14.20 0 45.97 2.784
c8 :c24 44 47.22 4.035
c9 :c10.18 13 7.73 2.758
c12.16:c12.16 5 1.95 0.612
c13:c13 26 1.06 0.601

First note the pairs of linked QTL on linkage groups 7, 8, 12.16, and 13. The
pair of QTL on linkage group 7 do not show strong evidence for an interaction,
but the other three pairs show strong interaction effects. The pairs on linkage
groups 7, 12.16 and 13 are relatively tightly linked, so we should be slightly
skeptical. The other rows in the table indicate the multiple QTL that we had
seen in our initial single-QTL scans; none show epistatic effects.

Let us consider a plot of the LOD scores for the pairs of linked QTL.
We will plot the results for linkage group 8 separate from the others, as the
extremely large LOD scores on linkage group 8 will make it difficult to study
the others if they all are shown with the same color scale. We will focus on
LODi, concerning epistatic interactions, and LODfv1, comparing the model
with two interacting QTL to the best single-QTL model.

> plot(out2, lower="cond-int", chr=8)

> plot(out2, lower="cond-int", chr=c(7, "12.16", 13))
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Figure 11.9. LOD scores, for linkage group 8, from a two-dimensional, two-QTL
genome scan with the trout data. LODi is displayed in the upper left triangle;
LODfv1 is displayed in the lower right triangle. In the color scale on the right,
numbers to the left and right correspond to LODi and LODfv1, respectively.

The LOD scores for linkage group 8 are shown in Fig. 11.9. The LOD scores
for linkage groups 7, 12.16 and 13 are shown in Fig. 11.10. These figures do
not provide much additional information, beyond what was obtained in the
summary table above. We do get a sense of the precision of localization of the
QTL, but not much else.

To alleviate our skepticism about these pairs of linked QTL, we plot the
phenotypes against the two-locus genotypes at markers close to the inferred
QTL positions. First, we use find.marker to identify the relevant markers;
we also use find.markerpos to look at the positions of the selected markers,
so that we are sure that the markers are near the QTL.

> mar7 <- find.marker(trout, 7, c(11.52, 16))

> find.markerpos(trout, mar7)

chr pos
agcagc3 7 11.52
agcatc13 7 18.05

> mar8 <- find.marker(trout, 8, c(9.11, 29))

> find.markerpos(trout, mar8)

chr pos
OmyFGT12 8 9.112
ACGACA8 8 30.215
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Figure 11.10. LOD scores, for selected linkage groups, from a two-dimensional,
two-QTL genome scan with the trout data. LODi is displayed in the upper left
triangle; LODfv1 is displayed in the lower right triangle. In the color scale on the
right, numbers to the left and right correspond to LODi and LODfv1, respectively.

> mar12.16 <- find.marker(trout, "12.16", c(2, 6.95))

> find.markerpos(trout, mar12.16)

chr pos
AGCATC6 12.16 2.794
ACGAGA5 12.16 6.952

> mar13 <- find.marker(trout, 13, c(0, 23))

> find.markerpos(trout, mar13)

chr pos
agcagc11 13 0.00
acgatg8 13 22.75

Now we call plot.pxg to create the plots of phenotypes against two-locus
genotypes.

> par(mfrow=c(2,2))

> plot.pxg(trout, marker=mar7)

> plot.pxg(trout, marker=mar8)
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Figure 11.11. Plot of the tth phenotype against two-locus genotypes at four pairs
of putative linked QTL, for the trout data. Points in red are imputed genotypes.

> plot.pxg(trout, marker=mar12.16)

> plot.pxg(trout, marker=mar13)

The plots of the phenotype against two-locus genotypes (Fig. 11.11) all
look reasonable. For linkage group 12.16, the inference of a second epistatic
locus depends on just a few individuals, which is worrisome, and to some
extent this is also true for the loci on linkage groups 7 and 13. Nevertheless,
these results are intriguing.

Let us bring all of our inferred QTL together into one model and look at
the drop-one-QTL analysis from fitqtl. We will omit the putative loci on
linkage groups 9, 14.20 and 17, which were weakly supported. We still have
10 QTL (and three pairs of interactions).

> qtl <- makeqtl(trout, c(7,7,8,8,"10.18","12.16","12.16",13,13,24),

+ c(11.52,16,9.11,29,11,2,6.95,0,23,46), what="prob")

> summary(fitqtl(trout, qtl=qtl, covar=femcov, method="hk",

+ formula=y~TL3+SP1+SP2+SP3+SP4+SP5+SP6+

+ Q1+Q2+Q3*Q4+Q5+Q6*Q7+Q8*Q9+Q10),

+ pvalues=FALSE)

Full model result

----------------------------------
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Model formula: y ~ TL3 + SP1 + SP2 + SP3 + SP4 + SP5 + SP6 + Q1 + Q2 +

Q3 + Q4 + Q5 + Q6 + Q7 + Q8 + Q9 + Q10 + Q3:Q4 +

Q6:Q7 + Q8:Q9

df SS MS LOD %var

Model 20 47092 2354.6 94.97 54.59

Error 533 39175 73.5

Total 553 86266

Drop one QTL at a time ANOVA table:

----------------------------------

df Type III SS LOD %var F value

TL3 1 6096.5117 17.4002 7.0671 82.948

SP1 1 3164.2037 9.3443 3.6680 43.051

SP2 1 5339.4284 15.3714 6.1895 72.647

SP3 1 4476.5711 13.0166 5.1893 60.907

SP4 1 481.7087 1.4702 0.5584 6.554

SP5 1 1787.9517 5.3689 2.0726 24.326

SP6 1 10119.5482 27.6421 11.7306 137.684

7@11.5 1 793.7264 2.4131 0.9201 10.799

7@16.0 1 500.5065 1.5272 0.5802 6.810

8@9.1 2 15014.9633 39.0324 17.4054 102.145

8@29.0 2 3569.1533 10.4895 4.1374 24.281

10.18@11.0 1 1448.3044 4.3673 1.6789 19.705

12.16@2.0 2 938.7691 2.8488 1.0882 6.386

12.16@7.0 2 913.7320 2.7737 1.0592 6.216

13@0.0 2 971.0353 2.9456 1.1256 6.606

13@23.0 2 1066.9214 3.2325 1.2368 7.258

24@46.0 1 1476.6254 4.4511 1.7117 20.091

8@9.1:8@29.0 1 3075.7546 9.0928 3.5654 41.848

12.16@2.0:12.16@7.0 1 898.9660 2.7294 1.0421 12.231

13@0.0:13@23.0 1 881.1723 2.6760 1.0215 11.989

The support for the pairs of loci on linkage groups 7, 12.16 and 13 have
dropped greatly, but there remains extremely strong support for the pair of
QTL on linkage group 8, plus QTL on linkage groups 10.18 and 24.

Let us drop the loci on linkage groups 12.16 and 13, refine the QTL posi-
tions, and perform the drop-one analysis again.

> qtl2 <- dropfromqtl(qtl, 6:9)

> qtl2 <- refineqtl(trout, qtl=qtl2, covar=femcov, method="hk",

+ formula=y~TL3+SP1+SP2+SP3+SP4+SP5+SP6+

+ Q1+Q2+Q3*Q4+Q5+Q6, verbose=FALSE)
> summary(fitqtl(trout, qtl=qtl2, covar=femcov, method="hk",

+ formula=y~TL3+SP1+SP2+SP3+SP4+SP5+SP6+

+ Q1+Q2+Q3*Q4+Q5+Q6),

+ pvalues=FALSE)

Full model result
----------------------------------
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Model formula: y ~ TL3 + SP1 + SP2 + SP3 + SP4 + SP5 + SP6 + Q1
+ Q2 + Q3 + Q4 + Q5 + Q6 + Q3:Q4

df SS MS LOD %var
Model 14 44943 3210.19 88.54 52.1
Error 539 41323 76.67
Total 553 86266

Drop one QTL at a time ANOVA table:
----------------------------------

df Type III SS LOD %var F value
TL3 1 6194.3529 16.8028 7.1805 80.796
SP1 1 2919.7332 8.2130 3.3846 38.083
SP2 1 6663.2666 17.9841 7.7241 86.912
SP3 1 4902.4536 13.4868 5.6829 63.945
SP4 1 464.3894 1.3444 0.5383 6.057
SP5 1 1890.9159 5.3825 2.1920 24.664
SP6 1 9968.8767 25.9981 11.5560 130.028
7@11.5 1 1220.1786 3.5007 1.4144 15.915
7@17.0 1 700.8668 2.0232 0.8124 9.142
8@9.1 2 17976.8740 43.4503 20.8389 117.240
8@30.2 2 4266.6131 11.8206 4.9459 27.826
10.18@10.0 1 1686.1471 4.8112 1.9546 21.993
24@47.0 1 1521.7448 4.3504 1.7640 19.849
8@9.1:8@30.2 1 3790.5184 10.5577 4.3940 49.441

We now have good support for the proximal locus on linkage group 7, but
not for the distal one. Let’s drop the distal locus, refine the QTL positions,
and repeat the drop-one-QTL analysis.

> qtl3 <- dropfromqtl(qtl2, 2)

> qtl3 <- refineqtl(trout, qtl=qtl3, covar=femcov, method="hk",

+ formula=y~TL3+SP1+SP2+SP3+SP4+SP5+SP6+

+ Q1+Q2*Q3+Q4+Q5, verbose=FALSE)

> summary(fitqtl(trout, qtl=qtl3, covar=femcov, method="hk",

+ formula=y~TL3+SP1+SP2+SP3+SP4+SP5+SP6+

+ Q1+Q2*Q3+Q4+Q5),

+ pvalues=FALSE)

Full model result
----------------------------------
Model formula: y ~ TL3 + SP1 + SP2 + SP3 + SP4 + SP5 + SP6 + Q1

+ Q2 + Q3 + Q4 + Q5 + Q2:Q3

df SS MS LOD %var
Model 13 44278 3405.99 86.62 51.33
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Error 540 41988 77.76
Total 553 86266

Drop one QTL at a time ANOVA table:
----------------------------------

df Type III SS LOD %var F value
TL3 1 5995.4909 16.0567 6.9500 77.107
SP1 1 2854.5748 7.9126 3.3090 36.712
SP2 1 6543.2056 17.4221 7.5849 84.151
SP3 1 5059.5513 13.6870 5.8651 65.070
SP4 1 443.2697 1.2633 0.5138 5.701
SP5 1 1687.4758 4.7401 1.9561 21.702
SP6 1 9898.5955 25.4645 11.4745 127.303
7@11.5 1 865.3537 2.4541 1.0031 11.129
8@9.1 2 17614.6554 42.1427 20.4190 113.269
8@28.0 2 4822.5266 13.0794 5.5903 31.011
10.18@9.0 1 1787.9916 5.0167 2.0726 22.995
24@46.0 1 1482.9148 4.1754 1.7190 19.071
8@9.1:8@28.0 1 4179.5638 11.4156 4.8450 53.752

The support for remaining locus on linkage group 7 is no longer strong, so
let’s omit it and rerun refineqtl and fitqtl.

> qtl4 <- dropfromqtl(qtl3, 1)

> qtl4 <- refineqtl(trout, qtl=qtl4, covar=femcov, method="hk",

+ formula=y~TL3+SP1+SP2+SP3+SP4+SP5+SP6+

+ Q1*Q2+Q3+Q4, verbose=FALSE)

> summary(fitqtl(trout, qtl=qtl4, covar=femcov, method="hk",

+ formula=y~TL3+SP1+SP2+SP3+SP4+SP5+SP6+

+ Q1*Q2+Q3+Q4),

+ pvalues=FALSE)

Full model result
----------------------------------
Model formula: y ~ TL3 + SP1 + SP2 + SP3 + SP4 + SP5 + SP6 + Q1

+ Q2 + Q3 + Q4 + Q1:Q2

df SS MS LOD %var
Model 12 43416 3618.0 84.18 50.33
Error 541 42851 79.2
Total 553 86266

Drop one QTL at a time ANOVA table:
----------------------------------

df Type III SS LOD %var F value
TL3 1 5867.4051 15.4379 6.8015 74.078
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SP1 1 2687.4846 7.3178 3.1153 33.930
SP2 1 6234.3561 16.3407 7.2269 78.710
SP3 1 4748.5963 12.6430 5.5046 59.952
SP4 1 442.3387 1.2355 0.5128 5.585
SP5 1 1518.2935 4.1887 1.7600 19.169
SP6 1 9591.8949 24.3002 11.1190 121.100
8@9.1 2 17486.1464 41.1692 20.2700 110.384
8@28.0 2 4623.4707 12.3264 5.3595 29.186
10.18@10.0 1 2027.7848 5.5623 2.3506 25.601
24@46.0 1 1312.6225 3.6298 1.5216 16.572
8@9.1:8@28.0 1 3972.6388 10.6658 4.6051 50.156

We have good support for the remaining four QTL, including the interaction
between the two loci on linkage group 8.

Let us complete this initial analysis (ignoring the possibility of QTL ×
MCE interactions) with an application of the automated model selection ap-
proach accomplished with stepwiseqtl. We first calculate the penalties for
our model comparison criterion, using the results of the permutation test with
a two-dimensional, two-QTL genome scan.

> print(pen <- calc.penalties(operm2))

main heavy light
2.711 3.990 1.711

Let us first consider strictly additive models, enforced with the argument
additive.only=TRUE. Note that in this case, only the penalty on main effects
is used.

> stepout1 <- stepwiseqtl(trout, covar=femcov, penalties=pen,

+ method="hk", additive.only=TRUE,

+ verbose=FALSE)

The chosen model includes loci on linkage groups 8, 9, 10.18 and 24.

> stepout1

name chr pos n.gen
Q1 8@9.1 8 9.112 2
Q2 9@11 9 11.040 2
Q3 10.18@10 10.18 10.000 2
Q4 24@45 24 45.000 2

Formula: y ~ TL3 + SP1 + SP2 + SP3 + SP4 + SP5 + SP6 + Q1 + Q2
+ Q3 + Q4

pLOD: 44.51

We use fitqtl to perform a drop-one-QTL analysis, to look at the support
for the individual terms in the model.
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> summary(fitqtl(trout, qtl=stepout1, covar=femcov,

+ method="hk"), pvalues=FALSE)

Full model result
----------------------------------
Model formula: y ~ Q1 + Q2 + Q3 + Q4 + TL3 + SP1 + SP2 + SP3 +

SP4 + SP5 + SP6

df SS MS LOD %var
Model 11 39866 3624.20 74.6 46.21
Error 542 46400 85.61
Total 553 86266

Drop one QTL at a time ANOVA table:
----------------------------------

df Type III SS LOD %var F value
8@9.1 1 21858.0351 46.4352 25.3379 255.325
9@11 1 1071.7613 2.7471 1.2424 12.519
10.18@10 1 2213.2359 5.6055 2.5656 25.853
24@45 1 1624.4151 4.1395 1.8830 18.975
TL3 1 5275.8899 12.9553 6.1158 61.628
SP1 1 2312.3039 5.8504 2.6804 27.010
SP2 1 4676.5682 11.5520 5.4211 54.627
SP3 1 3697.8501 9.2244 4.2866 43.195
SP4 1 264.4609 0.6837 0.3066 3.089
SP5 1 2328.1130 5.8895 2.6988 27.195
SP6 1 9658.9287 22.7492 11.1967 112.827

Note that the locus on linkage group 9 just barely enters the model, as its con-
ditional LOD score (that is, the log10 likelihood ratio comparing the four-QTL
model to the model with the locus on linkage group 9 omitted) is 2.75 and
the penalty on main effects was 2.71.

Let us repeat the stepwise analysis, allowing for epistatic interactions (and
using the combination of heavy and light penalties on interactions). We use the
default, of forward selection to a model with 10 QTL, followed by backward
deletion.

> stepout2 <- stepwiseqtl(trout, covar=femcov, penalties=pen,

+ method="hk", verbose=FALSE)

Allowing for interactions, we choose a model that includes the pair of
interacting loci on linkage group 8, plus loci on linkage groups 10.18 and 24.
This is identical to the model that we had chose through our exploratory
search, above.

> stepout2
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name chr pos n.gen
Q1 8@9.1 8 9.112 2
Q2 8@28.0 8 28.000 2
Q3 10.18@10.0 10.18 10.000 2
Q4 24@46.0 24 46.000 2

Formula: y ~ TL3 + SP1 + SP2 + SP3 + SP4 + SP5 + SP6 + Q1 + Q2
+ Q3 + Q4 + Q1:Q2

pLOD: 52.37

Finally, let us study the estimated effects under this model. We use fitqtl
with get.ests=TRUE (to obtain the estimated effects) and dropone=FALSE (to
skip the drop-one-QTL analysis).

> summary(fitqtl(trout, qtl=stepout2, covar=femcov,

+ method="hk", dropone=FALSE, get.ests=TRUE,

+ formula=y~TL3+SP1+SP2+SP3+SP4+SP5+SP6+

+ Q1*Q2+Q3+Q4))

Full model result
----------------------------------
Model formula: y ~ TL3 + SP1 + SP2 + SP3 + SP4 + SP5 + SP6 + Q1

+ Q2 + Q3 + Q4 + Q1:Q2

df SS MS LOD %var Pvalue(Chi2) Pvalue(F)
Model 12 43416 3618.0 84.18 50.33 0 0
Error 541 42851 79.2
Total 553 86266

Estimated effects:
-----------------

est SE t
Intercept 327.2417 1.2985 252.018
TL3 -12.8621 1.4944 -8.607
SP1 -9.1620 1.5729 -5.825
SP2 -14.1634 1.5964 -8.872
SP3 -16.0743 2.0760 -7.743
SP4 -8.0083 3.3888 -2.363
SP5 -10.1892 2.3273 -4.378
SP6 -15.5640 1.4143 -11.005
8@9.1 11.6583 1.2913 9.028
8@28.0 -0.3157 1.3856 -0.228
10.18@10.0 4.2497 0.8399 5.060
24@46.0 3.3667 0.8270 4.071
8@9.1:8@28.0 19.4213 2.7423 7.082
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Most striking, of course, are the loci on linkage group 8. The distal locus on
linkage group 8 has essentially no marginal effect, but it has a large influence
on the effect of the proximal locus. Our estimated QTL model explains a
substantial fraction of the phenotypic variance (50%).

11.3 QTL × covariate interactions

We now turn our attention to the search for potential QTL × MCE interac-
tions in these data: loci that show varying effects across the eight MCE groups
(defined by the female source of the eggs). As described in Sec. 7.2, there are
three ways that we might go about identifying such interactions. First, we
could focus on the QTL identified in Sec. 11.2, which showed clear marginal
effects, and test for QTL × MCE interaction at those positions. Second, we
may look for loci for which the combined effect of the QTL and its possible
interactions with MCE are clear (after adjustment for the genome scan), and
again test for the QTL × MCE interactions at those positions, with no further
adjustment for multiple testing. Finally, we may look for positions for which
the LOD score for the QTL × MCE interaction is large, adjusting for the
genome scan.

We start with a genome scan including MCE as an interactive covariate.

> outi <- scanone(trout, method="hk", addcovar=femcov,

+ intcovar=femcov)

The results are LOD scores for a test of the full model (including the QTL
× MCE interaction) to the null model of no QTL, and so concern eight degrees
of freedom (the effect of the QTL in each of the eight MCE groups). A large
LOD score indicates that the QTL has an effect in at least one of the eight
MCE groups.

It is best to compare these results side-by-side with the results, obtained
in the previous section, in which MCE was included as an additive covariate
but not an interactive covariate. For convenience, we combine the LOD scores
together into one object, along with the difference, which concerns the test of
QTL × MCE interaction.

> outi <- c(out, outi, outi-out, labels=c("a","f","i"))

We may then plot the three sets of LOD curves as follows.

> plot(outi, lod=1:3, ylab="LOD score", alternate.chrid=TRUE)

As seen in Fig. 11.12, we continue to have extremely strong evidence for
the locus on linkage group eight, but note that there is little evidence for a
QTL × MCE interaction at this locus.

To make sense of the statistical significance of the results, we perform a
permutation test. It is critical that the permutations with MCE as an interac-
tive covariate be precisely matched to those with MCE as a strictly additive
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Figure 11.12. LOD curves from a genome scan by Haley–Knott regression for the
trout data, with MCE groups included as additive covariates (in black), with MCE
groups included as interactive covariates (in blue) and for the test of QTL × MCE
interaction (in red).

covariate, so that the differences (which concern the test of QTL × MCE
interaction) have meaning. And so we use set.seed to set the seed for the
random number generator to be the same as was used in our permutations in
Sec. 11.2.

> set.seed(523938)

> opermi <- scanone(trout, method="hk", addcovar=femcov,

+ intcovar=femcov, n.perm=4000)

We again combine the results together into one object.

> opermi <- cbind(operm, opermi, opermi-operm,

+ labels=c("a","f","i"))

With eight MCE groups and so seven degrees of freedom associated with
the QTL × MCE interaction, the significance thresholds for the LOD scores
with MCE as an interactive covariate are quite large.

> summary(opermi)

LOD thresholds (4000 permutations)
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lod.a lod.f lod.i
5% 2.66 6.93 5.36
10% 2.32 6.38 4.81

If we were to test for QTL × MCE pointwise (that is, not adjusting for the
genome scan), we could make use of the approximation that LOD × (2 ln 10)
follows a χ2(df = 7) distribution under the null hypothesis (of no interaction).
The pointwise 5% significance threshold is then

> qchisq(0.95, 7) / (2 * log(10))

[1] 3.055

The advantage of pasting the three sets of LOD curves together is that
we can get a combined summary. If we use format="allpheno" in the call to
summary.scanone, we get a row in the summary table for each position for
which any one of the three LOD scores exceeds its chosen threshold.

> summary(outi, perms=opermi, alpha=0.05, pvalues=TRUE,

+ format="allpheno")

chr pos lod.a pval lod.f pval lod.i
OmyFGT12 8 9.11 43.18 0.00000 44.17 0.0000 0.988
c9.loc20 9 20.00 2.76 0.03775 4.09 0.8153 1.333
c10.18.loc13 10.18 13.00 4.97 0.00025 7.68 0.0177 2.705
c10.18.loc27 10.18 27.00 4.47 0.00050 10.06 0.0000 5.592
AGCCAG13 10.18 28.69 4.22 0.00125 10.00 0.0000 5.775
c12.16.loc26 12.16 26.00 1.17 0.78350 6.76 0.0638 5.593

pval
OmyFGT12 0.9978
c9.loc20 0.9910
c10.18.loc13 0.7232
c10.18.loc27 0.0357
AGCCAG13 0.0283
c12.16.loc26 0.0357

With MCE as a strictly additive covariate (column lod.a), we see sig-
nificant evidence for QTL on linkage groups 8, 9, and 10.18. The loci on
linkage groups 8 and 9 show no evidence for QTL × MCE interaction
(LODi = LODf − LODa is small). However, the locus on linkage group 10.18
shows reasonably good evidence for an interaction. When allowing for QTL ×
MCE interaction, the QTL on linkage group 10.18 shifts a bit (from 13 cM to
27 cM), and the evidence for interaction becomes clear. In the analysis allow-
ing QTL × MCE interaction, a locus on linkage group 12.16 nearly reaches
significance, and shows a strong interaction effect.

Recall our three strategies for identifying QTL × MCE interactions. First,
we could look at loci with clear marginal effects (adjusting for the genome
scan), and test the interaction at these positions, pointwise. With this strategy,
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we identify loci on linkage groups 8, 9, and 10.18, but only the locus on
linkage group 10.18 would show a QTL × MCE interaction. Second, we could
look at significant loci in the scan allowing for QTL × MCE interaction, and
again test for the interaction at these positions, pointwise. If we are strict in
this approach, we identify just the loci on linkage groups 8 and 10.18, and
again only the locus on linkage group 10.18 would show a significant QTL ×
MCE interaction. Finally, we could focus on the interaction LOD score alone,
adjusting for the genome scan. This reveals the QTL × MCE interactions for
loci on linkage groups 10.18 and 12.16.

In the above analysis, we consider just a single locus at a time. But our
analysis in Sec. 11.2 revealed two interacting loci on linkage group 8 with very
large effects, and so it would be best to repeat our scan for possible QTL
× MCE interaction, accounting for these large-effect loci. This may be done
with addqtl.

We first call makeqtl to create a QTL object containing our two QTL on
linkage group 8.

> qtl <- makeqtl(trout, c("8", "8"), c(9.1, 28), what="prob")

We then call addqtl twice. First, we scan for a third QTL, with the MCE
groups as strictly additive covariates. Second we scan for a third QTL, allowing
the MCE groups to interact with the QTL being scanned but not with the
first two QTL.

The model formulas are a bit cumbersome to create, as we must refer to
the seven covariates by name. One can avoid some typing (and reduce the
chance of errors) by using paste to create a character string representation of
the model formula. We could then use as.formula to convert it to a formula,
though actually addqtl and related functions accept the character represen-
tation, and so conversion with as.formula is not needed.
> addform <- paste("y~Q1*Q2+Q3+",

+ paste(colnames(femcov), collapse="+"),

+ sep="")

> addform

[1] "y~Q1*Q2+Q3+TL3+SP1+SP2+SP3+SP4+SP5+SP6"

> intform <- paste("y~Q1*Q2+Q3+",

+ paste("Q3", colnames(femcov),

+ sep="*", collapse="+"),

+ sep="")

> intform

[1] "y~Q1*Q2+Q3+Q3*TL3+Q3*SP1+Q3*SP2+Q3*SP3+Q3*SP4+Q3*SP5+Q3*SP6"

Now we are ready to perform the scans with addqtl.

> out.aq <- addqtl(trout, qtl=qtl, method="hk", covar=femcov,

+ formula=addform)

> outi.aq <- addqtl(trout, qtl=qtl, method="hk", covar=femcov,

+ formula=intform)
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We again paste the three sets of LOD scores into one object.

> outi.aq <- c(out.aq, outi.aq, outi.aq - out.aq,

+ labels=c("a","f","i"))

We use summary.scanone to pull out the interesting loci. We will assess
significance using the results of our permutation tests not conditioning on
linkage group 8, even though they are not strictly valid here.

> summary(outi.aq, perms=opermi, alpha=0.05, pvalues=TRUE,

+ format="allpheno")

chr pos lod.a pval lod.f pval lod.i pval
c9.loc30 9 30.0 1.12 0.81800 7.32 0.0302 6.196 0.0155
AGCCAG15 9 30.2 1.07 0.85925 7.32 0.0302 6.251 0.0145
c10.18.loc9 10.18 9.0 5.57 0.00025 6.43 0.0922 0.866 0.9988
AGCCAG13 10.18 28.7 4.81 0.00025 10.56 0.0000 5.747 0.0305
c17.loc18 17 18.0 2.91 0.02675 5.26 0.3380 2.349 0.8413
c24.loc44 24 44.0 3.66 0.00450 5.45 0.2755 1.788 0.9573

The locus on linkage group 10.18 remains, and shows a clear QTL × MCE
interaction. The locus on linkage group 12.16 has disappeared. Additional loci
on linkage groups 17 and 24 are seen, but neither shows evidence for a QTL ×
MCE interaction. Most interesting is the locus on linkage group 9, which no
longer shows a marginal effect, but does show a clear QTL × MCE interaction.

A plot of the LOD curves for selected linkage groups may be useful.

> plot(outi.aq, lod=1:3, ylab="LOD score", alternate.chrid=TRUE,

+ chr=c(8, 9, "10.18", "12.16", 17, 24))

The LOD curves in Fig. 11.13 are useful in giving a sense of the precision of
localization of the QTL.

Of course, we should bring all of the QTL together into one model, as
this gives the best assessment of the support for the individual loci. However,
the drop-one-QTL analysis with fitqtl can be extremely cumbersome in the
case that we have a multilevel factor as an interactive covariate: each term is
dropped one at a time, and we really want to see what happens when the set
of terms are omitted together.

We can, however, perform our own drop-one-QTL analysis, by repeatedly
calling fitqtl with multiple model formulas. The formulas are long and cum-
bersome, but with careful use of paste, we can create them without too much
difficulty. We illustrate the process here, though it is not for the faint-of-heart.

We first create a QTL object with all of the putative QTL; we will use
addtoqtl to add additional terms to the object we had created, containing
just the two loci on linkage group 8.

> qtl <- addtoqtl(trout, qtl, c(9, "10.18", 17, 24),

+ c(30, 28.7, 18, 44))
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Figure 11.13. LOD curves for selected linkage groups from a genome scan by
Haley–Knott regression for the trout data, controlling for two interacting loci on
linkage group 8, with MCE groups included as additive covariates (in black), with
MCE groups included as interactive covariates (in blue) and for the test of QTL ×
MCE interaction (in red).

Now we create our set of model formulas. We start with the full model,
containing all of the QTL plus the QTL × MCE interactions for the loci on
linkage groups 9 and 10.18.

> fullform <- paste("y~Q1*Q2+Q3+Q4+Q5+Q6",

+ paste(colnames(femcov), collapse="+"),

+ paste("Q3", colnames(femcov), sep=":",

+ collapse="+"),

+ paste("Q4", colnames(femcov), sep=":",

+ collapse="+"), sep="+")

We will assume that evidence for the loci on linkage group 8 is so strong
that we don’t need to consider models that lack them, but we will want to fit
the set of models with each of the other QTL missing.

> form.m9 <- paste("y~Q1*Q2+Q4+Q5+Q6",

+ paste(colnames(femcov), collapse="+"),

+ paste("Q4", colnames(femcov), sep=":",
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+ collapse="+"), sep="+")

> form.m1018 <- paste("y~Q1*Q2+Q3+Q5+Q6",

+ paste(colnames(femcov), collapse="+"),

+ paste("Q3", colnames(femcov), sep=":",

+ collapse="+"), sep="+")

> form.m17 <- paste("y~Q1*Q2+Q3+Q4+Q6",

+ paste(colnames(femcov), collapse="+"),

+ paste("Q3", colnames(femcov), sep=":",

+ collapse="+"),

+ paste("Q4", colnames(femcov), sep=":",

+ collapse="+"), sep="+")

> form.m24 <- paste("y~Q1*Q2+Q3+Q4+Q5",

+ paste(colnames(femcov), collapse="+"),

+ paste("Q3", colnames(femcov), sep=":",

+ collapse="+"),

+ paste("Q4", colnames(femcov), sep=":",

+ collapse="+"), sep="+")

We also want formulas with just the QTL × MCE interactions for the loci
on linkage groups 9 and 10.18 omitted.

> form.m9int <- paste("y~Q1*Q2+Q3+Q4+Q5+Q6",

+ paste(colnames(femcov), collapse="+"),

+ paste("Q4", colnames(femcov), sep=":",

+ collapse="+"), sep="+")

> form.m1018int <- paste("y~Q1*Q2+Q3+Q4+Q5+Q6",

+ paste(colnames(femcov), collapse="+"),

+ paste("Q3", colnames(femcov), sep=":",

+ collapse="+"), sep="+")

With our model formulas in hand, we can calculate the LOD scores for
each of these seven models. Let us start with the full model. It would be best
to first use refineqtl to get improved estimates of the locations of the QTL,
in the context of this model.

> qtl <- refineqtl(trout, qtl=qtl, formula=fullform,

+ method="hk", covar=femcov, verbose=FALSE)

We now use fitqtl to fit the model.

> full <- fitqtl(trout, qtl=qtl, formula=fullform, method="hk",

+ covar=femcov, dropone=FALSE)

In the summary of the result, we can see the LOD score comparing the
full model to the null model (with none of the QTL or covariates).

> summary(full, pvalues=FALSE)

Full model result
----------------------------------
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Model formula: y ~ Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + TL3 + SP1 + SP2
+ SP3 + SP4 + SP5 + SP6 + Q1:Q2 + Q3:TL3 +
Q3:SP1 + Q3:SP2 + Q3:SP3 + Q3:SP4 + Q3:SP5 +
Q3:SP6 + Q4:TL3 + Q4:SP1 + Q4:SP2 + Q4:SP3 +
Q4:SP4 + Q4:SP5 + Q4:SP6

df SS MS LOD %var
Model 28 48552 1734.00 99.54 56.28
Error 525 37714 71.84
Total 553 86266

To pull out just the LOD score for the fit of the model (relative to the null
model with no QTL), note that the output of fitqtl is a list, and one of the
components, named "lod", is simply this LOD score.

> print(fulllod <- full$lod)

[1] 99.54

We may now use fitqtl to fit our other six models.

> m9 <- fitqtl(trout, qtl=qtl, formula=form.m9, method="hk",

+ covar=femcov, dropone=FALSE)

> m1018 <- fitqtl(trout, qtl=qtl, formula=form.m1018,

+ method="hk", covar=femcov, dropone=FALSE)

> m17 <- fitqtl(trout, qtl=qtl, formula=form.m17, method="hk",

+ covar=femcov, dropone=FALSE)

> m24 <- fitqtl(trout, qtl=qtl, formula=form.m24, method="hk",

+ covar=femcov, dropone=FALSE)

> m9int <- fitqtl(trout, qtl=qtl, formula=form.m9int,

+ method="hk", covar=femcov, dropone=FALSE)

> m1018int <- fitqtl(trout, qtl=qtl, formula=form.m1018int,

+ method="hk", covar=femcov, dropone=FALSE)

We are interested in the differences between the LOD score for the full
model and the LOD scores for models with individual terms omitted. Let us
start with the loci on linkage groups 17 and 24, for which we did not include
QTL × MCE interactions.

> fulllod - m17$lod

[1] 2.854

> fulllod - m24$lod

[1] 2.749

The LOD score for each is above the main effect penalty (2.71).
For the loci on linkage groups 9 and 10.18, we first consider the difference

between the full model and the models with both the QTL and the QTL ×
MCE interaction terms omitted.
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> fulllod - m9$lod

[1] 7.933

> fulllod - m1018$lod

[1] 11.32

These are both well above the threshold from the permutation test including
QTL × MCE interactions. We turn to the interaction LOD scores, comparing
the full model to the models with just the QTL × MCE interaction terms
omitted.

> fulllod - m9int$lod

[1] 6.867

> fulllod - m1018int$lod

[1] 6.046

Both are quite large, indicating that the loci on linkage groups 9 and 10.18
show clear QTL × MCE interactions.

In the LOD scores above, the loci other than the one under test are kept
fixed at their estimated positions under the full model. This is what is done
in the drop-one-QTL analysis in fitqtl, but it gives a somewhat rosy view of
the support for the individual loci. Ideally, for each submodel, the locations
for the remaining QTL would be reestimated, and each comparison would be
between the full model with QTL in their best positions under the full model,
to a submodel with QTL in their best positions under that submodel.

This is simple enough to accomplish in our “by hand” comparisons of the
individual models. We simply run refineqtl for each submodel, followed by
fitqtl.

> qtl.m9 <- refineqtl(trout, qtl=qtl, formula=form.m9,

+ method="hk", covar=femcov,

+ verbose=FALSE)

> qtl.m1018 <- refineqtl(trout, qtl=qtl, formula=form.m1018,

+ method="hk", covar=femcov,

+ verbose=FALSE)

> qtl.m17 <- refineqtl(trout, qtl=qtl, formula=form.m17,

+ method="hk", covar=femcov,

+ verbose=FALSE)

> qtl.m24 <- refineqtl(trout, qtl=qtl, formula=form.m24,

+ method="hk", covar=femcov,

+ verbose=FALSE)

> qtl.m9int <- refineqtl(trout, qtl=qtl, formula=form.m9int,

+ method="hk", covar=femcov,

+ verbose=FALSE)
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> qtl.m1018int <- refineqtl(trout, qtl=qtl, method="hk",

+ formula=form.m1018int,covar=femcov,

+ verbose=FALSE)

We now call fitqtl for each of these reduced models, with the QTL in
the positions estimated under the corresponding model.

> m9r <- fitqtl(trout, qtl=qtl.m9, formula=form.m9,

+ method="hk", covar=femcov, dropone=FALSE)

> m1018r <- fitqtl(trout, qtl=qtl.m1018, formula=form.m1018,

+ method="hk", covar=femcov, dropone=FALSE)

> m17r <- fitqtl(trout, qtl=qtl.m17, formula=form.m17,

+ method="hk", covar=femcov, dropone=FALSE)

> m24r <- fitqtl(trout, qtl=qtl.m24, formula=form.m24,

+ method="hk", covar=femcov, dropone=FALSE)

> m9intr <- fitqtl(trout, qtl=qtl.m9int, formula=form.m9int,

+ method="hk", covar=femcov, dropone=FALSE)

> m1018intr <- fitqtl(trout, qtl=qtl.m1018int, method="hk",

+ formula=form.m1018int, covar=femcov,

+ dropone=FALSE)

We recalculate the conditional LOD scores for each locus, first for the loci
on linkage groups 17 and 24.

> fulllod - m17r$lod

[1] 2.849

> fulllod - m24r$lod

[1] 2.736

The LOD scores are slightly smaller, but both are still above main effect
penalty (2.71).

Now we consider the loci on linkage groups 9 and 10.18.

> fulllod - m9r$lod

[1] 7.921

> fulllod - m1018r$lod

[1] 11.01

> fulllod - m9intr$lod

[1] 5.168

> fulllod - m1018intr$lod

[1] 5.798
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Figure 11.14. Profile LOD curves for a six-QTL model, including two epistatic
QTL on linkage group 8 and QTL × MCE interactions for the QTL on linkage
groups 9 and 10.18, for the trout data.

The biggest change is in the interaction LOD score for the locus on linkage
group 9, which dropped from 6.87 to 5.17. But the evidence for both of these
loci, and for their QTL × MCE interactions, remains clear.

Let us turn to interval estimates for the locations of the inferred QTL. We
are particularly interested in the QTL on linkage group 10.18 (which is really
the pasting together of linkage groups 10 and 18): is the QTL in the linkage
group 10 part or the linkage group 18 part, or can we not tell?

First, let us plot the LOD profiles (see Sec. 9.3.2). Since we had used
refineqtl on the object qtl, concerning the full model, we may immediately
use plotLodProfile.

> plotLodProfile(qtl, col=c("blue","red",rep("black",4)),

+ ylab="Profile LOD score")

The LOD profiles appear in Fig. 11.14. Recall from Sec. 9.3.2 that in these
curves, the location of one QTL is allowed to vary while other QTL are fixed
at their best estimates. The LOD scores are for the comparison between the
full model and the reduced model with the QTL of interest (and any of its
interactions) omitted. For example, in the curve for the QTL on linkage group
10.18, that locus is allowed to vary while the locations of all other QTL are
kept fixed, and the LOD scores compare the full model, with the locus on
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linkage group 10.18 in varying position, to the reduced model in which this
QTL plus its QTL × MCE interactions are omitted.

The LOD profiles for the proximal locus on linkage group 8 looks a bit
odd, but note that for linked QTL (and particularly for QTL linked as tightly
as these two), the profile LOD curves give a poor representation of our uncer-
tainty in the locations of the QTL. It would be best to allow the locations of
the two QTL to vary jointly. We will return to that in a moment.

We were particularly interested in the QTL on linkage group 10.18, and of
whether its location could be defined to linkage group 10 or linkage group 18,
or whether this was uncertain. We may use lodint and bayesint to obtain
approximate confidence intervals for the location of the QTL. The intervals
should be considered with caution, as they fail to capture the uncertainty in
the locations of the other QTL in the model, and also the performance of these
intervals, in the context of multiple-QTL models, is not well understood. The
1.5-LOD support interval and 95% Bayesian credible interval are calculated
as follows.

> lodint(qtl, qtl.index=4)

chr pos lod
29 10.18 24.00 9.498
34 10.18 28.69 11.319
34 10.18 28.69 11.319

> bayesint(qtl, qtl.index=4)

chr pos lod
31 10.18 26.00 10.38
34 10.18 28.69 11.32
34 10.18 28.69 11.32

The intervals are remarkably small: the LOD support interval spans 4.7 cM
and the Bayesian interval spans 2.7 cM. It is hard to believe that the location
of the QTL could be so precisely defined.

Now, consider the genetic map of the markers on linkage group 10.18.

> pull.map(trout, "10.18")

ACGACA11 AGCAGT15 ACCAAG6 agcagc9 AGCCAG12 AGCCAG13
0.000 1.992 2.753 3.444 18.031 28.692

The first four markers were on linkage group 10, and the last two markers were
on linkage group 18. Thus it appears that the QTL on the merged linkage
group 10.18 is within the linkage group 18 part.

Returning to the case of the linked loci on linkage group 8, if we wished
to better define the locations of these QTL in the context of our six-QTL
model, we should perform a two-dimensional scan on linkage group 8, keeping
the locations of the other four QTL at their best estimates. This can be
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accomplished with addpair. We first use dropfromqtl to drop the two QTL
on linkage group 8 from our QTL object.

> qtl.m8 <- dropfromqtl(qtl, 1:2)

We need to create a model formula including our QTL × MCE interactions,
and with the two additional QTL (to be scanned) allowed to interact. Note
that, having dropped the QTL on linkage group 8, the numeric indices of the
other four QTL have changed.

> theformula <- paste("y~Q1+Q2+Q3+Q4+Q5*Q6",

+ paste(colnames(femcov), collapse="+"),

+ paste("Q1", colnames(femcov), sep=":",

+ collapse="+"),

+ paste("Q2", colnames(femcov), sep=":",

+ collapse="+"), sep="+")

Now we are ready to run addpair.

> out.ap <- addpair(trout, chr="8", qtl=qtl.m8, covar=femcov,

+ formula=theformula, method="hk",

+ incl.markers=TRUE, verbose=FALSE)

The results are the two-dimensional equivalent of the LOD profiles in
Fig. 11.14. At each pair of positions for the two QTL, we compare the full
model to the reduced model with these two QTL (and their interaction)
omitted.

We may plot the two-dimensional LOD profile as follows. The argument
contour is used to display an approximate 1.5-LOD support region. Note that
the performance of such two-dimensonal regions is not well understood.

> plot(out.ap, contours=1.5)

As seen in Fig. 11.15, the 1.5-LOD support regions indicates that the
location of the proximal QTL on linkage group 8 has been impressively well
defined, to an interval spanning just over 1 cM. The location of the distal
QTL is less well defined; the support region spans about 8 cM.

Finally, let us study the effects of the loci. We are particularly interested
in the QTL on linkage groups 9 and 10.18, which exhibit QTL × MCE inter-
actions. We will use fitqtl to get the estimated effects in the context of our
six-QTL model.

> summary(fitqtl(trout, qtl=qtl, formula=fullform, covar=femcov,

+ method="hk", dropone=FALSE, get.ests=TRUE))

Full model result
----------------------------------
Model formula: y ~ Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + TL3 + SP1 + SP2

+ SP3 + SP4 + SP5 + SP6 + Q1:Q2 + Q3:TL3 +
Q3:SP1 + Q3:SP2 + Q3:SP3 + Q3:SP4 + Q3:SP5 +
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Figure 11.15. Two-dimensional profile LOD surface for the pair of interacting
QTL on linkage group 8, in the context of a six-QTL model, including QTL × MCE
interactions for the QTL on linkage groups 9 and 10.18 and additional loci on linkage
groups 17 and 24, for the trout data.

Q3:SP6 + Q4:TL3 + Q4:SP1 + Q4:SP2 + Q4:SP3 +
Q4:SP4 + Q4:SP5 + Q4:SP6

df SS MS LOD %var Pvalue(Chi2) Pvalue(F)
Model 28 48552 1734.00 99.54 56.28 0 0
Error 525 37714 71.84
Total 553 86266

Estimated effects:
-----------------

est SE t
Intercept 326.4836 1.3124 248.767
TL3 -12.1128 1.4839 -8.163
SP1 -8.5237 1.5711 -5.425
SP2 -14.0621 1.5777 -8.913
SP3 -15.2948 2.0203 -7.570
SP4 -6.0049 3.8896 -1.544
SP5 -11.1024 2.4090 -4.609
SP6 -15.2999 1.4161 -10.805
8@9.1 12.2976 1.3077 9.404
8@27.0 -1.1588 1.4225 -0.815
9@30.2 9.3167 2.5252 3.690
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10.18@28.7 15.3082 3.0431 5.031
17@23.0 2.8183 0.7939 3.550
24@48.0 2.7082 0.7775 3.483
8@9.1:8@27.0 19.5517 2.8142 6.948
9@30.2:TL3 -12.9477 3.0492 -4.246
9@30.2:SP1 -3.0747 3.1703 -0.970
9@30.2:SP2 -5.8341 3.1489 -1.853
9@30.2:SP3 -12.1483 4.1183 -2.950
9@30.2:SP4 -3.3755 7.7862 -0.434
9@30.2:SP5 -14.3642 4.6790 -3.070
9@30.2:SP6 -8.3860 2.8493 -2.943
10.18@28.7:TL3 -7.5077 3.5224 -2.131
10.18@28.7:SP1 -12.7976 3.6071 -3.548
10.18@28.7:SP2 -11.4783 3.5959 -3.192
10.18@28.7:SP3 -10.2645 4.6146 -2.224
10.18@28.7:SP4 -11.6208 7.9593 -1.460
10.18@28.7:SP5 -13.8230 5.1415 -2.689
10.18@28.7:SP6 -15.0835 3.3221 -4.540

Consider the locus on linkage group 10.18, and recall that, for the link-
age group 18 part of this merged “linkage group,” we had swapped the two
genotypes, and so the effects have the opposite sign than might be expected.
The estimated coefficient in the row labeled 10.18@28.7 is the effect of the
linkage group 10.18 locus in the first MCE group (TL1). That is, for the in-
dividuals whose egg came from the TL1 female, the difference in the average
phenotype between the two genotypes is 15.3 ± 3.0. The other rows that begin
10.18@28.7 are for the differences in the QTL effect for the indicated MCE
group and the QTL effect for the TL1 group. Relative to the TL1 group, the
QTL on linkage group 10.18 has smaller effect in all other MCE groups; in
some cases (e.g., SP6) the QTL appears to have no effect. Similar observations
apply to the locus on linkage group 9.

The linked epistatic QTL on linkage group 8 are especially interesting.
To make sense of the estimated effects, note that the marginal effects of the
QTL are based on a coding of the two QTL genotypes as ± 1/2, and the
interaction term is the product of the two main effect terms. Thus the effect of
the proximal QTL among individuals with the CC genotype at the distal locus
is estimated to be 12.3− 19.6/2 = 2.5, while its effect among individuals with
the OO genotype at the distal locus is estimated to be 12.3 + 19.6/2 = 22.1.
That is, the proximal locus on linkage group 8 has a large effect, but only
among individuals with genotype OO at the distal locus.

11.4 Discussion

Our principal aim in this case study was to illustrate the exploration of possible
QTL × covariate interactions. As with the first case study, we have focused
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on the analysis techniques rather than the biological interpretation of the
results; for the latter, see the original article describing these data (Nichols
et al., 2007).

With these data, there was a single covariate to consider, maternal cy-
toplasmic environment (MCE): the source of the individuals’ eggs in these
doubled haploids. Nevertheless, the best approach for evaluating QTL × co-
variate interactions, with adjustment for the multiple hypothesis tests, is still
not perfectly clear. We favor the use of a scan allowing for the possibility of
QTL × covariate interactions, followed by pointwise tests of the significance
of the interactions. Had we been presented with a set of covariates for which
QTL × covariate interactions were to be explored, the multiple testing issue
would be even more onerous.

Automated multiple-QTL analyses in R/qtl do not yet allow for the possi-
bility of QTL × covariate interactions, and so we relied on a more exploratory
approach based on single- and two-dimensional genome scans. Extension of
the model comparison criteria of Sec. 9.1.4, to allow QTL × covariate inter-
actions, deserves exploration. Likely one could use a significance threshold for
the interaction LOD score as a penalty on a QTL × covariate interaction.
If multiple covariates were to be considered, such a significance threshold
should account for the search among the covariates as well as the scan across
the genome.

Our treatment of the linked pairs of homeologous linkage groups in these
data (swapping the genotypes on one linkage group and merging the two
together) is unorthodox, and is not beyond criticism. An advantage of our
approach is that we avoid the possibility of a single QTL giving linkage sig-
nals on multiple linkage groups. However, the gaps between the parts of the
merged linkage groups may contain no DNA, and the swapping of genotypes
on one part makes the interpretation of QTL effects more difficult. Clearly,
we need a better understanding of the underlying mechanism giving rise to
these pseudolinkages.
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Installing R and R/qtl

Here we describe the installation of R and R/qtl on Windows, Mac OS X, and
Unix. We also give a couple of tips for customizing the R environment.

The R statistical system is available at the Comprehensive R Archive Net-
work (CRAN, http://cran.r-project.org). It’s best to use a local mirror;
you can find a list of links to these at http://cran.r-project.org/mirrors.
html.

The main site for the R/qtl package is http://www.rqtl.org; it may also
be obtained from CRAN. On CRAN, R/qtl is known as the qtl package.

A.1 Installing R

We include separate subsections on R installation for the three operating
systems, as the details are quite different. For the definitive instructions on
installing R, see the“R Installation and Administration”manual on the CRAN
web site. (Click on “Manuals” on the left-side, under “Documentation,” or go
directly to http://cran.r-project.org/doc/manuals/R-admin.pdf).

A.1.1 Windows

Download the R program, which will be about 34 megabytes. It will be a file
of the form R-version -win32.exe, where version is the version number,
and so it will be something like R-2.8.1-win32.exe.

You can find the file by visiting CRAN and clicking on “Windows” and
“base,” or by going directly to http://cran.r-project.org/bin/windows/
base.

Install R by executing this file and following the instructions; it is the
usual sort of Windows setup program. We recommend installing R in c:\R
rather than c:\Program Files\R, as the space in Program Files sometimes
leads to difficulties. (Why didn’t Microsoft use Programs rather than Program
Files?)

K.W. Broman, Ś. Sen, A Guide to QTL Mapping with R/qtl,
Statistics for Biology and Health, DOI 10.1007/978-0-387-92125-9 BM2,
© Springer Science+Business Media, LLC 2009
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You can choose to have an R icon placed on the desktop or in the startup
menu. Use one of these to invoke R.

A.1.2 Mac OS X

Download the R program, which will be about 63 megabytes. It will be a file
of the form R-version.dmg, where version is the version number, and so it
will be something like R-2.8.1.dmg.

You can find the file by visiting CRAN and clicking on “Mac OS X,” or by
going directly to http://cran.r-project.org/bin/macosx.

Double-click this file; it will create a drive on your desktop with the name
R-version . Open that and then double-click R.mpkg. This will lead to the
usual sort of installer; follow the instructions, placing the R program in your
Applications folder. You will need an administrator password to install R.

To invoke R, double-click the R application that is now in your Applica-
tions folder.

You can also use the command-line version of R, as in Unix (below). To
make this available, you need to put a soft-link to R in either /usr/local/bin
or /usr/bin, using the following command from a terminal window. You will
again need an administrator password. (If this paragraph makes no sense,
you probably don’t want to do this, and should stick with the graphical user
interface.)

sudo ln -s /Library/Frameworks/R.framework/Resources/R/usr/bin/R

You may then invoke R by typing R at the prompt in an X Windows
terminal.

A.1.3 Unix/Linux

Linux users may install an R binary using their distribution’s package man-
agement system. This is convenient and adequate for most users. At the time
of writing, binaries for Debian, Red Hat, SuSE, and Ubuntu are distributed on
CRAN. For example, Debian and Ubuntu users may install R on their system
using the command sudo apt-get install r-base. Further instructions are
available on CRAN’s download page. Linux users may also compile the source
code; that is recommended if one wants to optimize R’s performance.

R can be installed from source in the traditional way, using configure
and make. We will give just limited details here, as we expect most users of
Unix or Linux will be familiar with the procedure.

Download the R source file, available on the main page at CRAN. It will
be a file of the form R-version.tar.gz where version is the version number,
and so it will be something like R-2.8.1.tar.gz.

Uncompress the file somewhere (e.g., in /tmp) using gunzip and tar. Go
into the directory and type ./configure, and respond to the various queries
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(the defaults are generally okay). Then type make and finally make install
(or sudo make install, if you are not the root user).

Invoke R by typing R at the Unix prompt.

A.2 Installing R/qtl

The simplest way to install R/qtl is to invoke R and then type the following
command.

> install.packages("qtl")

You may later check for and install an updated version of this and other
packages with the following command.

> update.packages()

An alternative solution for the installation of R/qtl is to download the
relevant binary (for Windows or Mac OS X) or the source code for the package
(for Unix). For Windows, this will be a file of the form qtl_version.zip; for
Mac OS X, it will be of the form qtl_version.tgz; for Unix, it will be of the
form qtl_version.tar.gz. Windows and Macintosh users may also wish to
download the .tar.gz source file, as it contains all of the source code for the
package. The files may be obtained from CRAN or from the R/qtl web site.

In Windows, unzip the file qtl_version.zip, placing the contents in the
directory $RHOME\library, where $RHOME is something like c:\R\R-2.8.1.
This should create a directory $RHOME\library\qtl. Then start R and type
the following command, in order to get the help files of the QTL package
added to the relevant indices.

> link.html.help()

In Mac OS X, uncompress the qtl_version.tgz file to the directory
/Library/Frameworks/R.framework/Resources/library/. Alternatively,
use some other directory (such as ~/Rlibs). In the latter case, you will need
to create a ~/.Renviron file in your home directory containing a line like the
following.

R_LIBS=/Users/auser/Rlibs

In Unix, you compile and install the source package using the following
command (replacing 1.11-12 with the appropriate version number).

R CMD INSTALL qtl_1.11-12.tar.gz

Alternatively, you may install the package in a private directory; to install
it in to /home/auser/Rlibs, type the following.

R CMD INSTALL --library=/home/auser/Rlibs qtl_1.11-12.tar.gz

With R and R/qtl both installed, start R and type the following to load
the package.

> library(qtl)
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A.3 Optimizing the R environment

We have a few suggestions to improve your use of R. First, if you prefer letter
paper (8.5 × 11 in) to A4, we suggest creating a text file .Renviron containing
the following line. (In Windows, place the file in c:\; in Mac OS X and Unix,
place it in your home directory.)

R_PAPERSIZE=letter

Second, create a text file, .Rprofile (in the same place you put .Renvi-
ron) containing the following lines.

options(show.signif.starts=FALSE)
library(qtl)

This will prevent the display of the annoying asterices indicating “statis-
tical significance” and will load the R/qtl package whenever you start R, so
that you won’t need to type library(qtl) every time.

For Windows users, we recommend turning off the “buffered output” by
clicking Ctrl-W or by deselecting this item in “Misc” on the menu bar.

We recommend copying-and-pasting commands from a text editor, so that
you may keep a record of what you have done in an analysis. In Unix and Mac
OS X, we prefer to run R within Emacs; this is best done using Emacs Speaks
Statistics (ESS), an Emacs extension that makes R easier to use. It is available
at http://ess.r-project.org.

A.4 Working directories

It is best to have separate R working directories for separate projects, partic-
ularly because one’s entire R workspace is read into memory, and so one will
wish to keep the workspace as focused as possible.

In Windows, change the working directory by clicking on “Change Direc-
tory” in the File menu on the menu bar.

In the graphical user interface for Mac OS X, one may set the initial
working directory in the preferences. (Click“Preferences”in the R menu on the
menu bar, and then go to “Startup.”) One may change the working directory
in the “Misc” menu on the menu bar. One may load or save a workspace from
the Workspace menu on the menu bar.

In Unix, one invokes R from a particular working directory; the .RData
file in that directory, if it exists, is loaded.

One may also wish to save particularly large objects in separate files, to
be loaded or removed from one’s workspace as they are needed. An object or
objects may be saved to a file with the save function, and subsequently read
with load. With save, one must specify the file argument by name, as in
the following examples.
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> save(mycross, file = "mydata.RData")

> save(mycross, myoutput, file = "mydata.RData")

Note that these .RData files will work on all platforms (i.e., operating
systems).

One’s R workspace is saved in a single file, .RData, which is read when
R is invoked and will be written upon exit (if one responds “y” to the query,
“Save workspace image?”). It is valuable to use the function save.image to
periodically save one’s workspace, so that if the program crashes, one’s results
will not be lost. (By keeping code in a separate text file, though, it should be
simple to rerun the analyses, if the results were not saved.) The save.image
function is used as follows.

> save.image()

An .RData file, created by save or save.image, can also be attached to
the R search tree, so that one may access the objects in the file without having
them included in the workspace. The objects in the file cannot share the same
name as an object in one’s workspace, and if they are modified, the modified
version will be placed in the workspace rather than back in the original file.
Use attach as follows.

> attach("otherresults.RData")

Use search to see what files have been attached, and detach to detach
them.

A.5 Documentation

R and R/qtl are distributed with extensive documentation. Each function
has its own help file, with a complete description of the input and output,
examples of its use, and references to related functions.

To view the help file for a function (e.g., read.cross), type one of the
following.

> help(read.cross)

> ?(read.cross)

If you are not sure of the name of the relevant function, you can search
the help files with a character string, as follows.

> help.search("read data")

We find it easiest to peruse the html version of the help files. In the R GUI
on Windows and Mac OS X, you can get to these from “Help” on the menu
bar. In Unix, type help.start(), and the help files will be loaded in your
default browser. You can view all of the help files in a package by clicking
“Packages” at the main help page, and then the name of the package. Within
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a help file, you can click on related functions (under “See Also”) to view their
help files.

The example code in a help file may be run by typing, for example:

> example(scanone)

All help files for R functions are available in a single PDF file at CRAN
under “Manuals.” There are a number of additional free tutorials on R, and a
list of related books, at CRAN. [We should again emphasize the value of the
books by Dalgaard (2002) and Venables and Ripley (2002).] The help files for
R/qtl are available as a single PDF at its web page.

Also see the Frequently Asked Questions (FAQ) lists, available from
http://cran.us.r-project.org/faqs.html. There is a general FAQ on R,
as well as Windows- and Macintosh-specific FAQ lists. For a FAQ on R/qtl,
see http://www.rqtl.org/faq.

A.6 Email lists

There are a number of mailing lists for discussion about R and R/qtl. Access
to email lists about R is available at http://www.r-project.org/mail.html.
The R-help list is the general R email list. The R-SIG-Mac list is a special
interest group on R for the Macintosh. An archive of past posts to R-help is
available at https://www.stat.math.ethz.ch/pipermail/r-help. One may
search the R-help archive at http://search.r-project.org.

Two Google groups are available for R/qtl: Rqtl-announce for announce-
ments of software updates and Rqtl-disc for general discussion. Announce-
ments are also posted to Rqtl-disc, and so one need join only one of the
groups. Posts may be received by email individually or in digest form, or may
be read solely on the web. Go to http://groups.google.com or the R/qtl
web page to find and join the groups.
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List of functions in R/qtl

In this appendix, we list the major functions in R/qtl, organized by topic
(rather than alphabetically, as they appear in the help files). Many of the
functions listed are not discussed in the book. For those discussed, page num-
bers (in brackets) indicate the primary reference.

Sample data
badorder An intercross with misplaced markers
bristle3 Data on bristle number for Drosophila chromosome 3
bristleX Data on bristle number for Drosophila X chromosome
fake.4way Simulated data for a four-way cross
fake.bc Simulated data for a backcross
fake.f2 Simulated data for an intercross
hyper [33] Backcross data on salt-induced hypertension
listeria [33] Intercross data on Listeria monocytogenes susceptibility
map10 [37] A 10 cM genetic map modeled after the mouse genome

Input/output
read.cross [22] Read data for a QTL experiment
write.cross [33] Write data for a QTL experiment to a file

Simulation
sim.cross [36] Simulate a QTL experiment
sim.map [37] Generate a genetic map

Summaries
qtlversion Gives the version number of the installed R/qtl package
plot.cross [35] Plot various features of a cross object
plot.missing [36] Plot a grid of missing genotypes
geno.image Plot a grid with colored pixels representing different

genotypes
plot.pheno [36] Histogram or bar plot of a phenotype
plot.info [70] Plot the proportion of missing genotype information
summary.cross [34] Print a summary of a QTL experiment
summary.map [38] Print a summary of a genetic map
nchr, nind, nmar, nphe, totmar [36]
nmissing [71] Number of missing genotypes by marker or individual
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ntyped [72] Number of genotypes by marker or individual
find.pheno Find the column number for a particular phenotype
find.marker [57] Find the marker closest to a specified position
find.flanking Find the markers flanking a particular position
find.markerpos [330] Find the map positions of a marker

Data manipulation
clean.cross [45] Remove intermediate calculations from a cross
drop.markers [96] Remove a set of markers
drop.nullmarkers [200] Remove markers without genotype data
fill.geno [207] Fill in holes in the genotype data by imputation or the

Viterbi algorithm
strip.partials Replace partially informative genotypes with missing

values
markernames [96] Pull out the marker names from a cross
pull.map [54] Pull out the genetic map from a cross
pull.geno [55] Pull out the genotype data as a matrix
pull.pheno [140] Pull out a phenotype
replace.map [65] Replace the genetic map of a cross
jittermap [84] Jitter marker positions slightly so that no two coincide
subset.cross [100] Select a subset of chromosomes and/or individuals
c.cross Combine multiple crosses
switch.order [62] Switch the order of markers on a chromosome
movemarker [57] Move a marker from one chromosome to another

HMM engine
argmax.geno Reconstruct underlying genotypes via the Viterbi

algorithm
calc.genoprob [84] Calculate conditional genotype probabilities
sim.geno [94] Simulate genotypes given observed marker data

Diagnostics
geno.table [50] Create a table of genotypes at each marker
geno.crosstab [54] Create a cross-tabulation of genotypes at two markers
checkAlleles [54] Identify markers with potentially switched alleles
calc.errorlod [67] Calculate genotyping error LOD scores
top.errorlod [67] List the genotypes with the highest error LOD values
plot.geno [67] Plot the observed genotypes, flagging likely errors
comparecrosses Compare two cross objects, to see if they are the same
comparegeno [52] Calculate the proportion of matching genotypes for each

pair of individuals

Genetic mapping
est.rf [53] Estimate pairwise recombination fractions between

markers
plot.rf [55] Plot recombination fractions
est.map [64] Estimate the genetic map
plot.map [64] Plot genetic map(s)
ripple [60] Assess marker order by permuting adjacent markers
summary.ripple [61] Print a summary of the ripple output
compareorder Compare two orderings of markers on a chromosome
tryallpositions Test all possible positions for a marker
formLinkageGroups Partition markers into linkage groups
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orderMarkers Establish marker order, de novo

QTL mapping
scanone [84] Genome scan with a single-QTL model
scantwo [217] Two-dimensional genome scan with a two-QTL model
lodint [120] Calculate a LOD support interval
bayesint [120] Calculate an approximate Bayes credible interval
scanoneboot [121] Nonparametric bootstrap to obtain a confidence interval

for QTL location
plot.scanone [79] Plot output for a one-dimensional genome scan
add.threshold Add a horizontal line at a LOD threshold to a genome

scan plot
plot.scantwo [217] Plot output for a two-dimensional genome scan
summary.scanone [79] Print a summary of scanone output
summary.scantwo [220] Print a summary of scantwo output
max.scanone [79] Maximum peak in scanone output
max.scantwo [238] Maximum peak in scantwo output
−.scanone [87] Subtract LOD scores from multiple scanone results
+.scanone [195] Add LOD scores from multiple scanone results
−.scantwo [87] Subtract LOD scores from multiple scantwo results
+.scantwo Add LOD scores from multiple scantwo results
c.scanone [189] Combine LOD score columns from multiple scanone

results
c.scanoneperm [223] Combine multiple batches of permutation replicates from

scanone
c.scantwoperm [223] Combine multiple batches of permutation replicates from

scantwo
cbind.scanoneperm [189] Combine LOD score columns from multiple scanone per-

mutation results
effectplot [125] Plot phenotype means of genotype groups defined by one

or two markers or covariates
effectscan Plot estimated QTL effects across the whole genome
plot.pxg [126] Like effectplot, but as a dot plot of the phenotypes

Multiple QTL models
makeqtl [259] Make a qtl object for use by fitqtl
fitqtl [260] Fit a multiple QTL model
summary.fitqtl [260] Get a summary of the result of fitqtl
scanqtl [258] Perform a multidimensional genome scan
refineqtl [263] Refine the QTL locations in a multiple-QTL model
plotLodProfile [264] Plot LOD profiles for a multiple-QTL model
addqtl [267] Scan for an additional QTL, in a multiple-QTL model
addpair [269] Scan for an additional pair of QTL, in a multiple-QTL

model
addint [266] Add pairwise interactions, one at a time, in a multiple-

QTL model
plot.qtl [260] Plot the QTL locations on the genetic map
addtoqtl [272] Add to a QTL object
dropfromqtl [274] Drop a QTL from a QTL object
replaceqtl [273] Replace a QTL location in a QTL object with a different

position
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reorderqtl [274] Reorder the QTL in a QTL object
cim [209] A (relatively crude) implementation of composite inter-

val mapping
stepwiseqtl [276] Stepwise selection for multiple QTL
calc.penalties [275] Calculate penalties for use with stepwiseqtl
plotModel [277] Plot a graphical representation of a multiple-QTL model
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QTL mapping data sets

Here we give brief descriptions of the various QTL mapping data sets consid-
ered in this book. These data are included either in R/qtl or in the R/qtlbook
package.

ch3a (R/qtlbook)

Reference: Anonymous
Organism: Mouse
Cross type: Backcross
No. individuals: 234
No. markers: 166

These are anonymous data used to illustrate the process some of the data
diagnostics discussed in Chap. 3.

ch3b (R/qtlbook)

Reference: Anonymous
Organism: Mouse
Cross type: Intercross
No. individuals: 144
No. markers: 145

These are anonymous data used to illustrate the process some of the data
diagnostics discussed in Chap. 3.
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ch3c (R/qtlbook)

Reference: Anonymous
Organism: Mouse
Cross type: Intercross
No. individuals: 100
No. markers: 101

These are anonymous data used to illustrate the process some of the data
diagnostics discussed in Chap. 3.

gutlength (R/qtlbook)

Reference: Owens et al. (2005); Broman et al. (2006)
Organism: Mouse
Cross type: Intercross
No. individuals: 1068
No. markers: 121

These data are from a mouse intercross between C3HeBFeJ and C57BL/6J,
with one F1 parent carrying the Sox10Dom mutation. Over 2000 mice were
generated, but only those individuals heterozygous at Sox10Dom were geno-
typed and included in the data set. Sox10 is on chromosome 15, and so that
chromosome exhibits an unusual segregation pattern. Some mice received the
mutation from their mother and some from their father. The primary pheno-
type is gut length (in cm). The phenotype “cross” indicates the cross used to
generate an animal. A selective genotyping strategy was used with these data:
323 individuals with extreme aganglionosis phenotype (not included with this
data set) were genotyped at more than 100 markers; the remaining 745 indi-
viduals were typed at fewer than 15 markers.

hyper (R/qtl)

Reference: Sugiyama et al. (2001)
Organism: Mouse
Cross type: Backcross
No. individuals: 250
No. markers: 174

These data are from a mouse backcross using the C57BL/6J and A/J
strains, with the F1 mated back to C57BL/6J. All individuals are male. They
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were given water containing 1% NaCl for two weeks. The phenotype is blood
pressure (actually the average of 20 blood pressure measurements from each
of 5 days, obtained with a tail cuff.) A selective genotyping strategy was used,
with the the upper 46 and lower 46 individuals, in terms of blood pressure,
genotyped across the entire genome. The other individuals were genotyped
at markers in regions showing initial evidence for a QTL. In some regions,
additional markers were added within an interval, but only recombinant indi-
viduals were genotyped.

iron (R/qtlbook)

Reference: Grant et al. (2006)
Organism: Mouse
Cross type: Intercross
No. individuals: 284
No. markers: 66

These data are from a mouse intercross with the C57BL/7J/Ola and
SWR/Ola strains. There are two phenotypes: basal iron levels (in μg/g) in
the liver and spleen. A selective genotyping strategy was used. The markers
genotyped are quite sparse.

listeria (R/qtl)

Reference: Boyartchuk et al. (2001)
Organism: Mouse
Cross type: Backcross
No. individuals: 120
No. markers: 133

These data are from a mouse intercross using the C57BL/6ByJ and
BALB/cBYJ strains. There are 120 female intercross individuals (though only
116 were phenotyped). Mice were injected with Listeria monocytogenes; the
phenotype is survival time (in hours). A large proportion of mice (35/116)
survived past the 240-hour time point and were considered to have recovered
from the infection; their phenotype was recorded as 264. The first 90 individ-
uals were genotyped relatively completely; an additional 30 individuals were
genotyped at around 90 of the 133 markers.
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nf1 (R/qtlbook)

Reference: Reilly et al. (2006)
Organism: Mouse
Cross type: Backcross
No. individuals: 254
No. markers: 105

These data concern neurofibromatosis type 1, and are from a mouse back-
cross generated to identify modifiers to the NPcis mutation. The backcrosses
used the F1 hybrid of C57BL/6J and A/J, crossed back to C57BL/6J, and
with individuals receiving the NPcis mutation from either their mother or
father. The phenotype is dichotomous and indicates whether individuals were
affected or unaffected with neurofibromatosis type 1. The genotype data are
about 86% complete.

ovar (R/qtlbook)

Reference: Orgogozo et al. (2006)
Organism: Fruit fly
Cross type: Backcross
No. individuals: 1452
No. markers: 24

These data are from a cross between two Drosophila species: D. simulans
was crossed to D. sechellia, and the F1 hybrid was crossed back to D. simulans.
The phenotype of interest was ovariole number in females, a measure of fitness.
In an initial cross of 402 individuals, 383 had complete phenotype data. Initial
genotyping focused on 94 individuals with extreme phenotype. To increase
the resolution of a major QTL identified on chromosome 3, a second cross of
approximately 7000 flies was performed, though only 1050 individuals showing
a recombination event between two morphological markers were phenotyped
and genotyped; 1038 individuals had complete phenotype data.



C QTL mapping data sets 369

trout (R/qtlbook)

Reference: Nichols et al. (2007)
Organism: Rainbow trout
Cross type: Doubled haploids
No. individuals: 554
No. markers: 171

These data are doubled haploid individuals derived from a cross be-
tween the Oregon State University and Clearwater River rainbow trout
(Oncorhynchus mykiss) clonal lines. Eggs from one of eight outbred females,
two from Troutlodge and six from the Spokane hatchery, were irradiated to de-
stroy maternal nuclear DNA and fertilized with sperm from a single F1 male.
The first embryonic cleavage was blocked by heat shock to restore diploidy.
There are a total of 554 individuals, with between 8 and 168 individuals from
each of the eight females. The primary phenotype is time to hatch. The geno-
type data are 95% complete.
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Hidden Markov models for QTL mapping

An important aspect of the QTL mapping problem is the treatment of missing
genotype data. If complete genotype data were available, QTL mapping would
reduce to the problem of model selection in linear regression. However, in the
consideration of loci in the intervals between the available genetic markers,
genotype data is inherently missing. Even at the typed genetic markers, geno-
type data is seldom complete, as a result of failures in the genotyping assays
or for the sake of economy (e.g., in the case of selective genotyping, where
only individuals with extreme phenotypes are genotyped).

In standard interval mapping, one deals with the missing QTL genotype
data by performing maximum likelihood under a mixture model, using a ver-
sion of the EM algorithm. Central to this approach is the calculation of the
distribution of QTL genotypes conditional on the observed multipoint marker
data. In the multiple imputation approach to QTL mapping, one must be able
to simulate from the joint distribution of the genotypes at positions on a grid
along a chromosome, conditional on the observed marker data.

In this chapter, we discuss the use of algorithms developed for hidden
Markov models (HMMs) to perform the tasks mentioned above and thus deal
with the missing genotype data problem. Simpler approaches can and have
been used. For example, in a backcross in the absence of genotyping errors,
the QTL genotype probabilities, conditional on the marker data, are a simple
function of the genotypes at the nearest flanking markers. The more refined
algorithms described here have several advantages. First, we may allow for
the presence of genotyping errors. Second, we may more easily deal with par-
tially informative genotypes. (For example, in an intercross, at some markers
the heterozygote may not be distinguishable from one of the homozygotes.)
Third, the bookkeeping tasks in implementing these algorithms can be more
simple. Fourth, the algorithms can be more easily extended to more complex
experimental crosses (such as a four-way cross).

In the next section, we define hidden Markov models in the context of the
analysis of experimental crosses. In the following sections, we describe the ba-
sic algorithms for calculating QTL genotype probabilities, simulating from the
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joint distribution of QTL genotypes, estimating genetic maps, and identifying
genotyping errors. We conclude the chapter with a discussion of a practical
issue in the implementation of these algorithms in computer programs.

D.1 Specification of the model

A Markov chain is a collection of random variables, {G1, G2, . . . , Gn}, sat-
isfying the Markov property Pr(Gi+1|Gi, . . . , G1) = Pr(Gi+1|Gi) for all i.
In a Markov chain, for any i, the “past,” {G1, . . . , Gi−1}, and the “future,”
{Gi+1, . . . , Gn}, are conditionally independent, given the “present,” Gi. We
focus on Markov chains for which the random variables {Gi} take values in a
common, finite set, G.

A hidden Markov model (HMM) consists of an unobservable underlying
Markov chain, {Gi}, and a set of observable random variables, {Oi}, where
each Oi depends only on Gi. In other words, for each i, Oi, given Gi, is
conditionally independent of everything else, {O1, . . . , Oi−1, Oi+1, . . . , On,
G1, . . . , Gi−1, Gi+1, . . . , Gn}. It may be useful to keep in mind the illustration
in Figure D.1.

� � � � �

� � � � �

� � � � �
� � � � � �� � � � � �

G1 G2 G3 Gi Gn

O1 O2 O3 Oi On

Figure D.1. Illustration of a hidden Markov model. G’s indicate underlying geno-
types; O’s indicate observed marker phenotypes.

The hidden states, Gi, take values in a common, finite set, G; the ob-
served states, Oi, take values in another finite set, O. The joint distribution
of the Oi and Gi in the HMM is parameterized by three sets of probabili-
ties, which we will call the initiation, transition and emission probabilities.
The initiation probabilities define the distribution of the initial hidden state:
π(g) = Pr(G1 = g) for g ∈ G. The transition probabilities complete the spec-
ification for the joint distribution of the underlying, hidden Markov chain:
ti(g, g′) = Pr(Gi+1 = g′|Gi = g) for i = 1, . . . , n − 1 and g, g′ ∈ G. The emis-
sion probabilities concern the conditional distribution of the observed states
given the hidden states: ei(g, o) = Pr(Oi = o|Gi = g) for i = 1, . . . , n, g ∈ G,
and o ∈ O. We will assume here that the emission probabilities are homoge-
neous, with ei(g, o) ≡ e(g, o) for all i, g, o.
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We now begin to consider the application of HMMs to experimental
crosses. Below, we will describe the backcross and intercross specifically, but
first we define the relevant HMM in some generality.

One may focus on the genotypes for a single individual at a set of loci on a
single chromosome. (We will focus on an autosome.) We let Gi, i = 1, . . . , n,
denote the true underlying genotypes for the individual at a set of n ordered
loci, and let Oi denote the observed marker “phenotype” at locus i.

These loci may be genetic markers, or they may be“pseudomarkers,”under
consideration as putative QTL. The genotypes are often assumed to be phase-
known genotypes, though for the intercross they need not be, as we will see
below. Under the assumption of no crossover interference in meiosis, for many
types of crosses, the Gi form a Markov chain. The set G corresponds to the
possible values of these phase-known genotypes. The initiation probabilities
correspond to a segregation model at a single locus; the transition probabilities
are a function of the recombination fractions, ri, between adjacent markers.

The set O corresponds to the set of possible observed marker phenotypes,
which will include the possibility of missing values and partially informative
phenotypes (such as in the case of a dominant or recessive marker). The
emission probabilities involve a model for errors in genotyping, which we will
assume to be common across markers, though in reality some markers are
considerably more error-prone than others. It is important to point out, fur-
ther, that one conditions on the observed pattern of missing data. This will
become more clear below.

D.1.1 The backcross

Consider a backcross individual derived from two inbred strains, A and B,
where the F1 parent was crossed back to the A strain. We let G = {AA,AB},
the possible genotypes at a locus. The set of possible marker phenotypes is
O = {A,H,−}, with the last symbol corresponding to a missing value. Note
our attempt to use different symbols for the underlying genotypes and the
observed marker phenotypes.

The initiation probabilities, assuming Mendel’s rules, are simply π(AA) =
π(AB) = 1/2. The transition probabilities are ti(AA,AB) = ti(AB,AA) = ri,
where ri denotes the recombination fraction between loci i and i+1. Of course,
ti(AA,AA) = ti(AB,AB) = 1 − ri.

In forming the emission probabilities, we assume a constant error rate
in genotyping, ε, so that e(AA,A) = e(AB,H) = 1 − ε, and e(AA,H) =
e(AB,A) = ε. We condition on the observed pattern of missing data, and
so e(AA,−) = e(AB,−) = 1. One may consider − = {A or H}, so that
e(AA,−) = e(AA,A) + e(AA,H) = 1.

One may consider, in forming the emission probabilities, more refined mod-
els for genotyping errors. For example, one may consider a locus-specific error
rate, and one may allow the chance of a heterozygote being erroneously ob-
served as a homozygote to be somewhat different than the converse.
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Table D.1. The transition probabilities, ti(g, g′) = Pr(Gi+1 = g′|Gi = g), for a
phase-unknown intercross.

g′

g AA AB BB

AA (1 − ri)
2 2ri(1 − ri) r2

i

AB ri(1 − ri) (1 − ri)
2 + r2

i ri(1 − ri)

BB r2
i 2ri(1 − ri) (1 − ri)

2

D.1.2 The intercross

Consider a single individual in the F2 generation from an intercross between
two inbred strains, A and B. One may consider the hidden states, Gi, to be
either phase-known genotypes (with four possible states, {AA,AB,BA,BB})
or phase-unknown genotypes (with three possible states, {AA,AB,BB}). It
is an interesting and useful fact that in either case the Gi form a Markov chain
(under the assumption of no crossover interference).

We will focus on the phase-unknown case, with G = {AA,AB,BB}. The
initiation probabilities are again those implied by Mendel’s rules: π(AA) =
π(BB) = 1/4, π(AB) = 1/2. The transition probabilities are displayed in Ta-
ble D.1, where ri denotes the recombination fraction between markers i and
i + 1. Note that we assume that there are no sex differences in the recombi-
nation fractions.

As possible observed marker phenotypes, we let O = {A,H,B,C,D,−},
with A, B, and H corresponding to the two homozygotes and the heterozygote,
respectively, − corresponding to a completely missing value, and with C and
D allowing the treatment of dominant marker loci: we define C and D as in
the popular computer software, MapMaker (Lander et al., 1987), with C =
{not A} = {B or H} and D = {not B} = {A or H}.

The emission probabilities, for a simple genotyping error model, are shown
in Table D.2, where we let ε denote the genotyping error rate. Note that we
again condition on the pattern of missing genotype data, and so, for example,
Pr(Oi = C|Gi) = Pr(Oi = B|Gi) + Pr(Oi = H|Gi).

D.2 QTL genotype probabilities

Having set up the hidden Markov model for experimental crosses, we now
begin our discussion of the basic algorithms used in order to deal with miss-
ing genotype data in QTL mapping. We begin with the calculation of the
conditional QTL genotype probabilities given multipoint marker data, which
are critical for standard interval mapping with a single-QTL model. Using
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Table D.2. The emission probabilities, e(g, o) = Pr(Oi = o|Gi = g), for a phase-
unknown intercross.

o

g A H B C D −
AA 1 − ε ε/2 ε/2 ε/2 1 − ε/2 1

AB ε/2 1 − ε ε/2 1 − ε/2 1 − ε/2 1

BB ε/2 ε/2 1 − ε 1 − ε/2 ε/2 1

the notation developed in the previous section, we seek Pr(Gi = g|O), where
O = (O1, . . . , On).

The brute-force approach for calculating this probability is to simply sum
over all possible genotypes at the other loci.

Pr(Gi = gi|O) =
∑

g1

. . .
∑

gi−1

∑

gi+1

. . .
∑

gn

Pr(G1 = g1, . . . , Gn = gn|O)

∝
∑

g1

. . .
∑

gi−1

∑

gi+1

. . .
∑

gn

π(g1)
n−1∏

j=1

tj(gj , gj+1)
n∏

j=1

e(gj , Oj)

For the phase-known intercross, with three possible genotypes, this is a sum
with 3n−1 terms; clearly this is unwieldy and unnecessary. That there are sim-
ple algorithms for this calculation, which make critical use of the conditional
independence structure of the HMM, is the primary motivation for the use of
HMMs in experimental crosses.

The approach we follow makes use of the following two sets of probabilities.

αi(g) = Pr(O1, . . . , Oi, Gi = g)
βi(g) = Pr(Oi+1, . . . , On|Gi = g)

Note that, once the α’s and β’s have been calculated, the probability that is
the focus of this section follows directly:

Pr(Gi = g|O) = Pr(Gi = g,O)/Pr(O)
= αi(g)βi(g)/

∑
g′ αi(g′)βi(g′).

The α’s and β’s are calculated inductively, using what are called the for-
ward and backward equations, respectively. We begin with the forward equa-
tions. First, note that

α1(g) = Pr(O1, G1 = g) = π(g) e(g,O1).

Now, assume that we have calculated αi(g) for each g ∈ G. Then we have
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αi+1(g) = Pr(O1, . . . , Oi, Oi+1, Gi+1 = g)

=
∑

g′ Pr(O1, . . . , Oi, Oi+1, Gi = g′, Gi+1 = g)

=
∑

g′ Pr(O1, . . . , Oi, Gi = g′) Pr(Gi+1 = g|Gi = g′) Pr(Oi+1|Gi+1 = g)

= e(g, Oi+1)
∑

g′ αi(g
′) ti(g

′, g).

In the third line above, we made use of the conditional independence structure
of the HMM, noting that

Pr(Gi+1 = g|Gi = g′, O1, . . . , Oi) = Pr(Gi+1 = g|Gi = g′)

and

Pr(Oi+1|Gi+1 = g,Gi = g′, O1, . . . , Oi) = Pr(Oi+1|Gi+1 = g).

Calculation of the β’s proceeds similarly, though starting at the other end
of the chain. We define βn(g) = 1 for all g ∈ G. Assuming that we have
calculated βi(g) for all g, we have

βi−1(g) = Pr(Oi, . . . , On|Gi−1 = g)
=

∑
g′ Pr(Oi, . . . , On, Gi = g′|Gi−1 = g)

=
∑

g′ Pr(Oi+1, . . . On|Gi = g′) Pr(Gi = g′|Gi−1 = g) Pr(Oi|Gi = g′)
=

∑
g′ βi(g′) ti−1(g, g′) e(g′, Oi).

Again, in the third line above, we made use of the conditional independence
structure of the HMM.

In summary, in order to calculate the QTL genotype probabilities, con-
ditional on multipoint marker data, Pr(Gi = g|O), we make use of the for-
ward and backward equations to first calculate, for each i and g, αi(g) =
Pr(O1, . . . , Oi, Gi = g) and βi(g) = Pr(Oi+1, . . . , On|Gi = g). These algo-
rithms are extremely efficient and can accommodate partially missing geno-
types (such as are observed at dominant markers in an intercross) and a model
for errors in genotyping.

D.3 Simulation of QTL genotypes

Central to the multiple imputation approach to QTL mapping is the simula-
tion of QTL genotypes via their joint distribution conditional on the observed
multipoint marker data. In this section, we describe how this is done. One
considers a single chromosome and a single individual at a time. As will be
seen, the simulation algorithm makes use of the β’s defined in the previous
section. Thus, one must first perform the backward equations described above.

The algorithm is quite simple. One first draws g	
1 from the distribution

Pr(G1 = g|O) =
α1(g)β1(g)

∑
g′ α1(g′)β1(g′)

.
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Genotypes for further loci are drawn iteratively: having drawn g	
1 , . . . , g	

i , one
draws g	

i+1 from the distribution

Pr(Gi+1 = g|O, Gi = g	
i ) =

Pr(Gi+1 = g,Gi = g	
i |O)

Pr(Gi = g	
i |O)

=
αi(g	

i ) ti(g	
i , g) e(g,Oi+1) βi+1(g)
αi(g	

i )βi(g	
i )

=
ti(g	

i , g) e(g,Oi+1) βi+1(g)
βi(g	

i )
.

We are again making critical use of the conditional independence structure of
the HMM.

Note that the α’s are not needed, except for α1(g) = π(g) e(g,O1). Thus
the forward equations need not be performed. For each individual, one first
uses the backward equations to calculate the β’s and then simulates the chain
from left to right, using the equations above. It should be no surprise that one
may instead use the forward equations to calculate the α’s, and then simulate
the chain from right to left, using formulas analogous to those above.

D.4 Joint QTL genotype probabilities

In multiple interval mapping (MIM) with multiple linked QTL, it is important
to calculate joint QTL genotype probabilities, conditional on the observed
multipoint marker data.

We begin by describing the calculation of Pr(Gi = g,Gj = g′|O) for all
i, j with i < j. As will be seen, one must first calculate the α’s and β’s defined
above. One may start by calculating the case j = i+1 for each i = 1, . . . , n−1,
as follows.

Pr(Gi = g, Gi+1 = g′|O) ∝ Pr(Gi = g, Gi+1 = g′, O)

= Pr(O1, . . . , Oi, Gi = g) Pr(Gi+1 = g′|Gi = g)

×Pr(Oi+1|Gi+1 = g′) Pr(Oi+2, . . . , On|Gi+1 = g′)

= αi(g) ti(g, g′) e(g′, Oi+1) βi+1(g
′)

One uses the final line above and rescales the results so that they sum to 1.
The rest of the pairwise probabilities follow with the standard technique,

using induction.

Pr(Gi = g, Gj = g′|O) =
∑

g′′

Pr(Gi = g, Gj−1 = g′′, Gj = g′|O)

=
∑

g′′

Pr(Gi = g, Gj−1 = g′′|O) Pr(Gj = g′|Gj−1 = g′′, O)

Finally, one may wish to calculate the joint probabilities for multiple linked
loci, conditional on the observed multipoint marker data. Again, the condi-
tional independence structure of the HMM makes this a simple task: the
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joint distribution may be calculated based on pairwise probabilities whose
calculation was described above. Consider i1 < i2 < · · · < ik, with each
ij ∈ {1, . . . , n}; we have

Pr(Gi1 = g1, . . . , Gik = gk|O) =

Pr(Gi1 = g1, Gi2 = g2|O)

k−1∏

j=2

Pr(Gij+1 = gj+1|Gij = gj , O).

The equations in this section do get a little bit complicated, but they are all
formed of quite simple pieces. The central calculation is the use of the forward
and backward equations to obtain the α’s and β’s.

D.5 The Viterbi algorithm

In some cases, it is useful to impute the underlying genotype data, calculat-
ing Ĝ = arg maxG Pr(G|O). The Viterbi algorithm solves this problem via
dynamic programming.

First, define

γk(g) = max
g1,...,gk−1

Pr(G1 = g1, . . . , Gk−1 = gk−1, Gk = g,O1, . . . , Ok).

These are calculated inductively, by an approach similar to that used in the
forward equations (Sec. D.2). Let γ1(g) = Pr(G1 = g,O1) = π(g)e(g,O1).
Given γk(g) for all g, we have

γk+1(g) = e(g,Ok+1)max
g′

tk(g′, g)γk(g′).

At the same time, we keep track of the values at which the maxima
occurred: define δk+1(g) = arg maxg′ tk(g′, g)γk(g′). If the maximum is not
unique, we can keep track of each of them or pick a random one. (We do the
latter in R/qtl.)

To obtain the most probable sequence of underlying genotypes, we then
take Ĝn = arg maxg γn(g) and, working backwards, Ĝk−1 = δk(Ĝk).

The inferred genotypes obtained by the Viterbi algorithm should be used
with great caution. If one treated the inferred genotypes as if they were the
true values, an important source of uncertainty would be ignored.

Moreover, if intermarker positions are included and genotyping error is al-
lowed, the results of the Viterbi algorithm can vary according to the density of
intermarker positions that are used. The Viterbi algorithm identifies the most
likely sequence of genotypes, but this sequence may have quite low probability
and may exhibit features that are unlikely.

For example, consider three markers at a 10 cM spacing and a single back-
cross individual with observed marker genotypes AA–AB–AB at the three
markers. If the Viterbi algorithm is applied with a genotyping error rate of
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1%, and using just the three marker positions, the most likely sequence of
underlying genotypes matches those observed. If, however, one considers po-
sitions at 1 cM steps across the region, the most likely sequence of underlying
genotypes is such that the individual is heterozygous across the entire region.
While it is probable that the individual is recombinant across the first in-
terval and that the observed genotype at the first marker is not in error, if
many intermarker positions are considered, this event is split across multiple
sequences of genotypes (each corresponding to a different position for the re-
combination event), and so the sequence in which the initial genotype is in
error and there is no recombination event ends up being most likely.

This issue leads us to recommend the use of simulation to impute genotypes
(as described in Sec. D.3), rather than using the Viterbi algorithm to calculate
the most probable sequence of underlying genotypes.

D.6 Estimation of intermarker distances

The calculations described above depend crucially on the order of the genetic
markers and the recombination fractions between adjacent markers (i.e., the
intermarker distances). In this section, we describe the derivation of joint
maximum likelihood estimates (MLEs) of the recombination fractions between
genetic markers, assuming that the order of the genetic markers is known. We
omit from consideration the more difficult problem of determining marker
order.

Taking the order of the genetic markers as fixed and known, the probability
of the observed marker data for an individual, Pr(O), still depends on the
recombination fractions between adjacent markers. For the sake of simplicity,
this dependence has been neglected in our notation heretofore. Moreover, we
have been considering a single individual at a time. In our discussion of the
estimation of intermarker distances, however, it will be important to make
this dependence clear. Let r = (r1, . . . , rn−1) denote the set of recombination
fractions, and let Ok denote the observed marker data for individual k, for
k = 1, . . . , N .

We seek the MLE of r, defined to be the value of r for which the likeli-
hood is maximized, r̂ = arg max L(r), where L(r) =

∏N
k=1 Pr(Ok|r). These

estimates are obtained using a version of the EM algorithm (Dempster et al.,
1977).

We begin with initial estimates of the recombination fractions, r̂(0). The
EM algorithm is an iterative algorithm: the estimated recombination fractions
are successively improved, increasing the likelihood at each stage, until conver-
gence. In each iteration, the updated estimates of the recombination fractions
are the expected proportions of recombination events, across the N individu-
als, in each marker interval, given the current estimates of the recombination
fractions.
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At each iteration, we first perform the forward and backward equations
for each individual, using the current estimates of the recombination frac-
tions, r̂(s). We then calculate, for each interval i, γki(g, g′|r̂(s)) = Pr(Gk,i =
g,Gk,i+1 = g′|Ok, r̂(s)). This is the probability that individual k has geno-
types g and g′ at markers i and i + 1, given its multipoint marker data, and
given the current estimates of the recombination fractions. The calculation of
the γ’s, based on the α’s and β’s for the corresponding individual, appears in
Sec. D.4.

The updated estimate of the recombination fraction for interval i is then
r̂
(s+1)
i =

∑
k

∑
g,g′ γki(g, g′|r̂(s)) p(g, g′)/N , where p(g, g′) is the proportion

of recombination events across the interval (i.e., 0, 1/2, or 1) if the individual
has genotypes g and g′ at the markers defining the interval. Note that, in
estimating the intermarker distances for an intercross, we use the phase-known
(four-state) version of the HMM, so that the function p(g, g′) is well defined.

D.7 Detection of genotyping errors

Successful QTL mapping requires high-quality phenotype and genotype data.
In this section, we describe an approach for identifying errors in the genotype
data. For each marker and each individual, we calculate a LOD score, with
large LOD scores indicating likely errors.

The presence of partially informative genotypes (e.g., at dominant markers
in an intercross) makes this slightly tricky. Let us assume that the observed
marker phenotypes, o ∈ O, are subsets of the possible underlying marker geno-
types, G. For example, in the case of an intercross, where G = {AA,AB,BB},
the set of possible marker phenotypes is O = {A,H,B,C,D,−}, with, for
example, A = {AA} and C = {AB,BB}.

Let Gki denote the true underlying genotype for individual k at marker
i, and let Oki denote the corresponding marker phenotype. We assume the
simple model for genotyping errors that was described in Sec. D.1, and we
assume the genotyping error rate, ε, is known. We seek to calculate

LODki = log10

{
Pr(O|Gki 	∈ Oki, ε)
Pr(O|Gki ∈ Oki, ε)

}

= log10

{
Pr(Gki 	∈ Oki|O, ε)
Pr(Gki ∈ Oki|O, ε)

× 1 − ε

ε

}

The calculation of the probabilities in the above formula are by the forward
and backward equations, described in Sec. D.2. While the calculations might
be done allowing a constant genotyping error rate for all markers, we have
found that, in the case of an apparent triple-recombination event, no individual
genotype will be flagged as a likely error. We have found it best to instead
perform the forward and backward equations separately for each individual
and each marker, in each instance allowing only the genotype in question to
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be possibly in error; all other marker genotypes are assumed to be correct.
While the computation time with this approach is greatly increased (so that
it is probably not feasible for a very large number of markers and individuals),
a broader set of possibly genotyping errors will be identified. Note that, while
the genotyping error LOD scores depend on the specified error rate, ε, typical
values, in the range 0.001 – 0.02, give indistinguisable results.

Genotyping error LOD scores below 3 or 4 are generally benign. Only
when the LOD scores exceed 4 should they be given much consideration. It
should be noted that genotyping errors can only be detected in the case of
quite dense markers. At the same time, however, genotyping errors have little
effect on the results of QTL mapping if the markers are not dense. Finally,
if a particular marker gives many large error LOD scores, it may be that a
problem with marker order is the cause (though, of course, the marker may
also have a greater than typical frequency of errors).

D.8 A practical issue

In the case of many genetic markers (or of calculations on a dense grid), the
direct calculation of α and β, as described above, will result in underflow:
αn(v) = Pr(O1, . . . , On, Gn = v) can be extremely small. One method to deal
with this is to calculate α′ = log α and β′ = log β. In the forward equations,
we must obtain α′

i+1(g) = log e(g,Oi+1) + log{
∑

g′ αi(g′)ti(g′, g)}. This leads
to the problem of calculating log(f1 + f2) on the basis of gi = log fi, which
may be facilitated by the following trick:

log(f1 + f2) = log(eg1 + eg2)
= log{eg1(1 + eg2−g1)}
= g1 + log(1 + eg2−g1)

A problem occurs when g2 � g1: the above formula will result in an overflow.
In such a case one simply notes that log(f1 + f2) ≈ g2.

D.9 Further reading

Baum et al. (1970) were the first to describe estimation for hidden Markov
models, and derived the forward and backward equations. For other exposi-
tions of the use of HMMs, see Rabiner (1989) or Lange (1999, Sec. 23.3).

Churchill (1989) was the first to use HMMs explicitly in biology. HMMs
have been used for a variety of biological applications, including the study of
ion channels (Fredkin and Rice, 2001), multiple sequence alignment (Krogh
et al., 1994; Baldi et al., 1994), gene finding (Henderson et al., 1997), and
protein structure prediction (Hubbard and Park, 1995).
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Lander and Green (1987) described the multipoint estimation of genetic
maps; their method was implemented for experimental crosses in the soft-
ware MapMaker (Lander et al., 1987). Jiang and Zeng (1997) described an
alternative approach for dealing with missing and partially missing genotype
data. Lincoln and Lander (1992) developed the LOD scores, defined above, for
identifying genotyping errors in experimental crosses. Cartwright et al. (2007)
described the estimation of a genetic map, allowing the genotyping error rate
at markers to vary.
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est.map
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method, 166
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formula, 258, 263, 267, 269, 270, 280,

333, 342, 343
search, 248–250, 254–255

movemarker, 57, 319
multiple imputation, see imputation
multiple interval mapping (MIM), 247,

258
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nchr, 36, 40, 62, 99
nf1 data, 200–205, 228–231, 368
nind, 36, 41, 150, 291, 324
nmar, 36
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nonparametric interval mapping,
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nphe, 36
ntyped, 72, 98, 107, 207, 288

object.size, 300
objects, 26
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optspacing, 160, 166
ovar data, 283–312, 368

pairs, 49
par, 48
parallel computing, 223, 275, 297, 304
paste, 88, 147, 287, 342
pch, 115
pchisq, 202
penalized LOD scores (pLOD), see

LOD scores, penalized
penalty

heavy interaction, 252
light interaction, 252–253
main effects, 251

permutation test, 105–106, 127, 135,
136, 251, 252, 306

in examples, 106–108, 116–117,
130–131, 138–141, 144–145,
149–150, 189, 193–197, 201–203,
207, 222–223, 229, 275, 297–298,
303–304, 324, 328, 339–340

number of replicates, 105–106, 114
stratified, 105, 114, 118
two-QTL scan, 216
with covariates, 182, 192–193
X chromosome, 113–114

pgm phenotype, 24, 44, 113, 114
pheno.col, see scanone, pheno.col
phenotypes, 7, 47, 153–154
physical map, see map, physical
pleiotropy, 127
plot, 34, 42, 56, 79
plot.cross, 35, 285, 315
plot.geno, 24, 67, 291
plot.info, 70–71
plot.map, 36, 45, 56, 64, 289, 322
plot.missing, 36
plot.pheno, 36, 48
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plot.pxg, 78, 126, 224, 299, 331
plot.qtl, 260
plot.rf, 55, 64, 289, 317
plot.scanone, 79, 85, 90, 115, 129, 148,

267
plot.scanoneperm, 106
plot.scantwo, 217, 272
plotLodProfile, 258, 264, 276, 296,

308, 349
plotModel, 277
power (to detect QTL), 113, 123, 127,

161, 173, 184, 205, 206, 216, 255
powercalc, 159, 173
print, 171, 272, 275, 298, 304, 336, 346
probit, 199
pull.geno, 55, 167, 207
pull.map, 37, 54, 319–321, 350
pull.pheno, 140, 144, 149, 186, 200,

229, 237, 286, 288, 301, 324

qchisq, 341
QTL Archive, 34
QTL Cartographer, 19, 31
QTL effect, see effect, QTL
QTL formula, see model, formula
QTL object, 258, 259, 263, 272–274,

276, 280, 293, 297, 325, 342, 351
qtl package, see R/qtl
qtlbook package, see R/qtlbook
qtlcart format, 31–32
qtlDesign package, see R/qtlDesign
qtx format, 32
quantile, 171

R, 17–18
R/qtl, 17–18

web page, 355
R/qtlbook, 33
R/qtlDesign, 159
raw file, 30
rbind, 39
read.cross, 22–32, 314
read.table, 26, 28
recombinant congenic strains (RCS),

169
recombinant inbred lines (RILs), 4, 6,

155, 160, 163–164
recombination fraction, 53

estimation, see est.rf

refineqtl, 258, 263–264
examples, 296, 299, 306, 309, 327,

333, 345, 347, 349
reorderqtl, 259, 274, 309
replace.map, 26, 32, 65, 323
replaceqtl, 259, 273
repulsion, see linked QTL, repulsion
ripple, 60–64, 320
rm, 300
rnorm, 42
rug, 52, 171, 174

sample, 42, 50, 167
sample size, 155, 162–164
samplesize, 160, 162–164
sapply, 43, 45, 62–63
save, 223, 358
save.image, 359
scanone, 78, 84, 87, 89, 94, 115, 137,

140, 143, 167, 171, 173, 292
covariates, 187, 193, 201, 207, 324,

339
multiple phenotypes, 127
permutation test, 106, 116, 130, 138,

145, 189, 194, 201, 207, 324, 340
pheno.col, 127–128, 140, 144

scanone.cph, 147–150
scanoneboot, 121
scanqtl, 258, 270
scantwo, 217, 229, 234, 329

covariates, 237
permutation test, 222–223, 229, 275,

298, 304, 328
search, 359
segregation distortion, 12, 50–51, 317
selection bias, 123–125
selective genotyping, 10, 58, 87, 97–101,

105, 165–166, 184, 187, 207, 222,
247, 259, 275, 283, 288, 291, 298,
312

selective phenotyping, 166–167, 283,
296, 312

set.seed, 193, 201, 223, 324, 340
significance threshold, 104–106, 130,

146, 161, 163, 170, 189, 192, 193,
298

two-QTL scan, 216–217, 222
X chromosome, 113–114, 235

sim.cross, 36, 38–41, 167, 171, 172
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sim.geno, 44, 94, 103, 125, 197, 204,
224, 230, 259, 291, 300

sim.map, 37–38, 167

simulation

cross, see sim.cross

genetic map, see sim.map

source, 148

spurious LOD score, see LOD score,
spurious

stepwiseqtl, 259, 274–280, 298, 310,
336

stratified permutation test, see
permutation test, stratified

subset.cross, 100, 150, 167, 184, 195,
202, 225, 229, 288, 301

summary, 34, 42, 79

summary.cross, 34–35, 84

summary.fitqtl, 260–262, 327

summary.map, 38, 45, 171

summary.ripple, 61

summary.scanone, 79, 108, 115, 117,
148

format, 129, 145, 189, 341

multiple phenotypes, 128–129

summary.scanoneperm, 106

summary.scantwo, 217, 220–222, 223,
272, 295

summary.scantwoperm, 222, 229, 275

survival package, 146

switch.order, 62, 320
system.time, 102–103

t test, 76, 92, 287
t.test, 288
tapply, 200
thresh, 160, 161, 163, 171
threshold, see significance threshold
top.errorlod, 67
totmar, 36, 317
transformation, 16, 135, 228
transgressive QTL, 262
tree (regression), 245
trout data, 313–354, 369
two-part model, 141–146, 199

update.packages, 357

website
CRAN, 355
for book, IX, 33, 174
for R, 17
for R/qtl, 355
QTL archive, 34

working directory, see directory
(working)

workspace, 26, 32, 223, 300, 358–359
write.cross, 33

X chromosome, 108–118, 232–235



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




