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Abstract

For two large study areas in Minnesota, USA, stratified estimation using classified Landsat Thematic Mapper satellite imagery as the

basis for stratification was used to estimate forest area. Measurements of forest inventory plots obtained for a 12-month period in 1998 and

1999 were used as the source of data for within-stratum estimates. These measurements further served as calibration data for a k-Nearest

Neighbors technique that was used to predict forest land proportion for image pixels. The continuum of forest land proportion predictions

was separated into strata to facilitate stratified estimation. The k-Nearest Neighbors technique is carefully explained, five precautions are

noted, and a plea is made for an objective approach to calibrating the technique. The variances of the stratified forest area estimates were

smaller by factors as great as 5 than variances of the arithmetic mean calculated under the assumption of simple random sampling. In

addition, when including all plots over a 5-year plot measurement cycle, the forest area precision estimates may be expected to satisfy

national standards.

D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

The five regional, multi-state Forest Inventory and

Analysis (FIA) programs of the Forest Service, US

Department of Agriculture, are required to report esti-

mates of forest land area for their respective regions

every 5 years. Each estimate is obtained as the product

of total area inventoried and the mean, over a systematic

array of field plots, of the proportion of each plot in

FIA-defined forest land. The FIA definition of forest land

includes commercial timberland, some pastured land with

trees, forest plantations, unproductive forested land, and

reserved, noncommercial forested land. In addition, forest

land must satisfy minimum stocking levels, a 0.405-ha

(1-ac) minimum area, and a minimum continuous bole-to-

bole canopy width of 36.58 m (120 ft), therefore exclud-

ing lands such as wooded strips, idle farmland with trees,

and narrow windbreaks. A combination of budgetary

constraints and natural variability among plots prohibits

sample sizes sufficient to satisfy national FIA precision

standards for forest area estimates unless the estimation

process is enhanced using ancillary data.

Traditionally, FIA has enhanced the estimation process

by using stratified estimation with aerial photography as the

basis for stratification (Bickford, 1960; Hansen, 1990;

Loetsch & Haller, 1964). First, an extensive array of photo

plots on aerial photographs is interpreted and stratified

using ocular methods, and the proportions of photo plots

assigned to strata are used as stratum weights. Then, field

crews visit a subset of the photo plots and observe plot

attributes. Finally, estimates of forest land area are obtained

with these data using stratified estimation techniques

(Cochran, 1977).

A second approach to enhancing the estimation proc-

ess is to use stratified estimation with classified satellite

imagery as the basis for the stratification. With this

approach, image pixels for the area of interest are

classified with respect to predictions of land cover

attributes into homogeneous classes, and the classes are

then used as strata in the stratified analyses. Strata

weights are the proportions of pixels in strata, and plots

are assigned to strata on the basis of the strata assign-
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ments of their associated pixels. If the stratification is

done before sampling and the within-stratum variances of

the inventory variables are well estimated, then maximum

precision may be achieved by selecting within-strata

sampling intensities to be proportional to within-strata

variances. However, even when the within-strata sampling

intensities are independent of the stratification, stratified

estimation may still yield increases in precision.

Satellite imagery has been used as a basis for strat-

ification for variance reduction in forestry applications.

Poso, Hame, and Paananen (1984) and Poso, Paananen,

and Simila (1987) used Landsat Thematic Mapper (TM)

imagery to obtain stratified estimates of volume and age

in Finland, and Deppe (1998) used satellite imagery to

stratify for estimating forest area in Brazil. For estimating

forest land area, Hansen and Wendt (2000) used the GAP

classification (Scott et al., 1993) to increase the precision

of inventory estimates for Indiana and Illinois, USA;

Hoppus, Arner, and Lister (2001) investigated the utility

of both GAP and the National Land Cover Dataset

(NLCD) (Vogelmann et al., 2001) for the same purpose

for Connecticut, USA; and McRoberts, Wendt, Nelson,

and Hansen (2002) investigated methods for optimizing

the stratification utility of the NLCD for estimating forest

area for four states in the North Central region of the

USA. Both GAP and the NLCD are land cover classi-

fications based on nominal 1992 TM imagery and ancil-

lary data. Neither classification was designed for forest

inventory estimation; neither has been demonstrated to

produce stratifications that satisfy FIA precision stand-

ards; and neither has been replaced yet with a more

current version. The Multi-Resolution Land Characteriza-

tion Consortium (MRLC) (Loveland & Shaw, 1996),

which produced the NLCD, plans to produce such

classifications at 10-year intervals, but because release

is not expected until 5 years after the date of the

imagery, the classifications will always be 5–15 years

out of date.

The timeliness of FIA estimates is enhanced when

cycles for obtaining and classifying imagery are compa-

rable to the 5-, 7-, or 10-year plot measurement cycles,

depending on region. Because externally produced clas-

sifications such as GAP and NLCD apparently will not

be produced on such cycles, the regional FIA programs

may find it necessary to produce their own classifica-

tions. On average, a regional FIA program on a 5-year

plot measurement cycle will need to classify images for

approximately 125 TM scenes over the cycle. In addition,

sufficient training data to guide the classifications must

be obtained in close temporal proximity to the imagery

dates. These are important tasks that merit FIA inves-

tigation of efficient means of obtaining training data and

processing images. The objective of this study is to

investigate the utility of the k-Nearest Neighbors techni-

que in processing TM imagery for use as the basis for

enhancing forest area estimates through stratification.

2. Data

2.1. Study areas

The study was conducted in two areas in Minnesota,

USA, designated St. Louis and St. Cloud (Fig. 1). The St.

Louis study area encompasses most of St. Louis County,

includes approximately 2.1 million hectares of which

approximately 75% is forest land and is dominated by

Aspen–Birch and Spruce–Fir associations. The St. Cloud

study area contains the St. Cloud urban area, includes

approximately 3.3 million hectares of which approximately

20% is forest land and is characterized by prairie agriculture

and a diverse mixture of forest lands including both con-

iferous and deciduous species.

2.2. Satellite imagery

The St. Louis study area is covered by the Landsat TM

Path 27, Row 27 scene and includes all of St. Louis County

except the northern portion. For this scene, Landsat-7

ETM+ images were obtained for two seasons: autumn (5

November 1999) and spring (31 May 2000). The St. Cloud

study area is covered by the Landsat TM Path 28, Row 28

scene. For this scene, Landsat-7 ETM+ images were

obtained for three seasons: summer (23 July 1999), autumn

(27 October 1999), and winter (3 March 2000). The follow-

ing attributes pertain to all five images: (1) 30� 30 m pixels

from bands 1 to 5 and band 7, (2) absolute radiance units

scaled to 8 bits, (3) processing to level 1G (processing level

08; radiometrically and geometrically corrected using satel-

lite model and platform/ephemeris information), and (4)

geo-referencing to Albers Equal Area projection, NAD83.

In addition, for the St. Louis study area, the November

image was rectified using 40 ground control points with

resulting root mean square error of 12.1 m. The May image

was registered to the November image using 26 ground

Fig. 1. Minnesota study areas.
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control points and resampled using first-order polynomial

and nearest neighbor techniques with resulting root mean

square error of 31.9 m. For the St. Cloud study area, all

three images were rectified using ground control points and

digital elevation model terrain correction (processing level

10) and resampled using cubic convolution with resulting

root mean square error of less than 8.5 m. Bands are

distinguished using an alphanumeric character representing

the first letter of the month of the image and a numeric

character designating the band. The context of band refer-

ences indicates whether they refer to St. Louis or St. Cloud

images.

2.3. FIA plot data

Under the FIA program’s annual inventory system

(McRoberts, 1999), field plots are established in permanent

locations using a systematic sampling design. In each state,

a fixed proportion of plots are measured annually; plots

measured in a single federal fiscal year (e.g., FY1999: 1

October 1998 to 30 September 1999) make up a single panel

of plots, and panels are selected for annual measurement on

a rotating basis. In aggregate, over a complete measurement

cycle, a plot represents 2403 ha (slightly less than 6000 ac).

In general, locations of forested or previously forested plots

are determined using global positioning system receivers,

while locations of nonforested plots are determined using

digitization methods.

Each field plot consists of four 7.31-m (24-ft) radius

circular subplots. The subplots are configured as a central

subplot and three peripheral subplots with centers located at

36.58 m (120 ft) and azimuths of 0j, 120j, and 240j from

the center of the central subplot. Among the observations

field crews obtained are the proportions of subplot areas that

satisfy specific ground land use conditions. Subplot-level

estimates of forest land proportion are obtained by aggre-

gating these ground land use conditions consistent with the

FIA definition of forest land, and plot-level estimates are

obtained as means over the four subplots.

For both study areas, measurements for the FY1999

panel of inventory plots were available. For the St. Louis

study area, measurements for 133 plots or 532 subplots were

used of which 387 subplots were completely forested, seven

subplots were partially forested, and 138 subplots were

nonforested. For the St. Cloud study area, measurements

for 268 plots or 1072 subplots were used of which 226

subplots were completely forested, 13 subplots were parti-

ally forested, and 833 subplots were nonforested.

3. Methods

3.1. k-Nearest Neighbors technique

The k-Nearest Neighbors (k-NN) technique is a non-

parametric approach to predicting values of point variables

on the basis of similarity in a covariate space between the

point and other points with observed values of the variables.

Nearest neighbor techniques have not been used extensively

in forestry estimation except in the Nordic countries (Faza-

kas & Nilsson, 1996; Katila & Tomppo, 2001; Tokola,

2000; Tokola, Pitkanen, Partinen, & Muinonen, 1996;

Tomppo, 1991). Elsewhere, Moeur (1988) reported on the

use of nearest neighbor techniques for multivariate forestry

estimation, Trotter, Drymond, and Goulding (1997) used the

k-NN technique to estimate volume, and McRoberts,

Franco-Lopez, Ek, and Bauer (2000) and Franco-Lopez,

Ek, and Bauer (2001) reported using the k-NN technique to

classify satellite imagery.

For this application, consider a TM pixel to be a point, let

Yi denote a ground attribute (e.g., forest land proportion,

cumulative volume of individual trees, tree density) for the

ith pixel, and let Xi denote the ith pixel’s vector of TM

spectral values. For a finite number, N, of image pixels of

which n correspond to FIA subplots, the data points (Yi,Xi)

may be reordered without loss of generality so that

(Yi,Xi)i = 1,. . .,n denote the points corresponding to pixels

associated with FIA subplots and (Yi,Xi)i = n + 1,. . .,N denote

the points for the remaining pixels. With the k-NN techni-

que, a prediction for any Yj, j = 1,. . .,N is obtained in two steps:

1. for each Yj, reorder Yi, i = 1,. . .,n with respect to increasing

distance, dji, between Xj and each Xi, i = 1,. . .,n, excluding

Yj from the ordering if 1V jV n, and denote the resulting

ordering {Yji};

2. for each Yj,

Ŷj ¼
1

k

� � Xk
i¼1

wji

 !�1 Xk
i¼1

wjiYji

 !
ð1Þ

where k is a predetermined constant, 1V k < n, and {wji}

are point weights to be selected.

The quality of predictions may be assessed using Yi,

i = 1,. . .,n, an appropriate objective criterion, and the leaving-

one-out method. With the leaving-one-out method, a k-NN

prediction, Ŷi is sequentially obtained for each Yi, i = 1,. . .,n,

but with the provision that Yi itself cannot be included in the

mean forming its own k-NN prediction. In addition, to avoid

issues related to the high correlation expected among

attributes for subplots of the same plot, for this study the

prediction for a subplot was constrained against including

an observation for any of the other three subplots of the

same plot. By comparing the observations, Yi, i = 1,. . .,n, and

the corresponding predictions with respect to a selected

objective criterion, the quality of predictions may be eval-

uated.

Before implementation, the k-NN technique must be

calibrated. First, the particular spectral bands used to calcu-

late the distances, dji, between Xj and each element of the

set, Xi, i = 1,. . .,n, must be selected. Without loss of generality,

the spectral band components, Xim, of Xi may be reordered
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so that m = 1,. . .,M denote the selected bands. Second, a

distance metric, d, must be selected; among the alternatives

are weighted Euclidean distance,

dji ¼
XM
m¼1

vmðXjm � XimÞ2
" #1=2

ð2Þ

where {vm} are variable weights, and Mahalanobis distance,

dji ¼ ðXjV� XiVÞVV�1ðXjV� XiVÞ ð3Þ

where only the selected M components of X are used and V

is the covariance matrix for the M components of X. If

weighted Euclidean distance is selected, then the variable

weights {vm} for Eq. (2) must also be selected. Third, the

value of k, the number of nearest neighbors to be included in

the calculation of predictions (Eq. (1)), must be selected.

Finally, the point weights, {wji}, for Eq. (1) must be

selected; common alternatives include constant weighting

for which wji = 1, inverse distance weighting for which

wji = dji
� 1, and inverse distance squared weighting for

which wji = dji
� 2.

The k-NN analyses were conducted at the subplot-pixel

level, because a plot-level approach would require calibra-

tion using means of inventory observations over the four

subplots and either means of TM spectral values over the

four pixels corresponding to the four subplots or means over

a block of pixels covering the plot. Predictions for image

pixels must likewise then be based on the mean over four

pixels in the same configuration as the four pixels corre-

sponding to the four subplots or the mean over a block of

pixels of the same size and configuration as the block

covering the plot. For this study, subplot-pixel-level analy-

ses entail a more simple approach without sacrificing

statistical validity. Thus, each subplot was associated with

the TM pixel with center closest to the subplot center.

3.1.1. Precautions

Calibration of the k-NN technique is guided by optimi-

zation of the objective criterion using the leaving-one-out

method with the set Yi,i = 1,. . .,n, but with attention to five

precautions and one plea for objectivity. The nature of and

rationale for the precautions are illustrated using forest land

proportion as the ground attribute, inventory subplot obser-

vations as surrogates for pixel-level observations, root mean

square error,

RMSe ¼
1

n

Xn
i¼1

ðYi � ŶiÞ2
" #1=2

; ð4Þ

as the objective criterion, constant variable weighting, and

constant point weighting. The denominator, n, in the

expression for RMSe (Eq. (4)) is the number of inventory

subplot observations; no provision is made to adjust the

denominator of Eq. (4) for the number of bands selected to

calculate the distance, d. The precautions are discussed and

illustrated only as a means of creating awareness; the

consequences of ignoring them will vary by application.

The first precaution is that small k-values may result in

RMSe values that are larger than the standard deviation of

the observations. For the St. Louis study area and TM bands

N3 and M5, the RMSe value for k= 1 was greater than the

RMSe value that resulted when the overall mean was used

for each prediction (Fig. 2). The general pattern of the curve

was typical: large initial decreases in RMSe with increasing

k, a more gradual decrease in RMSe as the optimal k was

approached, and then a very gradual increase in RMSe
approaching the RMSe value that corresponded to the

overall mean as k approached the number of observations.

Thus, users are advised that with k-NN analyses, unlike with

simple linear regression, it is possible to obtain results that

are worse than using the mean over all observations for

every prediction.

The second precaution is that the k-NN technique pro-

duces biased estimates for pixels corresponding to the

extremes of the distribution of observations. The precaution

is illustrated for the St. Louis study area with simulated data

generated in two steps: (1) a logistic model,

EðY Þ ¼ ½1þ expðb0 þ b1x1 þ b2x2Þ�
�1 ð5Þ

was fit to the actual forest land proportion observations (Y)

where x1 and x2 represent the spectral values of TM bands

N3 and N4, respectively, for pixels associated with inven-

tory subplots, and the b’s are parameters estimated from the

observations; and (2) simulated data were calculated as the

sum of residuals randomly generated from selected Gaus-

sian distributions and expected values from Eq. (5) using the

estimated parameters and actual spectral values. In this

manner, the simulated data were generated in appropriate

numbers and with appropriate characteristics to more clearly

Fig. 2. RMSe versus k for predicting forest land proportion for the St. Louis

study area with TM bands N3 and M5.
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illustrate the precaution. The k-NN technique was applied to

the simulated data with k = 1 and k = 21, and predictions

were graphed against their respective simulated observa-

tions. For k = 1, the k-NN predictions exhibited little system-

atic bias and fairly constant residual variability, while for

k = 21, the predictions corresponding to extreme observa-

tions exhibited considerable bias and heterogeneous residual

variability (Fig. 3). The bias occurred because predictions

corresponding to extreme observations were calculated as

means of k observations that were mostly larger, or smaller,

respectively, than the observations themselves. Bias was

worse and extended to more pixels for larger k-values and

for smaller numbers of observations.

The third precaution is that unrelated variables included

in the subset of covariates used to calculate distances, d,

may not only fail to improve the objective criterion, but

actually may have adverse effects. For the best combination

of two autumn St. Louis bands, N3 and N4, and correspond-

ing optimal k-value, including only one of the remaining

four other autumn bands, N2, improved RMSe (Table 1a).

Including the other three bands actually increased RMSe
from 1% to 7%. For both the St. Louis and St. Cloud areas,

the smallest RMSe value for each combination of mV 6

bands shows that overall the smallest RMSe occurred for

m = 3 for St. Louis and m = 4 for St. Cloud (Table 1b).

Although not shown in the table, the smallest RMSe values

for m>6 were all larger than the smallest RMSe value for

m = 6. Finally, the five band combinations with the overall

smallest RMSe values, regardless of the number of bands,

included far fewer than the maximum number of 12 bands

for St. Louis and 18 bands for St. Cloud (Table 2). Franklin

(2001) reported similar results for the maximum likelihood

classifier for a forestry application, noting that accuracies

may decrease as additional data layers are included, even

when the additional layers include new information. Hughes

(1968) investigated and reported the same phenomenon in a

generic information theory context. In regression analyses,

RMSe may increase as more variables are included but only

when the denominator in Eq. (4) is expressed as degrees of

freedom, not when it is simply the number of observations.

Thus, k-NN analyses are also unlike regression analyses in

that inclusion of additional predictor variables may actually

increase residual uncertainty.

The fourth precaution is that observations for pixels

separated by large spectral distances may be negatively

correlated. In the geographic space of latitude and longitude,

observations for pixels in close proximity are expected to be

positively correlated, while observations for pixels separated

by sufficiently large distances are expected to be uncorre-

lated. Thus, variograms are used in kriging analyses to

estimate the distances at which there are no longer relation-

ships among observations and beyond which observations

should not be used in predictions. Because observations are

at worst uncorrelated in kriging analyses in geographic

space, the consequences of violating the distance restriction

may not be severe. However, when using k-NN techniques

in spectral space, large k-values may cause negatively

correlated observations to be included in the k-NN predic-

Table 1a

Effect on RMSe of including an additional variable for the St. Louis study

area using the November TM image for predicting forest land proportion

Bands RMSe

N3 N4 0.300

N3 N4 N1 0.303

N3 N4 N2 0.297

N3 N4 N5 0.319

N3 N4 N7 0.321

Table 1b

Best combinations by number (m) of band for predicting forest land

proportion

m St. Louis study area St. Cloud study area

RMSe k Bands RMSe k Bands

1 0.3243 1 N4 0.3241 51 J6

2 0.2989 13 N2 N4 0.2726 41 M3 M4

3 0.2652 9 N3 N4 M4 0.2420 23 J3 M3 M4

4 0.2687 7 N1 N3 N4 M4 0.2392 21 J2 J3 M3 M4

5 0.2693 13 N2 N3 N4 M1 M4 0.2399 29 J2 J3 M1 M3 M4

6 0.2706 11 N1 N2 N3 N4 M2 M4 0.2446 37 J1 J2 J3 N2 M3 M4

Fig. 3. k-NN prediction bias for forest land proportion for the St. Louis study area using TM bands N3 and N4 for k = 1 and k= 21.
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tions, thus adversely affecting the objective criterion. To

illustrate this phenomenon, a correlogram was constructed

for the St. Louis study area data using bands J2, J3, M3, and

M4. Inventory subplot observations were grouped into

categories based on their spectral separation distances cal-

culated using Eq. (2), and the within category correlations

were graphed against the mean spectral separation distance

for the category (Fig. 4). Sufficient field data to span the

ranges of both image and field variables lessens the risk of

this phenomenon.

The fifth precaution, for which no illustration is pro-

vided, is that multiple pixels may be at the same spectral

distance, d, from a pixel for which a k-NN prediction is

desired, particularly when M, the number of selected bands

used to calculate d is small. In this situation, either k-NN

predictions should include all observations at the same

distance as the kth ordered observation or a random selec-

tion procedure should be used to select observations at the

kth ordered distance from the set of all such observations.

3.1.2. Objective calibration criteria

Finally, the plea relates to selecting, using, and reporting

objective criteria for selecting k-values. A variety of criteria

have been used: some quite objective, others more subjec-

tive. Trotter et al. (1997) selected k = 15 for predicting wood

volume on the basis of maximizing r2. Tokola et al. (1996)

noted that for predicting volume, standard errors decreased

rapidly as k increased from 1 to 10 and finally selected

k = 15 using the rationale that with additional plots there was

little decrease in standard errors. Tokola (2000) selected

k = 15 for another volume prediction application because it

was adequate for the previous study (Tokola et al., 1996).

Katila and Tomppo (2001) selected k according to three

criteria related to minimizing RMSe: 1V kV 30; the signifi-

cance of bias was controlled; and the proportional change in

RMSe between k and k + 1 was less than 0.005. Franco-

Lopez et al. (2001) provide an excellent discussion of issues

related to selecting k, noting that for predicting volume or

basal area, RMSe decreased by 14% as k increased from 1 to

5 and that after k = 9, the marginal increase in precision was

less than 0.005. They recommended that if prediction

variance similar to observation variance is desired, then

k = 1 is the appropriate selection, while if minimization of

RMSe is desired, then k = 9 is the appropriate selection.

These criteria for selecting k represent varying levels of

objectivity where objectivity is assessed in terms of whether

an independent user applying the same criteria would be

expected to make the same selection. Maximizing a quantity
Fig. 4. Correlogram for forest land proportion for the St. Louis study area

using TM bands J2, J3, M3, and M4.

Table 2

Mean forest land proportion estimates

Ranka RMSe Bands k Optimal between strata boundariesb Mean SEc REd PRECe

1 panel 5 panels

St. Louis study area

1 0.2652 N3 N4 M4 9 0.20 0.75 0.95 0.7547 0.0175 4.4836 0.0455 0.0203

2 0.2687 N1 N3 N4 M4 7 0.10 0.70 0.80 0.7493 0.0188 3.8864 0.0490 0.0219

3 0.2690 N2 N3 N4 M4 9 0.20 0.50 0.75 0.7593 0.0177 4.3943 0.0459 0.0205

4 0.2690 N3 N4 M1 M4 11 0.55 0.60 0.90 0.7845 0.0157 5.5912 0.0400 0.0179

5 0.2693 N2 N3 N4 M1 M4 13 0.50 0.70 0.95 0.7681 0.0182 4.1655 0.0469 0.0210

St. Cloud study area

1 0.2392 J2 J3 M3 M4 21 0.10 0.40 0.75 0.2312 0.0107 4.9189 0.0635 0.0285

2 0.2399 J2 J3 M1 M3 M4 29 0.15 0.45 0.70 0.2313 0.0107 4.9587 0.0635 0.0284

3 0.2406 J2 J3 M2 M3 M4 33 0.20 0.40 0.75 0.2346 0.0109 4.7837 0.0643 0.0287

4 0.2420 J3 M3 M4 23 0.25 0.45 0.60 0.2367 0.0103 5.3847 0.0605 0.0270

5 0.2423 J3 M1 M3 M4 23 0.25 0.45 0.65 0.2398 0.0105 5.1238 0.0612 0.0274

a Rank based on RMSe.
b The optimality criterion is maximization of the relative efficiency (RE) of the stratification.
c Standard error of mean, calculated as the square root of the variance of the mean (Eq. (7)).
d Relative efficiency of the stratification, calculated as the ratio of the variance of the mean assuming simple random sampling and the variance of the mean

based on stratified analyses (Eq. (7)).
e FIA precision calculated from Eq. (9).
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such as r2 is certainly an objective criterion. However,

selecting k on the basis of its adequacy for a similar

application is not objective and may entail substantial risk.

For predicting forest land proportion for the St. Louis study

area, optimal k-values were in the range 7V kV 13, while

for the same application for the St. Cloud study area,

optimal k-values were in the range 21V kV 33 (Table 2).

These substantial differences in optimal k-values for the two

study areas illustrate that k-NN calibrations for very similar

applications may be quite different. In addition, a criterion

based on an arbitrary specification of a maximum k-value is

not objective. However, specification of a maximum k-value

on the basis of correlation or similar analyses may be

considered part of a set of objective criteria.

The criterion of selecting the first k-value that corre-

sponds to a proportional decrease in RMSe below a speci-

fied value, such as 0.005, may lead to sub-optimal selections

for at least two situations. First, a lengthy series of propor-

tional decreases in RMSe below the specified value may still

produce a large cumulative decrease in RMSe. Second,

consecutive proportional changes in RMSe are not guaran-

teed to decrease or even to be positive. For the St. Louis

study area with bands N1, N3, N4, and M4, the proportional

change in RMSe fell below 0.005 for k = 3, but subsequently

rose above 0.005 before the optimal value of k= 7 was

reached (Fig. 5). For k = 3, the corresponding RMSe = 0.2975

is an increase of 11% over RMSe = 0.2687 for the optimal

k = 7. Results with this proportional change criterion would

be expected to be variable and inconsistent.

Thus, the plea has three parts: first, k-values should be

selected according to objective criteria; second, users should

report the criteria they use; and third, users should justify

their selection of k-values according to those criteria. The

first part of the plea requires only that an objective criterion

be used to select k; it does not require that the same k-value

be selected for different applications or for the same

application with different data, even when the criterion is

the same. Two intuitive objective choices are k = 1 and

k = kopt, the value of k that optimizes the objective criterion.

The rationale for k = 1 is that it incorporates into the

predictions all the variability that exists in the observations,

whereas k>1 incorporates less variability because the pre-

dictions are based on means of multiple observations.

However, when RMSe obtained for a small k-value is

greater than RMSe corresponding to the overall mean, then

the standard deviation of the variability incorporated in the

k-NN predictions is greater than the standard deviation of

the observations, an undesirable condition. The rationale for

k = kopt is that the objective criterion is optimized, but if kopt
is large, then predictions may not retain appropriate varia-

bility for mapping applications and prediction bias may be

unacceptable. Thus, the selection of k may require a com-

promise between a small k that avoids prediction bias and

retains appropriate variability in predictions and a large k

that optimizes the objective criterion. Nevertheless, the

compromise selection must be made using objective criteria.

Although the proportional change approach of Katila and

Tomppo (2001) and Franco-Lopez et al. (2001) represents

such a compromise, the compromise is not based on an

objective criterion because the RMSe corresponding to kopt
is not considered in the selection. An alternative compro-

mise that is more objective is to select the smallest k-value

such that the corresponding RMSe is not more than a

specified percentage (e.g., 0.5%, 1%, 5%) greater than the

RMSe corresponding to kopt.

Although criteria for selecting k must be allowed to vary

to accommodate the particular objectives of each applica-

tion, the criteria should be objective. The same objective

criteria may lead to selections of different k-values for

different applications or for similar applications with differ-

ent data. However, when multiple users independently select

k-values for the same application with the same data,

objective criteria produce repeatable results. Repeatable

results would not be expected for arbitrary selections of

small k-values, constraints on maximum k-values, an arbi-

trary compromise between small k-values and k-values that

optimize calibration criteria, previous experience, or arbi-

trarily small decreases in RMSe. Repeatability would be

expected when k is selected as the value that maximizes r2,

the k-value that minimizes RMSe, or the smallest k-value

with RMSe not more than 1% larger than the minimum

RMSe over all k-values.

3.2. Analyses

3.2.1. Calibrating the k-NN technique

The compromises associated with selecting k-values may

be partially avoided when k-NN predictions are used to

assign pixels to categories or classes. Although prediction

bias may be unacceptable for producing a continuum of

predictions, the assignment of pixels to classes may be

relatively unbiased. In addition, when the classes are

obtained from pixel predictions and used as the basis for
Fig. 5. Proportional change in RMSe for forest land proportion predictions

for the St. Louis study area with TM bands N1, N3, N4, and M4.
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creating strata for stratified analyses, prediction or classi-

fication bias adversely affects only the variance reduction

obtained with the stratification; it does not produce bias in

the stratified mean estimates. When using k-NN predictions

to create strata, greater weight is attributed to assigning

pixels to correct classes than to minimizing bias on the

extremes of distributions or to preserving variability in the

predictions. Thus, k-values were selected using the follow-

ing steps:

1. initially, select k = kopt, the k-value that optimizes the

objective criterion, RMSe;

2. on a prediction-by-prediction basis, reduce k if necessary

to ensure exclusion from the k-NN predictions of

observations at spectral distances greater than the

distance at which the correlogram indicates negative

correlation;

3. on a prediction-by-prediction basis, increase k if

necessary to ensure that all observations at the same or

smaller spectral distances (Eq. (2)) than the kth ordered

observation are used in k-NN predictions.

For each study area, the optimal k-value was determined

using these steps for each combination of spectral bands by

comparing values of RMSe obtained with constant variable

and constant point weighting. Constant variable weighting

was selected to facilitate implementation of the k-NN

algorithm. Constant point weighting was selected, because

for the best band combinations for each MV 6, the propor-

tional reduction in RMSe with inverse distance weighting

compared to constant weighting never exceeded 0.006 for

the St. Louis study area or 0.020 for the St. Cloud study

area. In addition, for the St. Cloud study area, the overall

smallest RMSe with inverse distance weighting was actually

greater than the overall smallest RMSe with constant

weighting. For each study area, the five spectral band

combinations with smallest RMSe obtained using k-values

determined using the above steps, but without regard to the

number of bands, were selected for further evaluation.

3.2.2. Creating strata

For each of the five best spectral band combinations for

each study area, forest land proportion was predicted for each

pixel using the k-NN technique with the k-value determined

using the above steps. For each study area and band combi-

nation, the continuum of predictions was divided into four

strata by selecting strata separation boundaries subject to

three constraints: first, the lower bound of the first stratum

was always 0.00, and the upper bound of the fourth stratum

was always 1.00; second, the minimum stratum width was

0.05; and third, at least five plots had to be assigned to each

stratum. Strata were limited to four because the preponder-

ance of observed forest land proportions were either 0.00 or

1.00. All possible stratifications, subject to the constraints,

were evaluated with respect to the relative efficiency that the

stratification produced. Relative efficiency, RE, is the ratio of

the variance of the simple arithmetic mean of inventory

subplot observations calculated under an assumption of

simple random sampling and the variance obtained using

stratified analyses. The four optimal strata corresponded to

the stratification with largest RE.

Stratified estimation was accomplished by assigning each

pixel to a stratum based on its forest land proportion

prediction, and strata weights were calculated as the pro-

portions of pixels assigned to strata. To avoid the mathe-

matical complexity necessary to accommodate the spatial

correlation among the four subplot observations, FIA

assigns plots rather than subplots to strata for stratified

analyses. Plots were assigned to strata on the basis of the

stratum assignment of the pixel corresponding to the center

of the center subplot. Plots were stratified using k-NN

predictions of forest land proportion for their corresponding

pixels rather than observations so that the assignment of

plots to strata would be consistent with the calculation of

strata weights.

The optimal strata with respect to RE were expected to

differ between the study areas, thereby raising the question

of whether the sub-optimal nature of a common stratifica-

tion across areas covered by multiple TM scenes would

adversely affect the precision of stratified estimates for the

combined area. For each of the 25 combinations of one of

the five best St. Louis band combinations and one of the five

best St. Cloud band combinations, the optimal strata boun-

daries were determined. Although the predictions of forest

land proportion for each pixel and plot from the separate

study area analyses were retained, the division of the

continuum of these predictions into optimal strata was

common for the two study areas.

3.2.3. Stratified estimation

Stratified estimates of mean forest land proportion, Ȳ, and

estimated variance, V̂ar(Ȳ), were calculated using standard

methods (Cochran, 1977):

Ȳ ¼
XJ
j¼1

wjȲj ð6Þ

and

dVarðȲ Þ ¼XJ
j¼1

w2
j r̂

2
j =nj; ð7Þ

where j = 1,. . .,J denotes stratum; wj is the weight for the jth

stratum; Ȳj denotes the mean forest land proportion for plots

assigned to the jth stratum; nj is the number of plots

assigned to the jth stratum; and r
ˆ
j
2 is the within-stratum

variance for the jth stratum calculated as,

r̂2
j ¼

1

nj � 1

Xnj
i¼1

ðYij � ȲjÞ2; ð8Þ

where Yij is the forest land proportion observed by the field

crew for the ith plot in the jth stratum. Variance estimates
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obtained using Eq. (7) ignore the slight effects due to finite

population correction factors and to variable rather than

fixed numbers of plots per stratum.

The FIA program reports precision estimates as coeffi-

cients of variation scaled to compensate for varying sample

sizes using as a reference standard the sample size corre-

sponding to 404,694 ha (1 million acres) (USDA-FS, 1970).

For forest area estimate, cFA ¼ AȲ the scaled precision

estimate, denoted PREC, is defined for this study as

PREC ¼ ½dVarðcFAÞ�1=2cFA cFA
404; 694

" #1=2

¼ ½dVarðȲ Þ�1=2
Ȳ

AȲ

404; 694


 �1=2
; ð9Þ

where Ȳ is again mean forest area proportion per plot, and A

is total area inventoried in hectares. Two values of PREC are

reported: the value obtained from Eq. (9) that corresponds to

the sample size resulting from a single panel of plot

measurements and the value obtained from Eq. (9) divided

by the square root of 5, which corresponds approximately to

the value expected with the sample size resulting from all

five panels of plots. The national FIA precision standard is

PRECV 0.03.

4. Results

In general, the k-NN algorithm was very simple to imple-

ment, straight forward to calibrate, and required no user

intervention after initiation. The k-NN predictions captured

much of the forest/nonforest detail and provided an excellent

basis for stratifications. When compared to variances of

forest area estimates obtained using simple random estima-

tion, the variances obtained using stratified estimation were

smaller by factors as great as 5. Specific results follow.

4.1. Precautions

In the Methods section, five precautions were noted:

1. Small k-values may result in RMSe values that are larger

than the standard deviation of the observations.

2. The k-NN technique produces biased estimates for pixels

corresponding to the extremes of the distributions of

observations.

3. Unrelated variables used to calculate distances, d, may

cause an increase in RMSe.

4. Observations for pixels separated by large spectral

distances may be negatively correlated.

5. Multiple pixels may be at the same spectral distance from

a pixel for which a k-NN prediction is desired.

All five precautions were either observed or found not to

apply for these analyses. The first precaution was observed

by beginning the procedure for the selection of k using the

objective criterion of minimizing RMSe. The second pre-

caution was not relevant when using the classified images

for stratification, because bias in the pixel predictions does

not produce bias in the estimates of stratified means. The

third precaution was observed by selecting only the spectral

band combinations that were among the five best for

optimizing the objective criterion. The fourth precaution

was observed by adjusting k for individual predictions to

ensure that negatively correlated observations were not

used. The correlogram analyses indicated that correlations

among observations were positive for spectral distances less

than about 15–25 for the St. Louis study area and about

20–25 for the St. Cloud study area. Decreasing k to values

less than kopt to avoid including negatively correlated

observations in the k-NN predictions was seldom necessary.

The fifth precaution was observed by adjusting the k-value

to include all observations at the same spectral distance but

was necessary only for 1- and 2-band combinations. In

general, the base criterion of selecting k = kopt was usually

sufficient for individual k-NN predictions. However, these

results should not be generalized to other applications or

other data sets.

4.2. k-NN calibrations

Both similarities and differences were noted among

calibrations for the five best band combinations and the

resulting stratified estimates (Table 2). The following sim-

ilarities were noted.

(1) The means for the five best band combinations were

comparable within study areas.

(2) Values of RMSe, SE, RE, and PREC were generally

of the same order of magnitude both within and between

study areas.

(3) The bands selected for the five best band combina-

tions were similar within study areas: N3, N4, and M4 were

selected for all five combinations for the St. Louis study

area; and J3, M3, and M4 were selected for all five

combinations for the St. Cloud study area. Bands 3 and 4

were most commonly selected, and bands from the spring or

summer 2000 images were selected for all five best band

combinations for both study areas.

(4) For both study areas, the stratifications based on the

k-NN analyses produced expected five-panel precision for

forest land area estimates that satisfied the national FIA

precision standards.

(5) For each best band combination, multiple sets of

between strata boundaries produced similar values of RE.

The following differences were noted.

(1) The ordering of the band combinations with respect

to RE, or equivalently PREC, was not the same as that with

respect to RMSe, suggesting that if the optimal band

combination with respect to RE or PREC is desired, then

multiple best band combinations selected with respect to

RMSe should be evaluated as was done in this study.
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(2) Optimal between strata boundaries for the St. Louis

study area differed considerably, although as noted previ-

ously, multiple sets of between strata boundary combina-

tions for the same band combination produced similar

values of RE.

(3) Optimal k-values for the St. Cloud study area were

considerably larger than those for the St. Louis study area.

However, even for a given criterion, optimal k-values would

be expected to differ as a result of many factors including

the attributes of interest; the number, size, and accuracy of

locations of plots; the accuracy of image registration; and

variability in the area of interest.

The 25 common stratifications across both study areas

produced stratified estimates of the mean for the combined

study area that were slightly less precise than the estimates

for individual study areas. Nevertheless, 10 of the 25 five-

panel expected PREC values for the combined estimates

still satisfied the national precision requirement of

PRECV 0.03. The combined area estimates of the mean

ranged from 0.6038 to 0.6298; the combined area estimated

standard errors of the mean ranged from 0.0100 to 0.0126;

and the combined area five-panel expected PREC values

ranged from 0.0253 to 0.0328. On average, across the 25

combinations, the between strata boundaries were 0.42,

0.68, and 0.90. These results suggest that the precision

resulting from a common set of optimal strata boundaries

for an area covered by multiple TM images may also be

expected to satisfy the national FIA precision standards.

4.3. Predicting forest land proportion

The k-NN predictions for the central portion of the St.

Louis area obtained with the calibration corresponding to

the minimum overall RMSe (Table 2) portrayed a substantial

portion of the forest/nonforest detail (Fig. 6). The water is

clearly identified as is much of the road network, the airport

in the lower left quadrant, nonforested areas in the upper left

quadrant, and a large area in the upper left quadrant that was

apparently cleared of vegetation between the date of the

aerial photograph and the date of the TM imagery.

5. Conclusions and discussion

Four important conclusions may be drawn from this

study. First, although the k-NN technique is conceptually

easy to implement, careful attention must be paid to its

calibration to achieve optimal results. Second, stratifications

derived from classified TM imagery reduced variances of

forest area estimates by factors as great as 5 for both a

heavily forested area and a sparsely forested area. Third, the

stratifications may be expected to produce forest land area

estimates that satisfy national FIA precision standards for

sample sizes corresponding to five panels of measurements.

Fourth, the k-NN technique is a viable alternative for

predicting forest land proportion from satellite imagery that

is as fast and easy to implement as traditional image

classification methods.

The implications of the latter three conclusions for the

FIA program are considerable. First, in the absence of

stratification, sample sizes would have to be increased by

factors at least as great as 5 to achieve the same level of

precision as obtained with the stratifications. The magnitude

of the resulting cost saving is substantial. For the State of

Minnesota with a sampling intensity of one plot for every

2403 ha, approximately 825 plots are field-measured annu-

Fig. 6. Predicted forest land proportion and aerial photograph for the 15� 15 km center of the St. Louis study area.
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ally at an FY1999 cost of approximately US$1000 per plot.

Thus, the annual cost savings obtained with such stratifica-

tions is approximately US$3,300,000.

Second, the effectiveness of the k-NN algorithm frees the

FIA program from more costly and less timely alternatives.

The speed and automation of the k-NN technique make it

vastly superior to FIA’s time-consuming, labor-intensive,

traditional approach based on interpreting aerial photo-

graphs. With a complete set of aerial photographs available,

a crew of four photo-interpreters, working full-time, could

be expected to complete the photo-interpretation and strat-

ification task for the State of Minnesota in approximately 2

years. Alternatively, with the 19 rectified TM images for

Minnesota available, prediction of forest land proportion

and stratification could be expected to be accomplished

using the k-NN technique in 2–3 weeks by a single remote

sensing technician.

Third, the speed and ease of implementation of the k-NN

technique relieves the FIA program from dependence on

external agencies and programs. Currently, several regional

FIA programs rely on or are investigating the NLCD as the

basis for stratifications. This classification was based on

nominal 1992 TM imagery and a suite of ancillary data, was

not available until approximately 5 years after the date of the

imagery, and will be replaced with a more current classi-

fication only every 10 years. With plot measurement cycles

of 5 years for much of the US, it is inefficient to rely on

stratifications based on classifications that are 5–15 years

out of date. In addition, the NLCD has yet to be demon-

strated to produce stratifications that satisfy the national

precision standards. The k-NN technique permits FIA to

implement effective stratified estimation using TM imagery

with dates that are concurrent with plot measurement dates

and to do so independently of other agencies and programs.

Finally, better future results may be expected with the k-

NN technique. Fine-tuning the calibration of the k-NN

technique by including variable-weighting will increase the

accuracy of classifications. Also, five panels of plot measure-

ments will increase the density of observations in spectral

space, allow each k-NN prediction to be based on subplot-

pixel observations in closer spectral proximity, and, therefore,

increase the accuracy of individual pixel predictions.

In conclusion, the k-NN technique is a viable and

efficient method for processing TM images to obtain pre-

dictions of forest area proportion, and stratifications derived

from these predictions produce forest area estimates that

may be expected to satisfy national FIA precision standards.
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