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Abstract

Statistical downscaling provides a technique to derive local scale information of
precipitation and temperature from numerical weather prediction model output. The K-
nearest neighbor (K-nn) is a new analog-type approach that is used in this paper to
downscale the NCEP (National Centers for Environmental Prediction) 1998 medium
range forecast (MRF) model output. The K-nn algorithm queries days similar to a given
feature vector in this archive, and using EOF (Empirical Orthogona Functions) analysis
identifies a subset of days (K) similar to the feature day. These K days are then weighted
using a bi-sguare weight function, and randomly sampled to generate ensembles. A set of
15 MRF runs was used, and 7 ensemble members were generated from each run. The
ensemble of 105 members was then used to select the local scale precipitation and
temperature values in four diverse basins across the contiguous US. These downscaled
precipitation and temperature estimates were subsequently analyzed to test the
performance of this downscaling approach.

The downscaled ensembles were evaluated in terms of bias, the ranked probability
skill score as a measure of forecast skill, spatial co-variability between stations, temporal
persistence, the consistency between variables, conditional bias, and to develop spread-
skill relationships. Though this approach does not explicitly model the space-time
variability of the westher fields at each individua stations, the above statistics were
extremely well captured. The K-nn method was also compared with a multiple linear

regression based downscaling model.



1. Introduction

Statistical downscaling provides a way to utilize outputs of climate models for
local scale applications. Typical grid size for globa scale ssmulations are of the order of
100-200 km, and the raw global-scale model output is of limited use when information is
required at local scales. The objective of downscaling is to overcome this scale mismatch
and to use the skill in atmospheric forecasts at local scales.

In short, statistical downscaling develops relationships between large-scale
atmospheric circulation variables and local climate information (e.g., precipitation and
temperature observations at individua stations). Using these observed relationships,
forecasts of atmospheric variables can be trandated into forecasts of local climate
variables. Severa methods of varying complexity have been used in performing
statistical downscaling. Zorita and von Storch [1998] have classified existing statistical
methods into three categories: (i) linear methods (e.g., canonical correlation analysis), (ii)
classification methods (e.g., weather generators and regression tree), and (iii)
deterministic nonlinear methods (e.g., neural networks). They aso propose an analog
method, and compare the results with a method chosen from each of the above three
categories to reconstruct average December-February (DJF) precipitation over the Iberian
Peninsulafor the period 1901-89.

In this paper we present a downscaling methodology based on the K-nearest
neighbor (K-nn) algorithm. The K-nn agorithm is described for use in a stochastic
weather generator by Lall and Sharma [1996], Rajagopalan and Lall [1999], Buishand

and Brandsma [2001], and Yates et al. [2003]. The fundamental idea of the K-nn



algorithm is to search for analogs of a feature vector (vector of variables for which
analogs are sought) based on similarity criteria in the observed time series. In the
weather generator model, the day immediately following the analog day is taken as the
next day in the generated sequence, and the process is repeated. In the method presented
here, local scale station information is used for analog days selected on the basis of global
scale climate model output.

Though transfer function based models (e.g., multiple linear regression, MLR) are
widely in use [Antolik, 2000], the K-nn based approach developed here has severa
advantages.  First, this method is data-driven and makes no assumptions of the
underlying marginal and joint probability distributions of variables. For example, to
downscale precipitation using MLR we need a two-step process [e.g., Clark et al., 2004].
We need to account for the intermittent property of precipitation (typically modeled using
a logistic-regression), and then transform to normal space to satisfy the inherent
normality criteria needed in least-squares regression to model precipitation amounts.
Second, K-nn based downscaling will be shown to intrinsically preserve the spatial co-
variability and consistency of the downscaled climate fields. Third, ensemble MRF runs
can be readily utilized in the downscaling process and there is no need to use the
ensemble mean of MRF predictors, asis normally used in regression models. Finally, the
ensemble spread information from MRF runs can be utilized to develop spread-skill
relationships, which is not possiblein an MLR model [e.g., Clark et al., 2004].

The K-nn downscaling methodology was tested on four example river basins
distributed over the continental United States, and covering both snowmelt and rainfall

dominated hydrologic regimes. These four basins are, (i) Animas River in southwest



Colorado, (ii) East fork of the Carson River on the California/Nevada border, (iii) Cle
Elum River in central Washington, and (iv) Alapaha River in southern Georgia
(Figure 1).

The paper first provides a description d the data used in the analysis (Sedion 2.
Sedion 3 describes the K-nn methoddogy developed for statisticd downscding. We
present a discusson d the results from the four example river basins in Sedion 4. A

summary of the tedhniques and results concludes the paper (Sedion 5.

2. Data Description
2.1 The CDC Forecast Archive

The NOAA-CIRES Climate Diagnastics Center (CDC) in collaboration with the
Climate Reseach Divison d the Scripps Institute for Oceanography has generated a
“reforecast” dataset using afixed version (circa1998 of the NCEP operational Medium-
Range Forecat (MRF) model. Thisisaspedra model and hes a horizontal resolution o
approximately 200 km, with 28 \erticd layers (T62/L28). The achive consists of one
control run dus 14 ensemble members, atotal of 15 members. The cntrol runis based
on the global analysis from the NCEP/NCAR reanalysis projed [Kalnay et. al., 1994.
Initial perturbations for ensemble members are generated from the control run with the
“breeding method’ [Toth and Kalnay, 1993. Ead ensemble member consists of a 14-
day forecast starting every day since January 1, 1978,and presently the model continues
to berunin redtime. The model outputs are saved at 00Z and 1Z. The 20-yea archive

data from January 1, 1979to December 31, 1998was used in this gudy.



We used seven ouput variables [Clark and Hay, 2004 from eat of the ensemble
members in ou anaysis. The mode output variables used are, (i) the aceumulated
predpitation for a 12-hou period (e.g., 00Z-127) at the surface, (i) mean sea level
presaure, (iii) total column predpitable water, (iv) relative humidity at 700 HPa, (v) 2-m

air temperature, (vi) 10-m zona wind speed, and (vii) 10-m meridional wind speed.

2.2 Station Data

This gudy employs daily predpitation, and maximum and minimum temperature
data from the National Weaher Service (NWS) manual cooperative (COOP) network of
climate observing stations aaossthe contiguous USA. These data were extraded from
the Nationa Climatic Data Center (NCDC) Summary of the Day (TD3200 Dataset
[Eischeid et al., 200Q. Quality control performed by NCDC includes the procedures
described by Reek et al. [1997, that flag questionable data based on chedks for (i)
absurdly extreme values, (ii) internal consistency among variables (e.g., maximum
temperature lessthan minimum temperature), (iii) constant temperature (e.g., 5 @ more
days with the same temperature ae susped), (iv) excessve diurnal temperature range, (v)
invalid relationships between predpitation, snowfal, and snow depth, and (vi) unusual
spikes in temperature time series. Reaords at most of these stations dart in 1948,and
continue through 1998.

The four example basins — (i) Animas River, CO (referred in the figures as
anmas); (ii) East Carson River, CA/NV (carsn); (iii) Cle Elum River, WA (cdum), and
(iv) Alapaha River, GA (alapa) were seleded based on their geographicd distribution,

and streamflow charaderistics. The Animas, East Carson and Cle Elum are snowmelt-



dominated, and the Alapaha is a rainfall-dominated basin. We seled the “best stations”
in the COOP network that are located within a 100-km seach radius of the center of
these four basins: 15 stations for the Animas, 16 Stations for the Carson, 18stations for
the Cle Elum, and 10 stations for the Alapaha (Table 1). These “best stations’ are
defined as those with lessthan 1% missng or questionable data over the analysis period,

19791998.

3. Methodology

The steps in dowvnscding the @amospheric variables to basin scde predpitation
and temperature using the K-nn algorithm are outlined in this ssdion. The CDC NCEP-
MRF forecast archive was retrieved and formatted to form a data matrix consisting of
7305rows (correspondng to the number of days from January 1, 1979— December 31,
1998, and 14columns (correspondng to the number of lead times) for ead of the seven
variables (see Sedion 2.]). Days smilar to eaty of the 7305x% 14 days in the achive

were identified using the K-nnagorithm. A description d the K-nn agorithm foll ows.

3.1 K-nn Algorithm

Eadh o the 15 ensemble members of the MRF archive for eah basin was
examined individually. The steps of the K-nn agorithm for a given ensemble member are
as following.

Step 1. Compile afeaure vedor of MRF model output for a given day and

forecast lead-time. The feaure vedor (Ef) consists of values for al the climate

variables of the day (the feature day, f) for which we are trying to find the K nearest



neighbors. Since two model outputs, 00Z and 12Z were available for each of the seven

variables, the feature vector F ¢ was assumed to consist of 14 variables.

F, = [vl1 Vi VEVEVE v72] (1a)
or,
Fooo= X X %y] (1b)

where v/ is the value of the dimate variablei (i = 1, ..., 7 the seven climate variables,
see Sedion 2.0 at timej (j = 1, 2 00Z and 1Z) for the fedure day f. Explicitly,
X, =V, ; X, =V;, and so on.

Step 2. Set a window of chosen width centered onthe feaure day f. We used a
14-day window (7 dayslagged and 7 days lead) [Yates et. al., 2003 starting with the first
day of the achive (January 1, 1979. The subset of data for a given variable now consists
of 20 yeas (19791998, and 14 Julian days (chosen window width). So for the 14
variables (refer to Step 1), the data matrix was re-formatted to have 280 rows (total

number of time-elements, and is denoted by ntime), and 14 columns. The structure of

this data matrix ([Alfspas) i,

Oa, &, ... aL
0 C
[ ]f _ O%r e o Su 5
A280><14 T 0 C ( )
O
@280,1 azso,z e a280,14 C



where &, ;is the value of the dimate variable for time-index i (i = 1, ..., 280, and for
variablej (j =1, ..., 19.

Step 3. Standardize matrix [All.q.. The standardized matrix [S]p. iS

expressed as,
[Shevas = [85, - Sl (32)
S = Uij(i-u,-) (3b)
a = [a; a; .. 01" (30)
= Ela)] (3d)
o, = [EHay1-{u)?)” (39

where the underbars represent vectors; s; represents the vector of standardized values of
vector a; for variable j. The variable counter j loops from 1 through 14 (the total

number of variables); y; and o, are the mean and standard deviation respectively of



variable | estimated from vector a; ; E[.] is the expected value; and superscript T

represents the vector-matrix transpose operator.

Step 4. Perform EOF (Empirical Orthogona Function) decomposition or Principal

Component Analysis (PCA) of matrix [Slipqa.  We first estimate the

correlation/covariance matrix [C]!,.,,, which is given by,

f _ 1 T
[Choss = ime—gSI"[8! Q)

where [S]T is the transpose of matrix [ (the superscript f has been dropped for clarity;

see Equation 3a). Note that, ntime = 280. A singular value decomposition of [C]lf4x14

[Presset a. 1992] yields,

[Chans = LIWIVT (5)

where [U] and [V] are the orthogonal matrices (order, 14 X 14), and [W] is a diagonal
matrix of the same order whose dements are the eégen values (A;,j =1, ..., 14such that
A >A, >0 >A,,; correspondng to the 14 variables). Since [C]lf4x14 IS gymmetric,

[U] = [V] Ead column of [U] (or [V]) represents the egen vedors correspondng to a

given eigen vaue A,. Let u; bethe égen vedor correspondng to eigen value A;. So

that,
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Ulioas = [uu,...uyl (6)

The principal components (PCs) are then derived as,

[P]zfsoxm = [S]zfsoxm [U ]14><l4 (7a)
or,
[Plsoaa = [P Ds - Pu] (7h)
and,
Dplvj L
Dp L
.
Po=giC (70)
0 C
HPas0,i £

where [P]£80x14 is the principal comporent matrix for feaure day f, and column vedor

oF is the j™ principal comporent (j =1, ..., 19 of length ntime (equal to 280. The

principal componrents that explained upto 1 percent of the total variance (total varianceis
given by the traceof matrix [\N] e, tr [\N]) for feaure day f was retained. Let nret be

the number of PCsretained, and nret < 14. Typicdly 5 PCswere retained.
Step 5. Using summary statistics (mean and standard deviation, Equations 3d and

3e respedively) from Step 3, and eigen vedors from Step 4, pojed the fedure vedor

F:in Step 1 onto eigen space Let the projeded feaure vedor be, Iff' , Which is given

by,

11



=" E(X1 - /11) (Xz B UZ) (X14 B /114) O
F, = U 8
f E o, o, o D1x14[ ]l4><14 (8a)
or,
o= [x % ... x, (8b)

where x; arethe dements of the projeded fedure vedor F, .

Step 6. For eat time-element i (i = 1, ..., ntime ), compute the weighted
Euclidian dstance between the projeded fedure vedor (Equation 89 and the PCs
(Equation 7. The distance omputation is caried ou using only the nret comporents.

Let d; be the distance metric correspondng to day i, andis cdculated as,

/2

d _ ret Aj - 2|—_J[ 9
= im(xj p)'C ©

The ratio A, /tr[W] is the weight and correspondks to the fradion d variance eplained
by PC& . This gives a set of ntime (280) distances as possble neighbas of feaure day
f.

Step 7. Sort the distances d; in ascending order (d, ), and retain orly the first K

neighbas. The choice of K is based onthe prescriptive dhoice of the square-roat of all

possble candidates (ntime) [Rajagopalan and Lall 1999 Yates et a. 2003. So we

seleded K =(+/280) =17 (rounckd to neaest integer).

12



Step 8. Assign weight w; (0 < w; < 1) to each of the K neighbors using the bi-

square weight function [Huber, 2003] based on distance d;, .

U d(l)glﬁ

B Belf
T f (9

<0_fd {5

1H fwo O f

where di is the distance (sorted) of neighbor K.

Step 9. Select a neighbor from the K neighbors as an analog for feature day f. A
random number, u~U[0]]is first generated, and if u>w,, then the day corresponding
to distance d, is selected. If u<w, , then the day corresponding to d, is selected. For
w, <u<w,,theday corresponding to d, is selected for which u is closer to w;.

Step 10. Step 9 was repeated seven times to generate 7 ensemble members.

Step 11. Steps 1 through 10 were repeated for each of the days (7305)
corresponding to a forecast |ead-time (14 lead-times), a total of (7305 X 14) feature days
in the archive.

Step 12. Repeat Steps 1 through 11, 15 times corresponding to the 15 MRF runs.

Step 13. Steps 1 through 12 are repeated 4 times for the four study basins.

Thus the final output for each of the four basins consisted of analog dates
(pointers to physical dates were stored) corresponding to each day in the MRF archive

(size, 7305), each forecast lead time (size, 14), and an ensemble of 105 ensemble

13



members (7 redlizations from each of the 15 MRF moded runs). Note that, this
downscaling was carried for the center-point of each of the four basins. Forecasting of
precipitation and temperature fields at individual stations adjoining the basins is

described in the next section.

3.2 Forecasting Precipitation and Temperature Fields at Individual Stations

We used a 100 km search radius from the center of each basin to pick up the
closest stations (see Table 1). The dates derived using the K-nn algorithm for a given
Basin was used to select from the daily-observed precipitation and temperature values for
each of the adjoining stations of that Basin. This then constitutes the downscaled
precipitation and temperature for each of the stations used in this study.

Several statistics were then calculated to analyze these downscaled precipitation

and temperature fields, and is presented in the next section.

4. Resultsand Discussions

The statistics used to anayze and verify the downscaled precipitation and
temperature forecasts are: (1) seasona cycles of precipitation amounts and temperature
(results are shown only for maximum temperature), (2) bias, (3) spatial correlations,
(4) forecast skill, (5) forecast reiability, (6) rank histograms, and (7) spread-skill

relationships.

4.1 Seasonal Cycles of Precipitation Amounts and Temperature

14



We first anayzed the variation of the annual cycle of precipitation and
temperature for the four study basins. In Figures 2 and 3 respectively, the annual cycles
(derived from observations for the period 1979-1998) of precipitation and temperature for
selected COORP stations in the basins along with the ensemble spread (as box plots) for
each month are presented. The COOP stations used are CO1609, GA0140, WA 0456, and
CAQ931 for the Animas, Alapaha, Cle Elum, and East Carson respectively (see Table 1
for locations). The box plots for each month are estimated from the 105 ensemble
members, and are shown for the forecast lead-time of 5 days. The box in these plots
(e.g., Figure 2) indicates the interquartile range of the simulations, and the whiskers show
the 5" and 95" percentile of the simulations, while the open circles indicate values
outside thisrange. The horizontal lines within the box indicate the median value, and the
solid lines join the values of the statistic from the observed data. Typicdly, if the
statistics of the observed data fall within the box, it indicates that the simulations
adequately reproduced the statistics of the historical data.

In case of precipitation (Figure 2) there is awide regional variation in the amounts
and timing of the maximum precipitation occurrences among the basins. The Alapahafor
example, has a precipitation peak in summer, but the Cle Elum is the driest during the
summer season (June-July-August). The K-nn downscaling model in al cases largely
captures the seasona variation of precipitation. Given that the K-nn algorithm was not
explicitly designed to preserve monthly statistics, the fit is quite impressive. For
maximum temperature (Figure 3), the downscaled valuesin all cases were able to capture

the historical observations. Unlike precipitation, the ensemble spread (interquartile range

15



in the box plots) was minimal in case of temperature. Similar results were noted for other

forecast |ead-times.

4.2 Bias
Bias is defined as the deviation of the expected value of a given variable from its
true value. We estimated the median absolute bias (MAB)) for each forecast |ead-time (1)

and month as following.

_ 1 ndays

O = o} 11a
| ndays IZ i ( )
S 1 ndays
Y© = (') (11b)
ndays &
and,
MAB = Median[|O, - Y¢|;e=1,...,nens] (11c)

where, ndays is the total number of days in the time series for a given month (e.g.,
ndays=620 for January from 20 years of data and with no missing values); 6' is the
expected value of the observed variable (precipitation or temperature) for lead time| (i.e.,
climatological mean), and O' is the observation for day i and lead time|. Similarly, \F
is the expected value of the downscaled variable for lead-time | and ensemble member e,

and (Y')® is the downscaled variable value for day i, lead-time |, and ensemble member

16



e. Then we calculate the absolute bias for a given ensemble member, and use the nens
(equal to 105) ensemble members to calculate the median absolute bias (MAB) for lead-

time | (Equation 11c). For precipitation, the absolute bias was expressed as a percentage

of O . In other words, the absolute difference term within the sgquare brackets of
Equation (11c) was expressed as, |O, - Y,°|x100/ O, .

Figure 4 shows the bias for precipitation for each of the four basins for the month
of January. Once again, these biases are median absolute biases, and are expressed as a
percentage of the mean climatology. The box-plots correspond to the spread from the
number of closest stations (shown in parenthesis) in a given basin. The median bias
(estimated from the closest stations for a given basin) for al the basinsis within 20%. In
some cases stations have biases greater than 20%. Of all the four basins, the biases are
largest for the Animas. Thisis probably due to the fact that the Animas is the driest of all
the four basins with an average January precipitation of about 1.28 mm. The temperature

biases (not shown) were quite small, and typically were within 0.5 °C.

4.3 Spatial Correlations
Spatia auto correlations are used to check how well the K-nn algorithm performs
in preserving the spatial autocorrelation. The Pearson correlation (hereafter correlation)

between two example stations 1 and 2 (say) was estimated as following.

Let, Yy and Y, be the vector of downscaled values for a given variable (e.g.

precipitation) for lead-time | from ensemble member e. That is,
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Y_1F = [(Ylf)l(Ylf)Z"'(Ylf)ndays]T (128.)

and,

o
|

[(YZ(Ia )1 (YZ(Ia ) 200 (YZ(Ia ) ndays]T (12b)

where, (Y;);, and (Y, ), are the downscaled variable values for lead-time |, ensemble
member e, and day i for stations 1 and 2 respectively; and i = 1, ... ndays. Next we

calculate the correlation (pf) for a given ensemble member (e) and lead-time (I) using

thevectors Y;” and Y, . That is,

o _ EIYy Y1 - E[Y/TE[Y;]

P

(13)

0,0,

where, E[.] is the expected value; o1 and o, are the standard deviations of Yi and Y_;f

respectively.

Figure 5 shows the correlation box plots (for a given | using the 105 ensemble
members of p) over 14-day forecast lead-time between two example stations in the

Animas Basin (CO 4734 and CO 1609), and Figure 6 presents similar results for two
stations in the Alapaha Basin (GA 0140 and GA 2266) for winter and summer
precipitation and temperature. Since we pick up the data for all stations on a given day,
the K-nn method intrinsically preserves the spatial auto correlation structure.

For precipitation, in the case of the Animas Basin, which overall is a dry basin,

the observed spatial correlation is about 0.2 for both January and July. These observed
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gpatial correlations are quite small. Since the Animas is located in aregion of significant
topography (see Figure 1), elevation differences and measurement errors in precipitation
can contribute to low observed spatial correlation values. In the case of Alapaha, which
is relatively flat, and wetter, we see a high degree of spatial correlation (about 0.7)
between the example stations in January. In July, the spatial correlation diminishes.

For temperature (see Figures 5 and 6), the box plots of downscaled vaues
adequately bracket the observed spatial correlation. The temperature correlations among
the stations are very similar for winter and summer in both the basins, and the biases are
quite small in all cases.

Also, since the same day is used to select the values of the precipitation and
temperature fields, the cross-correlations (not shown) are aso intrinsically preserved by

this downscaling method.

4.4 Forecast Skill

The probabilistic skill of the downscaled precipitation and temperature forecasts
was assessed using the Ranked Probability Skill Score (RPSS) [Wilks, 1995]. The RPSS
is based on the ranked probability score (RPS) computed for each downscaled forecast

and observation pair:

RPS = J (Y, -0,)? (14)

m=

where Yy, is the cumulative probability of the forecast for category m, and O, is the

cumulative probability of the observation for category m. This is implemented as
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follows. First, the observed time series is used to dstinguish ten (J) possble cdegories
for forecats of predpitation and temperature (i.e., the minimum vaue to the 10"
percentile, the 10" percentil e to the 20" percentile ... the 90" percentil e to the maximum
value). These cdegories are determined separately for ead month, variable, and stations
in the basin. Next, for ead forecast-observation pair, the number of ensemble members
forecast in eat caegory is determined (out of 105 ensemble members), and their
cumulative probabilities are coomputed. Similarly, the gpropriate cdegory for the
observation is identified and the observation's cumulative probabiliti es are computed
(i.e., al caegories lessthan the observation's position are assgned “0” and all categories
equal to and greaer than the observation's position are assgned “1”). Now, the RPSis
computed as the squared dfference between the observed and forecat cumulative
probabiliti es, and the squared dfferences are summed ower all caegories (Equation 14.

The RPSSis then computed as,

RPS
RPSS=1- — 1
RPScIim ( 5)

where RPS is the mean ranked probability score for all forecast-observation peirs, and
RPS:im is the mean ranked probability score for climatologicd forecat. For

temperature, RPScim is computed using an equal probability in ead of the m caegories
defined in Equation 14 (i.e., 1/J); for preapitation, the probability for the first caegory
(zero preapitation) is taken as the observed probability of no preapitation, and the

probability for all other caegories istaken as 1/(J - 1) [seeEquation (14)]. An RPSSof
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0.0 indicates no difference in skill over the reference climatological forecast (Wscnm),
and an RPSS of 1.0 indicates a perfect forecast. Negative RPSS implies that the model
performs worse than climatology. Here, RPSS was estimated separately for each forecast
lead-time, for each month, and for each station in the basin. The median RPSS was then
calculated from the station RPSS values for each of the basins.

Figures 7 and 8 show plots of median RPSS for precipitation and temperature
respectively. These plots show the months along the abscissa and forecast |ead-times
along the ordinate, and with darker shades representing regions of higher skill. For
precipitation (Figure 7), in al the basins higher skills are obtained during the fal and
winter months, and extend for only short forecast |ead-times (e.g., up to 3 days in the case
of Cle Elum). Winter time skill scores are around 0.4 for all of the basins. This means
that the K-nn downscaled forecasts are 40% time superior over the reference
climatological forecasts. In summer, the skills drops down considerably even at short
forecast lead-times. However for Cle Elum, we see higher skills even during the summer
time. Thisis due to the fact that the basin is the driest during the summer months (see
Figure 2), and higher skill arises from consistent dry forecasts from the downscaling
model.

For temperature (Figure 8) the skills are higher than that of precipitation, with a
maximum for al the basins to be around 0.5. Higher skills are generally observed during
all the seasons, and are valuable up to lead-times of 5 days. Also for both temperature
and precipitation, the results overall are very consistent showing skills diminishing with

an increase in forecast |ead-times.
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Since the RPSS is only a single number it is a useful measure to rank competing
forecasts, but does not illuminate the underlying basis for the forecast errors. For
example [Hamill, 1997], are the forecasts too specific, or biased? Are 25% of the
forecasts on average below the 25" percentile of forecast distribution? Thus we need
additional forecast verification measures to address such issues. The reliability diagram
[Wilks, 1995] is a frequently used tool in probabilistic forecast verification, and is

discussed in the next section.

4.5 Forecast Reliability
The fundamental interest in forecast verification is to analyze the joint probability

distribution of forecasts and observations [Wilks, 1995]. Let y. denote discrete forecasts
that can take one of the any | values vy,,Y,,...,¥,; and o, be the corresponding

observations (discrete), which can have any of the J values o,,0,,...,0,. Then thejoint

probability mass function, p(y:, 0;), of the forecasts and observationsis given by,

p(y,,0,) = P(y,no); i=L..1;j=1..3 (16)

Using the multiplication rule of probability [e.g., Ang and Tang, 1975, p. 43], Equation

16 can be factored as,

Py ,0;) = p(o;|y) p(y)) (17)
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where, p(o;]y;) isthe mndtiona probability implying, hov often eat posshle event
(out of J outcomes) occurred onthose occasions when the single forecast y, was isued;
and p(y.) is the uncondtional (marginal) distribution that spedfies the relative
frequencies of use of eat o the forecast valuesy, .

The reliability diagram graphicdly represents the performance of probability
forecasts of dichotomous events, and depicts the condtional probability that an event
occurred (say, 0;), given the different probabili stic forecasts (y;). That is, the observed

relative frequency, p(o1 | i), as a function d the forecast probability p(y,). This was

implemented as foll ows.

First, the ensemble output (105 ensemble members) for a given basin is converted
into probabili stic forecasts (i.e., the probability a spedfic event occurs). In this case, the
“event” is that the day is forecasted to lie in the upper tercile of the distribution, and the
probability is smply cdculated as all ensemble members in the upper tercile divided by
the total number of ensemble members. The upper tercile was chosen to focus attention
on events such as heavy predpitation and high temperatures that can cause significant
changes to streamflow. Next, the observed data is converted to a binary time series—a
day is asdgned “one” if the data lies in the upper tercile and “zero” if the data does nat.
The &owe steps produce a set of probabilistic forecat-observation pairs for eah
variable, station, month, and forecast lead-time. Finally, the forecasted probabiliti es are
clasgfied into | categories (i.e., probabiliti es between 0.0and 0.1, letween 0.1and 0.2 ...
between 0.9 and 1.0,a total of 10 caegories), and for ead caegory both the average
forecasted probability and the average of the observed hinary datais cdculated. It shoud

also be noted that the number of categories used aff eds the forecast resolution (i.e. the
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ability to distinguish sub-sample forecast periods with different relative frequencies of
the event). These averaged observed relative frequency and forecast probability values
were then plotted to form the basic reliability diagram.

Reliability diagrams for January precipitation and maximum temperature in the
four study basins at 5-day forecast |ead-time are shown in Figures 9 and 10 respectively.
For precipitation, if there were less than one-third of days with precipitation, a value of
zero was used for the probabilities in the reliability diagrams. The 1:1 diagonal in these
figures represent the perfect reliability line, and the inset histogram shows the frequency

of use of each of the forecasts, p(y,). Also, to construct the reliability diagrams for each

basin as a whole, the forecast-observation pairs were lumped together from al stationsin
that basin (see Table 1). Results show that, overall, the forecasted probabilities match the
observed relative frequencies remarkably well for both precipitation and temperature. In
case of precipitation (Figure 9), for example, in the case of the Alapaha Basin, we see
some tendency of higher observed relative frequency at lower forecasted probabilities
and the opposite at higher forecasted probabilities. In other words, when a low
probability of the event is forecasted, the actual occurrence of the event is more common,
and vice-versa. Also note that, the sample size at high forecast probabilities is often very
small, except in case of the Cle Elum. This Basin in the Pacific Northwest receives
considerable precipitation in January, and we have enough sub-samples in each of the
forecasted probabilities (see inset histogram in Figure 9c), i.e, we have excellent
resolution and reliability in our downscaled forecasts.

For the case of maximum temperature (Figure 10), in genera we have sharper

forecasts (high resolution) at the price of some reduced reliability. In particular for the

24



Cle Elum and East Carson, where we can see more frequent occurrences of the event
when the forecast probability was slightly lower. Reliability diagrams similar to the
above were also plotted for the month of July (not shown). Overall results were similar
to January, but for precipitation in the East Carson, practically all the forecasted
probabilities (frequency of usage) were within the lowest category (0.0-0.1), and imply
the presence of rare events. Though these forecasts were reliable, it exhibits minimal
resolution.

Once again, the results are overall quite impressive, and demonstrate that the
proposed K-nn algorithm can be used to generate reliable forecasts with negligible
conditional bias. The reliability of the forecasts was further evaluated using rank

histograms.

4.6 Rank Histograms

Rank histograms were used to evaluate the reliability of ensemble forecasts, and
for diagnosing errors in its mean and spread. Rank histograms for a given month and
forecast lead-time were constructed by repeatedly tallying the ranks of the observed
precipitation and temperature values relative to values from the 105 member ensemble.
The process to obtain the rank histogram for precipitation is slightly different from that of
temperature because of the presence of a large number zero precipitation days in the
observed and ensemble precipitation time-series. For temperature the rank histogram was
implemented as following.

Let for a given forecast day (say, j), and forecast lead-time (say, ),

X =Xy »--+» Xny) bethe sorted n-member ensemble (n = 105 in this study), and V be the
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observed temperature. Then the rank of V which can have (n + 1) possible values relative

to the sorted ensemble is obtained. Let this rank be denoted by rj'. If say there were

20 years of data, then for January (assuming no missing observations), there would be
620 (31days X 20 years) time-elements in this time-series for a given forecast |ead-time.
By tallying the ranks of the observed through this time-series we can obtain a vector of

ranks for the selected month (m) and lead-time (R),

R, = [ fh,.n ] (18)

where N is the length of the time-series (or sample size, e.g., 620). The elements of R|

are then binned into the (n + 1) possible categories for constructing the rank histogram.
So the rank histogram constitutes the rank of the observed, and the probability of the rank
to fall in any one of the (n + 1) categories.

In case of precipitation when there are zero precipitation days in the observed and
ensemble time-series, a modified rule for rank assignment was implemented [Hamill and
Colucci, 1998]. If say there are M members tied with the verification (i.e.,, M ensemble
members with zero precipitation), a total of (M + 1) uniform random deviates [Press et
al., 1992] are generated corresponding to the M members, and one for the observed zero
precipitation. Then the rank of the deviate corresponding to the observed in the pool of
(M + 1) deviates is determined. The rank histogram is then constructed in a manner
similar to the one described for temperature.

To interpret the rank histograms it is assumed that the observations and the

ensemble members are samples from the same probability distribution. In that case,
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counting the rank of the observation over several independent samples, an approximately

uniform distribution should result across the possible ranks, i.e.,

1
E[P(Xiy SV <X)] :m (19)

where, E[.] denotes the expected value and P the probability. Hamill [2001] describes
the interpretation of rank histograms, and provides these guidelines. When the ensemble
members are from a distribution with lack of variability, a U-shaped rank histogram
results.  An excess of variability in the ensemble members on the other hand
overpopulates the middle ranks, and ensemble bias (positive or negative) excessively
populates the (left or right) extreme ranks.

Figures 11 and 12 show the basin rank histograms for precipitation and maximum
temperature respectively. Basin rank histograms were constructed by pooling in ranks
from all stations for a given basin. The basin rank histograms are shown for January at
5-day lead-time. For precipitation (Figure 11), the rank histograms are relatively flat,
demonstrating that the K-nn method produces redlistic ensemble spread. The noisein the
rank histograms simply reflects the noisy character of the precipitation time-series. For
temperature (Figure 12), the basin rank histograms are largely uniform in the middle
ranks, except at the extremities where we observe some bias. We see that on average,
nearly 2% of the time, the observed temperature can be lower (greater) than the lowest
(highest) ensemble member.

In general, from all the cases (including summer) we see from the precipitation

rank histograms that, the ensembles are relatively flat, and for temperature thereis only a
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small fraction of cases (~2%) when the observed falls outside the ensemble range. We
also constructed rank histograms for each of the individual stations used in the study (see
Table 1), and overall found no unusua behavior in the structure of the rank histograms.
The next step then is, can we use the ensemble spread information to predict forecast

skill? Thistopic isdiscussed in the next section.

4.7 Spread-skill Relationships

Ensemble forecasts provide an estimate of the forecast probability distribution - if
the spread of this distribution varies from forecast to forecast, then the spread in the
distribution may be related to the forecast skill [Kalnay and Dalcher, 1987; Whitaker and
Loughe, 1998]. To analyze the spread-skill relationship we first need to select
appropriate measures to define the ensemble spread and ensemble skill. We used three
measures of ensemble spread, (i) standard deviation of the ensembles, (ii) interquartile
range, and (iii) the 95™ minus the 5" quantiles. As skill measures we used, (i) RPSS, and
(i) the absolute error of the ensemble mean (absolute difference between the observed
and the ensemble mean). The utility of ensemble spread as a predictor of ensemble skill
has traditionally been measured in terms of linear correlation, although Whitaker and
Loughe [1998] suggest an analysis of the joint spread-skill probability distribution.

Contingency table of spread (ensemble standard deviation) and skill (RPSS) for
5-day forecasts of January precipitation for example station WA0456.COOP is given in
Table 2. Here we considered al days for which the observed precipitation was greater
than 0.01 inch (0.3 mm). The entriesin the table are the joint probability of obtaining the

spread and skill values in the indicated quintiles. The columns are spread quintiles, and
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the rows are skill quintiles. If there were no correlation between spread and skill, all
entries in the table would be equal to 0.2. On the other hand, if there was a perfect linear
relationship between spread and skill (correlation equal to one), all the diagonal elements
would be one and the off-diagonals would be zero. Many of the entriesin Table 2 are not
very different from 0.2, except at the corners. For example, if the spread isin the lowest
quintile, there is about 2.5 times higher probability of the skill to be in the lowest, rather
than the highest quintile. This observation was consistent among all stations in the study.

To summarize the contingency table for al stationsin a basin, we constructed box
plots showing the variation of the joint spread-skill probability for al spread and skill
quintiles. Results are shown for January precipitation at 5-day forecast lead-time for the
Animas and Alapaha basins in Figures 13 and 14 respectively. In each of these figures
we show three cases. (1) considering all days (left column); (2) days with precipitation
within 0 mm and 0.3 mm, including the zero precipitation days (middle column); and (3)
days with precipitation greater than 0.3 mm (right column). For each spread quintile, box
plots are plotted showing the variation of the joint probability of spread-skill in all
stations of the Basin with the skill quintiles as the abscissa. The dashed horizontal line
corresponds to ajoint probability value of 0.2 when there is no spread-skill correlation.

In both Figures 13 and 14 we see that when all days are considered, and also for
the case where precipitation is within 0.3 mm (with zero precipitation days included), the
spread-skill relationship is negatively correlated. That is, for lower spread, there is a
higher probability of greater skill. Here alarge number of ensemble members with zero
precipitation contribute to both a lower ensemble spread and higher skill for small

precipitation amounts. Conversely, a small number of ensemble members with zero

29



precipitation contribute to higher ensemble spread and lower skill for small precipitation
amounts. Unfortunately, these results do not allow us to construct any meaningful
spread-skill relationships in order to place time-variant confidence limits on precipitation
forecasts.

Similar box plots for maximum temperature (here data from al days were used)
are shown for the Animas (left column) and Alapaha (right column) basins in Figure 15.
In all cases we see that the boxes are close to the dashed horizontal line (i.e. joint
probability vaue of 0.2), and implies that there is no spread-skill correlation. Similar
results for both precipitation and temperature were observed for July.

All the results presented here used standard deviation and RPSS as the spread and
skill measures respectively. Analysis was aso carried out using the other spread and skill
measures and the results were found to be robust, that is, the underlying spread-skill
relationships do not change with the choice of different measures. Also, though no clear
spread-skill relationships were apparent here, the K-nn method is theoretically capable of

extracting the spread-skill relationship if it exists in the atmospheric model.

5. Summary and Conclusions

A method for statistical downscaling using the K-nn algorithm in eigen space was
developed. A twenty-year (1979-1998; 7305 days) data archive consisting of model
outputs from the NCEP 1998 version of the operational medium range forecast (MRF)
model from NOAA/CDC was used in this study. A total of 15 MRF runs (one control
run plus 14 ensemble members) were available for analysis. Seven MRF model output

variables going out to lead-time of 14 days was used in the downscaling algorithm.
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Analogs to (7305 x 14) feature days using a 14-day temporal window were subsequently
identified. All data were projected onto eigen-space, and distance between a feature day
and all candidate days were calculated using a weighted Euclidian norm. The weighting
used considered the fractional variance explained by a given principal component. The
distances were then sorted in ascending order, and weights were assigned to each using
the bi-square weight function. Based on the weights, and repeatedly generated uniform
random numbers a set of seven ensemble members were created from each MRF run.

Results were assessed over four river basins distributed across the contiguous US.
These were, Animas (southwest Colorado); Alapaha (southern Georgia); Cle Elum
(central Washington); and east fork of the Carson (California Nevada border). The K-nn
downscaling algorithm was repeated for the 15 MRF runs and for the four basins. Since
from each MRF run 7 ensemble members were generated, the 15 MRF runs yielded a
total of 105 ensemble members for each basin. To obtain local estimates of precipitation
and temperature, closest COOP stations (within a 100 km search radius) from the center
of the basins were selected, and observed data corresponding to the downscaled dates
were used to obtain these estimates. The precipitation and temperature estimates from
these 105 ensemble members over 20 years and 14-day forecast |ead-times were used to
evaluate the K-nn downscaling methodol ogy.

The statistics included, seasona cycles, bias, spatial correlations, and a suite of
forecast verification statistics. The K-nn downscaling model in all cases largely captured
the seasonal variation of precipitation and temperature. Precipitation biases were
generally within 20%, but in many cases (mostly for the climatologically drier Animas

Basin at longer lead-times) exceeded 20%. Thisis consistent with the noisy character of
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precipitation time series. Temperature biases were small, and within 0.5 °C. Since we
use data for all stations on a given day, the K-nn method intrinsically preserves the spatial
auto correlation structure, and the consistency between variables. Also, since this method
relies solely on the climate model output and does not incorporate any joint relationship
between the atmospheric and surface variables it does not fully preserve the lag-one
correlation statistics (not shown).

Next we evaluated the skill, reliability, and time-variant spread-skill relationships
in the downscaled forecast ensembles. The rank probability skill score (RPSS) was used
to verify the forecast skills. For precipitation, the skills generally were higher in winter
than in summer and valid at only short forecast lead-times (2-3 days). Temperature
RPSS scores were around 0.5 and valuable skill was present even up to lead-times of 5
days in all seasons. Forecast reliability or conditional bias were evaluated using
reliability diagrams, and we found that the observed relative frequencies of the event
(days being in the upper tercile) matched well with forecasted probabilities, and there was
very little conditional biasin the forecasts.

Rank histograms showed that, although precipitation ensembles are to an extent
noisy, the ensemble spread is nevertheless meaningful. For temperature, the observed
fell outside the ensemble range in about 2% cases. Next, we analyzed possible spread-
skill relationships. We did not find a meaningful relationship to forecast precipitation
forecast skills. For temperature, results clearly showed that there is no relationship
between the ensembl e spread and skill.

Though regression based approaches are widely used to extract local scae

information from forecast models [e.g., Antolik, 2000] these methods are not data-driven,
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they need variable transformations, they do not intrinsically preserve space-time auto and
cross-correlations of the downscaled variables, and cannot be utilized to investigate
spread-skill relationships. We however did a comparison to test the skill (RPSS) of the
K-nn approach with a multiple linear regression (MLR) based downscaling method (see
Clark and Hay [2004] and Clark et a. [2004] for description of the MLR method).
Results of this comparison are summarized in box plots shown in Figures 16 and 17 for
precipitation and temperature respectively. Given that the K-nn algorithm does not use
the joint relationship between forecast model output and station data results are extremely
impressive. The skill obtained from the K-nn method is competitive with the skill
obtained using MLR. The MLR utilizes the joint relationship between surface and
atmospheric variables, and needs post-processing to reconstruct the space-time variability
between the ensembles (typically the downscaling is done for each station individually).
The PCs also provide a consistent spatial representation, whereas the variables in case of
MLR typically change from one station to the other.

The marginally higher skills that are seen in case of MLR, is aso due to the fact
that the 15-member ensemble mean from the MRFs are used as predictors. Furthermore,
the sum of squared errors between observed and downscaled values at each station is
explicitly minimized in developing the MLR models. Finaly, the K-nn method is
computationaly efficient and can be readily implemented. The results described here
demonstrate the strength of this algorithm and provides a viable alternative in providing
skillful and reliable downscaled forecasts to transfer function based downscaling

methods.

33



Acknowledgements
This research was supported by the NOAA GEWEX Americas Prediction
Program (GAPP), and the NOAA Regional Integrated Science and Assessment (RISA)

Program under awards NA16GP1587 and NA17RJ1229.



References

Ang, A.H-S., and W. H. Tang, Probability Concepts in Engineering Planning and

Design: Basic Principles, JohnWiley & Sons, Inc., 409 pp., 1975.

Antolik, M.S., An owrview of the National Weaher Servicés centralized statisticd

guantitative predpitation forecasts, J. Hydrology, 239, 306337, 2000.

Buishand, T.A, and T. Brandsma, Multisite simulation o daily preapitation and
temperature in the Rhine basin by neaest-neighba resampling, Water Resour.

Res., 37(11), 27612776, 2001.

Clark, M. P., and L. E. Hay, Use of medium-range numericd weaher prediction model

output to produceforecasts of streanflow, J. of Hydrometorol., 5(1), 1532, 2004.

Clark, M.P., S. Gangopadhyay, L.E. Hay, B. Rgjagopaan, and R.L. Wilby, The Schae
shuffle A method for remnstructing spacetime variability in forecasted

predpitation and temperature fields, J. Hydrometeorol., 5(1), 243262, 2004.

Eischeid, JK., P.A. Pasteris, H.F. Diaz, M.S. Plantico, and N.J. Lott, Creaing a serialy

complete, National daily time series of temperature and predpitation for the

western United States, J. Appl. Meteorol., 39, 15861591, 2000.

35



Hamill, T.M., Reliability diagrams for multi category probabili stic forecasts, Weather and

Forecasting, 12, 736741, 1997.

Hamill, T.M., and SJ. Colucd, Evaluation d the EtaaRSM ensemble probabili stic

predpitation forecast, Monthly Weather Review, 126, 711724, 1998.

Hamill, T.M., Interpretation d rank histograms for verifying ensemble forecasts, Monthly

Weather Review, 129, 550560, 2001.

Huber, P. J., Robust Statistics, Wil ey-Interscience, 308 pp., 2003.

Kanay, E., and A. Dacher, Forecasting forecast skill, Monthly Weather Review, 115,

349-356, 1987.

Kanay E., and co-authors, The NCEP/NCAR 40-yea reanalysis projed, Bull. Am.

Meteorol. Soc., 77(3), 437-471, 1996.

Lal, U., and A. Sharma, A neaest neighba boastrap for time series resampling, Water

Resour. Res., 32(3), 679-693, 1996.

Press W.H., B. P. Flannery, S. A. Teukdsky, and W. T. Vetterling, Numerical Recipesin

Fortran, Cambridge University Press 2" edition, 963 pp., 1992.

36



Rajagopalan, B., and U. Lall, A K-nearest neighbor simulator for daily precipitation and

other variables, Water Resour. Res., 35(10), 3089-3101, 1999.

Reek, T., SR. Doty, and T.W. Owen, A deterministic approach to the validation of
historical daily temperature and precipitation data from the cooperative network,

Bull. Am. Met. Soc., 73, 753-762, 1992.

Toth, Z., and E. Kalnay, Ensemble forecasting at NMC: the generation of perturbations.

Bull. Am. Met. Soc., 74, 2317-2330, 1993.

Whitaker, J.S., and A.F. Loughe, The relationship between ensemble spread and

ensemble mean skill, Monthly Weather Review, 126, 3292-3302, 1998.

Wilks, D.S., Satistical Methods in the Atmospheric Sciences: An Introduction, Academic

Press, 467 pp., 1995.

Yates, D., S. Gangopadhyay, B. Raagopaan, and K. Strzepek, A technique for
generating regiona climate scenarios using a nearest neighbor agorithm: Water

Resour. Research, 39(7), 1199, doi:10.1029/2002WR001769, 2003.

Zorita, E., and H. von Storch, The analog method as a simple statistical downscaling

technique: Comparison with more complicated methods. J. Climate, 12, 2474-

2489, 1998.

37



Table 1. List of stations used in each of the four study basins.

Animas (CO), Lat = 37.50 °N; Lon = 107.50 "W

Alapaha (GA), Lat = 31.35 °N; Lon = 83.22 "W

# LAT LON Station ID # LAT LON Station ID
1 38.40 107.52 C0O1609.COOP 1 3158  84.17 GA0140.COOP
2 37.23  108.05 C03016.COOP 2 3153 8252 GA0211.COOP
3 37.77 10713 C03951.COOP 3 3118  84.20 GA1500.COOP
4 3803 107.32 C04734.COOP 4 3197  83.78 GA2266.COOP
5 37.20 108.49 CO5531.COOP 5 3152 8285 GA2783.COOP
6 38.13 108.29 C06012.COOP 6 3220 8321 GA2966.COOP
7 38.02 107.67 C06203.COOP 7 3172 8325 GA3386.COOP
8 37.24 107.02 C06258.COOP 8 3103  82.80 GA4429.COOP
9 37.71 108.04 CO7017.COOP 9 3117 8375 GA6087.COOP
10 37.73 107.27 CO7050.COOP 10 3148  83.53 GA8703.COOP
11 37.95 107.87 C08204.COOP
12 37.38 107.58 C0O8582.COOP
13 36.83  108.00 NM0692.COOP
14 36.94 107.00 NM2608.COOP
15 36.82 107.62 NM6061.COOP

Cle Elum (WA), Lat = 47.37 °N; Lon = 121.05 °W| Carson (CA-NV), Lat = 38.55 °N; Lon = 119.80 °W
# LAT LON Station ID # LAT LON Station ID
1 47.77 121.48 WAO0456.COOP 1 39.38  120.10 CA0931.COOP
2 4717 122.00 WA0945.COOP 2 3825  119.23 CA1072.COOP
3 4742 12173 WA1233.COOP 3 3828 120.32 CA1277.COOP
4 4784  120.04 WA1350.COOP 4 3825  120.86 CA1428.COOP
5 47.18 120.92 WA1504.COOP 5 37.97 119.92 CA1697.COOP
6 47.00 120.52 WA2505.COOP 6 39.32  120.23 CA2467.COOP
7 4738  121.97 WA4486.COOP 7 3917  120.13 CA8758.COOP
8 47.13 12227 WA5224.COOP 8 3845  120.50 CA8928.COOP
9 47.85 121.98 WA5525.COOP 9 3933 120.18 CA9043.COOP
10 47.15 121.93 WA5704.COOP 10 3870  120.03 CA9105.COOP
11 47.30 121.85 WAB6295.COOP 11 37.76  119.59 CA9855.COOP
12 47.18 119.87 WAB6880.COOP 12 39.15  119.77 NV1485.COOP
13 47.45 122.30 WA7473.COOP 13 39.08  119.95 NV3205.COOP
14 4754 121.84 WA7773.COOP 14 39.00 119.75 NV5191.COOP
15 47.87 121.72 WA8034.COOP 15 39.08  119.12 NV8822.COOP
16 47.43 120.31 WA9074.COOP 16 39.00  119.17 NV9229.COOP
17 47.40 12021 WA9082.COOP
18 46.57 120.54 WA9465.COOP
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Table 2. Contingency table of spread (ensemble standard deviation) and skill (RPSS) for
5-day forecasts of January precipitation for station WA0456.COOP when the
observed precipitation is greater than 0.3 mm. The entries in the table are the
joint probability of obtaining the spread and skill values in the indicated quintiles.
The columns are spread quintiles, and the rows are skill quintiles.

0%-20% 20%-40%  40%-60%  60%-80%  80%-100%

0%-20% 0.47 0.14 0.14 0.22 0.03
20%-40% 0.09 0.33 0.29 0.18 0.11
40%-60% 0.14 0.24 0.20 0.26 0.16
60%-80% 0.11 0.19 0.27 0.20 0.23
80%-100% 0.19 0.10 0.10 0.14 0.47
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Figure Captions

Figurel.

Figure 2.

Figure 3.

Figure 4.

Figureb.

Figure6.

Figure7.

Figure8.

Location and topography of the study basins.

Box plots of total monthly precipitation from the 105 ensemble members for
selected stations in the four study basins: (a) CO1609, (b) GAO0140,
(c) WAO0456, and (d) CA0931. Results are shown for lead-time 5 day. The
solid line and marks are the same statistics derived from the historical data for
the period 1979 to 1998.

Same as Figure 2, but for temperature.

Box plots of median absolute bias (in percentage) for January precipitation for
the 14-day forecast lead-times in case of the four basins. The box plots are
plotted using the number of stations shown in parenthesis following the basin
names.

Box plots of spatial auto-correlation from the 105 ensemble members between
stations CO1609 and CO4734 in the Animas Basin for the 14-day forecast
lead-times. Precipitation correlations are in the left column for January (top)
and July (bottom), and temperature correlations are in the right column for
January (top) and July (bottom). The dotted horizonta line is the observed
Spatial correlation between these two stations derived from the historical data
for the period 1979-1998.

Same as Figure 5, but for stations GA0140 and GA2266.
Median RPSS for precipitation in the four basins: (a) Animas, (b) Alapaha, (c)
Cle Elum, and (d) East Carson. The months (January-December) are the

horizontal axis, and lead-times are in the vertical axis.

Same as Figure 7, but for temperature.

Figure 9. Basin reliability diagram for January precipitation in the four basins:

(8 Animas, (b) Alapaha, (c) Cle Elum, and (d) East Carson, at 5-day forecast
lead-time. Inset histograms indicate frequency of use of the forecasts.

Figure 10. Same as Figure9, but for temperature.

Figure 11. Rank histogram for January precipitation at 5-day forecast |ead-time with 105

members for the four basins.

Figure 12. Same as Figure 11, but for temperature.

Figure 13. Box plots of joint spread-skill probability for skill quintiles at given spread

quintiles. The vertical axis is the joint probability of spread (ensemble
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standard deviation) and skill (RPSS), and the horizontal axis shows the skill
quintiles. Results are shown for January precipitation at 5-day forecast |ead-
time for the Animas basin. The box plots are constructed using data from all
the stations in the basin. Three cases are shown: using data from all days (left
column); using data for days when the observed precipitation is between 0 and
0.3 mm (both values inclusive) (middle column); and when the observed
precipitation is greater than 0.3 mm (right column). The dashed horizontal
line in each plot corresponds to joint probability value of 0.2 when there is no
spread-skill relationship.

Figure 14. Same as Figure 13, but for the Alapaha basin.

Figure 15. Box plots of joint spread-skill probability for skill quintiles at given spread
quintiles. The vertical axis is the joint probability of spread (ensemble
standard deviation) and skill (RPSS), and the horizontal axis shows the skill
quintiles. Results are shown for January maximum temperature at 5-day
forecast lead-time for the Animas (left column), and Alapaha (right column)
basins. The box plots are constructed using data from all the stations in the
basins. The dashed horizontal line in each plot corresponds to joint
probability value of 0.2 when there is no spread-skill relationship.

Figure 16. Box plots comparing skills (RPSS) in precipitation forecasts in the four study
basins obtained from downscaling using KNN (not-shaded), and MLR
(shaded): (@) January precipitation for lead-time 1-day; (b) January
precipitation for lead-time 5-day; (c) July precipitation for lead-time 1-day;
and (d) July precipitation for lead-time 5-day.

Figure 17. Same as Figure 16, but for temperature.
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Elevation (meters)

Figure 1. Location and topography of the study basins.
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Box plots of total monthly precipitation from the 105 ensemble members for
selected stations in the four study basins: (a) CO1609, (b) GAO0140,
(c) WA0456, and (d) CA0931. Results are shown for lead-time 5 day. The
solid line and marks are the same statistics derived from the historical data for
the period 1979 to 1998.
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Figure 3. Same as Figure 2, but for temperature.
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Figure 4. Box plots of median absolute bias (in percentage) for January precipitation for
the 14-day forecast lead-times in case of the four basins. The box plots are
plotted using the number of stations shown in parenthesis following the basin
names.
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Figure5. Box plots of spatial auto-correlation from the 105 ensemble members...
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Figure 7. Median RPSS for precipitation in the four basins: (a) Animas, (b) Alapaha, (c)
Cle Elum, and (d) East Carson. The months (January-December) are the
horizontal axis, and lead-times are in the vertical axis.
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Figure 8. Same as Figure 7, but for temperature.

49



(@) anmas JAN PRCP lead-time, 5 day (b) alapa JAN PRCP lead-time, 5 day
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Figure 9. Basin reiability diagram for January precipitation in the four basins:
(8 Animas, (b) Alapaha, (c) Cle Elum, and (d) East Carson, at 5-day forecast
lead-time. Inset histograms indicate frequency of use of the forecasts.
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Figure 10. Same as Figure 9, but for temperature.
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Figure 11. Rank histogram for January precipitation at 5-day forecast |ead-time with 105

members for the four basins.
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Figure 12. Same as Figure 11, but for temperature.
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Figure13.
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Box plots of joint spread-skill probability for skill quintiles at given spread quintiles.
The vertical axisis the joint probability of spread (ensemble standard deviation) and
skill (RPSS), and the horizontal axis shows the skill quintiles. Results are shown for
January precipitation at 5-day forecast |ead-time for the Animas basin. The box plots
are constructed using data from all the stations in the basin. Three cases are shown:
using data from al days (left column); using data for days when the observed
precipitation is between 0 and 0.3 mm (both values inclusive) (middle column); and
when the observed precipitation is greater than 0.3 mm (right column). The dashed
horizontal line in each plot corresponds to joint probability value of 0.2 when thereis
no spread-skill relationship.
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Same as Figure 13, but for the Alapaha basin.
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Figure 15. Box plots of joint spread-skill probability for skill quintiles at given spread
quintiles. The vertical axis is the joint probability of spread (ensemble standard
deviation) and skill (RPSS), and the horizontal axis shows the skill quintiles. Results are
shown for January maximum temperature at 5-day forecast |ead-time for the Animas (left
column), and Alapaha (right column) basins. The box plots are constructed using data
from all the stations in the basins. The dashed horizontal line in each plot corresponds to
joint probability value of 0.2 when there is no spread-skill relationship.
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(a) JAN PRCP lead-time, 1 —-day (b) JAN PRCP lead-time, 5 —-day
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Figure 16. Box plots comparing skills (RPSS) in precipitation forecasts in the four study
basins obtained from downscaling using KNN (not-shaded), and MLR
(shaded): (@) January precipitation for lead-time 1-day; (b) January
precipitation for lead-time 5-day; (c) July precipitation for lead-time 1-day;
and (d) July precipitation for lead-time 5-day.
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(a) JAN TMAX lead-time, 1 —day (b) JAN TMAX lead-time, 5 -day
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Figure 17. Same as Figure 16, but for temperature.
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