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Abstract 

Statistical downscaling provides a technique to derive local scale information of 

precipitation and temperature from numerical weather prediction model output. The K-

nearest neighbor (K-nn) is a new analog-type approach that is used in this paper to 

downscale the NCEP (National Centers for Environmental Prediction) 1998 medium 

range forecast (MRF) model output.  The K-nn algorithm queries days similar to a given 

feature vector in this archive, and using EOF (Empirical Orthogonal Functions) analysis 

identifies a subset of days (K) similar to the feature day.  These K days are then weighted 

using a bi-square weight function, and randomly sampled to generate ensembles.  A set of 

15 MRF runs was used, and 7 ensemble members were generated from each run.  The 

ensemble of 105 members was then used to select the local scale precipitation and 

temperature values in four diverse basins across the contiguous US.  These downscaled 

precipitation and temperature estimates were subsequently analyzed to test the 

performance of this downscaling approach. 

The downscaled ensembles were evaluated in terms of bias, the ranked probability 

skill score as a measure of forecast skill, spatial co-variability between stations, temporal 

persistence, the consistency between variables, conditional bias, and to develop spread-

skill relationships.  Though this approach does not explicitly model the space-time 

variability of the weather fields at each individual stations, the above statistics were 

extremely well captured.  The K-nn method was also compared with a multiple linear 

regression based downscaling model. 
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1.  Introduction 

Statistical downscaling provides a way to utilize outputs of climate models for 

local scale applications.  Typical grid size for global scale simulations are of the order of 

100-200 km, and the raw global-scale model output is of limited use when information is 

required at local scales.  The objective of downscaling is to overcome this scale mismatch 

and to use the skill in atmospheric forecasts at local scales. 

In short, statistical downscaling develops relationships between large-scale 

atmospheric circulation variables and local climate information (e.g., precipitation and 

temperature observations at individual stations).  Using these observed relationships, 

forecasts of atmospheric variables can be translated into forecasts of local climate 

variables.  Several methods of varying complexity have been used in performing 

statistical downscaling. Zorita and von Storch [1998] have classified existing statistical 

methods into three categories: (i) linear methods (e.g., canonical correlation analysis), (ii) 

classification methods (e.g., weather generators and regression tree), and (iii) 

deterministic nonlinear methods (e.g., neural networks). They also propose an analog 

method, and compare the results with a method chosen from each of the above three 

categories to reconstruct average December-February (DJF) precipitation over the Iberian 

Peninsula for the period 1901-89. 

In this paper we present a downscaling methodology based on the K-nearest 

neighbor (K-nn) algorithm. The K-nn algorithm is described for use in a stochastic 

weather generator by Lall and Sharma [1996], Rajagopalan and Lall [1999], Buishand 

and Brandsma [2001], and Yates et al. [2003].  The fundamental idea of the K-nn 
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algorithm is to search for analogs of a feature vector (vector of variables for which 

analogs are sought) based on similarity criteria in the observed time series.  In the 

weather generator model, the day immediately following the analog day is taken as the 

next day in the generated sequence, and the process is repeated.  In the method presented 

here, local scale station information is used for analog days selected on the basis of global 

scale climate model output. 

Though transfer function based models (e.g., multiple linear regression, MLR) are 

widely in use [Antolik, 2000], the K-nn based approach developed here has several 

advantages.  First, this method is data-driven and makes no assumptions of the 

underlying marginal and joint probability distributions of variables.  For example, to 

downscale precipitation using MLR we need a two-step process [e.g., Clark et al., 2004].  

We need to account for the intermittent property of precipitation (typically modeled using 

a logistic-regression), and then transform to normal space to satisfy the inherent 

normality criteria needed in least-squares regression to model precipitation amounts.  

Second, K-nn based downscaling will be shown to intrinsically preserve the spatial co-

variability and consistency of the downscaled climate fields.  Third, ensemble MRF runs 

can be readily utilized in the downscaling process and there is no need to use the 

ensemble mean of MRF predictors, as is normally used in regression models.  Finally, the 

ensemble spread information from MRF runs can be utilized to develop spread-skill 

relationships, which is not possible in an MLR model [e.g., Clark et al., 2004]. 

The K-nn downscaling methodology was tested on four example river basins 

distributed over the continental United States, and covering both snowmelt and rainfall 

dominated hydrologic regimes. These four basins are, (i) Animas River in southwest 
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Colorado, (ii ) East fork of the Carson River on the Cali fornia/Nevada border, (iii ) Cle 

Elum River in central Washington, and (iv) Alapaha River in southern Georgia 

(Figure 1). 

The paper first provides a description of the data used in the analysis (Section 2). 

Section 3 describes the K-nn methodology developed for statistical downscaling. We 

present a discussion of the results from the four example river basins in Section 4. A 

summary of the techniques and results concludes the paper (Section 5). 

 

2.  Data Description 

2.1 The CDC Forecast Archive 

The NOAA-CIRES Climate Diagnostics Center (CDC) in collaboration with the 

Climate Research Division of the Scripps Institute for Oceanography has generated a 

“ reforecast” dataset using a fixed version (circa 1998) of the NCEP operational Medium-

Range Forecast (MRF) model.  This is a spectral model and has a horizontal resolution of 

approximately 200 km, with 28 vertical layers (T62/L28).  The archive consists of one 

control run plus 14 ensemble members, a total of 15 members.  The control run is based 

on the global analysis from the NCEP/NCAR reanalysis project [Kalnay et. al., 1996].  

Initial perturbations for ensemble members are generated from the control run with the 

“breeding method” [Toth and Kalnay, 1993].  Each ensemble member consists of a 14-

day forecast starting every day since January 1, 1978, and presently the model continues 

to be run in realtime. The model outputs are saved at 00Z and 12Z.  The 20-year archive 

data from January 1, 1979 to December 31, 1998 was used in this study. 
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We used seven output variables [Clark and Hay, 2004] from each of the ensemble 

members in our analysis.  The model output variables used are, (i) the accumulated 

precipitation for a 12-hour period (e.g., 00Z-12Z) at the surface, (ii ) mean sea level 

pressure, (iii ) total column precipitable water, (iv) relative humidity at 700 hPa, (v) 2-m 

air temperature, (vi) 10-m zonal wind speed, and (vii ) 10-m meridional wind speed. 

 

2.2 Station Data 

This study employs daily precipitation, and maximum and minimum temperature 

data from the National Weather Service (NWS) manual cooperative (COOP) network of 

climate observing stations across the contiguous USA.  These data were extracted from 

the National Climatic Data Center (NCDC) Summary of the Day (TD3200) Dataset 

[Eischeid et al., 2000].  Quality control performed by NCDC includes the procedures 

described by Reek et al. [1992], that flag questionable data based on checks for (i) 

absurdly extreme values, (ii ) internal consistency among variables (e.g., maximum 

temperature less than minimum temperature), (iii ) constant temperature (e.g., 5 or more 

days with the same temperature are suspect), (iv) excessive diurnal temperature range, (v) 

invalid relationships between precipitation, snowfall , and snow depth, and (vi) unusual 

spikes in temperature time series.  Records at most of these stations start in 1948, and 

continue through 1998.  

The four example basins – (i) Animas River, CO (referred in the figures as 

anmas); (ii ) East Carson River, CA/NV (carsn); (iii ) Cle Elum River, WA (celum), and 

(iv) Alapaha River, GA (alapa) were selected based on their geographical distribution, 

and streamflow characteristics.  The Animas, East Carson and Cle Elum are snowmelt-
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dominated, and the Alapaha is a rainfall -dominated basin.  We select the “best stations” 

in the COOP network that are located within a 100-km search radius of the center of 

these four basins: 15 stations for the Animas, 16 Stations for the Carson, 18 stations for 

the Cle Elum, and 10 stations for the Alapaha (Table 1).  These “best stations” are 

defined as those with less than 10% missing or questionable data over the analysis period, 

1979-1998. 

 

3.  Methodology 

The steps in downscaling the atmospheric variables to basin scale precipitation 

and temperature using the K-nn algorithm are outlined in this section. The CDC NCEP-

MRF forecast archive was retrieved and formatted to form a data matrix consisting of 

7305 rows (corresponding to the number of days from January 1, 1979 – December 31, 

1998), and 14 columns (corresponding to the number of lead times) for each of the seven 

variables (see Section 2.1).  Days similar to each of the 7305 × 14 days in the archive 

were identified using the K-nn algorithm.  A description of the K-nn algorithm follows. 

 

3.1 K-nn Algorithm 

Each of the 15 ensemble members of the MRF archive for each basin was 

examined individually. The steps of the K-nn algorithm for a given ensemble member are 

as following. 

Step 1. Compile a feature vector of MRF model output for a given day and 

forecast lead-time.  The feature vector ( fF ) consists of values for all the climate 

variables of the day (the feature day, f) for which we are trying to find the K nearest 
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neighbors. Since two model outputs, 00Z and 12Z were available for each of the seven 

variables, the feature vector fF  was assumed to consist of 14 variables. 
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Step 2. Set a window of chosen width centered on the feature day f.  We used a 

14-day window (7 days lagged and 7 days lead) [Yates et. al., 2003] starting with the first 

day of the archive (January 1, 1979). The subset of data for a given variable now consists 

of 20 years (1979-1998), and 14 Julian days (chosen window width).  So for the 14 

variables (refer to Step 1), the data matrix was re-formatted to have 280 rows (total 

number of time-elements, and is denoted by ntime), and 14 columns.  The structure of 

this data matrix ([ ]fA 14280× ) is, 
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where jia , is the value of the climate variable for time-index i (i = 1, …, 280), and for 

variable j (j = 1, …, 14). 

Step 3. Standardize matrix [ ]fA 14280× . The standardized matrix [ ]fS 14280×  is 

expressed as, 

 

[ ] ][ 142114280 sssS f
�=×            (3a) 
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−=             (3b) 

 

T
jjjj aaaa ][ ,280,2,1 �=            (3c) 

 

][ jj aE=µ              (3d) 

 

( ) 2/122 }{]}[{ jjj aE µσ −=            (3e) 

 

where the underbars represent vectors; js  represents the vector of standardized values of 

vector ja  for variable j.  The variable counter j loops from 1 through 14 (the total 

number of variables); jµ  and jσ  are the mean and standard deviation respectively of 
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variable j estimated from vector ja ; E[.] is the expected value; and superscript T 

represents the vector-matrix transpose operator. 

Step 4. Perform EOF (Empirical Orthogonal Function) decomposition or Principal 

Component Analysis (PCA) of matrix [ ]fS 14280× .  We first estimate the 

correlation/covariance matrix [ ]fC 1414× , which is given by, 

 

[ ] [ ] [ ]SS
ntime

C Tf

)1(

1
1414 −

=×              (4) 

 

where [ ]TS  is the transpose of matrix [S] (the superscript f has been dropped for clarity; 

see Equation 3a). Note that, ntime = 280.  A singular value decomposition of [ ]fC 1414×  

[Press et al. 1992] yields, 

 

[ ] [ ][ ][ ]Tf VWUC =×1414               (5) 

 

where [ ]U  and [ ]V  are the orthogonal matrices (order, 14 3 14), and [ ]W  is a diagonal 

matrix of the same order whose elements are the eigen values ( jλ , j = 1, …, 14 such that 

1421 λλλ >>> � ; corresponding to the 14 variables).  Since [ ]fC 1414×  is symmetric, 

[ ] [ ]VU = . Each column of [ ]U  (or [ ]V ) represents the eigen vectors corresponding to a 

given eigen value jλ .  Let ju  be the eigen vector corresponding to eigen value jλ . So 

that, 
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[ ] ][ 14211414 uuuU �=×               (6) 

 

The principal components (PCs) are then derived as, 
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where [ ]fP 14280×  is the principal component matrix for feature day f, and column vector 

jp  is the jth principal component (j = 1, …, 14) of length ntime (equal to 280).  The 

principal components that explained up to 1 percent of the total variance (total variance is 

given by the trace of matrix [ ]W , i.e., [ ]Wtr ) for feature day f was retained.  Let nret be 

the number of PCs retained, and nret < 14.  Typically 5 PCs were retained. 

Step 5. Using summary statistics (mean and standard deviation, Equations 3d and 

3e respectively) from Step 3, and eigen vectors from Step 4, project the feature vector 

fF  in Step 1 on to eigen space.  Let the projected feature vector be, '
fF
&

, which is given 

by, 
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where '
jx  are the elements of the projected feature vector '

fF
&

. 

Step 6. For each time-element i (i = 1, …, ntime ), compute the weighted 

Euclidian distance between the projected feature vector (Equation 8b) and the PCs 

(Equation 7b).  The distance computation is carried out using only the nret components.  

Let di be the distance metric corresponding to day i, and is calculated as, 
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The ratio ][/ Wtrjλ  is the weight and corresponds to the fraction of variance explained 

by PC jp .  This gives a set of ntime (280) distances as possible neighbors of feature day 

f. 

Step 7. Sort the distances di in ascending order ( )(id ), and retain only the first K 

neighbors.  The choice of K is based on the prescriptive choice of the square-root of all 

possible candidates (ntime) [Rajagopalan and Lall 1999; Yates et al. 2003].  So we 

selected 17)280( ==K  (rounded to nearest integer). 
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Step 8. Assign weight wi (0 < wi < 1) to each of the K neighbors using the bi-

square weight function [Huber, 2003] based on distance )(id . 
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where d(K) is the distance (sorted) of neighbor K. 

Step 9. Select a neighbor from the K neighbors as an analog for feature day f. A 

random number, ]1,0[~ Uu is first generated, and if 1wu ≥ , then the day corresponding 

to distance 1d  is selected.  If Kwu ≤ , then the day corresponding to Kd is selected.  For 

Kwuw <<1 , the day corresponding to id  is selected for which u is closer to wi. 

Step 10. Step 9 was repeated seven times to generate 7 ensemble members. 

Step 11. Steps 1 through 10 were repeated for each of the days (7305) 

corresponding to a forecast lead-time (14 lead-times), a total of (7305 3 14) feature days 

in the archive. 

Step 12. Repeat Steps 1 through 11, 15 times corresponding to the 15 MRF runs. 

Step 13. Steps 1 through 12 are repeated 4 times for the four study basins. 

 

Thus the final output for each of the four basins consisted of analog dates 

(pointers to physical dates were stored) corresponding to each day in the MRF archive 

(size, 7305), each forecast lead time (size, 14), and an ensemble of 105 ensemble 
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members (7 realizations from each of the 15 MRF model runs).  Note that, this 

downscaling was carried for the center-point of each of the four basins.  Forecasting of 

precipitation and temperature fields at individual stations adjoining the basins is 

described in the next section. 

 

3.2 Forecasting Precipitation and Temperature Fields at Individual Stations 

We used a 100 km search radius from the center of each basin to pick up the 

closest stations (see Table 1).  The dates derived using the K-nn algorithm for a given 

Basin was used to select from the daily-observed precipitation and temperature values for 

each of the adjoining stations of that Basin.  This then constitutes the downscaled 

precipitation and temperature for each of the stations used in this study. 

Several statistics were then calculated to analyze these downscaled precipitation 

and temperature fields, and is presented in the next section. 

 

4.  Results and Discussions 

The statistics used to analyze and verify the downscaled precipitation and 

temperature forecasts are: (1) seasonal cycles of precipitation amounts and temperature 

(results are shown only for maximum temperature), (2) bias, (3) spatial correlations, 

(4) forecast skill, (5) forecast reliability, (6) rank histograms, and (7) spread-skill 

relationships. 

 

4.1 Seasonal Cycles of Precipitation Amounts and Temperature 
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We first analyzed the variation of the annual cycle of precipitation and 

temperature for the four study basins.  In Figures 2 and 3 respectively, the annual cycles 

(derived from observations for the period 1979-1998) of precipitation and temperature for 

selected COOP stations in the basins along with the ensemble spread (as box plots) for 

each month are presented.  The COOP stations used are CO1609, GA0140, WA0456, and 

CA0931 for the Animas, Alapaha, Cle Elum, and East Carson respectively (see Table 1 

for locations).  The box plots for each month are estimated from the 105 ensemble 

members, and are shown for the forecast lead-time of 5 days.  The box in these plots 

(e.g., Figure 2) indicates the interquartile range of the simulations, and the whiskers show 

the 5th and 95th percentile of the simulations, while the open circles indicate values 

outside this range.  The horizontal lines within the box indicate the median value, and the 

solid lines join the values of the statistic from the observed data.  Typically, if the 

statistics of the observed data fall within the box, it indicates that the simulations 

adequately reproduced the statistics of the historical data. 

In case of precipitation (Figure 2) there is a wide regional variation in the amounts 

and timing of the maximum precipitation occurrences among the basins.  The Alapaha for 

example, has a precipitation peak in summer, but the Cle Elum is the driest during the 

summer season (June-July-August).  The K-nn downscaling model in all cases largely 

captures the seasonal variation of precipitation.  Given that the K-nn algorithm was not 

explicitly designed to preserve monthly statistics, the fit is quite impressive.  For 

maximum temperature (Figure 3), the downscaled values in all cases were able to capture 

the historical observations.  Unlike precipitation, the ensemble spread (interquartile range 
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in the box plots) was minimal in case of temperature.  Similar results were noted for other 

forecast lead-times. 

 

4.2 Bias 

Bias is defined as the deviation of the expected value of a given variable from its 

true value.  We estimated the median absolute bias (MABl) for each forecast lead-time (l) 

and month as following. 

 

∑
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where, ndays is the total number of days in the time series for a given month (e.g., 

ndays=620 for January from 20 years of data and with no missing values); lO  is the 

expected value of the observed variable (precipitation or temperature) for lead time l (i.e., 

climatological mean), and l
iO  is the observation for day i and lead time l.  Similarly, e

lY  

is the expected value of the downscaled variable for lead-time l and ensemble member e, 

and el
iY )(  is the downscaled variable value for day i, lead-time l, and ensemble member 
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e.  Then we calculate the absolute bias for a given ensemble member, and use the nens 

(equal to 105) ensemble members to calculate the median absolute bias (MABl) for lead-

time l (Equation 11c). For precipitation, the absolute bias was expressed as a percentage 

of lO .  In other words, the absolute difference term within the square brackets of 

Equation (11c) was expressed as, l
e

ll OYO 100|| ×− . 

Figure 4 shows the bias for precipitation for each of the four basins for the month 

of January.  Once again, these biases are median absolute biases, and are expressed as a 

percentage of the mean climatology. The box-plots correspond to the spread from the 

number of closest stations (shown in parenthesis) in a given basin.  The median bias 

(estimated from the closest stations for a given basin) for all the basins is within 20%.  In 

some cases stations have biases greater than 20%.  Of all the four basins, the biases are 

largest for the Animas.  This is probably due to the fact that the Animas is the driest of all 

the four basins with an average January precipitation of about 1.28 mm.  The temperature 

biases (not shown) were quite small, and typically were within 0.5 oC. 

 

4.3 Spatial Correlations 

Spatial auto correlations are used to check how well the K-nn algorithm performs 

in preserving the spatial autocorrelation.  The Pearson correlation (hereafter correlation) 

between two example stations 1 and 2 (say) was estimated as following. 

Let, e
lY1  and e

lY2  be the vector of downscaled values for a given variable (e.g. 

precipitation) for lead-time l from ensemble member e.  That is, 
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where, i
e
lY )( 1  and i

e
lY )( 2  are the downscaled variable values for lead-time l, ensemble 

member e, and day i for stations 1 and 2 respectively; and i = 1, … ndays.  Next we 

calculate the correlation ( e
lρ ) for a given ensemble member (e) and lead-time (l) using 

the vectors e
lY1  and e

lY2 .  That is, 
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where, E[.]  is the expected value; Ï1 and Ï2 are the standard deviations of e
lY1  and e

lY2  

respectively. 

Figure 5 shows the correlation box plots (for a given l using the 105 ensemble 

members of e
lρ ) over 14-day forecast lead-time between two example stations in the 

Animas Basin (CO 4734 and CO 1609), and Figure 6 presents similar results for two 

stations in the Alapaha Basin (GA 0140 and GA 2266) for winter and summer 

precipitation and temperature.  Since we pick up the data for all stations on a given day, 

the K-nn method intrinsically preserves the spatial auto correlation structure. 

For precipitation, in the case of the Animas Basin, which overall is a dry basin, 

the observed spatial correlation is about 0.2 for both January and July.  These observed 
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spatial correlations are quite small.  Since the Animas is located in a region of significant 

topography (see Figure 1), elevation differences and measurement errors in precipitation 

can contribute to low observed spatial correlation values.  In the case of Alapaha, which 

is relatively flat, and wetter, we see a high degree of spatial correlation (about 0.7) 

between the example stations in January.  In July, the spatial correlation diminishes. 

For temperature (see Figures 5 and 6), the box plots of downscaled values 

adequately bracket the observed spatial correlation.  The temperature correlations among 

the stations are very similar for winter and summer in both the basins, and the biases are 

quite small in all cases. 

Also, since the same day is used to select the values of the precipitation and 

temperature fields, the cross-correlations (not shown) are also intrinsically preserved by 

this downscaling method. 

 

4.4 Forecast Skill 

The probabilistic skill of the downscaled precipitation and temperature forecasts 

was assessed using the Ranked Probability Skill Score (RPSS) [Wilks, 1995].  The RPSS 

is based on the ranked probability score (RPS) computed for each downscaled forecast 

and observation pair: 
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where Ym is the cumulative probability of the forecast for category m, and Om is the 

cumulative probability of the observation for category m.  This is implemented as 
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follows.  First, the observed time series is used to distinguish ten (J) possible categories 

for forecasts of precipitation and temperature (i.e., the minimum value to the 10th 

percentile, the 10th percentile to the 20th percentile … the 90th percentile to the maximum 

value).  These categories are determined separately for each month, variable, and stations 

in the basin.  Next, for each forecast-observation pair, the number of ensemble members 

forecast in each category is determined (out of 105 ensemble members), and their 

cumulative probabiliti es are computed.  Similarly, the appropriate category for the 

observation is identified and the observation’s cumulative probabiliti es are computed 

(i.e., all categories less than the observation’s position are assigned “0” and all categories 

equal to and greater than the observation’s position are assigned “1”).  Now, the RPS is 

computed as the squared difference between the observed and forecast cumulative 

probabiliti es, and the squared differences are summed over all categories (Equation 14). 

The RPSS is then computed as, 

 

lim

1
cRPS

RPS
RPSS −=             (15) 

 

where RPS  is the mean ranked probabilit y score for all forecast-observation pairs, and 

limcRPS  is the mean ranked probabilit y score for climatological forecast.  For 

temperature, limcRPS  is computed using an equal probabilit y in each of the m categories 

defined in Equation 14 (i.e., 1/J); for precipitation, the probabilit y for the first category 

(zero precipitation) is taken as the observed probabilit y of no precipitation, and the 

probabilit y for all other categories is taken as 1/(J - 1) [see Equation (14)].  An RPSS of 
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0.0 indicates no difference in skill over the reference climatological forecast ( limcRPS ), 

and an RPSS of 1.0 indicates a perfect forecast.  Negative RPSS implies that the model 

performs worse than climatology.  Here, RPSS was estimated separately for each forecast 

lead-time, for each month, and for each station in the basin.  The median RPSS was then 

calculated from the station RPSS values for each of the basins. 

Figures 7 and 8 show plots of median RPSS for precipitation and temperature 

respectively.  These plots show the months along the abscissa and forecast lead-times 

along the ordinate, and with darker shades representing regions of higher skill.  For 

precipitation (Figure 7), in all the basins higher skills are obtained during the fall and 

winter months, and extend for only short forecast lead-times (e.g., up to 3 days in the case 

of Cle Elum).  Winter time skill scores are around 0.4 for all of the basins.  This means 

that the K-nn downscaled forecasts are 40% time superior over the reference 

climatological forecasts.  In summer, the skills drops down considerably even at short 

forecast lead-times.  However for Cle Elum, we see higher skills even during the summer 

time.  This is due to the fact that the basin is the driest during the summer months (see 

Figure 2), and higher skill arises from consistent dry forecasts from the downscaling 

model. 

For temperature (Figure 8) the skills are higher than that of precipitation, with a 

maximum for all the basins to be around 0.5.  Higher skills are generally observed during 

all the seasons, and are valuable up to lead-times of 5 days.  Also for both temperature 

and precipitation, the results overall are very consistent showing skills diminishing with 

an increase in forecast lead-times. 
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Since the RPSS is only a single number it is a useful measure to rank competing 

forecasts, but does not illuminate the underlying basis for the forecast errors.  For 

example [Hamill, 1997], are the forecasts too specific, or biased? Are 25% of the 

forecasts on average below the 25th percentile of forecast distribution?  Thus we need 

additional forecast verification measures to address such issues.  The reliability diagram 

[Wilks, 1995] is a frequently used tool in probabilistic forecast verification, and is 

discussed in the next section. 

 

4.5 Forecast Reliability 

The fundamental interest in forecast verification is to analyze the joint probability 

distribution of forecasts and observations [Wilks, 1995].  Let iy  denote discrete forecasts 

that can take one of the any I values Iyyy ,,, 21 � ; and jo  be the corresponding 

observations (discrete), which can have any of the J values Jooo ,,, 21 � .  Then the joint 

probability mass function, p(yi, oj), of the forecasts and observations is given by, 

 

JjIioyPoyp jiji ,,1;,,1;)(),( �� ==∩=          (16) 

 

Using the multiplication rule of probability [e.g., Ang and Tang, 1975, p. 43], Equation 

16 can be factored as, 

 

)()|(),( iijji ypyopoyp =            (17) 
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where, )|( ij yop  is the conditional probabilit y implying, how often each possible event 

(out of J outcomes) occurred on those occasions when the single forecast iy  was issued; 

and )( iyp  is the unconditional (marginal) distribution that specifies the relative 

frequencies of use of each of the forecast values iy . 

The reliabilit y diagram graphically represents the performance of probabilit y 

forecasts of dichotomous events, and depicts the conditional probabilit y that an event 

occurred (say, o1), given the different probabili stic forecasts (yi).  That is, the observed 

relative frequency, p(o1 | yi), as a function of the forecast probabilit y )( iyp .  This was 

implemented as follows. 

First, the ensemble output (105 ensemble members) for a given basin is converted 

into probabili stic forecasts (i.e., the probabilit y a specific event occurs).  In this case, the 

“event” is that the day is forecasted to lie in the upper tercile of the distribution, and the 

probabilit y is simply calculated as all ensemble members in the upper tercile divided by 

the total number of ensemble members.  The upper tercile was chosen to focus attention 

on events such as heavy precipitation and high temperatures that can cause significant 

changes to streamflow.  Next, the observed data is converted to a binary time series—a 

day is assigned “one” if the data lies in the upper tercile and “zero” if the data does not.  

The above steps produce a set of probabili stic forecast-observation pairs for each 

variable, station, month, and forecast lead-time.  Finally, the forecasted probabiliti es are 

classified into I categories (i.e., probabiliti es between 0.0 and 0.1, between 0.1 and 0.2 … 

between 0.9 and 1.0, a total of 10 categories), and for each category both the average 

forecasted probabilit y and the average of the observed binary data is calculated.  It should 

also be noted that the number of categories used affects the forecast resolution (i.e. the 
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ability to distinguish sub-sample forecast periods with different relative frequencies of 

the event).  These averaged observed relative frequency and forecast probability values 

were then plotted to form the basic reliability diagram. 

Reliability diagrams for January precipitation and maximum temperature in the 

four study basins at 5-day forecast lead-time are shown in Figures 9 and 10 respectively.  

For precipitation, if there were less than one-third of days with precipitation, a value of 

zero was used for the probabilities in the reliability diagrams.  The 1:1 diagonal in these 

figures represent the perfect reliability line, and the inset histogram shows the frequency 

of use of each of the forecasts, )( iyp .  Also, to construct the reliability diagrams for each 

basin as a whole, the forecast-observation pairs were lumped together from all stations in 

that basin (see Table 1).  Results show that, overall, the forecasted probabilities match the 

observed relative frequencies remarkably well for both precipitation and temperature.  In 

case of precipitation (Figure 9), for example, in the case of the Alapaha Basin, we see 

some tendency of higher observed relative frequency at lower forecasted probabilities 

and the opposite at higher forecasted probabilities.  In other words, when a low 

probability of the event is forecasted, the actual occurrence of the event is more common, 

and vice-versa.  Also note that, the sample size at high forecast probabilities is often very 

small, except in case of the Cle Elum.  This Basin in the Pacific Northwest receives 

considerable precipitation in January, and we have enough sub-samples in each of the 

forecasted probabilities (see inset histogram in Figure 9c), i.e., we have excellent 

resolution and reliability in our downscaled forecasts. 

For the case of maximum temperature (Figure 10), in general we have sharper 

forecasts (high resolution) at the price of some reduced reliability.  In particular for the 



 25 

Cle Elum and East Carson, where we can see more frequent occurrences of the event 

when the forecast probability was slightly lower.  Reliability diagrams similar to the 

above were also plotted for the month of July (not shown).  Overall results were similar 

to January, but for precipitation in the East Carson, practically all the forecasted 

probabilities (frequency of usage) were within the lowest category (0.0-0.1), and imply 

the presence of rare events.  Though these forecasts were reliable, it exhibits minimal 

resolution. 

Once again, the results are overall quite impressive, and demonstrate that the 

proposed K-nn algorithm can be used to generate reliable forecasts with negligible 

conditional bias. The reliability of the forecasts was further evaluated using rank 

histograms. 

 

4.6 Rank Histograms 

Rank histograms were used to evaluate the reliability of ensemble forecasts, and 

for diagnosing errors in its mean and spread.  Rank histograms for a given month and 

forecast lead-time were constructed by repeatedly tallying the ranks of the observed 

precipitation and temperature values relative to values from the 105 member ensemble.  

The process to obtain the rank histogram for precipitation is slightly different from that of 

temperature because of the presence of a large number zero precipitation days in the 

observed and ensemble precipitation time-series.  For temperature the rank histogram was 

implemented as following. 

Let for a given forecast day (say, j), and forecast lead-time (say, l), 

),,( )()1( nxxX �=  be the sorted n-member ensemble (n = 105 in this study), and V be the 
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observed temperature.  Then the rank of V which can have (n + 1) possible values relative 

to the sorted ensemble is obtained.  Let this rank be denoted by l
jr .  If say there were 

20 years of data, then for January (assuming no missing observations), there would be 

620 (31days 3 20 years) time-elements in this time-series for a given forecast lead-time.  

By tallying the ranks of the observed through this time-series we can obtain a vector of 

ranks for the selected month (m) and lead-time ( l
mR ),  

 

Tl
N

lll
m rrrR ],,,[ 21 �=             (18) 

 

where N is the length of the time-series (or sample size, e.g., 620).  The elements of l
mR  

are then binned into the (n + 1) possible categories for constructing the rank histogram.  

So the rank histogram constitutes the rank of the observed, and the probability of the rank 

to fall in any one of the (n + 1) categories. 

In case of precipitation when there are zero precipitation days in the observed and 

ensemble time-series, a modified rule for rank assignment was implemented [Hamill and 

Colucci, 1998].  If say there are M members tied with the verification (i.e., M ensemble 

members with zero precipitation), a total of (M + 1) uniform random deviates [Press et 

al., 1992] are generated corresponding to the M members, and one for the observed zero 

precipitation.  Then the rank of the deviate corresponding to the observed in the pool of 

(M + 1) deviates is determined.  The rank histogram is then constructed in a manner 

similar to the one described for temperature. 

To interpret the rank histograms it is assumed that the observations and the 

ensemble members are samples from the same probability distribution.  In that case, 
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counting the rank of the observation over several independent samples, an approximately 

uniform distribution should result across the possible ranks, i.e., 

 

1

1
)]([ )()1( +

=<≤− n
xVxPE ii             (19) 

 

where, E[.] denotes the expected value and P the probability.  Hamill [2001] describes 

the interpretation of rank histograms, and provides these guidelines.  When the ensemble 

members are from a distribution with lack of variability, a U-shaped rank histogram 

results.  An excess of variability in the ensemble members on the other hand 

overpopulates the middle ranks, and ensemble bias (positive or negative) excessively 

populates the (left or right) extreme ranks. 

Figures 11 and 12 show the basin rank histograms for precipitation and maximum 

temperature respectively.  Basin rank histograms were constructed by pooling in ranks 

from all stations for a given basin.  The basin rank histograms are shown for January at 

5-day lead-time.  For precipitation (Figure 11), the rank histograms are relatively flat, 

demonstrating that the K-nn method produces realistic ensemble spread.  The noise in the 

rank histograms simply reflects the noisy character of the precipitation time-series.  For 

temperature (Figure 12), the basin rank histograms are largely uniform in the middle 

ranks, except at the extremities where we observe some bias.  We see that on average, 

nearly 2% of the time, the observed temperature can be lower (greater) than the lowest 

(highest) ensemble member. 

In general, from all the cases (including summer) we see from the precipitation 

rank histograms that, the ensembles are relatively flat, and for temperature there is only a 
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small fraction of cases (~2%) when the observed falls outside the ensemble range.  We 

also constructed rank histograms for each of the individual stations used in the study (see 

Table 1), and overall found no unusual behavior in the structure of the rank histograms.  

The next step then is, can we use the ensemble spread information to predict forecast 

skill?  This topic is discussed in the next section. 

 

4.7 Spread-skill Relationships 

Ensemble forecasts provide an estimate of the forecast probability distribution - if 

the spread of this distribution varies from forecast to forecast, then the spread in the 

distribution may be related to the forecast skill [Kalnay and Dalcher, 1987; Whitaker and 

Loughe, 1998].  To analyze the spread-skill relationship we first need to select 

appropriate measures to define the ensemble spread and ensemble skill.  We used three 

measures of ensemble spread, (i) standard deviation of the ensembles, (ii) interquartile 

range, and (iii) the 95th minus the 5th quantiles.  As skill measures we used, (i) RPSS, and 

(ii) the absolute error of the ensemble mean (absolute difference between the observed 

and the ensemble mean).  The utility of ensemble spread as a predictor of ensemble skill 

has traditionally been measured in terms of linear correlation, although Whitaker and 

Loughe [1998] suggest an analysis of the joint spread-skill probability distribution. 

Contingency table of spread (ensemble standard deviation) and skill (RPSS) for 

5-day forecasts of January precipitation for example station WA0456.COOP is given in 

Table 2.  Here we considered all days for which the observed precipitation was greater 

than 0.01 inch (0.3 mm).  The entries in the table are the joint probability of obtaining the 

spread and skill values in the indicated quintiles.  The columns are spread quintiles, and 
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the rows are skill quintiles.  If there were no correlation between spread and skill, all 

entries in the table would be equal to 0.2.  On the other hand, if there was a perfect linear 

relationship between spread and skill (correlation equal to one), all the diagonal elements 

would be one and the off-diagonals would be zero.  Many of the entries in Table 2 are not 

very different from 0.2, except at the corners.  For example, if the spread is in the lowest 

quintile, there is about 2.5 times higher probability of the skill to be in the lowest, rather 

than the highest quintile.  This observation was consistent among all stations in the study. 

To summarize the contingency table for all stations in a basin, we constructed box 

plots showing the variation of the joint spread-skill probability for all spread and skill 

quintiles.  Results are shown for January precipitation at 5-day forecast lead-time for the 

Animas and Alapaha basins in Figures 13 and 14 respectively.  In each of these figures 

we show three cases: (1) considering all days (left column); (2) days with precipitation 

within 0 mm and 0.3 mm, including the zero precipitation days (middle column); and (3) 

days with precipitation greater than 0.3 mm (right column).  For each spread quintile, box 

plots are plotted showing the variation of the joint probability of spread-skill in all 

stations of the Basin with the skill quintiles as the abscissa.  The dashed horizontal line 

corresponds to a joint probability value of 0.2 when there is no spread-skill correlation. 

In both Figures 13 and 14 we see that when all days are considered, and also for 

the case where precipitation is within 0.3 mm (with zero precipitation days included), the 

spread-skill relationship is negatively correlated.  That is, for lower spread, there is a 

higher probability of greater skill.  Here a large number of ensemble members with zero 

precipitation contribute to both a lower ensemble spread and higher skill for small 

precipitation amounts.  Conversely, a small number of ensemble members with zero 
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precipitation contribute to higher ensemble spread and lower skill for small precipitation 

amounts.  Unfortunately, these results do not allow us to construct any meaningful 

spread-skill relationships in order to place time-variant confidence limits on precipitation 

forecasts. 

Similar box plots for maximum temperature (here data from all days were used) 

are shown for the Animas (left column) and Alapaha (right column) basins in Figure 15.  

In all cases we see that the boxes are close to the dashed horizontal line (i.e. joint 

probability value of 0.2), and implies that there is no spread-skill correlation.  Similar 

results for both precipitation and temperature were observed for July. 

All the results presented here used standard deviation and RPSS as the spread and 

skill measures respectively.  Analysis was also carried out using the other spread and skill 

measures and the results were found to be robust, that is, the underlying spread-skill 

relationships do not change with the choice of different measures.  Also, though no clear 

spread-skill relationships were apparent here, the K-nn method is theoretically capable of 

extracting the spread-skill relationship if it exists in the atmospheric model. 

 

5.  Summary and Conclusions 

A method for statistical downscaling using the K-nn algorithm in eigen space was 

developed.  A twenty-year (1979-1998; 7305 days) data archive consisting of model 

outputs from the NCEP 1998 version of the operational medium range forecast (MRF) 

model from NOAA/CDC was used in this study.  A total of 15 MRF runs (one control 

run plus 14 ensemble members) were available for analysis.  Seven MRF model output 

variables going out to lead-time of 14 days was used in the downscaling algorithm.  
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Analogs to (7305 3 14) feature days using a 14-day temporal window were subsequently 

identified.  All data were projected onto eigen-space, and distance between a feature day 

and all candidate days were calculated using a weighted Euclidian norm.  The weighting 

used considered the fractional variance explained by a given principal component.  The 

distances were then sorted in ascending order, and weights were assigned to each using 

the bi-square weight function.  Based on the weights, and repeatedly generated uniform 

random numbers a set of seven ensemble members were created from each MRF run. 

Results were assessed over four river basins distributed across the contiguous US.  

These were, Animas (southwest Colorado); Alapaha (southern Georgia); Cle Elum 

(central Washington); and east fork of the Carson (California Nevada border). The K-nn 

downscaling algorithm was repeated for the 15 MRF runs and for the four basins.  Since 

from each MRF run 7 ensemble members were generated, the 15 MRF runs yielded a 

total of 105 ensemble members for each basin.  To obtain local estimates of precipitation 

and temperature, closest COOP stations (within a 100 km search radius) from the center 

of the basins were selected, and observed data corresponding to the downscaled dates 

were used to obtain these estimates.  The precipitation and temperature estimates from 

these 105 ensemble members over 20 years and 14-day forecast lead-times were used to 

evaluate the K-nn downscaling methodology. 

The statistics included, seasonal cycles, bias, spatial correlations, and a suite of 

forecast verification statistics.  The K-nn downscaling model in all cases largely captured 

the seasonal variation of precipitation and temperature.  Precipitation biases were 

generally within 20%, but in many cases (mostly for the climatologically drier Animas 

Basin at longer lead-times) exceeded 20%.  This is consistent with the noisy character of 
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precipitation time series.  Temperature biases were small, and within 0.5 oC.  Since we 

use data for all stations on a given day, the K-nn method intrinsically preserves the spatial 

auto correlation structure, and the consistency between variables.  Also, since this method 

relies solely on the climate model output and does not incorporate any joint relationship 

between the atmospheric and surface variables it does not fully preserve the lag-one 

correlation statistics (not shown). 

Next we evaluated the skill, reliability, and time-variant spread-skill relationships 

in the downscaled forecast ensembles.  The rank probability skill score (RPSS) was used 

to verify the forecast skills.  For precipitation, the skills generally were higher in winter 

than in summer and valid at only short forecast lead-times (2-3 days).  Temperature 

RPSS scores were around 0.5 and valuable skill was present even up to lead-times of 5 

days in all seasons.  Forecast reliability or conditional bias were evaluated using 

reliability diagrams, and we found that the observed relative frequencies of the event 

(days being in the upper tercile) matched well with forecasted probabilities, and there was 

very little conditional bias in the forecasts. 

Rank histograms showed that, although precipitation ensembles are to an extent 

noisy, the ensemble spread is nevertheless meaningful.  For temperature, the observed 

fell outside the ensemble range in about 2% cases.  Next, we analyzed possible spread-

skill relationships.  We did not find a meaningful relationship to forecast precipitation 

forecast skills.  For temperature, results clearly showed that there is no relationship 

between the ensemble spread and skill. 

Though regression based approaches are widely used to extract local scale 

information from forecast models [e.g., Antolik, 2000] these methods are not data-driven, 
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they need variable transformations, they do not intrinsically preserve space-time auto and 

cross-correlations of the downscaled variables, and cannot be utilized to investigate 

spread-skill relationships.  We however did a comparison to test the skill (RPSS) of the 

K-nn approach with a multiple linear regression (MLR) based downscaling method (see 

Clark and Hay [2004] and Clark et al. [2004] for description of the MLR method).  

Results of this comparison are summarized in box plots shown in Figures 16 and 17 for 

precipitation and temperature respectively.  Given that the K-nn algorithm does not use 

the joint relationship between forecast model output and station data results are extremely 

impressive.  The skill obtained from the K-nn method is competitive with the skill 

obtained using MLR.  The MLR utilizes the joint relationship between surface and 

atmospheric variables, and needs post-processing to reconstruct the space-time variability 

between the ensembles (typically the downscaling is done for each station individually).  

The PCs also provide a consistent spatial representation, whereas the variables in case of 

MLR typically change from one station to the other. 

The marginally higher skills that are seen in case of MLR, is also due to the fact 

that the 15-member ensemble mean from the MRFs are used as predictors.  Furthermore, 

the sum of squared errors between observed and downscaled values at each station is 

explicitly minimized in developing the MLR models.  Finally, the K-nn method is 

computationally efficient and can be readily implemented.  The results described here 

demonstrate the strength of this algorithm and provides a viable alternative in providing 

skillful and reliable downscaled forecasts to transfer function based downscaling 

methods. 
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Table 1.  List of stations used in each of the four study basins. 
 

Animas (CO),  Lat = 37.50 oN; Lon = 107.50 oW Alapaha (GA), Lat = 31.35 oN; Lon =  83.22 oW 
# LAT LON Station ID # LAT LON Station ID 
1 38.40 107.52 CO1609.COOP 1 31.58 84.17 GA0140.COOP 
2 37.23 108.05 CO3016.COOP 2 31.53 82.52 GA0211.COOP 
3 37.77 107.13 CO3951.COOP 3 31.18 84.20 GA1500.COOP 
4 38.03 107.32 CO4734.COOP 4 31.97 83.78 GA2266.COOP 
5 37.20 108.49 CO5531.COOP 5 31.52 82.85 GA2783.COOP 
6 38.13 108.29 CO6012.COOP 6 32.20 83.21 GA2966.COOP 
7 38.02 107.67 CO6203.COOP 7 31.72 83.25 GA3386.COOP 
8 37.24 107.02 CO6258.COOP 8 31.03 82.80 GA4429.COOP 
9 37.71 108.04 CO7017.COOP 9 31.17 83.75 GA6087.COOP 

10 37.73 107.27 CO7050.COOP 10 31.48 83.53 GA8703.COOP 
11 37.95 107.87 CO8204.COOP       
12 37.38 107.58 CO8582.COOP       
13 36.83 108.00 NM0692.COOP       
14 36.94 107.00 NM2608.COOP       
15 36.82 107.62 NM6061.COOP         

Cle Elum (WA), Lat = 47.37 oN; Lon = 121.05 oW Carson (CA-NV), Lat = 38.55 oN; Lon = 119.80 oW 
# LAT LON Station ID # LAT LON Station ID 
1 47.77 121.48 WA0456.COOP 1 39.38 120.10 CA0931.COOP 
2 47.17 122.00 WA0945.COOP 2 38.25 119.23 CA1072.COOP 
3 47.42 121.73 WA1233.COOP 3 38.28 120.32 CA1277.COOP 
4 47.84 120.04 WA1350.COOP 4 38.25 120.86 CA1428.COOP 
5 47.18 120.92 WA1504.COOP 5 37.97 119.92 CA1697.COOP 
6 47.00 120.52 WA2505.COOP 6 39.32 120.23 CA2467.COOP 
7 47.38 121.97 WA4486.COOP 7 39.17 120.13 CA8758.COOP 
8 47.13 122.27 WA5224.COOP 8 38.45 120.50 CA8928.COOP 
9 47.85 121.98 WA5525.COOP 9 39.33 120.18 CA9043.COOP 

10 47.15 121.93 WA5704.COOP 10 38.70 120.03 CA9105.COOP 
11 47.30 121.85 WA6295.COOP 11 37.76 119.59 CA9855.COOP 
12 47.18 119.87 WA6880.COOP 12 39.15 119.77 NV1485.COOP 
13 47.45 122.30 WA7473.COOP 13 39.08 119.95 NV3205.COOP 
14 47.54 121.84 WA7773.COOP 14 39.00 119.75 NV5191.COOP 
15 47.87 121.72 WA8034.COOP 15 39.08 119.12 NV8822.COOP 
16 47.43 120.31 WA9074.COOP 16 39.00 119.17 NV9229.COOP 
17 47.40 120.21 WA9082.COOP       
18 46.57 120.54 WA9465.COOP         
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Table 2.  Contingency table of spread (ensemble standard deviation) and skill (RPSS) for 
5-day forecasts of January precipitation for station WA0456.COOP when the 
observed precipitation is greater than 0.3 mm.  The entries in the table are the 
joint probability of obtaining the spread and skill values in the indicated quintiles.  
The columns are spread quintiles, and the rows are skill quintiles. 

 
 0%-20% 20%-40% 40%-60% 60%-80% 80%-100% 

0%-20% 0.47 0.14 0.14 0.22 0.03 
20%-40% 0.09 0.33 0.29 0.18 0.11 
40%-60% 0.14 0.24 0.20 0.26 0.16 
60%-80% 0.11 0.19 0.27 0.20 0.23 

80%-100% 0.19 0.10 0.10 0.14 0.47 
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Figure Captions 
 
Figure 1.  Location and topography of the study basins. 
 
Figure 2.  Box plots of total monthly precipitation from the 105 ensemble members for 

selected stations in the four study basins: (a) CO1609, (b) GA0140, 
(c) WA0456, and (d) CA0931.  Results are shown for lead-time 5 day.  The 
solid line and marks are the same statistics derived from the historical data for 
the period 1979 to 1998. 

 
Figure 3.  Same as Figure 2, but for temperature. 
 
Figure 4.  Box plots of median absolute bias (in percentage) for January precipitation for 

the 14-day forecast lead-times in case of the four basins.  The box plots are 
plotted using the number of stations shown in parenthesis following the basin 
names. 

 
Figure 5.  Box plots of spatial auto-correlation from the 105 ensemble members between 

stations CO1609 and CO4734 in the Animas Basin for the 14-day forecast 
lead-times.  Precipitation correlations are in the left column for January (top) 
and July (bottom), and temperature correlations are in the right column for 
January (top) and July (bottom).  The dotted horizontal line is the observed 
spatial correlation between these two stations derived from the historical data 
for the period 1979-1998. 

 
Figure 6.  Same as Figure 5, but for stations GA0140 and GA2266. 
 
Figure 7.  Median RPSS for precipitation in the four basins: (a) Animas, (b) Alapaha, (c) 

Cle Elum, and (d) East Carson.  The months (January-December) are the 
horizontal axis, and lead-times are in the vertical axis. 

 
Figure 8.  Same as Figure 7, but for temperature. 
 
Figure 9. Basin reliability diagram for January precipitation in the four basins: 

(a) Animas, (b) Alapaha, (c) Cle Elum, and (d) East Carson, at 5-day forecast 
lead-time. Inset histograms indicate frequency of use of the forecasts. 

 
Figure 10.  Same as Figure 9, but for temperature. 
 
Figure 11.  Rank histogram for January precipitation at 5-day forecast lead-time with 105 

members for the four basins. 
 
Figure 12.  Same as Figure 11, but for temperature. 
 
Figure 13.  Box plots of joint spread-skill probability for skill quintiles at given spread 

quintiles.  The vertical axis is the joint probability of spread (ensemble 
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standard deviation) and skill (RPSS), and the horizontal axis shows the skill 
quintiles.  Results are shown for January precipitation at 5-day forecast lead-
time for the Animas basin.  The box plots are constructed using data from all 
the stations in the basin.  Three cases are shown: using data from all days (left 
column); using data for days when the observed precipitation is between 0 and 
0.3 mm (both values inclusive) (middle column); and when the observed 
precipitation is greater than 0.3 mm (right column).  The dashed horizontal 
line in each plot corresponds to joint probability value of 0.2 when there is no 
spread-skill relationship. 

 
Figure 14.  Same as Figure 13, but for the Alapaha basin. 
 
Figure 15.  Box plots of joint spread-skill probability for skill quintiles at given spread 

quintiles.  The vertical axis is the joint probability of spread (ensemble 
standard deviation) and skill (RPSS), and the horizontal axis shows the skill 
quintiles.  Results are shown for January maximum temperature at 5-day 
forecast lead-time for the Animas (left column), and Alapaha (right column) 
basins.  The box plots are constructed using data from all the stations in the 
basins.  The dashed horizontal line in each plot corresponds to joint 
probability value of 0.2 when there is no spread-skill relationship. 

 
Figure 16.  Box plots comparing skills (RPSS) in precipitation forecasts in the four study 

basins obtained from downscaling using KNN (not-shaded), and MLR 
(shaded): (a) January precipitation for lead-time 1-day; (b) January 
precipitation for lead-time 5-day; (c) July precipitation for lead-time 1-day; 
and (d) July precipitation for lead-time 5-day. 

 
Figure 17.  Same as Figure 16, but for temperature. 
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Figure 1.  Location and topography of the study basins. 
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Figure 2.  Box plots of total monthly precipitation from the 105 ensemble members for 

selected stations in the four study basins: (a) CO1609, (b) GA0140, 
(c) WA0456, and (d) CA0931.  Results are shown for lead-time 5 day.  The 
solid line and marks are the same statistics derived from the historical data for 
the period 1979 to 1998. 
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Figure 3.  Same as Figure 2, but for temperature. 
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Figure 4.  Box plots of median absolute bias (in percentage) for January precipitation for 

the 14-day forecast lead-times in case of the four basins.  The box plots are 
plotted using the number of stations shown in parenthesis following the basin 
names. 
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Figure 5.  Box plots of spatial auto-correlation from the 105 ensemble members…  
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Figure 6.  Same as Figure 5, but for stations GA0140 and GA2266. 
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Figure 7.  Median RPSS for precipitation in the four basins: (a) Animas, (b) Alapaha, (c) 

Cle Elum, and (d) East Carson.  The months (January-December) are the 
horizontal axis, and lead-times are in the vertical axis. 
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Figure 9.  Basin reliability diagram for January precipitation in the four basins: 

(a) Animas, (b) Alapaha, (c) Cle Elum, and (d) East Carson, at 5-day forecast 
lead-time. Inset histograms indicate frequency of use of the forecasts. 
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Figure 10.  Same as Figure 9, but for temperature. 
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Figure 11.  Rank histogram for January precipitation at 5-day forecast lead-time with 105 

members for the four basins. 



 53 

rank

P
(r

an
k)

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 16 31 46 61 76 91 106

(a) anmas  JAN TMAX lead−time, 5  day

rank

P
(r

an
k)

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 16 31 46 61 76 91 106

(b) alapa  JAN TMAX lead−time, 5  day

rank

P
(r

an
k)

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 16 31 46 61 76 91 106

(c) celum  JAN TMAX lead−time, 5  day

rank

P
(r

an
k)

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

1 16 31 46 61 76 91 106

(d) carsn  JAN TMAX lead−time, 5  day

 
 
Figure 12.  Same as Figure 11, but for temperature. 
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Figure 13.  Box plots of joint spread-skill probability for skill quintiles at given spread quintiles.  

The vertical axis is the joint probability of spread (ensemble standard deviation) and 
skill (RPSS), and the horizontal axis shows the skill quintiles.  Results are shown for 
January precipitation at 5-day forecast lead-time for the Animas basin.  The box plots 
are constructed using data from all the stations in the basin.  Three cases are shown: 
using data from all days (left column); using data for days when the observed 
precipitation is between 0 and 0.3 mm (both values inclusive) (middle column); and 
when the observed precipitation is greater than 0.3 mm (right column).  The dashed 
horizontal line in each plot corresponds to joint probability value of 0.2 when there is 
no spread-skill relationship. 
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Figure 14.  Same as Figure 13, but for the Alapaha basin. 
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Figure 15.  Box plots of joint spread-skill probability for skill quintiles at given spread 
quintiles.  The vertical axis is the joint probability of spread (ensemble standard 
deviation) and skill (RPSS), and the horizontal axis shows the skill quintiles.  Results are 
shown for January maximum temperature at 5-day forecast lead-time for the Animas (left 
column), and Alapaha (right column) basins.  The box plots are constructed using data 
from all the stations in the basins.  The dashed horizontal line in each plot corresponds to 
joint probability value of 0.2 when there is no spread-skill relationship. 
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Figure 16.  Box plots comparing skills (RPSS) in precipitation forecasts in the four study 

basins obtained from downscaling using KNN (not-shaded), and MLR 
(shaded): (a) January precipitation for lead-time 1-day; (b) January 
precipitation for lead-time 5-day; (c) July precipitation for lead-time 1-day; 
and (d) July precipitation for lead-time 5-day. 
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Figure 17.  Same as Figure 16, but for temperature. 
 


