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Abstract. Nearest neighbor forecasting models are attractive with their
simplicity and the ability to predict complex nonlinear behavior. They
rely on the assumption that observations similar to the target one are also
likely to have similar outcomes. A common practice in nearest neighbor
model selection is to compute the globally optimal number of neighbors
on a validation set, which is later applied for all incoming queries. For
certain queries, however, this number may be suboptimal and forecasts
that deviate a lot from the true realization could be produced.

To address the problem we propose an alternative approach of training
ensembles of nearest neighbor predictors that determine the best number
of neighbors for individual queries. We demonstrate that the forecasts of
the ensembles improve significantly on the globally optimal single pre-
dictors.

1 Introduction

K-nearest neighbor (k-NN) methods for forecasting work by first identifying the
k most similar time series to a given query and then, by combining their historical
continuations, evaluate the expected outcome for the query. The methods are
linear with respect to the model parameters, and yet they turn out to be suitable
for predicting highly nonlinear fluctuations too. This is due to the fact that the
identified neighbors themselves could comprise complex nonlinear patterns.

One significant drawback of the k-NN forecasts is their sensitivity to changes
in the input parameters, e.g. the number of nearest neighbors, the weighting
function, the prediction horizon or the length of the query vector. The impact of
the number of neighbors is especially interesting as the resulting models may have
intrinsically different characteristics. Namely, a forecast combining too many
neighbors, quite often turns out to be biased and one that uses just a few of
them, to have large variance. The effect is known as the bias-variance dilemma
[5] and has been observed before in the context of k-NN forecasting [3, 10]. Yet,
no consistent approach has been suggested that could improve the forecasts of
the method.

Here we propose a procedure, which rather than searching for the globally
optimal k-NN predictor, constructs an ensemble of two predictors {k;-NN, ko-
NN}, using a different number of neighbors k1 and ks respectively. For each



individual query the procedure selects one of the predictors from the ensemble
to perform the forecast. Suppose that we have an oracle that looks at the actual
continuation of every query and lets the method correctly pick the better of
the two predictors. Studying the performance of such ‘perfect’ ensembles we
observed the following effect. The ensembles which perform best, tend to have
distant values for k; and k2, with &y usually being very small (one or two nearest
neighbors). What is also interesting, is that most of the ensembles, even those
that are composed of suboptimal predictors, have better accuracy and stability
than the globally optimal single predictor.

The observation suggests that it is often the case when we can split the
queries into two distinct classes, one that requires a predictor using a small
number of neighbors and another one that is better predicted with large number
of neighbors. We can look at the globally optimal k-NN predictor as a safe
compromise for the two classes, such that does not perform too poorly on each
of them, but in general is not optimal for them either. Learning to separate those
two classes could give us a powerful tool for improving on the k-NN models and
in this work we demonstrate how this can be achieved. The potential of the
approach to reduce both the bias and the variance of the NN forecasts is also
illustrated.

The rest of the paper is organized as follows. In Section 2 we make an overview
of the NN forecasting literature. Section 3 defines the k-NN forecasting frame-
work. Section 4 describes the proposed method. An evaluation of the performance
of our approach as compared to the optimal single k-NN predictor is presented
in Section 5.

2 Related Work

Nearest neighbor forecasting methods have become popular with the advance-
ment in dynamic systems. The relevance of the methods for time series, arising
from such systems, is established by Taken’s ‘delay coordinate embedding the-
orem’ [12]. It states that if there are enough observations, one can reconstruct
the manifold representing the state space of the system. If a query is produced
by the same system, then it should be part of the manifold too and its outcome
will lie close to the outcome of its nearest neighbors.

The effectiveness of k-NN methods becomes apparent during the Santa Fe
forecasting competition [2], when they are demonstrated to be competitive to
other more complex methods as feedforward networks. Two entries from the
competition that use a k-NN model, submitted by Sauer [10] and Casdagli et al.
[3], show very good performance with Sauer taking second place on the Laser
generated data set (see Section 5.1). Both Sauer and Casdagli et al. discuss the
bias-variance problem of the forecasts but no principled approach for its solution
has been suggested.



3 Formalization

Let a time series y(t) = (z1,2,...,2¢) be defined as a sequence of scalar ob-
servations measured at equal intervals in time. In its general form the forecast-
ing problem targets the estimation of h consecutive future values, i.e. y,(h) =
(Tt41, Ty, ..., Te4n), using any of the currently available observations from y
(and possibly other time series). Here h is the user specified prediction horizon.

The available time series are organized in a training set by running a sliding
window of size [ along each of them. I.e. the set contains elements of the form
v (1) = (441, Tiyo, .o, Tryr), called lag vectors. Note, that if the initial obser-
vations are long enough, for most elements y,(/) the continuation y,,;(h) will
also be available in the training set. An estimate for the continuation of a query
vector q(1) is then computed by the k-NN predictor as the linear combination:

a.(h) = wiye, (h) +way?, (h) + .. + wiye, (h) (1)

where yi(h) is the continuation of the i-th nearest neighbor starting at time
point ¢;, and w(q) = (w1, ws, ..., wy) is a preselected weighting function (see
Section 3.3).

Equation (1) gives the direct forecast of the k-NN algorithm for h steps
ahead. A different type of prediction is the iterative one, where a single point is
predicted at a time and is afterwards appended to the query vector for subsequent
predictions. Iterative predictions are more accurate for short horizons, but as the
prediction error accumulates faster, for long horizons, direct predictions tend to
outperform them [8]. All results presented here are for direct forecasts, yet the
proposed ensemble scheme could as well be applied for the iterative predictions.

3.1 Similarity Metric

The majority of the works on NN forecasting utilize the Euclidean distance
[4,10], or some of its modifications. Two popular such modifications are the
standardized Euclidean distance in which the series are transformed to have a
mean zero and variance one [3], or the weighted Euclidean distance [9] which
assigns lower weights to coordinates in the lag vector that are further in time
from the target value. The weighted Euclidean distance complicates the model
by adding another parameter to it, and it also makes the forecast more sensitive
to the sizes of the lag vectors. The standardized Euclidean distance, on the other
hand, is not very robust to noise and to non-stationary first and second moments.

In the current implementation the data are also standardized, but then the
resulting vectors are compared with the scale-shift invariant distance metric,
discussed by Goldin et al. [6]. If q is the query, y is the lag vector and q, and
y, are their standardized representations, then the scale-shift transformation
further changes y, as: ¥ = ay, +b. The distance d(q,y) is now measured as the
Euclidean distance (Lg) between the standardized query and the transformed
neighbor, i.e. d(q,y) = L2(q,,¥). The coefficients a and b are estimated using
least square linear fit between q, and y,.



3.2 Estimating the Prediction Accuracy

To evaluate the proposed procedure we measure the root mean square error
(RMSE) between the actual outcome and the prediction, normalized respectively
by the standard deviations of the query and the linear combination of its nearest

neighbors: RMSE = \/% Z?zl(cth — q¢+i)?. The residual (Gs1; — g¢+4) stands
for the difference between the scalar prediction and the true outcome for time
point (¢ + 7). The RMSE has been the preferred error function for comparing
forecasting accuracy in a number of time series prediction competitions. It is
symmetric, i.e. both over or underestimating the true value are penalized equally,
and measures the loss in the same units as the recorded variable. As the outcome
and the forecast are normalized, for stationary time series the RMSE of the
simple mean value predictor is equal to one. This further provides a baseline for
comparing the goodness of a forecasting algorithm when evaluated on data sets
as the Laser oscillations in Section 5.1.

3.3 Weighting Functions

There are two conceptually different weighting schemes, that a NN model can
utilize, kernel regression and locally weighted regression (LWR) [1].

The kernel is a function of the distance between the query and its neighbors.
One popular kernel is the uniform one, assigning equal weights to all neighbors.
Atkeson et al. [1] argue that there is no clear evidence for the benefit of using a
particular kernel function with NN-learning in general. While our experiments
confirmed this observation, we also found out that the uniform kernel behaves
more coherently across different data sets and when the input parameters are
varied.

Rather than computing a distance function, LWR finds the linear combina-
tion of the neighbors that approximates most closely, in a least square sense, the
query. The heuristic assumption is then made that the same linear combination
of the neighboring continuations will also be the one that approximates best
the query outcome. This heuristic holds for short horizons, but as the horizon
increases, the assumption gets more unrealistic and the prediction performance
becomes considerably poor.

For better consistency across different data sets or input parameters, the
presented model utilizes the uniform kernel function.

4 Ensembles of NN Predictors

A general NN model selection procedure computes the globally best number
of neighbors on a validation set, and then uses this number for forecasting all
subsequent queries. There could be individual queries though, for which the
forecasts are way off the true outcome and a different number of neighbors
might be more suitable for them. Here we describe a procedure that improves



on the error accuracy of the single NN predictors, by adapting to the individual
queries.

Suppose that, rather than using a single k-NN predictor for the forecasts, we
form the ensemble of two such predictors Ens ={k;-NN, ko-NN}. The ensemble
works as follows. For every query q, it selects this one of the subpredictors k1-NN
or ko-NN that has a better forecasting accuracy on q. For the time being let us
neglect the issue of how exactly that selection is made and assume that Ens
always makes the perfect choice. Table 1 lists some results for such ensemble
predictors on the Impressions data set (see Section 5.2). It also compares them
with the values for several single k-NN predictors®.

Table 1: Validation error of several ensembles and several simple predictors.

k[RMSE (k-NN)](k1, k2) [RMSE(Ens)
1 2.0447| (1,20) 1.5829
2 1.9504] (2,40) 1.5996
6 1.8321] (6,1) 1.6305
100 2.9608| (100,1) 1.6095

The single predictor with the smallest validation error for this data set is
k*-NN = 6-NN. The pairs in column 3 are formed by fixing k1 and selecting ko
which minimizes the error of the resulting predictor. Among all such pairs the
globally optimal one for the validation set is Ens* ={1-NN, 20-NN}.

There are two important aspects in the above result. Firstly, note that the
subpredictors using a relatively small number of neighbors form optimal ensem-
bles with subpredictors that use a large number of neighbors and vice versa.
And secondly, the ensembles, though composed of suboptimal predictors, per-
form with 10% to 15% better than the globally optimal single predictor 6-NN.
To provide some insight on those two effects consider the histograms on Figure 1.

On the left histogram, the difference of the error RMSE(6-NN) - RMSE(1-NN)
is spread evenly with much volume on both sides of the median. This means
that for almost half of the queries 6-NN is not optimal and their forecasts could
be improved. The right histogram shows the difference RMSE(6-NN) - RMSE(10-
NN). As the forecasts of 6-NN are similar to these of 10-NN, it cannot clearly
identify all those queries for which 6-NN is not optimal. In general, the flatter
the histogram, and the more volume it has on both sides of the median, the more
improvement will be introduced by the ensemble.

It turns out that it is also easier to find a classifier that might separate well
the types of queries inferred by distant predictors, rather than by similar ones.
Furthermore, as k-NN has in general smaller bias when & is small and smaller
variance when k is large, this suggests that grouping distant predictors might
result in ensembles that have the potential for improving both the bias and

3 We report validation errors here to avoid test selection biases arising during our
experimentation. All later experimental work reports true test error performance.
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Fig. 1: Distant values have flatter histograms suggesting possible improvement.

the variance of the single predictors. In Section 5.3 we provide some empirical
evidence to support this conjecture.

4.1 Learning Classes of Queries

So far we have demonstrated that an ensemble of a biased and unbiased NN
predictors outperforms the globally optimal single predictor, provided that for
every query we correctly select the more accurate of the two subpredictors. Now
we demonstrate that the two classes, inferred by those subpredictors, are often
largely separable and could be successfully learned by a classifier that will assign
them to the right predictor.

Feature Selection Two type of features have been defined and used in the
classifiers that we train in this work: statistical and performance related. The
former include some statistical properties of the query and the identified neigh-
bors. The second type deal with the performance of the subpredictors on part
of the query or on its nearest neighbors.

Variance of the query, its nearest neighbors and the two forecasts. We measure
the variance of all input vectors and that of the two forecasts. When the time
series are non stationary (or contain a lot of noise), as k1 < ko, the forecast
of ko-NN due to the effect of aggregation usually varies less and yields smaller
prediction error. On the contrary, when the time series are stationary or have
very close neighbors in the training set, then increasing the number of neighbors
also increases the chance of identifying an outlier. In those cases the forecasts
of k1-NN have smaller variance and are often closer to the true realization. The
feature turns out to be a very strong indicator for the better subpredictor in
some of the tested data sets.

Distances between the individual forecasts. When the individual forecasts of
the first ko neighbors are very similar, then it is reasonable to have higher con-
fidence in their combined forecast. Using ko-NN will give us smoother and sup-
posedly better forecast.



Performance on the nearest neighbors. We measure the accuracy of ki-NN
and ko-NN on some of the nearest neighbors to the query. If the space is dense,
then the better predictor for the neighbors will likely be the better predictor for
the query too.

Step-back forecasts. Looking only at the beginning of the query we test which
subpredictor forecasts its ending more accurately. The feature is a strong indi-
cator for short horizon forecasts and for self-similar time series.

Classification We look for a classifier to differentiate between the queries that
are better predicted by any of the two subpredictors in the ensemble. Ideally,
it should allow to be flexibly tuned between underfitting, when all samples are
classified with the safe majority label, and overfitting the data. For the purpose,
we use a Support Vector Machine (SVM) with a Gaussian kernel [11].

If u; are the vectors of features (see Section 4.1) corresponding to the queries,
and v; are the respective labels (+1 for the dominant class, and -1 for the other
one), then SVM classifies a test sample u according to the rule:

sgn(u) = sgn Z(aiviK(ui, u) +b) (2)

where 0 < «; < C,i = 1..n. In equation (2) «; are the solution of the dual
SVM optimization problem, b is a threshold also learned in the optimization, C'
is a parameter which determines the trade-off between the complexity and the
training error of the classifier and needs to be specified prior to the optimization,
and K (u;, u) is a kernel function computing the distance between the test sample
and a training sample in a highly dimensional feature space. The Gaussian kernel
with width o is defined as K (u;,u)= exp|—||u; — u||?/(20?)] , where o also has
to be specified in advance.

Using SVM with this type of kernel we can easily obtain the safe asymptotic
classifier that underfits the data, for example by letting C' — 0 (see [7]). Then,
by tuning the two parameters C and ¢ using cross-validation, a more optimal
classification can be found. However, the procedure might become very compu-
tationally intensive as a quadratic search has to be performed within a very large
set of values.

To find the best (C, o) pair, we apply the heuristic described by Keerthi et
al. [7]. They show that the solution of the equation log o = log C —log C’, where
C is the trade-off parameter for a linear SVM, provides a good approximation
of the optimal C' and o. As both checking C and the corresponding solutions
of the equation require linear number of steps, the overall time for finding the
approximation is linear.

An important aspect concerning the classification of the queries is that we
do not need a classifier with perfect accuracy. It can make a lot of errors around
the median of the histogram (Figure 1) but as long as the more distant queries
are classified correctly the ensemble will still outperform the optimal simple
predictor k*-NN.



5 Empirical Results

The performance of the ensemble predictors is studied on two data sets - the
laser oscillation data from the Santa Fe competition and real world data collected
from web logs. Three horizons are considered: a relatively short one (30 steps
ahead), a medium range one (60) and a long range horizon (100). The query size
used is 30 time points.

Unless otherwise specified the best single predictor is compared with the
ensemble {1-NN, 10-NN}. It tends to be a good choice in most cases as its sub-
predictors have distant values for the number of neighbors used, but in general
is not globally optimal. When the improvement that we obtain with this ensem-
ble is not significant enough, we also look at the performance of the optimal
ensemble as inferred from a validation set. The result of the better of the two is
displayed.

5.1 Laser Oscillation Data

The data represents the oscillation of a laser that can be modeled with a Lorenz
system. It appears as DataSet A in the Santa Fe forecasting competition. The
oscillations are comparatively easy to predict, but the transitions between the
larger segments occur randomly. The available data are randomly split into a
training (6000 elements), validation (2000) and test(2000) sets.

The best single predictor for all three horizons is the 3-NN predictor and the
optimal ensemble, again for the three horizons, is {1-NN, 4-NN}. The hypothet-
ically possible improvement in prediction error, by using the best ensemble with
an oracle, over the best single predictor is: 16% (horizon 30), 17% (60), 16%
(100).

For the single predictors, when increasing k beyond 3 the forecasts steadily
begin to worsen. The good performance of the predictors with small number
of neighbors is a result of the stationarity and the cleanness of the data. Two
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Fig. 2: Left: Example where 1-NN works better. Right: Example where more nearest
neighbors perform better. (Laser Oscillation Data)



examples to illustrate the strengths and weaknesses of predictors with small and
large number of neighbors are given on Figure 2.

When none of the neighbors predict any transition in the oscillation, us-
ing just one neighbor is usually preferable. Adding more neighbors increases the
chance of selecting an outlier (Figure 2, Left). On the other hand, if many neigh-
bors predict a transition, then increasing k£ makes it more likely to detect the
actual amplitude of the oscillation after the transition (Figure 2, Right).

The test set accuracy of the SVM classifier separating the samples into
groups, better predicted by ki1-NN or ko-NN is summarized in Table 2 (col-
umn 2). For this data set the samples are equally distributed among the two
groups. We found out that this is another premise for a better performance of
the ensemble method. The table also lists the prediction test error and its stan-
dard deviation for the three horizons. The ensemble improves on both of the
components over the optimal 3-NN predictor.

Table 2: Test error and classification accuracy. (Laser Oscillation Data)

lHOI‘iZOH‘Cl&SS. Accuracy[ Predictor [Test RMSE[ Std ‘
h =30 0.75 3-NN (optimal k) 0.124 [0.132

Ens ={1-NN,10-NN}| 0.120 |0.130

h =60 0.74 3-NN (optimal k) 0.207 0.170

Ens® ={1I-NN,4-NN}| 0.189 |0.162

h =100 0.81 3-NN (optimal k) 0.355 0.226
Ens ={1-NN,10-NN}| 0.329 |0.213

For horizon 60 the improvement that we obtained with {1-NN, 10-NN} was
not significant. We also check the performance of the globally optimal ensemble
according to the validation set, in this case Ens* ={1-NN, 4-NN}.

Finally, Figure 4 Left summarizes the percentage improvement of the ensem-
ble forecast compared to the best single predictor. The improvement in test error
is between 25% and 50% of the hypothetically possible improvement measured
earlier on the validation set.

5.2 'Web Site Impressions Data

The time series represent the number of impressions (users that have seen the
banner ads), for a set of web sites, recorded over a period of three years.

The series have weekly recurrences, often with seasonal trends, a lot of noise
and are highly nonstationary. The training set contains approximately 50 000
vectors, the validation and the test set have 2000 samples each. As a very small
portion of the samples increase the error with orders of magnitude, to be fair to
the representative majority of the samples we look at the 95%-quantile of the
error and its deviation.
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The optimal single predictors computed on the validation set are: 10-NN
(horizon 30), 8-NN (60), 6-NN (100). The optimal ensembles are: {3-NN, 100-
NN} (30), {1-NN, 30-NN} (60) and {1-NN, 20-NN} (100). The hypothetical
margin for improvement if using an oracle is: 14% (30), 13% (60), 14% (100).
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20 40 60 80
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100 100

Horizon (1000 stesops ahé%ad)

Fig. 3: Left: Example where 1-NN works better. Right: Example where more nearest
neighbors perform better. The smoother forecast is usually the more accurate one.
(Web Impressions Data)

Due to the large amount of noise, the more conservative, i.e. the smoother
forecasts, are usually the more accurate ones (Figure 3). Therefore, the statis-
tical features discriminate quite well between the two classes for the extreme
examples, i.e. the examples for which applying the wrong subpredictor increases
the error significantly. On the other hand the random spikes and drops in the
data are hard to forecast and for these samples the assigned subpredictor is often
incorrect. Because of the above two effects, the accuracy of the SVM classifier
is comparatively low, but the overall improvement introduced by the ensemble
method is quite good (see Table 3). The improvement in the test error and its de-

Table 3: Test error and classification accuracy. (Web Impressions Data)

Horizon|[Class. Accuracy] Predictor [Test RMSE] Std |
h =30 0.58 10-NN (optimal k) 1.1235 0.644
Ens ={1-NN,10.NN}| 1.021 [0.452
h =60 0.77 8-NN (optimal k) 1.549 0.862
Ens ={[1-.NN,10.NN}| 1.412 |0.685
h =100 0.58 6-NN (optimal k) 1.8676 1.183
Ens =[1-NN,10-NN]| 1.6881 [0.961

viation (Figure 4 Right) is between 60% and 70% of the hypothetically possible
improvement computed on the validation set.
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Fig. 4: Test error improvement of the ensemble approach over the best single predictor.
Left: Laser Oscillation Data. Right: Web Impressions Data

5.3 Bias-Variance Improvement

The squared loss of a predictor decomposes into the following two components
[5]:

épl{a—a}?] = {€pld] — 4}’ + Ep[{q — £plq]}”] 3)

bias? variance

where the expectations are computed over a number of different training sets D.

In the previous experiments it was demonstrated that the ensembles can
decrease the test error, and hence the overall loss of the single predictors. It is
essential to understand whether that improvement originates from one or both
of the components in equation 3.

From the larger of the data sets, the Impressions data, we draw 50 random
replicas, of size 90% of the original training set size. For every query in the test
set, the bias and the variance over the replicas D are computed. The average
bias and variance over all queries, for horizon 100, is presented in Table 4.

Table 4: Bias and variance for horizon 100 on the Impressions data set. The ensemble
improves on both of the components

Predictor| BiasZ|Variance

1-NN| 5.468 1.174

6-NN (optimal k)| 5.042|  0.638
10-NN| 5.690 1.96

Ens ={1-NN,10-NN}{3.721| 0.204

As seen from the table, the ensembles can decrease both terms in the squared
loss decomposition, which suggests that they are a potentially powerful approach
towards the bias-variance problem of the k-NN forecasts.
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6 Conclusion

We have presented a method for learning how to separate time series queries into
two classes, that are better predicted with one of two possible NN predictors.
The experimental evaluation shows that such ensembles have better prediction
error, compared to the single globally optimal k-NN predictor.

The work raises some interesting questions. For example, what kind of im-
provement would one expect, if the ensembles include more than two subpredic-
tors. The results indicate that essential for the performance is the identification
of bad cases for the individual predictors. Including more subpredictors adds
more alternatives to select from, when forecasting these bad samples. On the
other hand, the multiway classification might have lower accuracy. Another in-
teresting research direction is how to combine models that differ with respect
to other input parameters, such as weighting function, query lengths, or predic-
tion horizon. In this case a criterion for what models should be combined and
different features, characteristic of the new models, need to be derived.

References

1. C. Atkeson, A. Moore, and S. Schaal. Locally weighted learning. Artificial Intelli-
gence Review, 1996.

2. A.Weigend and N. Gershenfeld. Time Series Prediction. Forecasting the Future
and Understanding the Past. Addison-Wesley Publishing Company, 1994.

3. M. Casdagli and A. Weigend. Exploring the continuum between deterministic and
stochastic modeling. Time Series Prediction. Forecasting the Future and Under-
standing the Past, 59(8):347-366, August 1994.

4. J. Farmer and J. Sidorowich. Predicting chaotic time series. Physical Review
Letters, 59(8):845-848, August 1987.

5. S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance
dilemma. Neural Computation, 4(1):1 — 58, August 1992.

6. D. Goldin and P. Kanellakis. On similarity queries for time-series data: Constraint
specification and implementation. Lecture Notes in Computer Science, 976(7):137—
153, January 1995.

7. S. Keerthi and C. Lin. Asymptotic behaviors of Support Vector Machines with
Gaussian kernel. Neural Computation, (15):1667-1689, 2003.

8. J. McNames, J. Suykens, and J. Vandewalle. Winning entry of the K.U.Leuven
time series prediction competition. Internation Journal of Bifurcation and Chaos,,
9(8):1485-1500, August 1999.

9. D. Murray. Forecasting a chaotic time series using an improved metric for embed-
ding space. Physica D, 68(8):318-325, August 1993.

10. T. Sauer. Time series prediction by using delay coordinate embedding. Time
Series Prediction. Forecasting the Future and Understanding the Past, 59(8):175—
193, August 1994.

11. B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

12. F. Takens. Detecting strange attractors in turbulence. Lecture Notes in Mathe-
matics, Dynamical Systems and Turbulence, 898(7):366-381, January 1981.



