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ABSTRACT

A physically based empirical real-time forecasting strategy to predict the subseasonal variations of the
Indian summer monsoon up to four–five pentads (20–25 days) in advance has been developed. The method
is based on the event-to-event similarity in the properties of monsoon intraseasonal oscillations (ISOs). This
two-tier analog method is applied to NOAA outgoing longwave radiation (OLR) pentad averaged data that
have sufficiently long records of observation and are available in nearly real time. High-frequency modes
in the data are eliminated by reconstructing the data using the first 10 empirical orthogonal functions
(EOFs), which together explain about 75% of the total variance. In the first level of the method, the spatial
analogs of initial condition pattern are identified from the modeling data. The principal components (PCs)
of these spatial analogs, whose evolution history of the latest five pentads matches that of the initial
condition pattern, are considered the temporal PC analogs. Predictions are generated for each PC as the
average evolution of PC analogs for the given lead time. Predicted OLR values are constructed using the
EOFs and predicted PCs. OLR data for 1979–99 are used as the modeling data and independent hindcasts
are generated for the period 2000–05. The skill of anomaly predictions is rather high over the central and
northern Indian region for lead times of four–five pentads. The phases and amplitude of intraseasonal
convective spells are predicted well, especially the long midseason break of 2002 that resulted in large-scale
drought conditions. Skillful predictions can be made up to five pentads when started from an active initial
state, whereas the limit of useful predictions is about two–three pentads when started from break initial
conditions. An important feature of this method is that unlike some other empirical methods to forecast
monsoon ISOs, it uses minimal time filtering to avoid any possible endpoint effects and hence may be
readily used for real-time applications. Moreover, as the modeling data grow with time as a result of the
increased number of observations, the number of analogs would also increase and eventually the quality of
forecasts would improve.

1. Introduction

The present-day capabilities of predicting the sea-
sonal mean Indian summer monsoon are limited by a
number of factors. The model biases in simulating the
mean summer monsoon conditions (Gadgil and Sajani
1998; Kang et al. 2002; Sperber and Palmer 1996; Wang
et al. 2004), improper simulation of the boundary-
forced interannual variability (Anderson et al. 1999;
Fennessy and Shukla 1999; Kumar and Hoerling 1995;
Lau 1985; Shukla 1998; Shukla and Wallace 1983), ex-
clusion of the coupled ocean–atmosphere processes

(Wang et al. 2005, 2003), and internal interannual vari-
ability generated within the monsoon system (Cherchi
and Navarra 2003; Krishnamurthy and Shukla 2000;
Sperber and Palmer 1996; Sperber et al. 2000) are at the
heart of the problem. The predictability of the interan-
nual variations of the seasonal mean Indian summer
monsoon is largely limited by the significant internal
variability that arises primarily because of the monsoon
intraseasonal oscillations (Goswami and Xavier 2005).
Moreover, the utility of forecasts of all (averaged) India
summer monsoon rainfall to the user community (i.e.,
the agriculture and hydrological sector) remains uncer-
tain. While the anomaly of seasonal mean rainfall has
the same sign over most of the continent in extreme
floods of drought years, it is rather inhomogeneous in
“normal” monsoon years. Therefore, it would be diffi-
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cult even with a skillful forecast of the all India seasonal
rainfall to provide regional communities with informa-
tion that could be used effectively in agriculture and
water resources management (Webster and Hoyos
2004). Alternatively, skillful and timely forecasts of
monsoon intraseasonal variability 3–4 weeks in advance
may be more useful for regional agriculture and hydro-
logical planning.

The quasiperiodic properties of monsoon intrasea-
sonal oscillations (ISOs) suggest that useful skill of pre-
cipitation forecasts could be achieved for lead times of
about 3 weeks. The potential predictability limits of
ISOs, estimated using AGCM experiments (Liess et al.
2005; Reichler and Roads 2005; Waliser et al. 2003a,b)
are about 3–4 weeks and are in agreement with such
estimates from observations (Goswami and Xavier
2003). It is also discovered that transitions from mon-
soon breaks to active conditions are much more chaotic
than those from active to breaks, a fundamental prop-
erty of monsoon ISOs (Goswami and Xavier 2003; Wa-
liser et al. 2003a,b).

Some earlier studies (Cadet and Daniel 1988; Chen
et al. 1992; Krishnamurti and Ardunay 1980; Ramasas-
try et al. 1986; Singh and Kriplani 1990) that attempted
to explore the potential for the extended-range predic-
tion of monsoon ISO have been rather inconclusive.
Recently, skillful forecasts of the Madden–Julian oscil-
lation (MJO) (Madden and Julian 1994), up to 3 weeks
in advance, were made using empirical techniques
(Jones et al. 2004; Lo and Hendon 2000; Mo 2001; Wa-
liser et al. 1999; Wheeler and Weickmann 2001). Gos-
wami and Xavier (2003) adopted a similar methodology
as that of Lo and Hendon (2000) and demonstrated
skillful predictions of rainfall over India at 15–20-day
lead times. Webster and Hoyos (2004) developed a
model for predicting intraseasonal rainfall variations
over India and Brahmaputra–Ganges River discharge
to Bangladesh 20–25 days in advance. An important
problem to be tackled for real-time prediction of ISOs
is the implementation of filtering techniques without
the loss of information at the end point of the time
series (Huang et al. 1998; Kijewski and Kareem 2002).
Some of the aforementioned studies adopt methodolo-
gies to overcome the endpoint effects so as to facilitate
real-time applications (Lo and Hendon 2000; Mo 2001;
Webster and Hoyos 2004; Wheeler and Weickmann
2001).

The results of Goswami and Xavier (2003) and Wa-
liser et al. (2003a,b) indicate that there is certain event-
to-event regularity in the evolution of monsoon ISOs
up to a certain time frame referred to as the predict-
ability limit. It is known that the ISOs have large-scale
patterns associated with them and are slow in their evo-

lution. Furthermore, they are convectively coupled os-
cillations that evolve coherently with the underlying sea
surface temperature (Goswami and Ajayamohan 2001;
Goswami et al. 2003; Sengupta et al. 2001). How can we
incorporate these properties into a useful predictive
tool? The analog method of forecasting employs the
philosophy that weather behaves in such a way that the
present initial conditions, if found to be similar to a past
situation, will evolve in a similar fashion. Therefore,
once two similar patterns are found in the past records,
the assumption made is that their future development
will also be similar. This means that if a “good” analog
could be found for the current atmosphere, a forecast
could be obtained by using the sequence of previously
observed atmospheric states as a reference.

The use of analogs is not a new concept in meteoro-
logical forecasting. In the past, a variety of analog
schemes have been formulated, employing various pre-
dictors and analog selection criteria. The technique has
been employed in many different applications: general
circulation forecasting (Gutzler and Shukla 1984; Radi-
novic 1975; Van den Dool 1989); long-range weather
(Livezey and Barnston 1988; Schuurmans 1973; Toth
1989), temperature (Bergen and Harnack 1982), and
precipitation (Christensen et al. 1981) forecasting; 1–6-
day temperature forecasting (Kruizinga and Murphy
1983); long-range prediction of sea ice anomalies
(Chapman and Walsh 1991); short-term visibility fore-
casts in the United States (Chisholm 1976; Tahnk 1975)
and Canada (Esterle 1992); short-term mesoscale trans-
port forecasts (Carter and Keislar 2000); and El Niño–
Southern Oscillation index forecasts (Drosdowsky
1994).

The observed regularities in the evolutions and the
similarities in the large-scale spatial patterns of mon-
soon ISOs have motivated us to attempt the analog
method for extended-range monsoon forecasting. Even
though one cannot expect exactly identical analogs, as
the weather hardly repeats, it should be possible to find
closely matching analogs of the large-scale envelope of
monsoon intraseasonal variability. The success of the
forecasts would depend on the number of such analogs
one can isolate from the data. Hence, the constraints
for choosing a variable for forecasting must be a rea-
sonably long history observations as well as availability
on real time. One such variable that bears close asso-
ciation with the rainfall is the OLR. The following sec-
tion describes the analog method, section 3 evaluates
the forecasts for the June–September season, section 4
examines the dependency of forecasts on the initial
conditions, and section 5 analyzes the regional forecasts
over India. Results are summarized in section 6.
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2. Two-tier analog method

We assume that the predictable component of the
subseasonal variations is the large-scale envelop of in-
traseasonal oscillations that contains high-frequency
weather fluctuations embedded on it. It is indeed a dif-
ficult task to predict the day-to-day weather variations
15–25 days in advance. To highlight the low-frequency
intraseasonal variations and to smooth the high-
frequency synoptic weather variations, the National
Oceanic and Atmospheric Administration (NOAA) in-
terpolated daily outgoing longwave radiation (OLR)
data are converted into 5-day averages (pentad means).
The model we propose is to predict the intraseasonal
variations of pentad averaged data. The total data
length is divided into two segments, namely a 21-yr
modeling period (1 January 1979–31 December 1999)
and a nearly 6-yr hindcast period (1 January 2000–29
August 2005). Pentad OLR data until the beginning of
the hindcast period (say t � t0; here, 1 January 2000) are
subjected to EOF decomposition (Bjornsson and Vene-
gas 1997; Venegas 2001) into a number of spatial and
temporal modes. EOF decomposition is performed
over the domain 15°S–30°N, 50°–110°E, as this area
represents the maximum subseasonal variability during
the summer monsoon season. The annual mean clima-
tology is subtracted from the OLR data prior to the
EOF decomposition. The first three EOFs and their
corresponding principal components (PCs) are shown
in Fig. 1. EOF1 essentially represents the spatial pat-
tern of the annual cycle of OLR variability (Fig. 2) with
a unipolar structure over the monsoon domain with
maximum loadings over the Bay of Bengal. EOF2 is
similar to the classical pattern of monsoon intrasea-
sonal variations but possesses significant seasonality in
its time evolution (Fig. 2). The subsequent EOFs show
the different modes of subseasonal variability. The
separation between the modes in terms of the percent-
age variance explained are not clear after about 10
modes and cumulatively they contribute about 75% of
the total variance (Fig. 3). Higher modes may be con-
sidered noise. A second step to filter out the noise from
the data is reconstructing the OLR data with the first 10
EOFs and PCs as

OLR r�x, y, t� � �
n�1

10

EOFn�x, y� � PCn�t�, �1�

where OLRr(x, y, t) is the reconstructed OLR, and
EOFn(x, y) and PCn(t) are the nth EOF and PC, re-
spectively. Ten EOFs are chosen as a compromise be-
tween maximizing the amount of variance for the re-
constructed OLR data and minimizing the noise in the
form of higher modes. The seasonal cycle of OLR is

retained in the hindcast experiments. However, the
presence of the winter season in the modeling data will
not affect predictions of summer values because of the
intrinsic property of the analog method that automati-
cally identifies suitable analogs from the corresponding
season. This feature is highly advantageous for opera-
tional forecasting purposes, as it requires minimum
data processing efforts.

The basic algorithm of our method is as follows:

1) Consider the spatial pattern of t0 and find the spatial
correlation (in the domain 15°S–30°N, 50°–110°E)
with the spatial patterns at each time step in the
modeling period.

2) Find the spatial root-mean-square error (RMSE)
between the spatial pattern of t0 and the spatial pat-
terns at each time step in the modeling period.

3) Check whether the spatial correlations are above 0.7
and spatial RMSE is less than 20 W m�2. These

FIG. 1. First two EOFs of pentad average OLR. Percentage of
variance explained by each EOF is also noted.
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values are arbitrarily chosen so as to have enough
analogs. Those patterns satisfying these criteria are
considered the spatial analogs of t0. Let pi, i � 1,
2, . . . , N, where N is the number of spatial analogs
found. Typical values of N are around 55.

4) Consider the evolution of PC1 from t0 � 5 to t0 and
find the temporal correlation and RMSE between
the PC1 from pi � 5 to pi, i � 1, 2, . . . , N. If the
correlations are greater than 0.5 (arbitrary, yet gives
enough analogs) and RMSE is less than the unit
standard deviation of PC1, then those are the tem-
poral analogs of PC1 from t0 � 5 to t0. Let them be
qj, j � 1, 2, . . . , M, where M is the number of tem-
poral analogs (typically on the order of 20) of PC1
and M � N.

5) Forecasts of PC1 at lead-time � pentads are gener-
ated as

PC1�t0 � �� �
1
M �

j�1

M

PC1�qj � ��. �2�

6) Repeat steps 4–5 for PC2, PC3, . . . , PC10. Then we
have the predicted values of each PC as PCk(t0 � �),
k � 1, 2, . . . , K, where K is the number of EOFs
used; here, K � 10.

7) Predicted OLR values for lead-time � are generat-
ed as

OLR�x, y, t0 � �� � �
k�1

K

EOFk�x, y� � PCk�t0 � ��.

�3�

No forecast is possible if N � 0 or M � 0. Such time
steps are considered unpredictable by this method.
However, with the correlations and RMSE criteria used
here, no such unpredictable time steps are found during
the hindcast period. A comparison of four-pentad-lead
predictions and the corresponding observations over
central India is shown in Fig. 4. The high degree of
accuracy in predicting the strong seasonality of the
OLR fluctuations over continental India in the time

scales of the predictions is evident. Since our interest is
in predicting the intraseasonal variations embedded on
the annual cycle and in order to eliminate any artifacts
due to the apparent skill in predicting the annual cycle,
the intraseasonal anomalies are extracted from the total
OLR predictions and the corresponding observations
by removing the observed climatological annual cycle.
The predictions are scaled by a factor determined by
the ratio of variance explained by the 10 EOFs (EOFs
1–10) to the total OLR variance. Hereafter, all the re-
sults presented are based on the intraseasonal OLR
anomalies computed as described above.

3. Hindcast validation

The performance of the model in predicting the in-
traseasonal variability in the June–September (JJAS)

FIG. 2. First two PCs of pentad average OLR.

FIG. 3. Percentage of variance explained by (a) the first 20
modes and (b) their cumulative variance.
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season is evaluated here. The temporal correlation co-
efficients (at every grid point) between predictions and
observations of intraseasonal OLR anomalies at lead
times of two–five pentads are shown in Fig. 5. It may be
noted that the correlations over the continental Indian
region, especially central India, are high and significant.
Correlations remain above 0.6 over a large region of
central India even at a five-pentad lead. However, pre-

dictions for the southern Indian states and the oceanic
regions do not possess significant skills at four- and
five-pentad leads. This is further supported by Fig. 6,
where the spatial and average temporal correlations
and RMSE for a large region north of 10°N are shown.
The correlations remain highly skillful even up to lead
times of five pentads. This is a major advantage of our
prediction scheme compared to some other prediction

FIG. 5. Temporal correlations between predictions and observations of OLR anomalies for different lead times
during the JJAS season of the hindcast period (2000–05).

FIG. 4. Four-pentad-lead predictions and observations over central India during the hindcast period. Gray
shades indicate the summer monsoon season. Correlation coefficient between the two is also shown.
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methods in use, since the intraseasonal anomalies are
predicted with a high degree of accuracy without em-
ploying filtering techniques to isolate the low-frequency
temporal evolutions.

The temporal evolution of OLR anomalies predicted
four pentads ahead along with the observations aver-

aged over central India (20°–25°N, 75°–95°E) during
the JJAS seasons of the six hindcast years is shown in
Fig. 7. Overall, the four-pentad-lead predictions foresee
the phases of intraseasonal OLR variations quite well
in all six hindcast years. Most peaks and troughs align
fairly accurately with observations. However, the am-
plitude of predictions is sometimes overestimated. The
skill of predicting the extrema is superior to the predic-
tions of the transition phases of the ISOs. The correla-
tion between the two is 0.66 (significant at the 99%
level) and the RMSE is 7.6 W m�2. The long midseason
breaks of 2002 and 2004, which caused severe droughts
over India, were rather accurately forecasted four pen-
tads ahead.

4. Dependency of forecasts on the state of the
initial condition

The finding that the predictability of intraseasonal
variability in the observations depends on the state of
the initial condition from where the forecast is made
(Goswami and Xavier 2003) is consolidated by the es-
timates of Fu et al. (2007) and Waliser et al. (2003a,b)
using models. From both observations and model simu-
lations, it is found that the potential predictability limit
is rather extended when started from an active initial
state in comparison with the limited period of potential
for prediction when started from a break initial condi-
tion. It is therefore worthwhile examining whether
these intrinsic limits of potential predictability affect
the skills of predictions. To identify active and break
conditions, an index of monsoon intraseasonal variabil-
ity is defined as the time series of OLR anomalies av-
eraged over the central Indian region and normalized
with its own standard deviation. Active (break) phases
are identified as the days when the normalized values of
OLR anomalies are less than �1.5 (greater than 1.5).

FIG. 7. Prediction of OLR anomalies (W m�2) at four-pentad leads in comparison with observed values over
the region 20°–25°N, 75°–95°E for the JJAS season of the hindcast period.

FIG. 6. (a) Spatial and temporal correlations between predic-
tions and observations for JJAS period at different lead times
over the region 10°–30°N, 50°–110°E. (b) Spatial and temporal
RMSE for the same region.
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Predictions are made from each of these active and
break initial conditions until five-pentad leads and their
corresponding observed values are noted. Nineteen ac-
tive and 16 break events are found in the hindcast pe-
riod. The temporal correlations of predictions from ac-
tive and break initial conditions with their observed
counterparts averaged over the central Indian region
are plotted as a function of forecast lead time (Fig. 8a).
Correlation values above 0.48 are significant at the 95%
level. An important feature to be noted is that the cor-
relations from active initial conditions are better than
those from break initial conditions, except for lead
times of two pentads, where there is a slight increase in
the correlation of predictions from break initial condi-
tions. The quality of forecasts from break initial condi-
tions deteriorates rapidly at three-, four-, and five-
pentad leads. However, the skill of forecasts from ac-
tive initial states remains steady and highly significant
even at a five-pentad lead. The average spatial corre-
lations of predictions and the observations over a large
region north of 10°N starting from active and break
initial conditions shown in Fig. 8b complement this.
Spatial correlation is computed for 80 grid boxes and
values above 0.23 are significant at the 95% level.

The reduction in spatial correlations with lead time is
rather steady for predictions from break initial condi-
tions compared to those from active initial conditions.
Spatial correlations from break initial conditions are
found to be superior over the active initial condition
counterparts at lead times of 2 and 3 and then weaken
rapidly. Whereas the correlations from active initial
conditions have a dip at two- and three-pentad leads
and then peak up at four- and five-pentad leads. In
short, the skill of predictions starting from a break ini-
tial state have the best skills at two–three-pentad leads.
On the other hand, forecasts generated from active ini-
tial conditions have high skills at four–five-pentad
leads, and most importantly, their skills at four–five-
pentad leads are far more superior than those from
break initial conditions at two–three-pentad leads. An
active (break) phase normally evolves into a break (an
active) phase after a period of 15–20 days. Therefore,
we may conclude that the breaks are predictable up to
five-pentad lead times and the skills of predicting active
conditions are restricted to about two–three-pentad
leads. Thus, the evidence presented from the model
hindcasts establishes that the variable limits of predict-
ability of active and break phases of Indian summer
monsoon are intrinsic properties of the system.

Why are the predictability limits higher for the break
phase than for the active phase? The different behav-
iors of error growth in the forecasts from active and

break initial conditions may be related to the the dif-
ferent physical processes controlling these transitions
(Goswami and Xavier 2003; Waliser et al. 2003a,b). The
transition from break to active is governed by fast-
growing convective instability. On the other hand, the
transition from active to break is governed by the evo-
lution of the large-scale Hadley circulation (Goswami
and Xavier 2003). If a small perturbation is introduced
in the break phase, it grows slowly at first but rapidly
later when convective instability becomes active.
Whereas if a small perturbation is introduced in the
active phase, it grows fast initially but eventually be-
comes steady (Fu et al. 2007). Different error growth
regimes during these two transition periods result in the
break phase being more predictable than the active
phase.

5. Regional forecasts

The need for forecasting intraseasonal monsoon vari-
ability on the subseasonal scale and the benefits it can
deliver to the agricultural sector of the country has

FIG. 8. Temporal and spatial correlations between predictions
and observations from active and break initial conditions at dif-
ferent lead times.
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been discussed in the introduction. The monsoon rain-
fall has strong regionality in its character and the coun-
try has been divided into a number of rainfall zones.
The large inhomogeneities in the subseasonal rainfall
are one of the factors that questions the utility of sea-
sonal mean forecasts over the country and motivated us
to develop a method for regional-scale forecasts four–
five pentads in advance.

As shown in Fig. 9a, we may divide the India sub-
continent into six regions. Region 1 corresponds to
parts of Rajasthan and Gujarat, and region 2 covers
large parts of Uttar Pradesh, Madhya Pradesh, Delhi,
and the neighboring northern states. Bihar, Bengal,
Bangladesh, Assam, and other northeastern states fall
into region 3. Region 4 covers Maharashtra and parts of
Madhya Pradesh and Gujarat. Region 5 denotes mainly
Orissa, and parts of Andhra Pradesh and Karnataka are
included in region 6. The anomaly correlations of the
four-pentad-lead predictions with observations aver-
aged for each region during the JJAS season of the six
hindcast years are given in Fig. 9b. The predictions for
northern regions, especially 1 and 2, match closely with
the observations as evident from the strong correla-
tions. Regions 3, 4, and 5 also have significant correla-
tions and show the utility of four-pentad forecasts over
these regions. However, predictions over the southern
region (region 6) do not show any useful prediction
skill.

An example of regional four-pentad forecasts for the
six JJAS seasons averaged over each of the five regions
(1–5) in comparison with observations is shown in Fig.
10. Region 6 is not shown since there is hardly any skill
in predicting the OLR anomalies in this region. The
summer intraseasonal OLR variations are predicted by
the model with remarkable accuracy except over region
3 during most of the years. It may be interesting to note
that the predictions for 2002, 2003, and 2004 are clearly
superior, of which 2002 and 2004 had produced large-
scale droughts over India. The long break conditions in
2002 and 2004 are captured in the four-pentad fore-
casts. Accurate predictions for such extreme monsoon
years would give us confidence in applying the method
for operational forecasting so as to foresee the large-
scale active/break spells that can offset the seasonal
mean to extremes. Another interesting observation is
that there is a dependence of skill of the forecasts on
the amplitude of ISOs in different regions. Regions 1
and 2 have the largest ISO amplitude and the model
predicts the amplitudes and phases of intraseasonal
variability fairly accurately. Predictions for regions 4
and 5 are also quite close to the observations, but with
lower skill. On the other hand, regions 3 and 6 do not

show any well-defined intraseasonal behavior and the
model has marginal skill in predicting it.

6. Summary

Based on the premise that the monsoon intraseasonal
oscillations exhibit regularity in their evolutions and
similarity in the spatial patterns, a new physically based
analog method for forecasting the intraseasonal vari-
ability four–five pentads in advance has been devel-
oped. Motivated by the previous uses of analog meth-
ods for weather forecasting, a two-tier analog model is
used here that selects analogs of the spatial patterns
and their temporal evolutions from a sufficiently long
data record. For the best results with the analog method
to be applied in real time, the data under consideration
should have sufficient past records of observation to be
able to find as many analogs as possible, should be as
complete as possible for real-time availability, and most
importantly, should bear a close relationship with rain-
fall. We choose NOAA-interpolated OLR, as it meets
these criteria. To eliminate the possible contamination
of the forecasts due to the high-frequency synoptic dis-
turbances, the daily data are converted to pentad aver-
ages. Our method is targeted at operational real-time
forecasting purposes and, hence, is devoid of any kind

FIG. 9. (a) Regions chosen to evaluate the predictions with
observations. (b) The correlation coefficient between four-pentad
lead predictions and observations averaged over these regions for
the JJAS period.
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FIG. 10. Predictions at four-pentad lead in comparison with observed values of OLR anomalies (W m�2) over
regions 1–5 as indicated in Fig. 9 for the JJAS season of the hindcast period. Correlations and RMSE
(W m�2) between the predictions and observations are also given in the respective panels.
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of temporal filtering that introduces endpoint errors.
High-frequency modes in the data are eliminated by
reconstructing the OLR data with the first 10 EOFs and
the corresponding PCs that explain about 75% of the
total OLR variance.

Spatial analogs of the initial condition pattern are
chosen from the modeling data. Temporal analogs of
each PC from five pentads behind the initial condition
are found from the set of PCs of spatial analogs. Pre-
dictions of each PC for a particular lead time are gen-
erated separately as the average values of evolutions of
the PC analogs for that lead time. Predicted OLR val-
ues are constructed by multiplying each of the pre-
dicted PCs with the corresponding EOF. The fore-
casted OLR anomalies are created by removing the
observed climatological annual cycle from the total
OLR forecasts. These forecasts show substantial skill in
forecasting the intraseasonal OLR anomalies four–five
pentads in advance. The phases and amplitude of the
intraseasonal variability are predicted with high skill.

There are differences in the skills of forecasts de-
pending on the initial condition from where the fore-
casts are made. Supporting the findings of Goswami
and Xavier (2003) and Waliser et al. (2003a,b), we find
that the forecasts starting from an active monsoon ini-
tial condition remain skillful even up to five pentads,
while those starting from a breaklike initial state show
useful skills only up to two–three pentads. Regional
forecasts made for six regions of the country indicate
high skills for the central and western Indian regions. A
case in point is the fairly accurate predictions of the
long midseason monsoon break of 2002 that was asso-
ciated with the unprecedented drought over the coun-
try.

Major advantages of this scheme over the existing
prediction methods are that it avoids the high-
frequency variability in a clever way so as to avoid time
filtering of any kind to extract the intraseasonal signal,
and due to the intrinsic property of the analogs, it au-
tomatically finds out closely matching patterns from the
corresponding season. This feature considerably mini-
mizes data processing requirements. The skills demon-
strated with this fairly simple method are high and have
immense potential for practical purposes. The success
of our method is that, due to the long modeling period,
we were able to find a large number of closely matching
analogs. As the time progresses, the volume of data is
growing and so is the number of analogs. Hence, it is
expected that the quality of forecasts would improve
with time. However, the method has rather limited suc-
cess in predicting the variability over the southern and
northeastern parts of India and the Bay of Bengal
where the seasonal mean rainfall is maximum. In-depth

diagnoses on the properties of the analogs over these
regions might shed light on the causes of limited pre-
dictability over these regions. Even though statistical
models provide better forecasts than the dynamical
forecasts (Lo and Hendon 2000), certain inabilities are
common to all the empirical based methods (e.g., inac-
curate representation of the physical processes and in-
ability to accommodate variations in the predictor–
predictor relationships). It is expected that the numeri-
cal models will improve with time with the wealth of
understanding of the phenomena and would be able to
simulate and produce skillful extended-range forecasts
of the monsoon intraseasonal variability. Until then, a
judicious and practical way is to employ such physically
based empirical methods for predictions, as the neces-
sity for 2–3-week forecasts over the country is over-
whelming.
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