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Abstract

The joint simulation of time series of 6-hourly precipitation and temperature using nearest-neighbour resampling is studied

for Maastricht, the Netherlands. Two resampling schemes are considered: (i) straightforward resampling of 6-hourly values,

and (ii) resampling of daily values followed by disaggregation into 6-hourly values using the method of fragments. Second-

order statistics of the simulated values are compared with those in the observed data. It appeared that straightforward

resampling of 6-hourly values does not adequately preserve the slow decay of the autocorrelation functions of precipitation and

temperature. As a result the standard deviations of the monthly precipitation totals and monthly average temperature are

strongly underestimated. A negative bias also shows up in the quantiles of the multi-day seasonal maximum precipitation

amounts. The autocorrelation coefficients and the standard deviations of the monthly values are much better reproduced if the

daily values are generated first. A good correspondence between the historical and simulated distributions of the seasonal

maximum precipitation amounts is also achieved with this alternative resampling scheme.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Stochastic rainfall models are a useful tool in the

design and evaluation of hydrological systems. A

range of methods exists to model rainfall sequences.

For a time resolution shorter than a day most models

fall into two categories: profile-based and pulse-

based. In the profile-based models (e.g. Acreman,

1990; Koutsoyiannis and Pachakis, 1996; Heneker

et al., 2001) a storm event is simulated from

probability distributions for the inter-arrival time

and duration and the conditional distribution of the

total depth or mean intensity given the duration. The

total depth is then disaggregated into the required time

step. In the pulse-based models (e.g. Rodriguez-Iturbe

et al., 1987; Cowpertwait et al., 1996; Onof et al.,

2000) rain cells arrive in a Poisson-cluster process.

This process is either the Bartlett–Lewis or the

Neyman–Scott process. Each rain cell is represented

as a rectangular pulse of random duration and random

intensity. The total storm intensity at any point in time

is the sum of the intensities of all active rain cells at

that point.
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The main advantage of the parametric models

above is their flexibility to generate rainfall for a range

of time scales and the ability to reproduce relevant

statistical characteristics of the original data at a

single site. However, hydrological applications often

require more input data than just the precipitation for a

particular site. Precipitation for several sites and

temperature or evapotranspiration may be needed.

Multi-site extensions of the profile-based and pulse-

based models are not straightforward due to complex-

ity of mathematical description and a need for an extra

parametrization. It is also not easy to develop a

parametric model for the joint simulation of sub-daily

rainfall and other weather variables.

Non-parametric resampling procedures form an

alternative to generate artificial records of uni- or

multivariate time series of weather variables. Young

(1994) proposed nearest-neighbour resampling to

simulate daily minimum and maximum temperatures

and precipitation. Independently, Lall and Sharma

(1996) discussed a nearest-neighbour bootstrap to

generate hydrological time series. An application of

their algorithm to daily precipitation and five other

weather variables was presented in Rajagopalan and

Lall (1999). The ability of nearest-neighbour resam-

pling to reproduce several sample statistics and

precipitation spell structure was demonstrated. The

multi-site simulation of daily rainfall and temperature

at 25 stations in the Rhine basin was discussed in

Buishand and Brandsma (2001).

The above applications have shown that nearest-

neighbour resampling performs well at a daily time

scale. None of the research reported in the literature,

however, considers this technique for simulating

hydrological time series at a finer time scale. In the

present paper, we evaluate the performance of

nearest-neighbour resampling as a method to generate

6-hourly rainfall and temperature for Maastricht, the

Netherlands. This evaluation is part of a study on

stochastic weather generation for the Meuse basin.

The interest is on the occurrence of high river

discharges. Precipitation is the dominant weather

variable. Temperature is required to determine snow

accumulation and melt and to estimate evapotran-

spiration. Two resampling schemes are compared:

straightforward simulation of 6-hourly values

(Scheme 1) and simulation of daily values with

disaggregation into 6-hourly values (Scheme 2). As

a disaggregation procedure the method of fragments is

adapted. For Maastricht, we assess the two resampling

schemes in terms of the reproduction of second-order

statistics of rainfall and temperature and the distri-

bution of maximum precipitation amounts. The

emphasis is on the winter half-year (October–

March), because the peak discharges of the Meuse

in the Netherlands mainly occur in that period.

2. Nearest-neighbour resampling

In the nearest-neighbour method weather variables

like precipitation and temperature are sampled

simultaneously with replacement from the historical

data. Temporal dependence is incorporated by

conditioning on preceding values. For instance, to

generate weather variables for a new day t þ 1, days

with similar characteristics as those simulated for the

previous day t are firstly selected from the historical

record. One of these nearest neighbours is then

randomly selected and the observed values for the

day subsequent to that nearest neighbour are adopted

as the simulated values for day t þ 1. A feature (or

state) vector Dt is used to find the nearest neighbours

in the historical record.

Fig. 1 shows an example of the first five steps of

nearest-neighbour resampling in a 3D state space (so

Dt ¼ ½v1ðtÞ; v2ðtÞ; v3ðtÞ�
T ). The points in the state

space (red dots) were obtained by iterating a

parametric set of three non-linear state equations

described by Pickover (1990). The three state

variables in this illustration do not have any particular

physical meaning. One could, however, consider them

as three relevant weather variables, like e.g. tempera-

ture, precipitation and air pressure. To initialize the

simulation, one of the historical states is selected at

random. This state is depicted in Fig. 1 as a black dot

with label 1. Next, the collection of k ¼ 30 states

(blue dots) which lie closest to the black dot is

determined in this example. One of those nearest

neighbours (yellow dot) is then selected at random

and its successor (a black dot with label 2) is adopted

as the simulated state for t ¼ 2: Thereafter, again a set

of k nearest neighbours is determined, one of them is

randomly selected and its successor (black dot with

label 3) is delivered as the simulated state for t ¼ 3:
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The above procedure is repeated a large number of

times.

An important issue in nearest-neighbour resam-

pling is the choice of a function which measures the

distance between points in the state space. By using

this function (also called a metric) one identifies the k

nearest neighbours of a particular state. In this study

the Mahalanobis metric (e.g. Kendall et al., 1983, p.

290) was used. The Mahalanobis distance between the

feature vectors Dt and Du at times t and u is defined as:

dðDt;DuÞ ¼ ððDt 2 DuÞ
T B21ðDt 2 DuÞÞ

1=2 ð1Þ

where B is the covariance matrix of the feature vector

Dt: The elements of this matrix are the covariances

between the components of Dt :

Bij ¼ CovðviðtÞ; vjðtÞÞ; i; j ¼ 1;…; q ð2Þ

where q is the dimension of Dt:

A discrete probability distribution or kernel is

required for resampling from the k nearest neighbours.

Lall and Sharma (1996) recommended a kernel that

gives higher weight to the closer neighbours. For this

decreasing kernel the probability pn that the nth

closest neighbour is resampled is given by:

pn ¼
1=n

Xk

i¼1

1=i

; n ¼ 1;…; k ð3Þ

From the above description it is clear that apart from

creating a feature vector, choosing a metric and a

probability kernel, the user has to set the number k of

nearest neighbours. For the decreasing kernel (Eq. (3))

the reproduction of autocorrelation coefficients gradu-

ally deteriorates with increasing k (Buishand and

Brandsma, 2001). However, k cannot be taken

arbitrarily small. Buishand and Brandsma (2001)

have shown that choosing k ¼ 2 leads to duplication

of large parts of the historical record and to repeated

sampling of the same historical values. These

phenomena are related to the probabilities p1 and p2

and not to the temporal correlation in the data. In

accordance with the results in Buishand and

Brandsma (2001) we use k ¼ 5 in this study.

To reduce the effect of seasonal variation, the

search for nearest neighbours was restricted to days

within a moving window, centered on the calendar

Fig. 1. The principle of nearest-neighbour resampling.
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day of interest. As in Brandsma and Buishand (1998)

the width of this window (Wmw) was 61 days. Yet

another technical issue arises when straightforward

simulation of 6-hourly values (Scheme 1) is per-

formed. The search for nearest neighbours has to be

further restricted then to the 6-hourly values in a

particular section of the day (0–6, 6–12, 12–18 or

18–24 h) in order to preserve the diurnal variation.

The resampling procedure runs in that case as follows:

1. Select a day randomly from the days in the moving

window centered at day 1. The data of the 0–6 h

section of the selected day form the first simulated

state.

2. Determine the k nearest neighbours of the simu-

lated state among the values of the first 6 h section

of the days in the moving window, using the

Mahalanobis distance (Eq. (1)).

3. Sample one of the nearest neighbours in step 2

using the decreasing kernel (Eq. (3)), and adopt its

historical successor as the simulated state for the

next 6 h interval.

4. Repeat steps 2 (with the search for nearest

neighbours in the same day section as that of the

simulated state) and 3 until the desired length of

record is simulated.

3. Disaggregation by the method of fragments

For the disaggregation of simulated daily rainfall

and temperature the method of fragments was

adapted. This method is a special case of nearest-

neighbour resampling. In order to preserve the

dependence between the 6-hourly values at the

transition of two days, the selection of a nearest

neighbour for the disaggregation of the simulated

daily rainfall and temperature data for a particular

day t considers both these daily data and the data

of the last 6h section of the previous day t 2 1:

Maheepala and Perera (1996) modified the method

of fragments in a similar way to preserve over-year

correlations. Again the Mahalanobis distance is

used to identify a nearest neighbour. In Maheepala

and Perera (1996) the selection of a nearest

neighbour was based on a scaled Euclidean

distance.

For a mathematical description of the selection

process the following vector pairs are defined:

Xp
t ¼ ½xp1ðtÞ; x

p
2ðtÞ;…; xpnðtÞ�

T

Xu ¼ ½x1ðuÞ; x2ðuÞ;…; xnðuÞ�
T

ð4Þ

and

Fp
t21 ¼ ½fp

1ðt 2 1Þ;fp
2ðt 2 1Þ;…;fp

nðt 2 1Þ�T

Fu21 ¼ ½f1ðu 2 1Þ;f2ðu 2 1Þ;…;fnðu 2 1Þ�T
ð5Þ

where xpi ðtÞ is the simulated daily value of the ith

weather variable (i ¼ 1;…; n) for day t, xiðuÞ is the

daily value obtained by summing (for rainfall) or

averaging (for temperature) 6-hourly values of the ith

weather variable for day u in the historical record,

fp
i ðt 2 1Þ is the value of the ith weather variable

simulated for the last 6h section of day t 2 1 and

fiðu 2 1Þ is the value of the ith weather variable in the

last 6 h section of day u 2 1 in the historical record. In

this study n ¼ 2 since rainfall and temperature are the

only weather variables. For each day t in the simulated

sequence, the distances:

au ¼ ððXp
t 2 XuÞ

T C21ðXp
t 2 XuÞÞ

1=2 ð6Þ

bu ¼ ððFp
t21 2Fu21Þ

T G21ðFp
t21 2Fu21ÞÞ

1=2 ð7Þ

are calculated for all days u in the historical record

falling within a moving window of width Wmw ¼ 61:

The matrices C and G are the covariance matrices of

Xu and Fu21; respectively, defined analogous to Eq.

(2). Then the day v is found such that:

av þ bv ¼ min
u

ðau þ buÞ ð8Þ

Day v is thus the day in the historical record for which

the weather situation is closest to that simulated for

day t and is therefore used for disaggregation.

For precipitation the ratios of the 6h values (‘the

fragments’) to the total amount of day v are used to

disaggregate the simulated value Pp
t for day t. The

disaggregated rainfall amounts Pp
t;l for the 6h sections

of day t are then given by:

Pp
t;l ¼ wv;lP

p
t ; l ¼ 1;…; 4 ð9Þ
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where:

wv;l ¼
Pv;l

X4

l¼1

Pv;l

ð10Þ

where Pv;l is the 6-hourly rainfall amount for the lth

section of day v. In order to preserve the daily mean

temperature the following additive structure is used:

Tp
t;l ¼ Tv;l þ �Tp

t 2 �Tv ð11Þ

where Tp
t;l is the disaggregated temperature for the lth

section of day t, Tv;l is the temperature for the lth

section of the selected historical day v, �Tp
t is the

simulated temperature for day t and

�Tv ¼
1

4

X4

l¼1

Tv;l ð12Þ

A stochastic variant of the above method is easily

obtained by searching for the k days with smallest

ðau þ buÞ and selecting one at random using the

discrete probability kernel (Eq. (3)).

4. Data description and pre-processing

The rainfall and temperature data used were

recorded at the airport of Maastricht, the Netherlands

(latitude 50.928N, longitude 5.788E, altitude 114 m)

for 42 years (1958–1999). The mean annual rainfall at

this site is 760 mm. The Maastricht record is the

longest record of sub-daily weather variables in the

Meuse basin. The measurements were originally

archived with a time resolution of 1 h. The precipi-

tation records were aggregated and temperature

records were averaged to obtain the data with 6-

hourly and daily resolution. The original 1 h resol-

ution was judged to be too fine for runoff modelling in

the Meuse basin.

Before resampling the data were standardised. This

further reduces the effect of seasonal variation. The

daily temperature was standardised by subtracting an

estimate md of the mean and dividing by an estimate

sd of the standard deviation for the calendar day d of

interest:

~xu ¼ ðxu 2 mdÞ=sd ; u ¼ 1;…; 365J; and

d ¼ ðu 2 1Þmod 365 þ 1 ð13Þ

where xu and ~xu are the original and standardised

variables for day u, respectively, and J ¼ 42 is the

total number of years in the record. The estimates

md and sd were obtained by smoothing the sample

mean and standard deviation for the successive

calendar days using the Nadaraya – Watson

smoother (for more details see, e.g. Hastie and

Tibshirani, 1990, p.19). The smoothed statistic gðdÞ

for day d is given by:

gðdÞ ¼

Xdþs

w¼d2s

k
d 2 w

s

� �
zw

Xdþs

w¼d2s

k
d 2 w

s

� � ; d ¼ 1;…; 365 ð14Þ

where zw is the raw value of the statistic for

calendar day w; kð·Þ is a kernel function and s is

the bandwidth2. In this study the Epanechnikov

kernel was applied:

kðaÞ ¼

3

4
ð1 2 a2Þ; for lal # 1

0 otherwise

8><
>: ð15Þ

where a ¼ ðd 2 wÞ=s: The bandwidth s was set to

30 days for temperature and 45 days for precipi-

tation. Daily precipitation was standardised by

dividing by a smooth estimate md;wet of the mean

wet-day precipitation amount:

~xu ¼ xu=md;wet; u ¼ 1;…; 365J; and

d ¼ ðu 2 1Þmod 365 þ 1 ð16Þ

A wet day was defined here as a day with

P $ 0:1 mm. Fig. 2 shows the values of md and

sd for T and md;wet for P, together with their

smoothed approximations. Particularly in the latter

two statistics there are large day-to-day fluctuations

due to sampling effects.

2 To apply Eq. (14) the values zw for w ¼ 366 2 s;…; 365 were

inserted for w ¼ 1 2 s;…; 0 and the values zw for w ¼ 1;…;s were

inserted for w ¼ 366;…365 þ s:
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The standardisation does not reduce the seasonal

variation in rainfall occurrence. It also does not affect

the seasonally varying dependence between precipi-

tation and temperature. The use of a moving window

remains therefore necessary. However, its width can

be broader if part of the seasonal variation is removed

prior to resampling. For 6-hourly temperature and

precipitation Eqs. (13) and (16) were applied to each

6 h section of the day separately.

5. Model identification

Precipitation and temperature data were generated

with two different temporal resolutions: 6-hourly and

daily. In both cases a first-order resampling model was

applied. This implies that the feature vector Dt

comprises rainfall and temperature generated for

the previous 6 hours or the previous day (depending

on the time resolution considered). Additionally, for

6-hourly simulations the inclusion of generated

variables for the two previous 6-hourly time steps

was studied (second-order model). The Mahalanobis

distance was incorporated in all simulation models.

The covariance matrix B defined by Eq. (2) was

calculated in two ways:

† globally for the entire set of standardised weather

variables (for 6-hourly values for each 6 h section

of the day separately), yielding the global covari-

ance (GC) model

† locally, i.e. using only the values of the standar-

dised weather variables lying within the moving

data window (and for 6-hourly values also within a

particular day section), yielding the local covari-

ance (LC) model, respectively

Fig. 2. Values of md and sd for daily temperature ðTÞ and md;wet for daily precipitation ðPÞ in Maastricht together with their smoothed

approximations as a function of calendar day d for the period 1957–1998. The smooth curves are computed using the Nadaraya–Watson

estimator with the Epanechnikov kernel.
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The LC model is computationally more expensive,

however, it accounts for seasonal variation in the

covariances between rainfall and temperature. These

covariances are negative in summer and positive in

winter. For the second-order models the LC scheme

also accounts for the seasonal variation of the lag 1

autocovariances of rainfall and temperature. To

disaggregate simulated daily values of precipitation

and temperature, the nearest-neighbour search was

conducted using Eqs. (6) and (7) where the matrices C

and G were computed according to the GC and LC

schemes. The GC scheme was used if the daily

simulations were done with a GC model and the LC

scheme was used if the daily simulations were done

with an LC model. These models are referred to as

DISGC and DISLC.

6. Results

6.1. Reproduction of standard deviations and

autocorrelation

The performance of the models was first

assessed in terms of the reproduction of the

standard deviations of the 6-hourly temperature

and precipitation, the standard deviations of the

monthly average temperature and the monthly

precipitation totals, and the 6-hourly autocorrelation

coefficients for the winter half-year (October–

March). To reduce the influence of the annual

cycle the above statistics were first calculated for

each calendar month separately. The effect of the

diurnal cycle was accounted for by using separate

values for the mean of each day section in the

calculation of the 6-hourly autocovariances. Thus,

given N values x1; x2;…; xN (of precipitation or

temperature) in a particular month, the lag t

autocovariance was estimated as:

cðtÞ ¼
1

N

XN2t

i¼1

ðxi 2 �xði21Þmod 4þ1Þ

£ ðxiþt 2 �xðiþt21Þmod 4þ1Þ ð17Þ

with �x1; �x2; �x3 and �x4 being the averages for the

four day sections. The lag t autocorrelation

coefficient was then estimated as:

rðtÞ ¼ cðtÞ=cð0Þ ð18Þ

where cð0Þ ¼ s2
6h is the variance. For each of the

analyzed weather variables the winter estimates

were obtained by taking the arithmetic mean of the

monthly estimates over the six winter months

(October–March).

A run of 420 years was generated to investigate the

performance of the two resampling schemes. A rather

long simulation run was considered to reduce the

standard errors of the second-order statistics. These

statistics were estimated in the same way as for the

historical data. The average estimates sp6h; spM; �rpðtÞ of

the standard deviations of the 6-hourly and monthly

values and the lag t autocorrelation coefficient,

respectively, were compared with the estimates s6h;

sM; �rðtÞ for the historical data. The relative difference

D�s6h between the observed and simulated 6-hourly

standard deviation was calculated using:

Ds6h ¼ ðsp6h 2 s6hÞ=s6h 100% ð19Þ

with a similar equation for the relative difference

DSM of the standard deviation of the monthly values,

and

D�rðtÞ ¼ ½�rpðtÞ2 �rðtÞ�; t ¼ 1; 2; 3;… ð20Þ

for the difference D�rðtÞ of the lag t autocorrelation

coefficient. In order to evaluate the statistical

significance of Ds6h; DsM and D�rðtÞ standard errors

se were calculated for the estimates from the historical

record. The standard errors were obtained with the

jackknife method in Buishand and Beersma (1996). A

criterion of 2 £ se was used to indicate significant

differences between the historical and simulated

values. This roughly corresponds to a two-sided test

at the 5% level (Brandsma and Buishand, 1998).

Table 1 presents Ds6h; DsM; and D�rðtÞ for

resampling Scheme 1. Instead of presenting D�rð3Þ;

D�rð4Þ; D�rð5Þ separately, the average difference

D�rð3; 4; 5Þ taken over these three lags is shown.

For the first-order 6 h resampling models (GC1,

LC1), Table 1 shows that a number of statistics are not

well reproduced. A large and statistically significant

negative bias is present in the standard deviations of

monthly rainfall and temperature. This bias is caused

by a strong underestimation of the higher order

autocorrelation coefficients. For precipitation large
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biases are found for t ¼ 3; 4 and 5, whereas for

temperature the largest biases occur at higher lags.

The first-order models are simply not able to deal with

the slow decay of the autocorrelation function in the

6-h rainfall and temperature data. This also applies to

the second-order models (GC2, LC2). Moreover, the

simulations with those models suffer from a signifi-

cant underestimation of the seasonal mean rainfall.

Table 2 displays the results for resampling

Scheme 2. For the 6h disaggregated rainfall, the bias

in the higher order autocorrelation coefficients is

much smaller than that in Table 1. In consequence, sM

is much better reproduced than in the straightforward

6 h simulations. For the same reason the under-

estimation of the standard deviations of monthly

temperatures is much smaller than in resampling

Scheme 1.

Furthermore, Tables 1 and 2 demonstrate that the

way the covariance matrices are computed has little

impact on the performance of the simulation pro-

cedure. Simplifications are thus conceivable.

Table 3 compares the two resampling schemes for

the summer half-year (April–October). Despite the

differences in precipitation regime between winter

(mainly widespread frontal rain) and summer (more

convective precipitation) the results are quite similar

for the two seasons. The direct 6 h simulations (LC1,

GC2) in Table 3 show statistically significant biases in

the higher order autocorrelation coefficients (t . 2) of

precipitation and temperature as well as in the standard

deviations of the monthly values. The use of the

second-order GC2 model results again in a significant

underestimation of the seasonal mean rainfall. The

biases are strongly reduced in the DISLC simulation.

The disaggregation of the daily values in Scheme 2

was also done with the randomized version of the

method of fragments in Section 3. This gave almost

identical results to those in Tables 2 and 3.

Table 1

Performance of the direct simulation of 6-hourly values (Scheme 1; one run for 420 years for each case) for the winter (October–March). For

each statistic the differences (mean precipitation in mm, mean temperature in 8C and autocorrelation coefficients, dimensionless) or percentage

differences (standard deviations) are given between the simulated and historical data (1958–1999). The historical values of the mean and

standard deviations in the bottom line are in mm (precipitation) or 8C (temperature)

Case Mean DsM Ds6h D�rð1Þ D�rð2Þ D�rð3; 4; 5Þ

P T P T P T P T P T P T

GC1 215.0 0.0 215.3a 29.8a 20.9 20.2 20.010 20.003 0.008 20.009 20.034a 0.007

LC1 217.4 0.0 215.7a 28.9a 21.7 20.3 20.006 20.003 20.007 0.009 20.035a 0.008

GC2 240.2a 0.4a 219.9a 225.2a 23.3 26.5a 20.011 20.022a 20.007 20.040a 20.039a 20.074a

LC2 269.0a 0.2 223.8a 223.9a 26.6a 24.8a 20.006 20.021a 20.006 20.039a 20.040a 20.075a

Historical 377.4 5.0 31.2 2.1 1.5 4.3 0.354 0.927 0.164 0.837 0.095 0.750

a Value differs more than 2 £ se from the estimate for the historical data.

Table 2

Performance of the simulation of daily values followed by disaggregation into 6-hourly values (Scheme 2; one run of 420 years for each case)

for the winter (October–March). For each statistic the differences (mean precipitation in mm, mean temperature in 8C and autocorrelation

coefficients, dimensionless) or percentage differences (standard deviations) are given between the simulated and historical data (1958–1999).

The historical values of the mean and standard deviations in the bottom line are in mm (precipitation) or 8C (temperature)

Case Mean DsM Ds6h D�rð1Þ D�rð2Þ D�rð3; 4; 5Þ

P T P T P T P T P T P T

DISGC 210.2 0.1 24.0 23.2 20.5 21.4 20.027a 20.011a 20.014 20.015a 20.002 20.028a

DISLC 219.8 0.0 25.3 23.6 21.9 20.5 20.018 20.010a 20.011 20.013 20.001 20.029a

Historical 377.4 5.0 31.2 2.1 1.5 4.3 0.354 0.927 0.164 0.837 0.095 0.750

a Value differs more than 2 £ se from the estimate for the historical data.
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6.2. Maximum precipitation amounts

A number of 1000-year simulations were per-

formed. For three of these simulations (LC1, GC2 and

DISLC) Fig. 3 shows Gumbel plots of the 6-h, 1-,4-

and 10-day winter precipitation maxima. In the case

of 6 h maxima, the greater part of the simulated curves

lies close to the curve for the historical data. However,

the simulated curves show a tendency towards

flattening at a level much higher than the maximum

historical precipitation. For the LC1 and GC2

simulations this level corresponds to the value of an

extremely large 6 h precipitation amount just outside

the boundary of the winter half-year. This precipi-

tation amount can, however, be resampled on days

within the winter half-year as a result of the use of the

moving window. In resampling Scheme 2 an extre-

mely large 6-hourly precipitation amount is created if

a large daily amount is resampled (possibly from

outside the winter half-year) and then disaggregated

using a historical day with very high precipitation in

one of the 6 h sections.

For 4- and 10-day precipitation, only the DISLC

model from Scheme 2 is able to reproduce the

distribution of the historical data properly. The curves

for the LC1 and GC2 simulations in Fig. 3, lie below

the curve for the historical data. This striking bias in

the quantiles of the extreme multi-day precipitation

amounts is mainly due to the poor reproduction of the

autocorrelation function. Because of the negative bias

in the higher order autocorrelation coefficients the

standard deviations of the simulated 4- and 10-day

precipitation amounts will be too low, implying that

the probability distribution is too much concentrated

around the mean. Large precipitation amounts there-

fore occur less often than they should. Especially for

the GC2 simulation the underestimation of the mean

and standard deviation of the 6 h values also

contributes to the bias in the quantiles of the 4- and

10-day extremes. Both the highest 4-day and 10-day

precipitation amounts in the DISLC simulation

largely exceed the highest observed values. These

maxima lie almost on the straight line representing the

Gumbel distribution.

The first 840 years of each simulation run was split

into 20 runs of 42 years to assess the statistical

significance of the observed differences between the

historical and simulated maxima. Fig. 4 shows the

results for the 4-day winter maxima in the LC1 and

DISLC simulations. The dash-dotted lines in the

figure represent the smallest and largest values in the

20 simulation runs. These envelopes may be regarded

as approximate 90% confidence bands for the 4-day

maximum distribution in a 42-year period. The plot

for the historical data is entirely within the envelopes

for the DISLC simulation but not within those for the

LC1 simulation. So there is some statistical evidence

of a systematic departure of the historical 4-day

maximum distribution from that in the LC1 simu-

lation. The large variability of the maxima makes it

more difficult to find deficiencies of a resampling

procedure in an extreme-value distribution than in

the second-order statistics of the 6h precipitation

amounts.

Table 3

Performance of the simulation of 6-hourly values for the summer (April–September). The cases LC1 and GC2 refer to direct simulation and

DISLC to simulation of daily values followed by disaggregation into 6-hourly values (one run of 420 years for each case). For each statistic the

differences (mean precipitation in mm, mean temperature in 8C and autocorrelation coefficients, dimensionless) or percentage differences

(standard deviations) are given between the simulated and historical data (1958–1999). The historical values of the mean and standard

deviations in the bottom line are in mm (precipitation) or 8C (temperature)

Case Mean DS
M

Ds6h D�rð1Þ D�rð2Þ D�rð3; 4; 5Þ

P T P T P T P T P T P T

LC1 3.0 0.0 219.3a 213.5a 0.3 0.3 0.006 20.001 0.003 0.004 20.030a 20.076a

GC2 240.8a 0.3 221.3a 217.1a 24.0 20.6 20.012 20.012a 20.005 20.019a 20.021a 20.066a

DISLC 2.4 0.0 28.4 1.2 0.6 1.2 20.022 0.004 20.003 0.025a 20.005 20.021a

Historical 386.4 16.3 34.1 1.4 1.9 3.6 0.237 0.851 0.083 0.705 0.050 0.656

a Value differs more than 2 £ se from the estimate for the historical data.

R. Wójcik, T.A. Buishand / Journal of Hydrology 273 (2003) 69–80 77



The results for the summer half-year are quite

similar. For return periods in excess of about 10 years,

the quantiles of the 4- and 10-day summer maxima are

considerably underestimated in the LC1 and GC2

simulations. The DISLC simulation does much better

for these extremes. The distribution of the 4- and

10-day summer maximum precipitation amounts in

that simulation is close to the Gumbel distribution.

Fig. 4. Gumbel plots of 4-day winter precipitation maxima for historical and simulated data. The dash-dotted lines represent the envelopes of 20

simulation runs of 42 years and the solid line is the average plot for these runs.

Fig. 3. Gumbel plots of 6-h, 1-,4- and 10-day winter precipitation maxima for historical and simulated data (runs of 1000 years).
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Like for the winter half-year, the most extreme

simulated values are well above the highest observed

values.

7. Discussion and conclusions

In this paper two resampling schemes for the

simulation of 6-hourly rainfall and temperature were

compared. The simulations using Scheme 1 did not

preserve a number of second-order statistics of

observed rainfall and temperature properly. Particu-

larly the standard deviations of monthly values were

significantly underestimated. This negative bias was

mainly due to the inability to reproduce the slow

decay of the autocorrelation function of 6-h rainfall

and temperature. Introduction of second-order models

to tackle this problem remained without success.

Because of the above deficiency the quantiles of the

simulated 4- and 10-day maximum precipitation

amounts were lower than those in the historical

record.

More optimistic results were obtained with resam-

pling Scheme 2. Both for rainfall and temperature the

second-order statistics were reproduced much better

than in Scheme 1. Moreover, the distributions of the

simulated rainfall maxima were quite close to those

from the historical record. A single simulation run of

1000 years demonstrated that for longer durations (4

and 10 days) the generated maxima follow the

Gumbel distribution, also outside the range of the

historical data.

The application of stochastic weather simulation to

large river basins like the Meuse basin requires a multi-

site extension. Multi-site simulation of daily precipi-

tation and temperature in the adjacent Rhine basin

using nearest-neighbour resampling is discussed in

Buishand and Brandsma (2001). Because the observed

weather of historical days is resampled this technique

automatically preserves the spatial dependence of the

daily rainfall amounts and daily temperatures. This in

contrast with approaches based on the multivariate

normal distribution (Wilks, 1999; Bárdossy and Van

Mierlo, 2000). The use of the method of fragments for

the temporal disaggregation of multi-site weather data

requires further study. Preliminary results for a

subbasin of the river Meuse look promising (Wójcik

and Buishand, 2001).

A limitation of a resampling technique is that the

simulated values cannot be larger than the highest

observed value. The fact that the most extreme

simulated multi-day precipitation amounts exceed the

highest observed values is purely due to a reshuffling of

the historical days with heavy precipitation.

Tables 2 and 3 show that also in Scheme 2 the

standard deviation of the monthly totals is under-

estimated, in particular in the summer half-year. A

similar bias was observed in earlier studies on nearest-

neighbour resampling (Brandsma and Buishand,

1998; Buishand and Brandsma, 2001). Especially for

drought studies it may be useful to incorporate long-

term dependence. This can be achieved by including

variables in the feature vector that characterise low-

frequency variability (Harrold et al., 2001).

Summarizing, it is clear that this study revealed

a serious flaw of nearest-neighbour resampling as a

method to straightforwardly generate rainfall and

temperature with a temporal resolution of 6 h. This

technique, however, performs much better at a

daily time scale so it is possible to combine it with

a disaggregation procedure to obtain the required

finer scale (6-hourly) values as demonstrated with

Scheme 2.
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anonymous reviewer for their comments on an earlier

version of the paper. The work was performed in co-

operation with the Institute for Inland Water Manage-

ment and Waste Water Treatment (RIZA) as part of a

larger study on stochastic weather generation for the

Meuse basin.

References

Acreman, M.C., 1990. A simple stochastic model of hourly rainfall

for Farnborough, England. Hydrological Sciences Journal 35,

119–148.
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