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Prediction of any event using pattern recognition tech-
nique depends on the past history of the event. Past 
situations under similar conditions of the feature vector in 
feature space are used to predict the expected behaviour 
of the system. Based on this approach, a quantitative 
snowfall forecast model has been developed for a station 
in Jammu and Kashmir, using surface meteorological 
data of the past 12 winters (1991–92 to 2003–04, ex-
cluding the data of winter 1994–95, which was not 
available). The model predicts weather in terms of 
snow/no snow day and the amount of snowfall (snow 
height in cm) for three consecutive days in advance. The 
performance of the model has been tested for four 
winters for day-1, day-2 and day-3 forecasts. For quali-
tative snowfall forecast, the model performance for 
day-1, day-2 and day-3 forecasts turns out to be 80–90, 
70–80 and 65–75%. The model estimates the expected 
snowfall amount at the station for day-1, day-2 and 
day-3 in advance, and based on the value of the esti-
mated snowfall amount, it is categorized in the expected 
snowfall range based on the already established crite-
rion. Quantitatively, the model predicts snowfall amount 
accurately for day-1 and the average accuracy of the 
model for different ranges of established categories 
varies from 25 to 55% for day-1 forecast. The model 
over-predicts the expected snowfall amount for day-2 
and day-3 compared to day-1. The results of the models 
have been discussed here. 
 
PRECIPITATION in North India during winter is mainly due 
to the development of lower latitudinal west and northwest 
air circulation, which gains moisture from the Arabian Sea 
and Persian Gulf, etc. during its eastward traverse. These 
westerly disturbances traverse through Afghanistan, Paki-
stan and finally approach Northwest Himalaya in the Indian 
region, where they precipitate snow (November to April). 
 Snow precipitation in this part of the country during 
winter makes the movement of civilions as well as army 
personnel difficult due to closure of roads/tracks and the 
development of hazardous situations due to avalanches. 
To make the best of fair-weather days, accurate weather and 
avalanche forecasts are required well in advance to ensure 
safe movement of personnel, necessary supplies and services 
along road axes/tracks. Thus there is need for a weather fore-
cast model, which can predict weather in terms of snow/no 
snow days and likely amount of snow as well, in advance. 

 The approaching westerly disturbance causes certain 
changes in surface meteorological data, which are continu-
ously measured and monitored over the North–Western Hima-
layan region, during winter. These perturbations in surface 
meteorological data are to some extent being tracked suc-
cessfully by suitable numerical models and the future 
weather situations are inferred in advance. However, precise 
site-specific forecasts are not possible with these models. 
 Recently, many case-based reasoning techniques have been 
proposed to solve the problem of weather forecasting1. In-
telligent systems (IS) using artificial intelligence techniques 
have been used to forecast visibility, marine fog, precipita-
tion, severe weather and other climatological conditions2–5. 
The IS modelling approach is complementary to the NWP 
(Numerical Weather Prediction) scheme that uses computa-
tionally intense dynamical, thermodynamical and statisti-
cal algorithms to produce large-scale weather forecasts. These 
large-scale forecasts are not sufficiently stable on a small 
scale, where local effects become significant or even pre-
dominant. The large-scale numerical models can be scaled 
down using more detailed numerical models that take output 
from large-scale models and also include local effects and 
most recent data of weather stations in the neighbouring 
area. The smaller-scale numerical models are not intuitive, 
need consistent data and are based on climatological history 
of the area, where local effects are encountered in the 
data. The fuzzy case based system for weather prediction, 
which addresses the problem of forecasting horizontal 
visibility and cloud ceiling height at airport terminals has 
been proposed by Riordan and Hansen1. 
 The model proposed here uses fuzzy similarity metric 
with built-in climatological knowledge. The case-based 
system retrieves stored cases from historical database using 
k-nearest-neighbour retrieval mechanism based on fuzzy 
similarity metric. Each retrieved case represents a previously 
encountered climatological situation that is similar to the 
current situation. The retrieved cases are adapted to construct 
a forecast scenario. Following the approach of case-based 
reasoning, the k-nearest neighbour model has been developed 
for predicting weather events qualitatively (snow/no snow 
day), and in a limited scope, the snow-fall amount in different 
qualitative categories. The model looks into the history of 
weather events for similar climatological situations and the 
outcome in terms of the predicate. The predicate outcome 
of the past situations is used in decision making for future 
weather outcome. The model developed so far has been 
tested during four winters. It generates three-day weather 
forecasts in advance in qualitative (snow/no snow day) and 
quantitative ways. 
 The nearest-neighbour model for prediction of avalanches 
was first proposed by Buser6, which selects ten days most 
similar to the given situation from 20-years data. The model 
does not relieve the forecaster from making his own decision; 
it helps him prune down the decision. Supplying detailed 
information about similar situations in the past, the model 
can support local control in decisions to open ski runs or 
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whether to shoot or not, the critical avalanche slopes7. A more 
enhanced version of the nearest-neighbour model, NXD 
2000, with optimizing weight and new elaborate variables, 
which brings knowledge of local avalanche forecaster into 
the model, has been proposed8. 
 The nearest-neighbour model has the advantage of simple 
computational approach. The model represents only the most 
similar situations corresponding to the current situation and 
the decision making itself depends on the forecaster. Further, 
the selection of weights for different parameters is based 
on the intuition of the expert, although attempts have 
been made for optimizing weights also8. 
 The Western Himalayan region comprises diverse climatic 
zones. Sharma and Ganju9 have broadly classified the West-
ern Himalaya into three major climatic zones, namely, 
Lower Himalayan Zone, Middle Himalayan Zone and Upper 
Himalayan Zone. The present study area lies in the Lower 
Himalayan Zone, i.e. Pir Panjal range of Northwest Himalaya, 
which is characterized by relatively warm temperature, heavy 
snow precipitation and short winter period. The westerly 
disturbance hits Pir Panjal range first in India. Due to high 
moisture content, heavy precipitation takes place in the Pir 
Panjal range and then it moves eastward, i.e. towards the 
Great Himalayan range and with little moisture content to 
Karakoram range. Snowfall starts early in November in 
Pir Panjal and frequent heavy snowstorms are dominant 
during mid-winter (February/March). The seasonal snow 
cover starts melting after mid-March in Pir Panjal and 
Great Himalaya. Precipitation thereafter is received as rain 
in Pir Panjal. Solid precipitation of the order of 50–60 cm is 
generally observed during normal snowstorm lasting 3 days 
and during extreme snowfall events, snowfall of the order 
of about 300 cm has been recorded during the past 12 winters. 
The mean ambient temperature varies from –5 to –10°C dur-
ing peak winter and lowest temperature dips down to 
about –15°C. A brief description of meteorological conditions 
of the study area is presented in Table 1. 
 The Chowkibal–Tangdhar axis is the only road con-
necting the districts of Tithwal and Kupwara in J&K. The 
road axis has 26 major registered avalanche sites. The high-
resolution meso-scale weather forecast models (e.g. MM5) 
are not meant for site-specific forecasts, as in the present 
case at Stage-II observatory, which is a representative weather 
station in the Chowkibal–Tangdhar area. The MM5 model 
used for forecast in the Chowkibal–Tangdhar area predicts 

weather parameters at 10 km resolution, which covers the 
whole area in 2 to 3 grid points (K. Srinivasan, pers. com-
mun.). The NN model discussed here is likely to provide 
additional help to weather and avalanche forecasters. 
 The primary interest of this study is prediction of winter 
snowfall. Therefore, mostly data for the months from No-
vember to April are considered. The data are not strictly 
distributed during all winters from 1 November to 30 April. 
The final database considered here, is that of the past twelve 
winters (1991–92 to 2003–04) recorded at Stage-II obser-
vatory. The snow and weather data are continuously recorded 
by the winter study team as two daily measurements at 
0830 UTC and at 1730 UTC. For the present study, data 
consisting of 4266 records of the period mentioned above, 
have been taken. Records for the surface meteorological 
parameters are not uniformly available for all winters due 
to the development of defects in the instruments, which could 
not be rectified during the course of a winter. Replace-
ment/repairing of the instruments could not be under-
taken, due to remoteness, inaccessibility and harsh and 
hazardous climatic conditions prevalent during winter. 
However, the records have been kept intact and the model 
has been run with missing parameters. 
 The basic concept of the nearest-neighbour model lies in 
the fact that similar situations will lead to similar out-
comes. Thus the nearest-neighbour technique looks into the 
history of the events in the past data. The similarity of the 
present situation with the past ones is defined in terms of the 
similarity metric. For the development of the present model 
Euclidean metric has been taken as the similarity measure. 
The similarity metric between two days has been defined as: 
 Distance between day xl and xj  
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where xl is the vector of m measurements for day i(m = 1, 
p); wk is the weight factor for measurements. 
 The model algorithm, flow diagram and graphical rep-
resentation of nearest-neighbour model in two dimensions 
are shown in Appendix 1. 
 The symbolic distances (representative of similarity of the 
present situation with past ones) of the present situation 
are calculated with the past situations, taking the actual 
outcome in terms of parameters taken for the decision-

 

Table 1. Climatic condition at Stage-II observatory 

 Mean Highest Mean Lowest Mean cumulative Mean standing 
Month max. (°C) max. (°C) min. (°C) min. (°C) snowfall (cm) snow (cm) 
 

November 9.9 21.0 0.6 –8.0 51.0 20.45 
December 5.5 15.0 –3.1 –10.0 88.0 28.8 
January 2.5 12.0 –5.8 –16.0 268.5 78.1 
February 3.0 12.5 –4.7 –12.5 287.2 122.6 
March 6.1 16.0 –1.5 –14.0 214.0 142.9 
April 13.3 22.5 3.5 –5.5 34.5 87.2 
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Nearest 10 days 
(Numbered 1, 2,  .. 10). 
FS represents fresh snow 
under those situations  
(i.e. the  first nearest day 
of 2/27/2003, time A is 
2/15/1998, time A and 
25 cm snow has been 
recorded  in next 24 h), 
etc. 

Prior situations to 
nearest situations  
(i.e.  prior situation of 
2/15/1998, time A is 
2/15/1998, time F and 
38 cm snow has been 
recorded in next 24 h), 
etc.  

Next situations to nearest 
situations (i.e. the next 
situation of 2/15/1998, A 
is 2/16/1998, F and 69 
cm snow has been 
recorded in next 24 h), 
etc.  

Next to next situations to 
nearest situations (i.e. 
the next to next situation 
of 2/15/1998,  A is 
2/16/1998, A and 71 cm 
snow has been recorded 
in next 24 h), etc.  

Weather conditions on 2/27/2003 at 
time A (1730 UTC). Snowfall 
recorded 35 cm (2/27/03 A to 
2/28/2003 A (next 24 h)).  

Weather conditions on 2/28/2003 at 
time A (1730 UTC). Snowfall 
recorded 5 cm (2/28/2003 A to 
3/1/2003 A (next 24 h)).  

 Weather conditions on 3/1/2003 at 
time A (1730 UTC). Snowfall 
recorded 35 cm (3/1/2003 A to 
3/2/2003 A (next 24 h)). 

 
 

Figure 1. Model prediction scheme (nearest days/situations for 2/27/2003, time A (1730 UTC)). 

 

 
making process. For the present case, the similarity of the 
present situation with the past has been calculated with 
equal weight to all parameters in the decision-making process. 
However, a few parameters may be biased. The ten nearest 
days of the past were selected for drawing the forecast 
scenario based on symbolic distances. The parameters selected 
for the present model development are given in Appendix 2. 
 The nearest ten days selected by the model are finally 
used in the decision criteria. The model is run for gener-
ating day-1, day-2 and day-3 forecasts, well in advance, 
based on the current and nearby situations. The model 
considers only the measurable snow precipitation in the 
past data; rainfall occurring in early and late winter is not con-
sidered. The problem lies in the fact that the wide volume 
of data representative of rainfall in the past years are not 
available.  

 The model run for 2/27/2003 at time A (1730 UTC) is 
shown in Figure 1. The snow and weather conditions for 
consecutive three days (2/27/2003 A, 2/28/2003 A and 
3/1/2003 A) are shown and explained (Figure 1, top). The 
model finds the nearest days of the day 2/27/2003 A, and 
then analyses the data of the prior situation to the nearest 
situations, next day’s situations to nearest situations and 
next to next day’s situation to nearest situations (Figure 1, 
bottom). The trained model forecasts for three consecutive 
days, i.e. day-1 (2/27/2003 A to 2/28/2003 A), day-2 
(2/28/2003 A to 3/1/2003 A), and day-3 (3/1/2003 A to 
3/2/2003 A) under different categories (Table 2). The model 
forecast and observed weather for day-1, day-2 and day-3 
are shown in Figure 2. The model forecast in terms of snow/ 
no snow day is accurate for all three days and it failed in 
the expected snowfall category for day-2 forecast (Figure 2). 
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Model forecast for three days Recorded weather for three days  

Forecast mismatches in 
snowfall category with 
actual weather recorded 

 
 

Figure 2. Final weather forecast generated by the model. 

 
 
 

Table 2. Categorized snowfall ranges 

Name Category Range 
 

A Very light snowfall ≤ 12 cm 
B Light snowfall 12.1–35.0 cm 
C Moderate snowfall 35.1–65.0 cm 
D Heavy snowfall > 65 cm 

 

 
 The method has the advantage of simple computational 
approach for prediction of weather compared to the com-
plex computations as well as simulation of real weather 
events in dynamical models. The method is not useful for 
long-range weather prediction (for more than three days) 
due to the effect of approaching westerly disturbances on 
the surface meteorological parameters. For the present 
study, the ten nearest neighbours have been selected. As the 
data volume increases in near future, the model performance 
will improve and stabilize. 
 The developed model was trained with the data of winter 
1997–98, taken as a normal winter where snowfall is more 
or less uniformly distributed. The basic purpose of training 
the model is to arrive at the threshold value, which would 
determine whether a predicted day could be taken as a 
snowfall day or not, based on the probability score achieved 

in the model. The decision criterion of the model for day-1, 
day-2 and day-3 forecasts was decided in terms of probability 
of snowfall, which comes out to be 40, 40 and 35% re-
spectively. The criterion thus developed was tested with 
the data of four winters (1998–99, 1999–2000, 2001–02 
and 2002–03) for generating qualitative and quantitative 
snowfall forecast for day-1, day-2 and day-3. The model 
first predicts whether the predicted three days could be snow/ 
no snow days. If the day has been predicted as snow day, 
then it predicts the expected snowfall amount for day-1, 
day-2 and day-3 based on criteria explained in succeeding 
paragraphs. The qualitative prediction of the model for 
day-1, day-2, and day-3 lies between 80 and 90%, 70 and 
80%, and 65 and 75% (Table 3) for test winters. The qualita-
tive forecast of the model decreases as we proceed from 
day-1 to day-2 and day-3. The overall prediction scheme of 
the model is given in Figures 1 and 2. 
 The model calculates the average value of snowfall in the 
nearest ten days, ten next situations to nearest situations 
and ten next to next situations to nearest situations at the 
station for estimation of expected snowfall amount for 
day-1, day-2 and day-3 forecasts. Based on the average 
value of snowfall amount, the model forecasts are divided 
into four groups, A, B, C, and D (Table 2). This classification 
of snowfall into different categories is used for weather 
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Table 3. Model performance (qualitative snowfall forecast) 

 Day-1 Day-2 Day-3 
 

 SF days NSF days SF days NSF days  SF days NSF days 
 

Winter 1998–99 

 SF days 32   9 23  19 21  21 
 NSF days 10 126 19 116 27 107 
 Accuracy 88.76% 78.53% 72.31% 

Winter 1999–2000 

 SF days 26  13 18  21 17  22 
 NSF days 14 129 28 114 44  97 
 Accuracy 85.16% 72.92% 63.33% 

Winter 2001–02 

 SF days 25   7 14  18 17  15 
 NSF days 23 126 33 115 39 108 
 Accuracy 83.42% 71.67% 69.83% 

Winter 2002–03 

 SF days 23  11 13  21 14  20 
 NSF days 13 134 31 115 28 117 
 Accuracy 86.74% 71.11% 73.18% 

SF, Snowfall; NSF, No snowfall. 

 
Table 4. Model performance (quantitative forecast) 

 Day-1 Day-2 Day-3 
 

Class Days A B C D E (%) Days A B C D E (%) Days A B C D E (%) 
 

Winter 1998–99 

 A  7 3  4 – – 42.8  9 1 7 1 – 11.1  9 3 5 1 – 33.3 
 B 23 7 12 4 – 52.17  8 2 4 2 – 50 12 3 9 – – 75 
 C  2 1  1 – – 0  6 1 5 – – 0 – – – – – – 
 D – – – – – – – – – – – – – – – – – – 

Winter 1999–2000 

 A  7 4 2 1 – 57.1 10 2 4 – 4 20 11 6 5 – – 54.6 
 B 19 6 8 2 3 42.1  6 3 2 1 – 33.3  6 2 2 2 – 33.3 
 C – – – – – –  2 – – 1 1 50 – – – – – – 
 D – – – – – – – – – – – – – – – – – – 

Winter 2001–02 

 A  4 2 2 – – 50  6 2 2 – 2 33.3 11 5 4 1 1 45.6 
 B 16 3 6 4 3 37.5  7 2 2 1 2 28.6  6 2 2 2 – 33.3 
 C  5 1 2 1 1 20  1 – – 1 – 100 – – – – – – 
 D – – – – – – – – – – – – – – – – – – 

Winter 2002–03 

 A  9 6 2 1 – 66.7  3 – 3 – – 0  5 4 – 1 – 80 
 B 13 1 8 2 2 61.5  7 2 1 2 2 14.3  9 4 1 2 2 11.2 
 C  1 – – – 1 0  3 1 – 1 1 100 – – – – – – 
 D – – – – – – – – – – – – – – – – – – 

 
 
forecasting in avalanche-prone areas of India in terms of 
rain (in mm). The rain (in mm) has been converted into 
equivalent snow amount (in cm) assuming average snow 
density equal to 100 kg/m3. 
 The accuracy of the model is high for day-1 forecast, with 
few cases of under-prediction (Table 4). For day-2 and day-3 
forecasts, the accuracy of the model decreases and over-
prediction of the model increases in different categories. 
Overall, the model prediction for most occurring snowfall 

events in Chowkibal–Tangdhar axis is high compared to 
extreme snowing events.  
 The accuracy of the model for prediction of heavy snowfall 
events for day-1 forecast is less; the cases are either under-
predicted or over-predicted by the model. The quantitative 
prediction of the model is given in Table 4. 
 The model predicted 7 days under category A, 23 days 
under category B, 2 days under category C and no day 
under category D for day-1 forecast for winter 1998–99 
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(Table 4). Out of 7 days under category A, snowfall was 
recorded for 3 days (accuracy 42.8%) under category A 
and out of 23 days under category B, snowfall was recorded 
for 12 days (accuracy 52.17% ) under category B, etc. The  
 
 
Appendix 1. Model algorithm, flow diagram and graphical representation 
  of nearest neighbour model 

 
  Variables from measurements and observations 
 
   
 
  Calculate distances between the actual day and of past  
 
 
  Take nearest ones (e.g. 10) 
 
 
  Check the weather records of these days (snow day/no snow day,  
  snowfall amount (cm)) 
 
 
  Train the model (past situations) 
 
 
  Forecast (snow/no snow day) 
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Appendix 2. List of parameters used for model development and  
  their abbreviation. 

Date  
Time (F (0830 UTC), A (1730 UTC)) 
Maximum temperature (MAX) 
Minimum temperature (MIN) 
Ambient temperature (DB)  
Relative humidity (RH) 
Cloud amount (CLA)  
Cloud type (CLT) 
Spot wind speed (SPD) 
Average wind speed (AVG) 
Atmospheric pressure (ATMP) 
Weather code (WW) 
Sunshine hours (SSH) 

accuracy of the model is given under column E (Table 4) 
for different categories. The model performance has been 
calculated in a similar way for day-2 and day-3 forecasts 
and for different winters. Extension of the model for more 
accurate quantitative as well as qualitative prediction is under 
progress. 
 The performance of the model developed so far is satis-
factory with respect to the available information. Data for 
all parameters are not available for a few winters due to 
sudden failure of meteorological instruments. Once all the pa-
rameters are available in the database in future, the model per-
formance is likely to improve. To overcome the problem 
of missing data, an automated recording of a few weather 
parameters and installation of state-of-the-art equipment 
have been initiated.  
 Further, in the present model all parameters have been 
given equal importance in the decision-making process. Bi-
asing of the parameters, which is being attempted in terms 
of the dynamic weights (computed from the data at each 
run), may provide better results. The model will be help-
ful to regulate the mobility of personnel along Chowki-
bal–Tangdhar axis, so that they do not get trapped during 
heavy snowfall. This model will also provide additional 
help to the avalanche forecaster for assessing avalanche dan-
ger well in advance along the road axis. Different weights 
may be assigned to different days for computing expected 
snowfall amount for better prediction. 
 The proposed model predicts weather at a representative 
station on the Chowkibal–Tangdhar axis. This can be exten-
ded in the remaining areas of the Northwest Himalaya in 
J&K, which may provide the overall picture of the snow 
precipitation at different places during a winter. 
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In the present communication, computation of synthetic 
accelerograms is based on convolution. The spectrum 
of ground motion expected at a recording site is first 
computed from a knowledge of source parameters and 
medium properties. This spectrum is then inverse 
Fourier transformed to yield the desired synthetic accel-
erogram. This method has been successfully used by 
Boore, and has been further extended in the present 
communication. The suitability of the method is demon-
strated successfully by modelling the accelerograms for 
two Himalayan earthquakes namely, the 1991 Uttarkashi 
earthquake and the 1999 Chamoli earthquake and 
compared with the observed accelerograms. 
 
EARTHQUAKE-resistant design of engineering structures is one 
of the most important methods of mitigating risk of damage 
from future earthquakes. Such designs are based on the 
specification of ground motion which can be expected in 

the event of an earthquake. However, for earthquake-resistant 
design of some important structures like dams and nuclear 
power plants, located in seismically active areas, it is desirable 
to have a reliable site-specific design accelerogram. Available 
records of strong ground motion, after suitable modifications, 
have been used in the past for detailed dynamic analysis of 
engineering structures. However, synthetic accelerograms 
are now increasingly being used in earthquake engineering. 
A knowledge of regional and local seismicity and seismotec-
tonics, a suitable earth model and source characteristics of the 
design earthquake are required for this purpose. 
 There have been some recent attempts on new approaches 
to synthesize strong ground motions and to obtain source 
parameters1–12. 
 Khattri et al.13 and Yu et al.11 carried out synthesis of strong 
motion for the Uttarkashi earthquake. Khattri et al.13 carried 
out forward modelling using the isochrone method and 
inverted the observed accelerograms by recursive stochastic 
inverse algorithm to obtain the earthquake source slip func-
tion. Yu et al.11 generated synthetics using the composite 
source model and synthetic Green’s function. Solution of 
the forward problem carried out by Yu et al.11 has taken 
into account the velocity structure in the Uttarkashi area 
and its Q-structure. The method of generating synthetics 
depends on the knowledge of many input parameters like 
velocity and Q-structure of the layered earth model. 
Kumar et al.12 used semi-empirical method for calculating 
synthetic accelerograms. They divided the fault plane into 
sub-faults and generated envelop waveform, instead of 
actual time history, corresponding to each element of the 
fault plane. 
 In the present communication, an improved method of 
generating synthetic accelerograms has been presented 
and discussed. Generation of synthetic accelerograms in the 
near field is based on a dislocation moving over a fault plane. 
The computed ground motions have to take into account the 
nature of rupture propagation over the fault plane, radiation 
pattern effects, presence of free surface layering in the earth 
between the source and free surface and effect of finite 
moving source. The slip on the causative fault is specified 
in terms of shape, rise time and amplitude of the source 
time function. In addition, velocity of rupture propagation 
and final area over which slip occurs are also specified. 
 Let y(t) represent the recorded seismogram at a point on 
the surface of a layered half space produced by a point shear 
dislocation. This can be written as: 
 

 y(t) = C*s(t)*a(t)*d(t)*i(t), (1) 
 

where C is a scalar, s(t) is the source time function, a(t) 
represents the impulse response of the layered medium 
between source and receiver, d(t) accounts for frequency-
dependent attenuation and i(t) is the impulse response of the 
seismograph. In frequency domain, eq. (1) can be written as: 
 

 Y(ω) = CS(ω)A(ω)D(ω)I(ω), (2) 


