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Abstract: A major limitation of K-nearest neighbor based weather generators is that they do not produce new values but merely reshuffle
the historical data to generate realistic weather sequences. In this paper, a modified approach is developed that allows nearest neighbor
resampling with perturbation of the historic data. A strategy is introduced that resamples the historical data with perturbations while
preserving the prominent statistical characteristics, including the interstation correlations. The approach is similar in spirit to traditional
autoregressive models except that the new values are obtained by adding a random component to the individual resampled data points. An
advantage of the approach is that unprecedented precipitation amounts are generated that are important for the simulation of extreme
events. The approach is demonstrated through application to the Upper Thames River Basin in Ontario. Daily weather variables �maxi-
mum temperature, minimum temperature, and precipitation� were simulated at multiple stations in and around the basin. Analysis of the
simulated data demonstrated the ability of the model to reproduce important statistical parameters of the observed data series while
allowing perturbations to the observed data points. Additionally, no site-specific assumptions regarding the probability distribution of
variables are required.
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Introduction

Development of stochastic weather models is an important task
that has many practical applications in hydrology and water re-
sources management. These models are often employed for im-
pact assessment studies that require stochastically generated
weather sequences as input. Traditionally, parametric weather
generators �Nicks and Harp 1980� have first focused on indepen-
dent generation of precipitation while the remaining variables are
modeled conditionally on precipitation occurrence. Daily precipi-
tation amounts are generated using a two-state first-order Markov
model from an assumed probability distribution fit to the observed
values. Todorovic and Woolhiser �1975� combined the first-order
Markov model for daily precipitation occurrence with a statistical
model for daily nonzero precipitation amounts described by an
exponential distribution. Katz �1977�, Buishand �1978�, and Stern
and Coe �1984� used the two-parameter gamma distribution to
describe the occurrence of precipitation amount on wet days.
Smith and Schreiber �1974�, Woolhiser and Roldan �1982�, and
Wilks �1999� fit the three-parameter mixed exponential distribu-
tion to describe precipitation amounts on wet days. Richardson
�1981� describes a Markov-chain exponential model for generat-
ing other meteorological variables in addition to precipitation.
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Stochastic weather generators of the type proposed by Richardson
�1981� are commonly referred to as WGEN �for “weather genera-
tor”� as in Richardson and Wright �1984�. Nicks et al. �1990�
describe an extended version of WGEN, called WXGEN, that
takes into account the non-normal distribution of wind speed and
relative humidity. Wind speed and dewpoint �from which relative
humidity can be derived� are included in the weather generator
GEM �generation of weather elements for multiple applications�
developed by Hanson and Johnson �1998�. Parlange and Katz
�2000� further extended WGEN to include daily mean wind speed
and dewpoint in the model. Wilks and Wilby �1999� present an
excellent review of stochastic weather models.

A major drawback associated with the “Richardson type”
weather generators is that persistent events, such as drought or
prolonged rainfall, are not well reproduced. To overcome this
problem, the serial approach to weather generation has been pre-
sented by Rackso et al. �1991�, Semenov and Barrow �1997�, and
Semenov et al. �1998�, among others. An example of this ap-
proach is LARS-WG in which the sequence of dry and wet series
of days is modeled first while the precipitation amounts and other
variables are generated conditioned on the wet or dry status. Both
WGEN and LARS-WG, however, have difficulty in reproducing
the annual variability in monthly means of the variables. Further,
they cannot simultaneously simulate weather data at multiple
sites. Nevertheless, several applications of weather generators for
multisite simulation of variables have been reported in the litera-
ture �e.g., Smith 1994; Wilby 1994; Wilks 1998�. Parametric
methods are indeed very useful but they have several inadequa-
cies. First and most importantly, they do not adequately reproduce
various aspects of the spatial and temporal dependence of vari-
ables. Second, an assumption has to be made regarding the form
of probability distribution of the variables, which is often subjec-
tive. Third, non-Gaussian features in the data cannot be ad-
equately captured as multivariate autoregressive �MAR� models
implicitly assume a normal distribution, which is difficult to sat-

isfy. Fourth, a large number of parameters are separately fit to
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each time period and the number further increases if the simula-
tions are to be conditioned. Fifth, the models are not easily trans-
portable to other sites due to the site-specific assumptions made
regarding the probability distributions of the variables.

Nonparametric methods can circumvent many problems asso-
ciated with the parametric methods. The most promising nonpara-
metric technique for generating weather data is the K-nearest
neighbor �K-NN� resampling approach. Recently, interest has
emerged in the application of these techniques for generating syn-
thetic weather data. The works of Young �1994�, Lall and Sharma
�1996�, Lall et al. �1996�, Rajagopalan and Lall �1999�, Buishand
and Brandsma �2001�, and Yates et al. �2003� describe applica-
tions of the K-NN resampling scheme for simulation of weather
data. Young �1994� employed a K-NN model for simulation of
weather data that preserves the correlation between the tempera-
ture and the precipitation, and the wet or dry spell statistics.
Simulated sequences, however, showed reduced persistence and
underestimation of the fraction of dry months. Lall et al. �1996�
used a K-NN resampling scheme with kernel density estimators to
represent the probability distributions of dry spell lengths, wet
spell lengths, and wet day precipitation amounts. Rajagopalan and
Lall �1999� compared nearest neighbor resampling with a para-
metric time series model and demonstrated the superiority of the
nonparametric approach. Sharma et al. �1997� describe a nonpara-
metric method for the simulation of streamflow sequences. Their
model was able to reproduce both linear and nonlinear depen-
dence. Brandsma and Buishand �1998� describe the application of
a nearest neighbor resampling procedure to single site simulation
of daily precipitation and temperature for multiple stations in the
Rhine Basin. Conditional simulation of weather variables on at-
mospheric flow was also considered. Buishand and Brandsma
�2001� extended the nearest neighbor resampling to simultaneous
simulation of daily precipitation and temperature at multiple sta-
tions. Yates et al. �2003� describe a K-NN resampling strategy
that can be used to generate desired climate change scenarios.

It is often necessary to evaluate the response of hydrological
models to extreme precipitation events that cause floods or
droughts in a basin. A weather generator capable of simulating the
occurrence of extreme precipitation events, while preserving the
important temporal and spatial correlation of the observed data, is
likely to be of immense help in formulating effective flood and
drought management strategies at the catchment level. Earlier
works of Yates et al. �2003�, Buishand and Brandsma �2001�, and
Lall and Sharma �1996� describe successful applications of the
basic K-NN approach to the simulation of weather data. However,
a limitation of these models is that they do not produce new
values but merely reshuffle the historical data to generate new
weather sequences. Application of such sequences, in conjunction
with the hydrological models, to catchment response evaluation
could lead to underexploration of the possible effects of climatic
variability, and to suboptimal policies for system management.
The principal focus of this study is to develop and evaluate a
weather generating model that allows nearest neighbor resam-
pling with perturbation of the historical data. The proposed model
is capable of extrapolating beyond the observed record to produce
precipitation and temperature values that are different from the
observed values. Particular emphasis is placed on the simulation
of extreme unprecedented precipitation events that are likely to be
beneficial in improving the prediction of hydrologic extremes,
including both floods and droughts. Evaluation of the model is
through application to data from the Upper Thames River Basin
�UTRB� in the Canadian province of Ontario.
The remainder of the paper is organized in the following man-
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ner. The next section describes model development and outlines
the methodology used to adapt the K-NN algorithm for simulating
daily weather sequences based upon the modified approach. The
subsequent section describes the physical characteristics of the
UTRB. Application of the algorithm to the basin along with a
description of results is presented in the next section. The paper
concludes with a summary of the results.

Model Development

Nearest neighbor methods have been intensively investigated in
the field of statistics and in pattern recognition procedures. De-
spite their inherent simplicity, nearest neighbor algorithms are
considered versatile and robust. Although more sophisticated al-
ternative techniques have been developed since their inception,
nearest neighbor methods remain very popular. A nearest neigh-
bor algorithm typically involves selecting a specified number of
data vectors similar in characteristics to the vector of interest. One
of these vectors is randomly resampled to represent the vector of
the given time step in the simulation period. In the context of
weather data simulation, the nearest neighbor approach involves
simultaneous sampling, with replacement, weather variables, like
precipitation and temperature, from the observed data. To gener-
ate weather variables for a new day, t+1, days with similar char-
acteristics to those simulated for the previous day t are first
selected from the historical record. One of these nearest neighbors
is then selected according to a defined probability distribution or
kernel and the observed values for the day subsequent to that
nearest neighbor are adopted as the simulated values for day
t+1. Models based on the K-NN approach can easily be extended
to multisite simulation of weather data while keeping the spatial
correlation structure virtually intact. The spatial dependencies are
preserved because the same day’s weather is adopted as the
weather for all stations. Apart from the spatial dependencies, tem-
poral dependence is likely to be preserved as the simulated values
for day t+1 are conditioned on the values for the previous day t.
Further, the cross correlation among the variables at any given
site is automatically preserved as a block of variables, rather than
a single variable, is resampled from the observed data.

Consider that the daily historic weather vector consists of p
variables. Suppose the number of stations considered in the model
is q and data are available for N years. Let Xt

j denote the vector of
weather variables for day t and station j, where t=1, . . . ,T, and
j=1, . . . ,q; T being the total number of days in the observed time
series. The feature vector for day t can be expressed, in expanded
form, as Xt

j = �x1,t
j ,x2,t

j , . . . ,xp,t
j � where xi,t

j represents the value of
the weather variable i for station j. Suppose that the simulation
begins on day t corresponding to January 1. The algorithm cycles
through various steps to obtain the weather for day t+1. The
procedure continues for all 365 days of a given year and the
whole procedure is repeated to generate data for as many years as
required. The steps of the algorithm are as follows:
1. Compute regional means of the p variables across the q sta-

tions for each day of the historical record

X̄t = �x̄1,t, x̄2,t, . . . , x̄p,t� �1�

where

x̄i,t =
1

q�
q

xi,t
j , i = 1, . . . ,p, and t = 1, . . . ,T �2�
j=1
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2. Determine the size, L, of the data block that includes all
potential neighbors to the current feature vector from which
the resampling is to be done. A temporal window of width w
is chosen and all days within the window are considered as
potential candidates to the current feature vector. Yates et al.
�2003� used a temporal window of 14 days, which implied
that if the current day is January 20 then the window of days
consists of all days between January 13 and January 27 for
all N years but excluding January 20 for the given year. Thus,
the data block of potential neighbors from which to resample
consists of L= �w+1��N−1 days.

3. Compute mean vectors across q stations for each day in the
data block consisting of potential neighbors using the expres-
sions given in Step 1.

4. Compute the covariance matrix, Ct, for day t using the data
block of size L� p.

5. The weather on the first day t �e.g., January 1� comprising all
p variables at q stations is randomly chosen from the set of
all January 1 values in the historic record of N years. The
algorithm cycles through the following steps to select one of
the nearest neighbors to represent the weather for day t+1 of
the simulation period.

6. Compute Mahalanobis distances �Davis 1986� between the

mean vector of the current day’s weather X̄t and the mean
vector Xi for day i, where i=1, . . . ,L. The distance metric
can be defined through

di = ��X̄t − X̄i�Ct
−1�X̄t − X̄i�T �3�

where T represents the transpose operation; and Ct
−1�inverse

of the covariance matrix. Yates et al. �2003� used the Mahal-
anobis distance metric to determine the closeness of any
given neighbor to the current vector as it does not require
explicit weighting and standardization of the variables.

7. Determine the number of first K nearest neighbors to be re-
tained for resampling out of the total of L neighbors. Lall and
Sharma �1996� suggested the use of the generalized cross
validation score �GCV� for choosing K. Rajagopalan and
Lall �1999� and Yates et al. �2003� recommended the use of
a heuristic method for choosing K according to which
K=�L.

8. Sort the Mahalanobis distances in ascending order and retain
the first K nearest neighbors. A discrete probability distribu-
tion that gives higher weights to the closer neighbors was
used for resampling from the K nearest neigbors. Weights are
assigned to each of these j neighbors according to the metric
defined by

wj =
1/j

�
i=1

K

1/i

�4�

The cumulative probabilities, pj, are given by

pj = �
i=1

j

wi �5�

The neighbor with the smallest distance is assigned the high-
est weight, while the neighbor with the largest distance �i.e.,
the Kth neighbor� gets the least weight. Lall and Sharma
�1996� developed this function through a local Poisson ap-
proximation of the probability density function of state space

neighbors.
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9. Determine the nearest neighbor of the current day by using
the cumulative probability metric given by Eq. �5�. Generate
a random number, r� �0,1� and if p1�r� pK, then the day j
for which r is closest to pj is selected. If r� p1, the day
corresponding to d1 is selected and if r= pK, then the day
corresponding to dK is selected. The observed values for the
day subsequent to the selected nearest neighbor are adopted
to represent the weather for day t+1. In the modified ap-
proach presented here, the data points resampled using the
basic K-NN approach are perturbed by adding a random
component as described in Step 10 below.

10. For each station and each variable, a nonparametric distribu-
tion is fit to the K nearest neighbors identified in Step 8. This
involves estimating the conditional standard deviation, �,
and the bandwidth, � �Sharma et al. 1997; Sharma and
O’Neill 2002�. Perturbation of the values of weather vari-
ables obtained using the basic K-NN approach is carried out
in the following steps:
a. Let �i

j be the conditional standard deviation of vari-
able i for station j computed from the K nearest
neighbors. Let zt+1 be a random variate for day t+1 in
the simulation period from a normal distribution with
zero mean and unit variance. The new value of
weather variables i for day t+1 and station j is given
by

yi,t+1
j = xi,t+1

j + ��i
jzt+1 �6�

where xi,t+1
j �value of the weather variable for day

t+1 and station j obtained from the basic K-NN
model; yi,t+1

j �corresponding value obtained after per-
turbation; and ��bandwidth �a function of the num-
ber of samples� determined following Sharma et al.
�1997�. The perturbed resampled value obtained at
time step t is not used in the neighbor calculation for
day t+1, but rather the original resampled value is
used.

b. Since the precipitation values are bounded, there is a
possibility that Eq. �6� in the above step could lead to
negative precipitation amounts. Setting these negative
values to zero would lead to bias that might produce
monthly totals higher than the observed values, which
is unacceptable. To overcome this problem, the band-
width is transformed if the probability of generating a
negative value is too large. A threshold probability, �,
for generating a negative value is selected. Sharma
and O’Neill �2002� use �=0.06 for which z=−1.55.
The largest value of � corresponding to the probabil-
ity of generating a negative value of exactly � is
therefore given by �a=x3,t+1

j / �1.55��3
j �, where sub-

script 3 refers to precipitation values and
�a�acceptable �largest� value of �. If the calculated
value of � is larger than �a, then �a is used instead
of �.

c. If the precipitation computed in Step 10b is still nega-
tive, a new value of the random variate is generated
and the value of precipitation recomputed from
Eq. �6�.

d. Step 10c is repeated until the generated value of pre-
cipitation becomes non-negative.

Steps 6–10 are repeated to generate as many years of synthetic
data as required. If multiple sequences of data are required, then
the algorithm starts at Step 5. The modified approach presented

here recognizes that the variability associated with low precipita-
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tion values is significantly smaller than that associated with
higher precipitation values. A certain amount of bias is introduced
due to the use of a new value of the random variate in case the
computed value of precipitation is negative. However, the over-
estimation of precipitation amounts caused by this bias is insig-
nificant as can be seen from the model results presented in the
following sections of the paper.

Upper Thames River Basin

The Thames River Basin is located in the agricultural heartland of
the southwestern region of the Canadian province of Ontario. The
Thames River is the major river of the basin. It is 273 km long
and has a catchment area of around 5,825 km2, making it the
second largest watershed in southwestern Ontario. Southwestern
Ontario is a highly developed region and as such, the basin faces
pressures from urban and rural land uses. Most of the precipita-
tion comes in the form of winter snow. Rainfall occurs mainly in
spring, with some in fall.

Daily maximum temperature �TMX�, minimum temperature
�TMN�, and precipitation �PPT� data from 15 stations in and
around the basin were used for the period 1964–2001. Hence, for
our model, p=3. The geographical location of the stations is
shown in Fig. 1. The data set used in this study is Environment
Canada corrected. The mean annual values of weather variables

Fig. 1. Geographical location of different stations in basin
and the latitude and longitude of each meteorological station are
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presented in Table 1. The meteorological stations in the basin are
distributed across an area of approximate dimension 80 km �east–
west� by 120 km �north–south�. The interstation distances range
from approximately 10 to 120 km.

There were a large number of missing temperature records in
the available data which were infilled using a two-step procedure.
In the first step, missing records for London, Ilderton, Foldens,
Stratford, and Woodstock were infilled with the mean daily val-
ues. Once the data set for these five stations was complete, the
missing records for Embro, Dorchester, Tavistock, and Fullarton
were infilled. At these four stations, the precipitation records were
available but maximum temperature and minimum temperature
records were missing for the entire period. The weighted average
inverse distance square method was used to estimate the missing
temperature data for these four stations. The method has the ad-
vantage that the estimated values will always be less than the
greatest and greater than the smallest value at the surrounding
stations. The calculation of distances between various stations
was based on the latitude and longitude of the stations that are
shown in Table 1. It was not possible to use the weighted average
inverse distance square method for London, Foldens, Stratford,
and Woodstock data as there were many days in the record for
which the data are missing for either one or more of the remain-
ing stations. The observed record for St. Thomas was also incom-
plete. Missing values for St. Thomas were computed from the
available records of Ilderton, London, and Dorchester.

Model Application

Model Parameters

The performance of the K-NN model depends upon the proper
setting of various parameters whose values must be determined
before the evaluation of the model can be carried out. Two im-
portant model parameters in a K-NN based resampling approach
are the width of the temporal window, w, and the number, K, of
nearest neighbors. It is worth mentioning that although K and w
are parameters the method itself is nevertheless nonparametric

Table 1. Station Characteristics

Station
Latitude

�degrees N�
Longitude

�degrees W�

Mean
annual
TMX
�°C�

Mean
annual
TMN
�°C�

Mean
annual
PPT
�mm�

Blythe 43°43� 81°23� 11.3 2.2 1,159

Dorchester 43°0� 81°2� 12.3 2.6 1,034

Embro 43°15� 80°56� 11.9 2.5 984

Exeter 43°21� 81°29� 12.0 2.8 1,008

Foldens 43°1� 80°47� 11.9 3.2 945

Fullarton 43°23� 80°47� 11.8 2.5 1,012

Glen Allan 43°41� 80°43� 10.9 1.7 989

Ilderton 43°3� 81°26� 12.7 3.3 1,008

London 43°2� 81°9� 12.4 2.4 980

Stratford 43°22� 81°0� 11.4 2.4 1,056

St. Thomas 42°46� 81°13� 12.9 3.0 985

Tavistock 43°19� 80°50� 11.8 2.5 1,048

Waterloo 43°29� 80°31� 11.6 1.6 915

Woodstock 43°8� 80°46� 12.45 2.52 941

Wroxeter 43°52� 81°9� 11.25 2.18 995
and does not require specifying model parameters from the ob-
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served data �Karlson and Yakowitz 1987�. In parametric models,
the effect of seasonality is taken into account by fitting different
model parameters to each season, whereas it is through the mov-
ing window that the seasonal characteristics of the observed data
are reproduced in a K-NN resampling technique. Because the
search for nearest neighbors is restricted to days within a moving
window, the effect of seasonal variation is greatly reduced. A
subset of days within a moving window, centered on the Julian
day of interest, is selected and all days within the temporal win-
dow are potential candidates for the weather on the given day in
the simulation period. Therefore, the width of the moving window
must be sufficiently large such that the dependence between the
observations outside the moving window can be neglected. A
fixed length 14-day temporal window was used in this study. For
w=14 and N=38, the total number of potential candidates con-
sists of L days �L=569� as described in Step 2.

The choice of K is vital for good performance of the model.
The value of K depends on the type of kernel used for resampling,
the number, L, of days from which the nearest neighbors are
selected, and the dimension of the feature vector �Buishand and
Brandsma 2001�. A simple approach to determining K is to try
many values and obtain a satisfactory value by trial and error but
other approaches are also available. Lall and Sharma �1996� rec-
ommended a heuristic value of K=�L. Buishand and Brandsma
�2001� observed that for a decreasing kernel, the reproduction of
autocorrelation coefficients gradually deteriorates with increasing
K. On the other hand, resampling with a small number of nearest
neighbors might lead to duplication of large parts of the historical
record and to repeated sampling of the same historical values.
Rajagopalan and Lall �1999� and Yates et al. �2003� found that the
heuristic method of choosing K led to good model performance.
In our case L=569 and hence a value of K=24 has been adopted.
With the parameters of the model defined, it is possible to gener-
ate weather data based upon the modified approach and evaluate
the performance of the model.

Reproduction of Historical Statistics

The performance of the proposed model was evaluated through
application to data from the Upper Thames River Basin. A new
subset of years that constitute the driving data for the model was
obtained by using an integer function that returned integers be-
tween specified upper and lower bounds. To generate N years of
data, the integer function was called N times. With this method,
each year has an equal probability of being selected but some
years may be selected more than once. A new data set was thus
obtained and the K-NN algorithm was used to generate 800 years
of synthetic data with this data set. The goal of simulation was to
produce a data series that preserved the statistical attributes of the
historic data while perturbing the data points. The statistics of
interest were computed from the simulated sequence and com-
pared to the statistics of the observed record using box plots. Box
plots are a preferred method of data analysis as they show the
range of variation in the statistics of simulations and provide a
straightforward method of comparing the statistics of simulations
with the historical data. Results are presented below only for Lon-
don since the results for other stations are similar.

Fig. 2 shows the box plots of 800 simulated values of mean
TMX values for London. Although the model was applied on
daily data, the statistics from the daily data have been aggregated
to a monthly time scale to facilitate presentation of the results.
The statistics of simulations are shown by box plots while the

solid lines with dots represent the mean of the monthly values
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from the historical data. Comparison of historical monthly values
with the simulated values clearly showed that the model was able
to adequately reproduce the historical values. This is highly sat-
isfactory given that monthly statistics were not explicitly speci-
fied in fitting the K-NN model.

Fig. 3 provides box plots of total monthly precipitation for
London. It can be seen from the box plots that the historical mean
of the total precipitation is close to the median of the simulated
data for all the months. A number of values were found to lie
beyond the whiskers but these outliers are indicative of the vari-
ability in the simulated data. The total annual precipitation simu-
lated by the model �987 mm� matched very closely the historical
value �980 mm�. The model slightly overestimated the monthly
totals for February, August, September, and November. For the
rest of the months, model results are very close to the observed
values. Among all weather variables, precipitation has the greatest
variability in time and space and therefore the performance of the
model in simulating the total monthly precipitation may be con-
sidered to be very good. Since kernel based perturbation tends to

Fig. 2. Box plots of monthly mean maximum temperature

Fig. 3. Box plots of total monthly precipitation
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increase the variance of the simulated values, the distributions of
monthly standard deviations for TMX and PPT were investigated.
The standard deviations of the simulated values of TMX were
found to be larger than the historical values. Interestingly, for PPT
the simulated standard deviations were in good agreement with
the historical values. The simulations also adequately reproduced
the probability distributions of historical values.

Fig. 4 shows box plots of total number of wet days for Lon-
don. This statistic is important for sequences that are generated
for use in crop production and flood management models. Box
plots in Fig. 4 indicate that the model adequately reproduced the
total number of wet days in different months of the year. There
was a slight overestimation for the months of April, June, and
August, but the overall results are satisfactory.

Preservation of Correlation Structure

Parametric models often fail to reproduce the correlation structure
of the observed data. Due to the inherent structure of the basic
K-NN model, there is a strong likelihood of the correlation struc-
ture being preserved. With the modified model presented here, the
correlation structure of the observed data might be tempered. To
keep the correlation structure intact, it was decided to use a con-
stant value of the random normal variate for all the variables and
all the stations at any given time step. The extent to which corre-
lation structure might change with the approach presented here
was then investigated. Box plots for correlation between TMX
and precipitation and autocorrelation of PPT are shown in Figs. 5
and 6, respectively. It can be observed from the box plots shown
in Fig. 5 that the observed data have a positive correlation be-
tween TMX and PPT during the winter months while the corre-
lation is very close to zero during the summer months, thus
indicating a statistically insignificant correlation for these months.
These seasonal correlation characteristics are adequately repro-
duced by the K-NN model, as shown by the box plots.

Simple resampling schemes tend to destroy prominent time
correlations of the observed data but the K-NN scheme resamples
from the observed data by conditioning on the weather for the
previous day, and is therefore more likely to preserve important
time correlations. The model proposed here involves perturba-

Fig. 4. Box plots of total number of wet days
tions of the observed data points and as such does not explicitly
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reproduce daily correlations. Clark et al. �2004� present a method
to preserve daily correlations that involves reordering the en-
semble members to reconstruct the spatial and temporal correla-
tion statistics of the observed data. The performance of the
proposed model in reproducing autocorrelation of precipitation
data at monthly time scale was investigated, and is presented
through box plots of autocorrelation of precipitation shown in
Fig. 6. It can be seen from the box plots that the mean values of
autocorrelation coefficients of the historical record for different
months are close to zero, which implies a very weak lag-1 auto-
correlation of PPT, and the model adequately captured these
characteristic of the observed data.

For agricultural models, weather data can be generated sepa-
rately at different sites without taking into account spatial corre-
lations because the interaction between processes at different sites
is often weak. In hydrological models, especially those dealing
with flood prediction, the spatial distribution of the generated pre-
cipitation amounts is crucial. Many studies have shown that the
lack of spatially distributed precipitation amounts can have a se-
rious impact on basin runoff generation �Shah et al. 1996; Yang et

Fig. 5. Box plots of correlation between TMX and PPT

Fig. 6. Lag-one autocorrelation of PPT at London
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al. 1998�. The assumption of uniform spatial precipitation distri-
bution is often invalid, even for small basins, because runoff
simulation is significantly impacted by the distribution of precipi-
tation over the basin. Therefore, it was considered important to
evaluate the performance of the model in reproducing the spatial
dependencies of the observed data, especially since the proposed
approach involves perturbing the observed data points. Scatter
plots of interstation correlations for daily TMX and precipitation
values are presented in Figs. 7 and 8, respectively.

Fig. 7 shows scatter plots of interstation correlation coeffi-
cients for daily TMX values in the simulated and the observed
data. For 15 stations, there are 105 pairwise correlation coeffi-
cients for each day. The scatter plots have been shown for 4
representative days. As can be seen from Fig. 7, there are pro-
nounced interstation correlations between TMX values across the
basin, mostly in the range of 0.8–1.0. Most data points lie in the
close vicinity of the 45° sloping solid line shown in the scatter

Fig. 7. Comparison of observed versus simulated interstation
correlations for daily TMX values between all station pairs for 4
representative days

Fig. 8. Comparison of observed versus simulated correlations for
daily PPT values between all station pairs for 4 representative days
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plots. However, the stronger correlations appear to be preserved
better than the weaker correlations, which is a desirable outcome.
Additionally, the simulated spatial correlations are higher than the
observed ones possibly due to the same random number being
used for all variables and all sites to perturb the resampled points.

Given the structure of the basic K-NN model, the spatial char-
acteristics of the observed data are bound to be preserved on a
daily time scale. Small deviations of data points from the 45° line
may be attributed to the perturbations made to the observed val-
ues. However, the overall performance of the K-NN model in
reproducing the historical interstation correlation structure is
satisfactory.

The scatter plots of interstation correlations of daily PPT val-
ues between the observed and the simulated data are shown in
Fig. 8. Although the correlations in the observed data are not as
strong as in the case of TMX, the model reproduced the historical
structure very well. It was observed that the standard and modi-
fied K-NN models give similar results in terms of the statistics
reported in Figs. 2–8. Well known parametric models such as
LARS-WG and WGEN can be effectively used to generate inde-
pendent weather data for any number of stations but they cannot
be expected to preserve important interstation correlations of the
variables. However, some parametric models are available that
are capable of preserving spatial correlations �e.g., Hughes and
Guttorp 1994; Wilks 1998�. With the K-NN model, the spatial
dependence is preserved by resampling simultaneously the same
day’s weather as the weather for all the stations. This feature of
the K-NN model makes it an attractive option for use in conjunc-
tion with hydrological models where the spatial dependencies
may be crucial for the accuracy of runoff predictions.

Extreme Precipitation Events Simulation

A major focus of this study was to evaluate the performance of
the proposed model in simulating precipitation amounts larger
than the observed amounts. In addition, the effect of perturbations
on the reproduction of annual average precipitation needs to be
investigated. Table 2 summarizes the results of simulation with

Table 2. Average and Largest Precipitation Values at Various Stations

Average annual PPT
�mm�

Largest PPT value
�mm�

Station Observed Simulated Observed Simulated

Blythe 1,159 1,161 137 153

Dorchester 1,034 1,042 94 112

Embro 984 990 107 122

Exeter 1,008 1,018 159 179

Foldens 945 952 110 126

Fullarton 1,012 1,017 106 118

Glen Allan 989 994 104 118

Ilderton 1,008 1,010 99 107

London 980 987 89 98

Stratford 1,056 1,068 137 155

St. Thomas 985 992 89 105

Tavistock 1,048 1,051 94 109

Waterloo 915 923 90 101

Woodstock 941 954 114 127

Wroxeter 995 998 166 187
respect to reproduction of long-term average annual precipitation.
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It can be seen from Table 2 that the model consistently overesti-
mates the annual average precipitation but the amount of overes-
timation is negligibly small. The reason for this overestimation is
the bias due to recomputation of the normal random variate when-
ever the precipitation amounts become negative. Overall, the
model yielded practically an exact reproduction of the observed
long-term average annual precipitation. A comparison of the larg-
est daily precipitation amounts simulated by the model with the
observed values is also presented in Table 2. It can be observed
that the simulated amounts are significantly higher than the ob-
served amounts. The model was able to generate a precipitation
amount of 187 mm compared to the historical largest value of
166 mm. In addition, the model produced several storm depths
greater than the observed values. The results presented in Table 2
clearly show that the model was able to produce unprecedented,
but realistic, precipitation amounts throughout the basin.

The output from the K-NN model is intended for use in con-
junction with a hydrological model of the basin with the objective
of assessing the vulnerability of the basin to floods and droughts.
Prolonged precipitation events during the winter season combined
with heavy rainfall during summer are the most probable cause of
flooding in the basin. Particular attention is therefore given to the
simulation of extreme precipitation events that are responsible for
floods. Similarly, it is important to determine dry spell character-
istics of the simulated data in order to gain insight into the pos-
sibility of drought in the basin. The ability of the model to
simulate the occurrence of extreme events, both high precipitation
and low precipitation, was therefore investigated with particular
emphasis on generating realistic, but unprecedented, events for
the basin. For each year of the historical and simulated record, the
single most extreme multiday precipitation event was determined.
Fig. 9 shows the box plots of total precipitation that occurred
during the most extreme precipitation event in each year of the
historical and the simulated records. The results are shown for
both the basic K-NN model �Simulation 1� and the modified
model �Simulation 2�. It can be seen from the box plots that in
both the simulations the median of the simulated data matches
very closely the median of the historical data. Due to the pertur-
bations made to the observed data points, total precipitation on
the order of 280 mm in the most extreme precipitation event was

Fig. 9. Box plots of total precipitation during extreme events in each
year of historical and simulated data �Simulation 1 refers to basic
K-NN model, Simulation 2 refers to modified model�
observed in Simulation 1. The modified model simulated around
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five precipitation events that were more severe than the most
extreme precipitation event in the observed record. The total pre-
cipitation amount of the simulated largest event in Simulation 1 is
around 40% higher than the corresponding amount in the extreme
observed event while it is only 15% higher in Simulation 2. The
interannual variability in the simulated data is quite prominent
with a highest total precipitation of about 280 mm compared to a
corresponding value of around 200 mm in the historical record.
The basic K-NN model simulated a most extreme precipitation
event with a total precipitation of 230 mm.

Fig. 10 shows the duration of dry spells during extreme events
in each year of the historical and the simulated records. As can be
seen from the box plots, the median of dry spell durations for the
observed data is 25 and the corresponding value in the simulated
data is 30. The difference may be attributed to the nature of the
modified model, which tends to produce events more severe than
in the observed data. Again, the median of the simulated data
matched the observed data well although the median value for the
simulated data was slightly higher. This clearly indicates that the
tendency of dry days to exhibit persistence is adequately repre-
sented by the model. The interannual variability in the simulated
sequences is also quite evident with the model producing several
severe low precipitation events other than those in the historical
record. The longest dry spell in the historical data lasted for 67
days but the K-NN model was able to simulate several dry spells
having a duration more than that observed in the historical data.
The largest dry spell in Simulation 1 has a duration of 93 days,
which is much more severe than seen in the observed record.
With the basic K-NN model �Simulation 2�, the most extreme dry
spell has a duration of 82 days.

Fig. 11 shows the box plots of extreme wet spells in the his-
torical and the simulated sequences. The most severe wet spell
simulated by the modified model was on the order of 52 days,
while the corresponding value obtained from the basic model was
48. The strength of the perturbation model presented here lies in
the simulation of such extreme dry and wet spells that are impor-
tant for the evaluation of effective drought and flood management
policies for the basin. The results presented in Figs. 10 and 11
clearly show that the modified model provides greater variability
associated with sustained periods of precipitation and dry days

Fig. 10. Box plots of dry days during extreme events in each year of
historical and simulated data �Simulation 1 refers to basic K-NN
model, Simulation 2 refers to modified model�
than is possible with the basic K-NN model. Comparison of re-
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sults presented in Figs. 9–11 clearly indicates that the modified
model was able to simulate more extreme events than is possible
with the basic model.

Conclusions

The development and evaluation of a modified version of the
basic K-NN weather generator has been presented. The modified
model was shown to produce precipitation amounts different from
those observed in the historical record, thereby alleviating a com-
mon problem associated with the basic K-NN approach. A strat-
egy has been devised that allows perturbation of the observed
data points by adding a random component to the values sug-
gested by the basic approach while preserving the important sta-
tistical characteristics of the observed data. This approach is
similar in spirit to traditional autoregressive models where a ran-
dom component is added to the conditional expectation of the
variable to obtain the new values. However, in the proposed ap-
proach, the random component is added to the individual
resampled data values. The practicality of the approach was dem-
onstrated through application to data from the Upper Thames
River Basin. Comparison of observed and simulated data clearly
indicated that the model performance was very good with regards
to reproduction of various statistics of interest to a hydrologist.
Important properties of precipitation spell structure and amounts
were preserved. Cross correlation among the variables was pre-
served, which is particularly important for erosion, crop produc-
tion, and rainfall– runoff models. An important output of the
model is the spatially correlated data for the basin, which is im-
portant for evaluating the response of hydrological models to
watershed-level processes. Unlike well known models such as
LARS-WG and WGEN, which cannot be expected to preserve the
spatial dependencies of the variables, the proposed model ad-
equately reproduced the spatial correlation of the observed data.

An encouraging aspect of the proposed model is that extreme
unprecedented events, both low precipitation and high precipita-
tion, can be simulated. This allows for evaluation of the response
of rainfall–runoff models for a wide variety of simulated data,
especially the extremes. The proposed model has the potential for

Fig. 11. Box plots of extreme wet spell duration in each year of
historical and simulated data �Simulation 1 refers to basic K-NN
model, Simulation 2 refers to modified model�
providing valuable aid in developing efficient flood and drought
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management strategies for the basin because of the ability of the
model to simulate extreme dry and wet spells. It may be con-
cluded that the utility of flood prediction models in estimating the
probability of extreme events may be greatly enhanced if their
performance is evaluated based on synthetic sequences generated
by the type of model proposed here. Although the K-NN algo-
rithm was designed to model daily statistics, the monthly statistics
are also adequately reproduced for the application presented here.
An additional practical advantage of the model is that it does not
require site-specific assumptions regarding the probability distri-
bution of the variables.
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