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Abstract

We study similarity queries for time series data where
similarity is defined in terms of a set of linear transforma-
tions on the Fourier series representation of a sequence. We
have shown in an earlier work that this set of transforma-
tions is rich enough to formulate operations such as moving
average and time scaling.

In this paper, we present a new algorithm for process-
ing queries that define similarity in terms of multiple trans-
formations instead of a single one. The idea is, instead
of searching the index multiple times and each time apply-
ing a single transformation, to search the index only once
and apply a collection of transformations simultaneously to
the index. Our experimental results on both synthetic and
real data show that the new algorithm for simultaneously
processing multiple transformations is much faster than se-
quential scanning or index traversal using one transforma-
tion at a time. We also examine the possibility of composing
transformations in a query or of rewriting a query expres-
sion such that the resulting query can be efficiently evalu-
ated.

1 Introduction

Time-series data are of growing importance in many new
database applications, such as data mining or data warehous-
ing. A time series is a sequence of real numbers, each num-
ber representing a value at a time point. For example, the se-
quence could represent stock or commodity prices, sales, ex-
change rates, weather data, biomedical measurements, etc.
We are often interested in similarity queries on time-series
data [3, 2]. For example, we may want to find stocks that be-
have in approximately the same way (or approximately the
opposite way, for hedging); or products that had similar sell-
ing patterns during the last year; or years when the temper-
ature patterns in two regions of the world were similar. In
queries of this type, approximate, rather than exact, match-
ing is required.

A simple approach to determine a possible similarity be-

tween two time sequences is to compute the Euclidean dis-
tance (or any other distance, such as the city-block distance)
between the two sequences, and call the two sequences sim-
ilar if their distance is less than some user-defined thresh-
old. However, there are many similarity queries that such
a simple notion of similarity fails to capture; for example,
one may consider two stocks similar if they have almost the
same price fluctuations, even though one stock might sell for
twice as much as the other. Consider the following motivat-
ing examples.
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Figure 1. On the top from left to right,
daily closings of Dow Jones 65 Composite Volume
(COMPV) index, NYSE Volume (NYV) index and
both put together, normalized and smoothed
using 9-day moving average. On the bot-
tom from left to right, again daily closings of
COMPV index, NYSE Declining Issues (DECL) in-
dex and both put together, normalized and
smoothed using 19-day moving average.

Example 1.1 Figure 1 shows daily closings of three in-
dices: Dow Jones 65 Composite Volume (COMPV), NYSE
Volume (NYV) and NYSE Declining Issues (DECL). It is dif-
ficult to see any similarity between these sequences. The
Euclidean distance between closes of COMPV and NYV is
2873 and that between COMPV and DECL is 12939. On the
other hand, if we normalize 1 closes of COMPV and NYV

1This operation is described in Section 3.
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and compare their 9-day moving averages, they look similar.
The Euclidean distance between 9-day moving averages of
normalized closes of COMPV and NYV is less than 3. Sim-
ilarly, if we normalize the closes of COMPV and DECL and
compare their 19-day moving averages, they also look simi-
lar. In fact, ‘19-day moving average’ is the shortest moving
average that reduces the Euclidean distance between nor-
malized closes of COMPV and DECL to less than 3.

Moving averages are widely used in stock data analysis
(for example, see [5]). Their primary use is to smooth out
short term fluctuations and depict the underlying trend of
a stock. Given two sequences to be compared, we usually
do not know what moving average can make them similar.
There can be several moving averages that reduce the dis-
tance between two sequences to less than a threshold. We
are often interested in the shortest moving average mainly
because it leaves more details to the distance computation
process. In addition, if two sequences happens to be similar
w.r.t. n-day moving average, there is a high chance for them
to be similar w.r.t. (n + 1)-day moving average 2. Moving
averages can be formulated as linear transformations over
the Fourier representation of a time sequence (see [13] for
details).
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Figure 2. The daily closing price of Pacific Gas
and Electric Co. (PCG) and that of Plum Creek Tim-
ber Co. (PCL), both starting from 94/11/02 for
128 days, represented in normal forms and
their momentums. Data was taken from the
ftp site “ftp.ai.mit.edu/pub/stocks/results”.

Example 1.2 Figure 2 shows in normal form the daily clos-
ing prices of stocks of Pacific Gas and Electric Co. (PCG)
and Plum Creek Timber Co. (PCL) both starting from
November 2nd, 1994 for 128 days. One way to compare the
change rates of two stocks is to compare their “momenta”,
which are obtained for every stock by subtracting the price
at time t from the price at time t+1 (or, in general, t+n for
some n). The Euclidean distance between the two momenta

2This is not true in general; a counter example is given in the Appendix

is 13.01. The series representing the price of PCG has a
spike on February 3rd while the series of PCL has a spike
on February 8th. No value is recorded for February 4th, 5th
and 6th. If we shift the momentum of PCG two days to the
right, the spikes will overlap and the Euclidean distance will
reduce to 5.65.

The momentum of a sequence describes the rate at which
its value (such as the price in the preceding example) is ris-
ing or falling and it is seen as a measure of strength behind
upward or downward movements. On the other hand, shift-
ing a sequence horizontally before comparing it to another
sequence removes any possible delay between the two se-
quences which can arise, for example in the stock market do-
main because of different reactions of two stocks to the same
piece of news or recording errors. Both momentum and
shifting can be formulated as linear transformations over the
Fourier representation of a sequence (see Section 3.1 for de-
tails). In general, there can be several possible linear trans-
formations (or time shifts, as an example) to be applied to
sequences and each transformation can either reduce or in-
crease the distance between sequences. However, for every
pair of sequences we are usually interested in finding trans-
formations that reduce the distance between them to a min-
imum.

In this paper, we propose a fast algorithm to process
queries that specify more than one transformation as the ba-
sis for similarity. The idea is, instead of processing a single
transformation at a time, to process a collection of them at
once. To achieve this goal, we construct a minimum bound-
ing rectangle (MBR) for transformations. We show that the
minimum bounding rectangle for transformations can be ap-
plied to a multidimensional index constructed on sequences,
thus reducing the number of searches over the index to one.
Our experiments show that this algorithm performs much
better than both sequentially scanning all sequences and also
the index traversal using one transformation at a time. We
discuss the relationship between two similarity measures,
the Euclidean distance and the cross-correlation, and show
that queries expressed in terms of one over normalized se-
quences can be easily expressed in terms of the other. We
also examine the possibility of composing transformations
in a query or of rewriting a query expression such that the
resulting query can be efficiently evaluated.

The organization of the rest of the paper is as follows. In
the next section we review some background material, in-
cluding past related work and the Discrete Fourier Trans-
form (DFT). The benefits of using transformations for ex-
pressing similarity queries is discussed in Section 3. In Sec-
tion 4 we propose algorithms for fast processing queries that
express similarity in terms of multiple transformations. Sec-
tion 5 contains experiments that show the effectiveness of
our algorithms. Section 6 is the conclusion.
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2 Background

In this section, we discuss some background material, in-
cluding past related work and the Discrete Fourier Trans-
form (DFT).

2.1 Related Work

An indexing technique for the fast retrieval of similar
time sequences is proposed by Agrawal et al. [1]. The idea
is to use Discrete Fourier Transform (DFT) to map time se-
quences (stored in a database) into the frequency domain.
Keeping only the first k Fourier coefficients, each sequence
becomes a point in a k-dimensional feature space. To allow a
fast retrieval, the authors keep the first k Fourier coefficients
of a sequence in a R-tree index. In an upcoming thesis [12],
we discuss a major improvement of this indexing technique.
We show that the last few Fourier coefficients of a sequence
are as important as the first few coefficients due to the sym-
metry property of DFT. We also show that using the symme-
try property improves the search time of the index by more
than a factor of 2 without increasing its dimensionality.

In an earlier work ([13]), we use this indexing method
and propose techniques for retrieving similar time se-
quences whose differences can be removed by a linear trans-
formation such as moving average, time scaling and invert-
ing. In this paper, we generalize our earlier work and allow
queries that express similarity in terms of multiple transfor-
mations. Our work here can be seen as an efficient imple-
mentation of a special case of the query language described
by Jagadish et al.[10] for time-series data.

There are other related works on time series data. An ex-
tension of the indexing technique of Agrawal et al. [1] for
subsequence matching is proposed by Faloutsos et al. [7].
Goldin et al. [8] show that the similarity retrieval will be
invariant to simple shifts and scales if sequences are nor-
malized before being stored in the index. Yi et al. [20] use
time warping as a distance function and present algorithms
for retrieving similar time sequences under this function.
Agrawal et al. [3] describe a pattern language called SDL
to encode queries about “shapes” found in time sequences.
The language allows a kind of blurry matching where the
user specifies the overall shape instead of the specific de-
tails, but it does not support any operations or transforma-
tions on sequences. A method for approximately represent-
ing sequences in terms of some functions and processing
queries over such a representation is described by Shatkay
and Zdonik [18]. A query language for time series data in
the stock market domain is developed by Roth [15]. The
language is built on top of CORAL [14], and every query
is translated into a sequence of CORAL rules. Seshadri et
al. [17] develop a data model and a query language for se-
quences in general but do not mention similarity matching

as a query language operator.

2.2 Discrete Fourier Transform

Let a time sequence be a finite duration signal ~x = [xt]
for t = 0; 1; � � � ; n � 1. The DFT of ~x, denoted by ~X , is
given byXf = 1pn n�1Xt=0 xte�j2�tfn f = 0; 1; � � � ; n� 1 (1)

where j = p�1 is the imaginary unit. Throughout this pa-
per, unless it is stated otherwise, we use small letters for se-
quences in the time domain and capital letters for sequences
in the frequency domain. The energy of signal ~x is given by
the expression E(~x) = n�1Xt=0 jxtj2: (2)

The convolution of two signals ~x and ~y is given byConv(~x; ~y)i = n�1Xk=0xkyi�k i = 0; 1; � � � ; n� 1 (3)

where i� k is computed modulo n.
We use the following properties of DFT throughout this

paper; they can be found in any signal processing textbook
(for example, see [11]). The symbol , denotes a DFT pair.

Linearity if ~x, ~X and ~y , ~Y , thena~x+ b~y , a ~X + b~Y (4)

for arbitrary constants a and b,
Convolution-Multiplication if ~x, ~X and ~y , ~Y , thenconv(~x; ~y), ~X � ~Y (5)

where ~X � ~Y is the element-to-element multiplication
of two vectors ~X and ~Y ,

Symmetry if~x, ~X for a real-valued sequence ~x of lengthn, then jXn�f j = jXf j for f = 1; : : : ; n� 1; (6)

and

Parseval’s Relation if ~x, ~X, thenE(~x) = E( ~X): (7)

Using Parseval’s relation, it is easy to show that the Eu-
clidean distance between two signals in the time domain is
the same as their distance in the frequency domain.D2(~x; ~y) = E(~x� ~y) = E( ~X � ~Y ) = D2( ~X; ~Y ) (8)
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3 Similarity Queries and Transformations

A transformation can be seen as a way to remove certain
variations before aligning two sequences. Although many
kinds of variations may be present in each sequence, we con-
sider only those that can be removed using linear transfor-
mations on the Fourier series representation of the sequence.
This class of transformations accounts for differences due to
scaling, shifting, and the relative scaling (or weighting) and
shifting between different coefficients.

3.1 Transformations - Examples

A transformation, denoted by t = (~a;~b), is a pair of real
3 vectors. The transformation t applied to a point ~x maps ~x
to~a�~x+~b. To gain some insight into transformations, let us
formalize the two operations, momentum and time shift, de-
scribed in Example 1.2. More examples of transformations
including those for moving averages can be found some-
where else [13, 12].

3.1.1 Momentum

Let ~m = [1;�1; 0; : : :; 0] be a vector of length n and ~x
be a time series of the same length. Let us denote the DFT
of ~m by ~M and the DFT of ~x by ~X . The convolution of~x and ~m, conv(~x; ~m), gives the momentum of ~x. Since a
convolution in the time domain corresponds to a multipli-
cation in the frequency domain, the product of ~M and ~X
gives the momentum in the frequency domain. If we use
the polar representation for complex numbers and map ~X
and ~M respectively to real vectors ~X 0 and ~M 0 such thatMi = M 02iejM 02i+1 and Xi = X 02iejX02i+1 , we will haveMi:Xi = (M 02i:X 02i)ej(X02i+1+M 02i+1) for i = 0; : : : ; n� 1.
Thus, we can express the momentum operation as a linear
transformation of the form (~a;~b) where a2i = M 02i, b2i = 0,a2i+1 = 1 and b2i+1 = M 02i+1.

3.1.2 Time Shift

Suppose we want to shift sequence ~x = [x0; x1; : : : ; xn�1]
one day to the right. If we inserted a zero at the beginning,
the result after the shift would be ~x0 = [0; x0; x1; : : : ; xn�1]
which is a sequence of length n+ 1. Using Equation 1, we
can write the DFT of ~x0 as follows:X 0f = 1pn+ 1 n�1Xt=0 xte�j2�(t+1)fn+1= e�j2�fn+1 ( 1pn+ 1 n�1Xt=0 xte�j2�tfn+1 )

3We have shown earlier ([13]) how a transformation described in terms
of two complex vectors can be mapped into one expressed in terms of two
real vectors under a safety constraint.

where f = 0; : : : ; n. Time sequences are usually long, son is a large number. Under this condition, we can replacen + 1 inside the parentheses by n without much affecting
the equation. Now the expression inside the parentheses be-
comes Xf , the fth DFT coefficient of ~x, and we can writeX0f = e�j2�fn+1 Xf
This gives the first n Fourier coefficients of ~x0. If we use the
polar representation for complex numbers, we can express
the shift operation as the linear transformation shift =(~1; [0; �2�(1)n+1 ; 0; �2�(2)n+1 ; : : :]). We can still do time shift
even if ~x is not a long sequence. The trick is to pad at least
as many zeros as the amount of the shift at the end of the se-
quence. Now we can forget the overflow zeros generated by
the shift and consider the shifted sequence the same size as
the original sequence. Next we study one particular trans-
formation which is quite useful in removing variations due
to scalar shift and scale.

3.2 Transformations - Normal Form

An efficient way to compare two time sequences is to
compare their normal forms. Given a time sequence ~x
of mean � and standard deviation �, the transformation(�!1=�;���!��=�) applied to ~x gives its normal form. Due to the
linearity property of DFT, the same transformation is appli-
cable to the Fourier representation of a sequence.

Although it is not required by the algorithms given in this
paper, we assume time sequences are normalized and for ev-
ery sequence, its normal form along with its mean and stan-
dard deviation are stored in a relation. This is mainly be-
cause of efficiency (as is noted by Goldin et al. [8]) and the
following two attractive properties of the normal form se-
quences which are not mentioned by Goldin et al. [8].

1. It minimizes the Euclidean distance with respect to the
scalar shift, i.e. D( ~X � sx; ~Y � sy) has its minimum
when sx and sy respectively are chosen to be the means
of ~x and ~y 4.

2. The Euclidean distance between two normalized se-
quences is directly related to their cross-correlation 5.D2( ~X; ~Y ) = 2(n� 1� n�( ~X; ~Y )) (9)

This can be derived by expanding the Euclidean dis-
tance formula and replacing the mean and the standard
deviation respectively by 0 and 1 in both the Euclidean
distance and the cross-correlation formulas.

4This can be verified by taking the first derivatives of D w.r.t. sx andsy and equating them to zero.
5�( ~X; ~Y ) = � ~X�~Y �� ~X :�~Y� ~X :�~Y
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The second property can be quite useful in formulating
similarity queries or translating one query to another. Since
the Euclidean distance between two sequences can range
from zero to infinity, it is usually difficult to specify a thresh-
old for this distance. Instead, we can specify a threshold for
cross-correlation which is between 0 and 1 and plug it into
Equation 9 to find a threshold for the Euclidean distance.
Using Equation 9, we can also translate any expression that
uses the cross-correlation in a query to one that uses the Eu-
clidean distance or vice versa.

3.3 Composing Transformations in a Query

In a query, we may specify a sequence of transformations
to be applied to a time sequence. For example, we may want
to apply a “s-day shift” followed by an “m-day moving aver-
age”, for s = 0; : : : ; 10 and m = 1; : : : ; 40, to a sequence.
We claim the queries expressed in terms of such a sequence
of transformations also benefit from the algorithms given in
this paper. We show this by giving a method to translate
any query expression that uses a sequence of transforma-
tions into one that uses only a set of transformations. The
resulting query can then be processed using the same tech-
nique that we present for multiple transformations.

Given transformations t1 = ( ~a1; ~b1) and t2 = ( ~a2; ~b2),
for example respectively corresponding to “2-day shift” and
“10-day moving average”, suppose we want to apply t1 fol-
lowed by t2, which we denote by t2(t1), to sequence ~X. We
can construct the new transformation as follows:t2(t1( ~X)) = ~a2 � ( ~a1 � ~X + ~b1) + ~b2 (10)= ~a2 � ~a1 � ~X + ~a2 � ~b1 + ~b2
Transformation t2(t1) equivalently can be expressed as t3 =( ~a3; ~b3) where ~a3 = ~a2 � ~a1 and ~b3 = ~a2 � ~b1 + ~b2.

We can use this result to compose two sets of trans-
formations. Given two transformation sets T1 and T2,
for example respectively corresponding to “s-day shift”
for s = 0; : : : ; 10 and “m-day moving average” for m =1; : : : ; 40, we can construct transformation set T3 = T2(T1),
which corresponds to a “s-day shift” followed by an “m-day
moving average” for all possible values of s and m, as fol-
lows: T3 = ft3 = t2(t1) j t1 2 T1; t2 2 T2g (11)

where t2(t1) is defined by Equation 10. Using Equations 10
and 11, we can simplify a query by replacing any expres-
sion that uses a sequence of transformations with one that
uses only a single or a set of transformations. We can pro-
cess the resultingquery using the techniques described in the
next section.

4 Processing Similarity Queries

We consider spatial queries, namely range queries, spa-
tial join queries and nearest neighbor queries and allow our
transformations to be used in those queries. We discuss the
issue of processing range queries in more detail and the two
others very briefly. We start with the following range query:

Query 1: “Given the closing price of a stock
q and a set of transformations denoted by T,
find every stock s 2 stocks and transforma-
tion t 2 T such that the Euclidean distanceD(t(����!s:close); t(����!q:close)) < �.”

As a specific example, T could be the set of m-day mov-
ing averages for m 2 f1 : : :40g and we may want to find
all stocks that have an m-day moving average similar to that
of IBM. A solution for processing this query is to scan the
whole stocks relation, compute the m-day moving average
for the closing price of every stock and determine if the re-
sulting sequence is within distance � of the m-day moving
average of the close of IBM. The distance predicate needs
to be checked for all possible transformations. We refer to
this algorithm as the sequential-scan method. The cost of
this algorithm includes one scan of the whole relation and
computing the distance predicate jstocksj � jT j times.

Another approach is for every t 2 T , apply t to the in-
dex built on the first few Fourier coefficients of the closing
price and do a range query on the new index ([13]). The
union of these results for all t 2 T gives the query answer.
We call this algorithm ST-index, where ST stands for ‘a Sin-
gle Transformation at a time’. The cost of this algorithm in-
cludes traversing the index jT j times. Next, we describe a
new algorithm that requires a single scan of the index and
performs much better than both the sequential-scan and ST-
index algorithms. We shall refer to this new algorithm by
MT-index, where MT stands for ‘Multiple Transformations
at a time’.

4.1 MT-Index Algorithm for Multiple Transfor-
mations

A transformation t is of the form t = (~a;~b) where ~a
and ~b are n-dimensional real vectors. Thus, a transforma-
tion can be represented as a point in a 2n-dimensional space.
Given a query that requires a set of transformations to be ap-
plied to a set of data sequences (or points), we first construct
a minimum bounding rectangle (MBR) for all transforma-
tions. Having a multidimensional index for time sequences,
we can apply the transformation rectangle to entries of the
index. For a point data set, entries of a multidimensional
index (such as R-tree) are usually in the form of points or
rectangles. Since a point can be seen as a special kind of a
rectangle with its lower bound equal to its upper bound in
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every dimension, we only consider applying a transforma-
tion rectangle to a data rectangle.

To apply a transformation rectangle to a data rectangle,
we decompose the 2n-dimensional transformation rectan-
gle into two n-dimensional MBRs, one corresponding to ~a
which we denote by mult-MBR, and the other corresponding
to ~b which we denote by add-MBR. Given transformation
rectangles mult-MBR: < (M1l;M1h); (M2l;M2h); : : : >
and add-MBR: < (A1l; A1h); (A2l; A2h); : : : > and data
rectangle X :< (X1l; X1h); (X2l; X2h); : : : >, the result
of applying mult-MBR and add-MBR to rectangleX is rect-
angle Y :< (Y1l; Y1h); (Y2l; Y2h); : : : > whereYiL = Ail+ (12)min(Mil �Xil; Mil �Xih; Mih �Xil; Mih �Xih)Yih = Aih+max(Mil �Xil; Mil �Xih; Mih �Xil; Mih �Xih)
for all dimensions i. As an example, consider the points of
m-day moving average for m = 1; : : : ; 40. Figure 3 shows
the magnitudes and the angles of these points at the second
DFT coefficient and their decompositions into mult-MBR
and add-MBR. It can be observed that points inside mult-
MBR make a horizontal line at 1. This is due to the fact that
a data point angle is multiplied by 1. Similarly points inside
add-MBR make a vertical line at 0 to show the fact that a
data point magnitude is added by 0. The result of applying
these MBRs to a data rectangle is shown in Figure 4.
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Figure 3. The second DFT coefficients of m-
day moving averages (for m = 1; : : : ; 40) and
their decompositions into mult-MBR and add-
MBR

To develop an algorithm for answering Query 1, suppose
an R-tree index is available on sequences. We can apply the
transformation rectangle to every data rectangle in the index
and construct a new index on the fly. The new index is con-
structed one index rectangle at a time, and each time the new
rectangle is checked to see whether it intersects the query re-
gion. This process retrieves a set of candidate data items that
includes all qualifying data items plus some false positives.
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Figure 4. A data rectangle before and after
being transformed

The last step of the algorithm removes false positives by ap-
plying every member of the transformation set to every can-
didate data item and selecting data items that intersect the
query region. We can write the search algorithm more for-
mally as follows:

Algorithm 1 : Given an R-tree index which is built on the
first k Fourier coefficients of a sequence and whose root is
N, a transformation set T , a threshold �, and a search point~q, use the index to find all sequences that become within dis-
tance � of ~q after being transformed by a member of T .

1. Build MBR r for points in T and project r into a mult-
MBR and an add-MBR as described above.

2. Build a search rectangle of width � around ~q. We call
this rectangle qrect.

3. If N is not a leaf, apply the mult-MBR and the add-
MBR to every (rectangle) entry ofN using Equation 12
and check if the resulting rectangle intersects qrect. For
every intersecting entry, go to step 3 and do this step on
the index rooted at the node of the intersecting entry.

4. If N is a leaf, apply the mult-MBR and the add-MBR
to every (point) entry of N and check if the resulting
rectangle intersects qrect. If so, the entry is a candidate.

5. For every candidate entry, retrieve its full database
record, apply all transformations inside r to the se-
quence, and determine transformations that reduce the
Euclidean distance between the data sequence and the
query sequence to less than �.

This algorithm is guaranteed not to miss any qualifying
sequence (the proof is given in the next section). We can
develop similar algorithms for efficiently processing spatial
join and nearest neighbor queries. In a spatial join query, we
apply the transformation MBR to all data items used in the
join predicate before computing the predicate. For exam-
ple, we may want to find all pairs of stocks that have sim-
ilar closing prices with respect to an m-day moving average
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for some m 2 f1; : : : ; 40g. Having an R-tree index for the
closing prices, we can use any well-known spatial join algo-
rithm for R-tree and change the join condition such that the
transformation rectangle be applied to both data rectangles
involved in the join before testing them for a possible over-
lap. Similarly in a nearest neighbor query, as we walk down
the tree, we apply the transformation MBR to all entries of
the node we visit. We can then use any kind of metric (such
as MINDIST or MINMAXDIST discussed in [16]) to prune
the search.

4.2 Correctness and Analysis of the MT-Index Al-
gorithm

To prove the correctness of Algorithm1, we have to show
that no qualifying sequence is being rejected.

Lemma 1 Algorithm 1 misses no tuple from the answer set
of Query 1.

proof: We prove this lemma by contradiction. Suppose~x is a sequence in the answer set of Query 1 but it is not
returned by Algorithm 1. Let t = (~a;~b) be a transforma-
tion which makes ~x similar to the query sequence. Let
the three rectangles <(X1l; X1h); (X2l; X2h); : : :>,<(M1l;M1h); (M2l;M2h); : : :>,<(A1l; A1h); (A2l; A2h); : : :> be MBRs that respec-
tively include ~x, ~a and ~b. For an arbitrary dimension i, we
can write the following equations:Xil � xi � Xih (13)Mil � ai �Mih (14)Ail � bi � Aih (15)

If we multiply all sides of Equations 13, 14, 14 respectively
by ai, Xil and Xih for positive values of ai, Xil and Xih,
we will get ai:Xil � ai:xi � ai:XihMil:Xil � ai:Xil �Mih:XilMil:Xih � ai:Xih �Mih:Xih
These three equations imply Mil:Xil � ai:xi �Mih:Xih.
If we do the same step for all positive and negative combi-
nations of ai, Xil and Xih, we will get different equations
which all satisfy the following inequality:min(Mil:Xil;Mil:Xih;Mih:Xil;Mih:Xih) � (16)ai:xi � max(Mil:Xil;Mil:Xih;Mih:Xil;Mih:Xih)
We can add the three sides of Equations 15,16 and getmin(Mil:Xil;Mil:Xih;Mih:Xil;Mih:Xih) + Ail(17)� ai:xi + bi �max(Mil:Xil;Mil:Xih;Mih:Xil;Mih:Xih) +Aih

Symbols Definitions
C cost using one transformation rectangleCk cost using k transformation rectanglesDAall(q; r) number of disk accesses for query q and

transformation rectangle r in all index levelsDAleaf (q; r) number of disk accesses for query q and
transformation rectangle r in the leaf levelCAleaf average capacity of a leaf nodeNT (r) number of transformations inside rectangle rCDA cost of a disk accessCcmp cost of a sequence comparison

Since i is chosen to be an arbitrary dimension, this inequality
holds for all dimensions. Thus ~a:~x+~b is a point inside the
rectangle defined by Equation 17 which is exactly the same
as the one used in Algorithm 1 (Equation 12). For the same
reason, sequence ~x will be returned by Algorithm 1. This is
a contradiction, so the proof is complete.

There are two determining factors in the cost of Algo-
rithm 1: one is the number of disk accesses required to find
and retrieve all candidate data items (DAall(q; r)) in steps
3 and 4, and the other is the number of comparisons per-
formed between the full database records of candidate se-
quences and the query sequence in Step 5. The latter is equal
to the product of the number of candidate data items and
the number of transformation points inside r which is de-
noted by NT (r). The CPU cost of applying the transfor-
mation rectangle to a data rectangle in step 3 is negligible
because these rectangles have no more than a few dimen-
sions; however, sequences involved in the comparison pro-
cess of step 5 are usually long and the CPU cost is not neg-
ligible. If we assume the number of disk accesses at the leaf
to be DAleaf (q; r) and the average capacity of a leaf node
to be CAleaf , a good estimate of the number of candidate
data items is DAleaf (q; r):CAleaf . Thus we can write the
cost function as follows:C = DAall(q; r):CDA + (18)DAleaf (q; r):CAleaf :NT (r):Ccmp
where CDA is the cost of a disk access and Ccmp is the cost
of a comparison.

Next, we describe a possible technique for improving the
performance of Algorithm 1.

4.3 Performance Improvement

A problem with the MT-index algorithm is if transforma-
tions make several clusters or a few of them spread all over
the space, then the minimum bounding rectangle of transfor-
mations will cover a large area. This MBR, when applied to
a data rectangle, can easily make the data rectangle intersect
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the query region. This can reduce the filtering power of the
index dramatically. A solution for this problem is to allow
more than one transformation rectangle. As the number of
MBRs goes up, the area of each MBR gets smaller, and as
a result the filtering power of the MBR increases; but, on
the other hand, the same index needs to be traversed sev-
eral times. In the worst case, the number of MBRs is the
same as the number of transformations, i.e. every MBR in-
cludes only one transformation point. In such a case, both
ST-index and MT-index perform exactly the same. Given k
transformation rectangles r1; : : : ; rk, we can generalize the
cost function in Eq. 18 and express the new cost function as
follows:Ck = kXi=1(DAall(q; ri):CDA + (19)DAleaf (q; ri):CAleaf :NT (ri):Ccmp)
or equivalentlyCk = CDA: kXi=1DAall(q; ri) + (20)CAleaf :Ccmp: kXi=1DAleaf (q; ri):NT (ri)

Now the question is how we should optimally choose
MBRs for a given set of transformations such that the costCk becomes minimum. A solution is to estimate the cost
for any possible set of MBRs and choose the set that gives
the minimum cost. To estimate the cost, we need to esti-
mate DAall(q; ri) and DAleaf (q; ri). A first attempt in es-
timating these two parameters is to assume the number of
disk accesses only depends on the area of ri. However, the
cost Ck is then minimum if every MBR includes only one
transformation point, i.e. the ST-index algorithm is used.
There are also techniques (for example, see [6, 19]) to es-
timate DAall(q; ri) and DAleaf (q; ri) for a given R-tree,
but none of these techniques take the actual size and distri-
bution of data or directory rectangles into account. There-
fore, DAall(q; ri) and similarlyDAleaf (q; ri) would be in-
dependent from ri and we can take these two terms out of
the summations in Eq. 20. As a result of this, if we increase
the number of transformation rectangles, the first term in
the cost function (Eq. 20) would increase linearly, but the
second term would remain unchanged. Due to this estima-
tion, the best performance shouldbe obtained using only one
transformation rectangle.

However, our experiments showed that using one trans-
formation rectangle did not necessarily give the best per-
formance. Thus, we cannot assume the number of disk ac-
cesses, DAall(q; ri) or DAleaf (q; ri), to be independent
from the size and the location of ri. Intuitively, as we in-
crease the size of the transformation rectangle, it is more

likely to make an arbitrary chosen data or directory rectan-
gle intersect the query region. In addition, even if only one
(out of NT (ri)) transformation makes a data rectangle in-
tersect the query region, we still need to search all NT (ri)
transformations in the postprocessing step to find those that
make a candidate sequence becomes similar to a query se-
quence, and this needs to be done for all candidates. Thus
the trade off is whether we scan the index once and do more
postprocessing work with possibly a larger set of candidates
or scan the index several times and do less postprocessing
work with possibly a smaller set of candidates. Our experi-
ments in the next section over a set of moving averages show
that packing six to eight transformations in a rectangle make
a major improvement over ST-index, but there is not much
improvement if we pack more transformations in a rectan-
gle. The worst performance for MT-index, which is close to
that of ST-index, is when we pack two clusters of transfor-
mations into one rectangle. A solution to avoid this problem
is to use a cluster detection algorithm (such as CURE [9])
and avoid packing two clusters into one rectangle.

4.4 Ordering Assumption on Transformations

So far, we have made no assumption on any possible or-
dering among transformations. In this section, we define a
notion of ordering among transformations and show that it
can be quite useful in guiding the search process more effec-
tively.

Definition 1 We call < T;�> an ordering of T =ft1; t2; : : : ; tng w.r.t. value domain dom and distance func-
tion D if 8vi; vj 2 dom; 8tk; tl 2 T ,tl � tk ) D(tl(vi); tl(vj)) � D(tk(vi); tk(vj))
Once an ordering is established among transformations, we
can use this ordering to guide the search more cleverly.
To give an example, consider Query 1 and assume T =f2; : : : ; 100g represents a set of scaling factors. It is easy to
show that “less than” defines an ordering among members
of T w.r.t. the domain of time sequences and the Euclidean
distance (see Appendix A for a proof). To find all transfor-
mations that make a data sequence to become similar to a
query sequence we do not need to apply all scale factors to
sequences. Instead, we need to find the largest scale factor
that makes the distance predicate true. Suppose si is such a
scale factor. One way to find si is to do a binary search on
the set of scale factors. Definition 1 easily implies that the
distance predicate is true for all scale factors less than si.

We can use the binary search technique in all three al-
gorithms described earlier. In the case of the sequential
scan method, we still need to scan the whole stocks rela-
tion. However, the number of sequence comparisons drops
to jstocksj � logjT j. Similarly in the case of the MT-index
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algorithm, the number of disk accesses still will be the same,
but the number of comparisons for every candidate sequence
drops to logjT j. The ordering assumption reduces the num-
ber of index traversals for ST-index to logjT j.

On the other hand, the ordering assumption does not hold
in general. There are useful transformations that are not or-
dered w.r.t. time sequences and the Euclidean distance. For
example, we can show that no ordering is possible for a set
of moving averages w.r.t. time sequences and the Euclidean
distance (see Appendix A for a proof).

5 Experimental Results

We implemented both ST-index and MT-index, on top of
Norbert Beckmann’s Version 2 implementation of the R*-
tree [4]. We ran experiments on both stock prices data ob-
tained from the ftp site “ftp.ai.mit.edu/pub/stocks/results”
and synthetic data. All our experiments were conducted on
a 168MHZ Ultrasparc station. The stock prices database
consisted of 1068 stocks and for each stock its daily clos-
ing prices for 128 days. Each synthetic sequence was in the
form of ~x = [xt] where xt = xt�1+zt and zt is a uniformly
distributed random number in the range [�500; 500].

For every time series, we first transformed it to the nor-
mal form for reasons described in Section 3.2, and then we
found its Fourier coefficients. Since the mean of a normal
form series is zero by definition, the first Fourier coefficient
is always zero, so we can throw it away. We mapped the
mean and the standard deviation of the original time series
respectively to the first and the second dimensions of the in-
dex. We also mapped the magnitude and the phase angle of
the second DFT term (computed for the normal form series)
respectively to the third and the fourth dimensions of the in-
dex, and the magnitude and the phase angle of the third DFT
term respectively to the fifth and the sixth dimensions. We
used the symmetry property of DFT in all our experiments
over the index.

We report our experiments in two parts. In the first part,
we compare MT-index to ST-index and sequential scan. In
this part, we made the choice of packing all transformations
into one rectangle though it did not necessarily give us the
best possible performance of MT-index. In the second part,
we varied the number of transformation rectangles from one
to its maximum to see the effect of having multiple transfor-
mation rectangles on the performance of MT-index. In all
our experiments over range queries, we ran each experiment
100 times and each time we chose a random query sequence
from the data set and searched for all other sequences within
distance � of the query sequence. We averaged the execu-
tion times from these runnings. We also set the correlation
threshold fixed to 0.96 for all range queries. We plugged this
threshold in Equation 9 to find a value for the Euclidean dis-
tance threshold.

5.1 Comparing MT-index to ST-index and Se-
quential Scan
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Figure 5. time per query varying the number
of sequences

Figure 5 shows the running time of Query 1 using three
algorithms sequential-scan, ST-index, and MT-index. In
the experiment, we set the number of transformations fixed
to 16, but we varied the number of sequences from 500
to 12,000. The experiment ran on synthetic sequences of
length 128. The transformations were a set of moving aver-
ages ranging from 10-day moving average to 25-day mov-
ing average. The average output size was 7 or more de-
pending on the number of input sequences. The figure
shows that MT-index performs better than both ST-index and
sequential-scan.
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Figure 6. time per query varying the number
of transformations

Figure 6 shows the running time of Query 1 again using
three algorithms sequential-scan, ST-index, and MT-index.
In the experiment, we set the number of sequences fixed to
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1068, but we varied the number of transformations from 1
to 30. The transformations were a set of moving averages
ranging from 5-day moving average to 34-day moving aver-
age. The experiment ran on real stock prices data. The av-
erage output size was 11 or more depending on the number
of transformations. The figure shows that MT-index outper-
forms both ST-index and sequential-scan.
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Figure 7. time per query varying the number
of transformations

The next experiment was on a spatial join query which
was expressed as follows:

Query 2: “Given a set of transformations de-
noted by T, find every pair s1 and s2 of stocks
and every t 2 T such that the correlation�(t(�����!s1:close); t(�����!s2:close)) � 0:99.”

The transformations were again a set of moving averages
ranging from 5-day moving average to 34-day moving av-
erage. We varied the number of transformations from 1 to
30. The experiment ran on real stock prices data which con-
sisted of 1068 sequences of length 128. The average out-
put size was at least 7. Figure 7 shows the running time of
Query 2 using three algorithms: sequential-scan, ST-index,
and MT-index. Both ST-index and MT-index perform bet-
ter than sequential-scan. As we increase the number of
transformations, the MT-index algorithm also performs bet-
ter than ST-index until the number of transformations gets
30. At this point the running time for both is the same.

5.2 Multiple Transformation Rectangles

In this section, we show that groupingall transformations
in one rectangle does not necessarily give us the best possi-
ble performance. To show this, we ran Query 1 using MT-
index algorithm on real stock prices data, but this time we
varied the number of transformations per MBR from one to
its maximum. The transformation set consisted of m-day

moving averages form = 6; : : : ; 29. We equally partitioned
subsequent transformations and built an MBR for each par-
tition. As is shown in Figure 8, despite the fact that col-
lecting all transformations in one rectangle resulted in the
minimum number of disk accesses, it did not necessarily
give us the best performance. We also computed the cost
function Ck given in Equation 20 assuming CDA = 1 andCcmp = 0:4 � CDA, i.e. a sequence comparison takes as
much as 40 percent the time of a disk access. It turns out the
cost function gives a good estimate of the running time and
the best running time is obtained when the cost function has
its minimum.
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Figure 8. both the running time and the num-
ber of disk accesses varying by the number
of transformations per MBRs

We later added the inverted version of each transforma-
tion, which was obtained by multiplying every coefficient
by -1, to the transformation set. This created two clusters
in a multidimensional space. Again, we equally partitioned
subsequent transformations and built an MBR for each par-
tition. We varied the number of transformations per MBR
from one to 48 which was the size of the transformation
set. As is shown in Figure 9, the running time shows bumps
when we pack one third or all of the transformations in a
rectangle. The same bumps are also observed in the num-
ber of disk accesses. This is due to the fact that in these two
cases the gap between two clusters is included in a transfor-
mation rectangle.

These experiments show that as we start packing trans-
formations into rectangles, we see a major performance im-
provement which continues up to a certain point (six to eight
transformations per rectangle here). The performance after
this point either stays the same or goes down. The worst per-
formance for MT-index, which was even worse than that of
ST-index, was when we packed two clusters of transforma-
tions into one rectangle. A solution to avoid this problem
is to use a cluster detection algorithm in advance and avoid
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Figure 9. both the running time and the num-
ber of disk accesses varying by the number
of transformations per MBRs

packing more than one cluster to a rectangle.

6 Conclusions

In this paper, we have proposed an efficient method for
processing similarity queries that specify multiple transfor-
mations as the basis for similarity. We have shown that, in-
stead of applying many single transformations to the index,
we can group transformations and apply a group of them si-
multaneously to the index. We have discussed the possibil-
ity of grouping transformations into multiple rectangles and
its effects on the performance of the algorithm. We have also
shown that in the presence of some ordering among trans-
formations, the search can be guided more efficiently. We
evaluated our method over both real stock prices data and
synthetic data. Our experiments confirm that the given al-
gorithm for handling multiple transformations outperforms
both the sequential scanning and the index traversal using
one transformationat a time. Our contributionsmay be sum-
marized as follows:� The development of a new algorithm that applies mul-

tiple transformations specified in a query to a set of se-
quences in one scan of the R-tree index built on those
sequences. The algorithm is guaranteed not to miss any
qualifying sequence from the answer set of the query.� Analytical results and experiments that show the effec-
tiveness of our proposed algorithm.� The definition of an ordering among transformations
and its use in efficiently processing similarity queries.� The observation that there is a direct relationship be-
tween the two similarity measures, the Euclidean dis-

tance and the cross-correlation, for normal form se-
quences. Given a threshold for one, we can easily ob-
tain a threshold for the other.
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A Some Proofs

Lemma 2 For T = fa1; a2; : : : ; amg as a set of scale fac-
tors, operator “<” (less than) defines an ordering among
the members of T w.r.t. the domain of time sequences and
the Euclidean distance.

Proof: Let ai and aj be two arbitrary transformations and
suppose, without loss of generality, ai < aj. Let ~x and ~y
be two arbitrary time sequences and D(~x; ~y) denotes their
Euclidean distance. Since D(~x; ~y) is a positive number, we
can multiply it to both sides of inequality ai < aj. This will
gives us ai:D(~x; ~y) < aj:D(~x; ~y); (21)

but we haveai:D(~x; ~y) = ai:(n�1Xk=0(xk � yk)2)0:5 (22)= (n�1Xk=0(ai:xk � ai:yk)2)0:5 = D(ai:~x; ai:~y):
Equations 21,22 imply D(ai:~x; ai:~y) < D(aj :~x; aj:~y).
Lemma 3 No ordering is possible for transformation set T
as a set of (circular) moving averages w.r.t. the domain of
time sequences and the Euclidean distance.

Proof: We prove this lemma by contradiction. Suppose
there is an ordering among members of T . Consider the fol-
lowing sequences:~s1 = [ 10 12 10 12 ]~s2 = [ 10 11 12 11 ]~s3 = [ 11 11 11 11 ]
If we denote the circular 2-day moving averages by mv2
and the circular 3-day moving averages by mv3, we can
writemv2(~s1) = [ 11 11 11 11 ],mv2(~s2) = [ 10.5 10.5 11.5 11.5 ],mv2(~s3) = [ 11 11 11 11 ],mv3(~s1) = [ 10.67 11.33 10.67 11.33 ],mv3(~s2) = [ 11 10.67 11 11.33 ],mv3(~s3) = [ 11 11 11 11 ].
There are two possible orderings between mv2 and mv3:� Case 1: mv2 � mv3

By Definition 1, D(mv2(~si);mv2(~sj )) �D(mv3(~si);mv3(~sj)) for all pairs ~si and ~sj . How-
ever, this does not hold for ~s2 and ~s3;D(mv2(~s2);mv2(~s3)) = 1 > D(mv3(~s2);mv3(~s3)) = 0:75� Case 2: mv3 � mv2
By Definition 1, D(mv3(~si);mv3(~sj )) �

D(mv2(~si);mv2(~sj)) for all pairs ~si and ~sj . How-
ever, this does not hold for ~s1 and ~s3;D(mv3(~s1);mv3(~s3)) = 0:66 > D(mv2(~s1);mv2(~s3)) = 0

There are no other cases, so the proof is complete.

Lemma 4 No ordering is possible for transformation set T
as a set of non-circular moving averages w.r.t. the domain
of time sequences and the Euclidean distance.

Proof: The proof is similar to the proof of Lemma 3.
Suppose there is an ordering among members of T . If we de-
note the non-circular 2-day moving averages by mv2 and the
non-circular 3-day moving averages by mv3, we can writemv2(~s1) = [ 11 11 11 ],mv2(~s2) = [ 10.5 11.5 11.5 ],mv2(~s3) = [ 11 11 11 ],mv3(~s1) = [ 10.67 11.33 ],mv3(~s2) = [ 11 11.33 ],mv3(~s3) = [ 11 11 ]
where sequences ~s1, ~s2 and ~s3 are those given in Lemma 3.
There are two possible orderings between mv2 and mv3:� Case 1: mv2 � mv3

By Definition 1, D(mv2(~si);mv2(~sj )) �D(mv3(~si);mv3(~sj)) for all pairs ~si and ~sj . How-
ever, this does not hold for ~s2 and ~s3;D(mv2(~s2);mv2(~s3)) = 0:87 > D(mv3(~s2);mv3(~s3)) = 0:33� Case 2: mv3 � mv2
By Definition 1, D(mv3(~si);mv3(~sj )) �D(mv2(~si);mv2(~sj)) for all pairs ~si and ~sj . How-
ever, this does not hold for ~s1 and ~s3;D(mv3(~s1);mv3(~s3)) = 0:47 > D(mv2(~s1);mv2(~s3)) = 0

There are no other cases, so the proof is complete.
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