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Abstract

We study similarity queries for time series data where
similarity is defined in terms of a set of linear transforma-
tionson the Fourier series representation of a sequence. We
have shown in an earlier work that this set of transforma-
tionsisrich enough to formulate operations such as moving
average and time scaling.

In this paper, we present a new algorithm for process-
ing queries that define similarity in terms of multipletrans-
formations instead of a single one. The idea is, instead
of searching the index multiple times and each time apply-
ing a single transformation, to search the index only once
and apply a collection of transformationssimultaneously to
the index. Our experimental results on both synthetic and
real data show that the new algorithm for simultaneously
processing multipletransformationsis much faster than se-
guential scanning or index traversal using one transforma-
tion at a time. e al so examine the possibility of composing
transformationsin a query or of rewriting a query expres-
sion such that the resulting query can be efficiently evalu-
ated.

1 Introduction

Time-seriesdataare of growing importancein many new
database applications, such as datamining or datawarehous-
ing. A time seriesis asequence of real numbers, each num-
ber representing avaue at atime point. For example, the se-
guencecould represent stock or commodity prices, sales, ex-
change rates, weather data, biomedical measurements, etc.
We are often interested in similarity queries on time-series
data[3, 2]. For example, wemay want to find stocksthat be-
have in approximately the same way (or approximately the
oppositeway, for hedging); or productsthat had similar sel |-
ing patterns during the last year; or years when the temper-
ature patterns in two regions of the world were similar. In
queries of thistype, approximate, rather than exact, match-
ingisrequired.

A simple approach to determine a possible similarity be-

tween two time sequences is to compute the Euclidean dis-
tance (or any other distance, such asthe city-block distance)
between the two sequences, and call thetwo sequences sim-
ilar if their distance is less than some user-defined thresh-
old. However, there are many similarity queries that such
a simple notion of similarity failsto capture; for example,
one may consider two stocks similar if they have almost the
same pricefluctuations, even though onestock might sell for
twice as much asthe other. Consider the foll owing motivat-
ing examples.

CcomMPV 940615

o '
s0 . ~ | ‘1 M
0 1/ I wm‘ y

o 200 '

o 50 100 150 () 50 100 150

NYV 940615 normalized and 9—day MV

COMPV 940615

- s
° \ “ ‘w
: W/V’\MWM 1000 '““ “h \CM‘(M““ M\‘v “’“ \‘

) 50 100 150 () 50 100 150 o 50 100 150

DECL 940615

Figure 1. On the top from left to right,
daily closings of Dow Jones 65 Composite \blume
(COMPV) index, NYSE Volume (NYV) index and
both put together, normalized and smoothed
using 9-day moving average. On the bot-
tom from left to right, again daily closings of
COMPV index, NYSE Declining Issues (DECL) in-
dex and both put together, normalized and
smoothed using 19-day moving average.

Example1.1 Figure 1 shows daily closings of three in-
dices: Dow Jones 65 Composite \Wblume (COMPV), NYSE
Volume (NYV) and NYSE Declining I ssues (DECL). It isdif-
ficult to see any similarity between these sequences. The
Euclidean distance between closes of COMPV and NYV is
2873 and that between COMPV and DECL is12939. Onthe
other hand, if we normalize * closes of COMPV and NYV

1This operation is described in Section 3.




and comparetheir 9-day moving averages, they look similar.
The Euclidean distance between 9-day moving averages of
normalized closes of COMPV and NYV islessthan 3. Sim-
ilarly, if we normalize the closes of COMPV and DECL and
compare their 19-day moving averages, they also look simi-
lar. In fact, ‘ 19-day moving average’ isthe shortest moving
average that reduces the Euclidean distance between nor-
malized closes of COMPV and DECL to less than 3.

Moving averages are widely used in stock data analysis
(for example, see [5]). Their primary use is to smooth out
short term fluctuations and depict the underlying trend of
a stock. Given two sequences to be compared, we usually
do not know what moving average can make them similar.
There can be several moving averages that reduce the dis-
tance between two sequences to less than a threshold. We
are often interested in the shortest moving average mainly
because it leaves more details to the distance computation
process. In addition, if two sequences happensto be similar
w.r.t. n-day moving average, thereisahigh chance for them
to be similar w.rt. (n + 1)-day moving average 2. Moving
averages can be formulated as linear transformations over
the Fourier representation of a time sequence (see [13] for
details).
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Figure 2. The daily closing price of Pacific Gas
andElectric Co. (PCG) and that of PlumCreek Tim-
ber Co. (PCL), both starting from 94/11/02 for
128 days, represented in normal forms and
their momentums. Data was taken from the
ftp site “ftp.ai.mit.edu/pub/stocks/results”.

Example 1.2 Figure2 showsinnormal formthedaily clos-
ing prices of stocks of Pacific Gas and Electric Co. (PCG)
and Plum Creek Timber Co. (PCL) both starting from
November 2nd, 1994 for 128 days. One way to compare the
change rates of two stocks isto compare their “momenta’,
which are obtained for every stock by subtracting the price
a timet from the price a time t+1 (or, in general, t+n for
somen). The Euclidean distance between the two momenta

2Thisis not truein general; a counter exampleis given in the A ppendix

is 13.01. The series representing the price of PCG has a
spike on February 3rd while the series of PCL has a spike
on February 8th. No valueisrecorded for February 4th, 5th
and 6th. If we shift the momentum of PCG two days to the
right, the spikeswill overlap and the Euclidean distance will
reduce to 5.65.

The momentum of a sequence describestherateat which
itsvalue (such as the pricein the preceding example) isris-
ing or falling and it is seen as a measure of strength behind
upward or downward movements. On the other hand, shift-
ing a sequence horizontally before comparing it to another
seguence removes any possible delay between the two se-
guenceswhich can arise, for exampleinthestock market do-
main because of different reactionsof two stocksto the same
piece of news or recording errors. Both momentum and
shifting can beformulated aslinear transformationsover the
Fourier representation of a sequence (see Section 3.1 for de-
tails). In general, there can be several possiblelinear trans-
formations (or time shifts, as an example) to be applied to
sequences and each transformation can either reduce or in-
crease the distance between sequences. However, for every
pair of sequences we are usually interested in finding trans-
formations that reduce the distance between them to amin-
imum.

In this paper, we propose a fast algorithm to process
gueriesthat specify morethan onetransformation asthe ba-
sisfor similarity. Theideais, instead of processing asingle
transformation at a time, to process a collection of them at
once. To achieve thisgoal, we construct aminimum bound-
ing rectangle (MBR) for transformations. We show that the
mi nimum bounding rectangl e for transformations can be ap-
plied to a multidimensional index constructed on sequences,
thus reducing the number of searches over theindex to one.
Our experiments show that this algorithm performs much
better than both sequentially scanning al sequences and a so
the index traversal using one transformation at atime. We
discuss the relationship between two similarity measures,
the Euclidean distance and the cross-correlation, and show
that queries expressed in terms of one over normalized se-
guences can be easily expressed in terms of the other. We
also examine the possibility of composing transformations
in a query or of rewriting a query expression such that the
resulting query can be efficiently evaluated.

The organization of therest of the paper isasfollows. In
the next section we review some background materia, in-
cluding past related work and the Discrete Fourier Trans-
form (DFT). The benefits of using transformations for ex-
pressing similarity queriesisdiscussed in Section 3. In Sec-
tion 4 we propose a gorithmsfor fast processing queriesthat
expresssimilarity interms of multipletransformations. Sec-
tion 5 contains experiments that show the effectiveness of
our algorithms. Section 6 is the conclusion.



2 Background

In thissection, we discuss some background material, in-
cluding past related work and the Discrete Fourier Trans-
form (DFT).

2.1 Redated Work

An indexing technique for the fast retrieval of similar
time sequences is proposed by Agrawal et a. [1]. Theidea
isto use Discrete Fourier Transform (DFT) to map time se-
guences (stored in a database) into the frequency domain.
Keeping only the first k Fourier coefficients, each sequence
becomesapointinak-dimensional feature space. Toalow a
fast retrieval, the authorskeep thefirst k Fourier coefficients
of asequencein aR-treeindex. In an upcoming thesis[12],
we discussamajor improvement of thisindexing technique.
We show that thelast few Fourier coefficients of a sequence
are as important as thefirst few coefficients dueto the sym-
metry property of DFT. We a so show that using the symme-
try property improves the search time of theindex by more
than afactor of 2 without increasing its dimensionality.

In an earlier work ([13]), we use this indexing method
and propose techniques for retrieving similar time se-
guenceswhose differences can beremoved by alinear trans-
formation such as moving average, time scaling and invert-
ing. In this paper, we generalize our earlier work and alow
gueriesthat express similarity in terms of multipletransfor-
mations. Our work here can be seen as an efficient imple-
mentation of a special case of the query language described
by Jagadish et al.[10] for time-series data.

There are other related works on time series data. An ex-
tension of the indexing technique of Agrawal et al. [1] for
subsequence matching is proposed by Faloutsos et a. [7].
Goldin et a. [8] show that the similarity retrieval will be
invariant to simple shifts and scales if sequences are nor-
malized before being stored in theindex. Yi et a. [20] use
time warping as a distance function and present algorithms
for retrieving similar time sequences under this function.
Agrawd et a. [3] describe a pattern language called SDL
to encode queries about “shapes’ found in time sequences.
The language allows a kind of blurry matching where the
user specifies the overall shape instead of the specific de-
tails, but it does not support any operations or transforma-
tions on sequences. A method for approximately represent-
ing sequences in terms of some functions and processing
gueries over such arepresentation is described by Shatkay
and Zdonik [18]. A query language for time series data in
the stock market domain is developed by Roth [15]. The
language is built on top of CORAL [14], and every query
istrandated into a sequence of CORAL rules. Seshadri et
al. [17] develop a data model and a query language for se-
guences in general but do not mention similarity matching

as aquery language operator.
2.2 Discrete Fourier Transform

Let atime sequence be afinite duration signa & = [2¢]
fort = 0,1,---,n — 1. The DFT of #, denoted by)?, is
given by

n—1
1 —g2ntf
Xf:—g re f=01---n—-1 (1
Vi i

where j = /—1 istheimaginary unit. Throughout this pa-
per, unlessit is stated otherwise, we use small lettersfor se-
guencesinthetime domain and capital |etters for sequences
inthe frequency domain. Theenergy of signa # isgiven by
the expression

n—1
B(E) =) luf. )
t=0
The convolution of two signals # and i is given by
n—1
Conv(f,@i:Zxkyi_k i=0,1,---n—1 (3
k=0

where ¢ — k iscomputed modulo r.

We use the following properties of DFT throughout this
paper; they can be found in any signa processing textbook
(for example, see[11]). The symbol < denotesa DFT pair.

Linearity if # & X and 7 < Y, then
af +bj < aX +bY (%)
for arbitrary constants a and b,
Convolution-Multiplication if # < X and § < Y, then
conv(Z, ) & XY (5)

where X # Y isthe el ement-to-element mullti plication
of two vectors X and Y,

Symmetry if ¥ < X forareal-valued sequence ¥ of length
n, then

|Xn—f|:|Xf| forf:l,...,n—l, (6)
and
Parseval’s Relation if # < X, then
E(%) = E(X). 7

Using Parseval’s relation, it is easy to show that the Eu-
clidean distance between two signalsin the time domain is
the same as their distance in the frequency domain.

D*(#,§) = BE(f —§) = B(X =Y) = D*(X,Y) (8



3 Similarity Queries and Transformations

A transformation can be seen as away to remove certain
variations before aligning two sequences. Although many
kindsof variationsmay be present in each sequence, wecon-
sider only those that can be removed using linear transfor-
mations on the Fourier seriesrepresentation of the sequence.
Thisclass of transformationsaccountsfor differences due to
scaling, shifting, and the relative scaling (or weighting) and
shifting between different coefficients.

3.1 Transformations- Examples

A transformation, denoted by ¢ = (@, b), isapair of real
3 vectors. The transformation ¢ applied to a point # maps &
tod@x&+b. To gain someinsight into transformations, let us
formalizethe two operations, momentum and time shift, de-
scribed in Example 1.2. More examples of transformations
including those for moving averages can be found some-
whereelse[13, 12].

3.1.1 Momentum

Let m = [1,—1,0,...,0] be avector of length » and &
be a time series of the same length. Let us denote the DFT
of m by M and the DFT of & by X. The convolution of
Z and 7, conv(Z,m), gives the momentum of #. Since a
convolution in the time domain corresponds to a multipli-
cation in the frequency domain, the product of M and X
gives the momentum in the frequency domain. If we use
the polar representation for complex numbers and map X
and M respectively to real vectors X’ and M’ such that
M; = MbeiMati and X; = X.ed X201, we will have
M; X; = (Mb; X4)el Xzt Maini) for i = 0, ., n — 1.
Thus, we can express the momentum operation as a linear
transformation of theform (&, I;) whereas; = MJ;, ba; = 0,
a2i41 = 1 and b2i+1 = Méi+1'

3.1.2 TimeShift

Suppose we want to shift sequence ¥ = [zg, 21, ..., Zn_1]
one day to theright. If we inserted a zero at the beginning,
theresult after theshift wouldbe ' = [0, 2o, 21, . . ., p—1]
which isa sequence of length » + 1. Using Equation 1, we

can writethe DFT of &’ asfollows:
X/ Z —JQWE;?'l)f
= Tt€ "
f /—n 1
_]271—]“ —_727'l'tf
= e ntl Z rie n+1
\/n +1

3We have shown earlier ([13]) how atransformation described in terms
of two complex vectors can be mapped into one expressed in terms of two
real vectors under a safety constraint.

where f = 0,...,n. Time sequences are usudly long, so
n is alarge number. Under this condition, we can replace
n + 1 inside the parentheses by »n without much affecting
the equation. Now the expression insidethe parentheses be-
comes X ¢, the fth DFT coefficient of Z, and we can write

—j2nf

X} = e nfl_ Xf

Thisgivesthefirst n Fourier coefficientsof 7. If weusethe
polar representation for complex numbers, we can express
the shift operation as the linear transformation shift =
(T [0, =226, 0, =272, ]). We can still do time shift
even if ¥ 1Isnot along sequence. Thetrick isto pad at least
as many zeros as the amount of the shift at the end of the se-
guence. Now we can forget the overflow zeros generated by
the shift and consider the shifted sequence the same size as
the original sequence. Next we study one particular trans-
formation which is quite useful in removing variations due
to scalar shift and scale.

3.2 Transformations- Normal Form

An efficient way to compare two time sequences is to
compare their norma forms. Given a time sequence ¥
of mean p and standard deviation o, the transformation

— — . I
(1/c,—p/c) applied to # givesitsnormal form. Dueto the
linearity property of DFT, the same transformation is appli-
cable to the Fourier representation of a sequence.

Althoughitisnot required by theagorithmsgiveninthis
paper, we assume time sequences are normalized and for ev-
ery sequence, itsnormal form along withits mean and stan-
dard deviation are stored in arelation. Thisis mainly be-
cause of efficiency (asisnoted by Goldin et al. [8]) and the
following two attractive properties of the norma form se-
guences which are not mentioned by Goldin et al. [8].

1. It minimizesthe Euclidean distance with respect to the
scalar shift,i.e. D(X —s,,Y — s,) hasits minimum
when s,, and s,, respectively are chosen to be the means
of Zand i 4.

2. The Euclidean distance between two normalized se-
quences is directly related to their cross-correlation °.

DX, Y)=2(n—1-np(X,Y)) 9)

This can be derived by expanding the Euclidean dis-
tance formulaand repl acing the mean and the standard
deviation respectively by 0 and 1 in both the Euclidean
distance and the cross-correl ation formulas.

4This can be verified by taking the first derivatives of D w.rt. s, and
sy and equating them to zero.
50(X7 }'/’) _ PR.ypTHR MY
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The second property can be quite useful in formulating
similarity queries or trandating one query to another. Since
the Euclidean distance between two sequences can range
fromzerotoinfinity, itisusualy difficult to specify athresh-
oldfor thisdistance. Instead, we can specify athreshold for
cross-correlation which is between 0 and 1 and plug it into
Equation 9 to find a threshold for the Euclidean distance.
Using Equation 9, we can also trandate any expression that
usesthe cross-correlation in aquery to onethat usesthe Eu-
clidean distance or vice versa

3.3 Composing Transformationsin a Query

Inaquery, wemay specify asequence of transformations
tobeapplied to atime sequence. For example, we may want
toapply a“ s-day shift” followed by an*“ m-day moving aver-
age’,fors=0,...,10andm = 1,...,40, to a sequence.
We claim the queries expressed in terms of such a sequence
of transformations also benefit from the algorithmsgivenin
this paper. We show this by giving a method to trandate
any query expression that uses a sequence of transforma
tionsinto one that uses only a set of transformations. The
resulting query can then be processed using the same tech-
nigquethat we present for multiple transformations.

Given transformations ¢, = (a7, b}) andts = (da, b;),
for example respectively corresponding to “ 2-day shift” and
“10-day moving average’, suppose we want to apply ¢, fol-
lowed by ¢4, whichwedenoteby ¢5(¢;), to sequence)?. We
can construct the new transformation as follows:

ty(t1(X)) = db*(ay* X +by) + by (10)

Transformationts (¢, ) equivalently can beexpressed asts =
(a5, bs) where @3 = @b * d and by = a5 + b, + b.

We can use this result to compose two sets of trans
formations. Given two transformation sets 77 and 75,
for example respectively corresponding to “s-day shift”
for s = 0,...,10 and “m-day moving average’ for m =
1,...,40, wecan construct transformationset 75 = 75(71),
which correspondsto a“ s-day shift” followed by an “m-day
moving average” for al possible values of s and m, asfol-
lows:

ng{tgztz(tl) |t1 e 11,1 ETQ} (11)

wheret, (1) isdefined by Equation 10. Using Equations 10
and 11, we can simplify a query by replacing any expres-
sion that uses a sequence of transformations with one that
uses only asingle or a set of transformations. We can pro-
cesstheresulting query using thetechniquesdescribed inthe
next section.

4 Processing Similarity Queries

We consider spatial queries, namely range queries, spa-
tial join queries and nearest neighbor queries and alow our
transformationsto be used in those queries. We discuss the
issue of processing range queriesin more detail and thetwo
othersvery briefly. We start with thefollowing range query:

Query 1. “Given the closing price of a stock
g and a set of transformations denoted by T,
find every stock s € stocks and transforma-
tiont € T such that the Euclidean distance
D(t(s.close),t(q.close)) < e.”

Asaspecific example, T could be the set of m-day mov-
ing averages for m € {1...40} and we may want to find
all stocksthat have an m-day moving average similar to that
of IBM. A solution for processing this query isto scan the
whole stocks relation, compute the m-day moving average
for the closing price of every stock and determine if there-
sulting sequence is within distance ¢ of the m-day moving
average of the close of IBM. The distance predicate needs
to be checked for al possible transformations. We refer to
this algorithm as the sequential-scan method. The cost of
this algorithm includes one scan of the whole relation and
computing the distance predicate |stocks| * | T| times.

Another approach isfor every ¢t € T, apply t to thein-
dex built on the first few Fourier coefficients of the closing
price and do a range query on the new index ([13]). The
union of these resultsfor &l ¢ € 7" givesthe query answer.
We call thisa gorithm ST-index, where ST standsfor ‘a Sin-
gle Transformation at atime'. The cost of thisalgorithmin-
cludes traversing the index |T'| times. Next, we describe a
new agorithm that requires a single scan of the index and
performs much better than both the sequential-scan and ST-
index algorithms. We shall refer to this new agorithm by
MT-index, where MT stands for ‘ Multiple Transformations
atatime'.

41 MT-Index Algorithm for Multiple Transfor-
mations

A transformation ¢ is of the form ¢ = (@, b) where @
and b are n-dimensional real vectors. Thus, a transforma-
tion can berepresented asapointin a 2n-dimensional space.
Given aquery that requiresaset of transformationsto be ap-
pliedto aset of datasequences (or points), wefirst construct
a minimum bounding rectangle (MBR) for al transforma-
tions. Having amultidimensional index for time sequences,
we can apply the transformation rectangle to entries of the
index. For a point data set, entries of a multidimensional
index (such as R-treg) are usualy in the form of points or
rectangles. Since a point can be seen as a special kind of a
rectangle with its lower bound equal to its upper bound in



every dimension, we only consider applying a transforma
tion rectangle to a data rectangle.

To apply a transformation rectangle to a data rectangle,
we decompose the 2n-dimensional transformation rectan-
gleinto two n-dimensiona MBRs, one corresponding to @
which we denote by mult-MBR, and the other corresponding
to b which we denote by add-MBR. Given transformation
rectangles mult-MBR: < (M1l, M1h), (Mal, Mah), ... >
and add-MBR: < (A1, A1h), (Asl, Ash),... > and data
rectangle X :< (X311, X1h), (Xal, X2h),... >, theresult
of applyingmult-MBR and add-MBR torectangle X isrect-
angleY :< (Yil, Y1h), (Yal, Y2h), ... > where

YiL = A;l+ 12)
min(M;l+ X;l, Myl Xih, Mih x X5, Myh « X;h)
Yih = Ajh+
max (Ml « X5l Mil« Xsh, Mk x X1, M;h+ X;h)

for dl dimensionsi. Asan example, consider the points of
m-day moving averagefor m = 1,...,40. Figure 3 shows
the magnitudes and the angles of these points at the second
DFT coefficient and their decompositions into mult-MBR
and add-MBR. It can be observed that points inside mult-
MBR make ahorizontal lineat 1. Thisisdueto thefact that
adata point angleismultiplied by 1. Similarly pointsinside
add-MBR make a vertical line a O to show the fact that a
data point magnitude is added by 0. The result of applying
these MBRsto a datarectangle is shown in Figure 4.

MV1-40 MUIt-MBR for MV1-40 add-MBR for MV1-40
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0
angle(F2)
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Figure 3. The second DFT coefficients of m-
day moving averages (for m = 1,...,40) and
their decompositions into mult-MBR and add-
MBR

To devel op an agorithm for answering Query 1, suppose
an R-treeindex isavailable on sequences. We can apply the
transformation rectangleto every datarectanglein theindex
and construct a new index on thefly. The new index is con-
structed oneindex rectangle at atime, and each timethe new
rectangleischecked to see whether it intersectsthe query re-
gion. Thisprocessretrievesaset of candidatedataitemsthat
includesal qualifying dataitems plus some fal se positives.

angle(F2)

1¥1-0%6 L=
i 085*7+0 iy

7
ay(F2)

Figure 4. A data rectangle before and after
being transformed

Thelast step of the a gorithm removes fal se positives by ap-
plying every member of thetransformation set to every can-
didate data item and selecting data items that intersect the
query region. We can write the search agorithm more for-
mally asfollows:

Algorithm 1 : Given an R-treeindex which is built on the
first k Fourier coefficients of a sequence and whose root is
N, atransformation set 7", athreshold ¢, and a search point
¢, usetheindex to find al sequencesthat becomewithindis-
tance ¢ of ¢ after being transformed by a member of 7'.

1. Build MBR » for pointsin " and project » into amult-
MBR and an add-MBR as described above.

2. Build a search rectangle of width ¢ around ¢. We call
thisrectangle ¢,¢c:-

3. If N isnot aleaf, apply the mult-MBR and the add-
MBRtoevery (rectangle) entry of N using Equation12
and check if theresulting rectangleintersects ¢,..... For
every intersecting entry, go to step 3 and dothisstep on
the index rooted at the node of the intersecting entry.

4. If N isaleaf, apply the mult-MBR and the add-MBR
to every (point) entry of N and check if the resulting
rectangleintersects ¢,...:. If o, theentry isacandidate.

5. For every candidate entry, retrieve its full database
record, apply all transformations inside » to the se-
guence, and determine transformations that reduce the
Euclidean distance between the data sequence and the
guery sequence to less than .

This agorithm is guaranteed not to miss any qualifying
sequence (the proof is given in the next section). We can
develop similar agorithmsfor efficiently processing spatia
joinand nearest neighbor queries. Inaspatial join query, we
apply the transformation MBR to all dataitems used in the
join predicate before computing the predicate. For exam-
ple, we may want to find al pairs of stocks that have sim-
ilar closing priceswith respect to an m-day moving average



forsomem € {1,...,40}. Having an R-tree index for the
closing prices, we can use any well-known spatial join ago-
rithm for R-tree and change the join condition such that the
transformation rectangle be applied to both data rectangles
involvedin the join before testing them for a possible over-
lap. Similarly in anearest neighbor query, aswewalk down
the tree, we apply the transformation MBR to all entries of
the node we visit. We can then use any kind of metric (such
as MINDIST or MINMAXDIST discussed in [16]) to prune
the search.

4.2 Correctnessand Analysisof the M T-Index Al-
gorithm

To provethecorrectness of Algorithm 1, we haveto show
that no qualifying sequence is being rejected.

Lemmal Algorithm1 misses no tuplefrom the answer set
of Query 1.

proof: We prove thislemma by contradiction. Suppose
¥ is a sequence in the answer set of Query 1 but it is not
returned by Algorithm 1. Let ¢ = (d@,5) be a transforma-
tion which makes # similar to the query sequence. Let
the three rectangles <(X1l,X1h),(Xal, X2h),.. >,
<(M11, Mlh), (le, Mzh), o>,
<(A1l, A1h), (Asl, Ash),...> be MBRs that respec-
tively include #, @ and b. For an arbitrary dimension i, we
can write the following equations:

Al < by < Aih (15)

If we multiply all sides of Equations 13, 14, 14 respectively
by «;, X;l and X;h for positivevaues of «;, X;l and X;h,
wewill get

ClZXZl S a; . xg S ClZXZh

These three equationsimply M;1. X;l < a;.x; < M;h. X;h.
If we do the same step for all positive and negative combi-
nations of «;, X;/ and X;h, we will get different equations
which all satisfy the followinginequality:

We can add the three sides of Equations 15,16 and get

<a;.x;+06; <

Symbols Definitions

C cost using one transformation rectangle

Ck cost using & transformation rectangles

DAan(g,r) number of disk accesses for query ¢ and
transformation rectangle » in all index levels

DAjear(g,7) | number of disk accesses for query ¢ and
transformation rectangle » in the leaf level

CAeay average capacity of aleaf node

NT(r) number of transformationsinside rectangle r

Cpa cost of adisk access

Comp cost of a sequence comparison

Sincei ischosentobean arbitrary dimension, thisinequality
holds for al dimensions. Thus @.Z + b is apoint insidethe
rectangle defined by Equation 17 which is exactly the same
astheone used in Algorithm 1 (Equation 12). For the same
reason, sequence & will be returned by Algorithm 1. Thisis
a contradiction, so the proof is complete. g

There are two determining factors in the cost of Algo-
rithm 1: one isthe number of disk accesses required to find
and retrieve all candidate data items (D A (g, 7)) in steps
3 and 4, and the other is the number of comparisons per-
formed between the full database records of candidate se-
guencesand the query sequencein Step 5. Thelatterisequal
to the product of the number of candidate data items and
the number of transformation points inside » which is de-
noted by NT'(r). The CPU cost of applying the transfor-
mation rectangle to a data rectangle in step 3 is negligible
because these rectangles have no more than a few dimen-
sions; however, sequences involved in the comparison pro-
cess of step 5 are usually long and the CPU cost is not neg-
ligible. If we assume the number of disk accesses at the | eaf
to be DA;.qr (g, r) and the average capacity of aleaf node
to be C'Ajeqy, a good estimate of the number of candidate
dataitemsis DAjcqz (¢, 7).C'Ajeay. Thus we can writethe
cost function as follows:

C = DAu(q,7).Cpa+ (18)

DAleaf (q, T).CAleaf .NT(?“).Ccmp

where C'p 4 isthe cost of adisk access and C.,,,, isthe cost
of a comparison.

Next, we describe a possibletechnique for improving the
performance of Algorithm 1.

4.3 Performance | mprovement

A problemwith the MT-index a gorithmisif transforma
tions make several clustersor afew of them spread al over
the space, then the minimum bounding rectangl e of transfor-
mationswill cover alargearea. ThisMBR, when applied to
adatarectangle, can easily make the datarectangle intersect



the query region. This can reduce thefiltering power of the
index dramatically. A solution for this problemisto alow
more than one transformation rectangle. As the number of
MBRs goes up, the area of each MBR gets smaller, and as
a result the filtering power of the MBR increases; but, on
the other hand, the same index needs to be traversed sev-
eral times. In the worst case, the number of MBRs is the
same as the number of transformations, i.e. every MBR in-
cludes only one transformation point. In such a case, both
ST-index and MT-index perform exactly the same. Given &
transformation rectangles 4, . . ., ri, we can generalize the
cost functionin Eq. 18 and express the new cost function as
follows:

k

Cp = Z(DAall (¢,7:).Cpa + (19)
=1
DAleaf (q, ri)~CAleaf .NT(?“i).Ccmp)
or equivalently
k
Cr = Chua. Z DAau(q,7:)+ (20)

i=1
k
CAleaf ~Ccmp~ Z DAleaf (q, TZ)NT(TZ)

i=1

Now the question is how we should optimally choose
MBRsfor a given set of transformations such that the cost
C}, becomes minimum. A solution is to estimate the cost
for any possible set of MBRs and choose the set that gives
the minimum cost. To estimate the cost, we need to esti-
mate D Aqy(q,r;) and DAj..¢ (g, 7). Afirst attempt in es-
timating these two parameters is to assume the number of
disk accesses only depends on the area of ;. However, the
cost C isthen minimum if every MBR includes only one
transformation point, i.e. the ST-index algorithm is used.
There are aso techniques (for example, see [6, 19]) to es-
timate DA,y (¢, ;) and DAjqp(q,r;) for agiven R-tree,
but none of these techniques take the actua size and distri-
bution of data or directory rectangles into account. There-
fore, DAay (¢, 7;) andsimilarly D A;cq¢ (¢, ;) would bein-
dependent from r; and we can take these two terms out of
the summationsin Eq. 20. Asaresult of this, if weincrease
the number of transformation rectangles, the first term in
the cost function (Eg. 20) would increase linearly, but the
second term would remain unchanged. Due to this estima-
tion, the best performance shoul d be obtained using only one
transformation rectangle.

However, our experiments showed that using one trans-
formation rectangle did not necessarily give the best per-
formance. Thus, we cannot assume the number of disk ac-
cesses, DAuui(q,ri) of DAjeqr(g,7;), to be independent
from the size and the location of r;. Intuitively, as we in-
crease the size of the transformation rectangle, it is more

likely to make an arbitrary chosen data or directory rectan-
gleintersect the query region. In addition, even if only one
(out of NT'(r;)) transformation makes a data rectangle in-
tersect the query region, we still need to search dl NT'(r;)
transformationsin the postprocessing step to find those that
make a candidate sequence becomes similar to a query se-
guence, and this needs to be done for all candidates. Thus
thetrade off iswhether we scan the index once and do more
postprocessing work with possibly alarger set of candidates
or scan the index several times and do less postprocessing
work with possibly a smaller set of candidates. Our experi-
mentsin thenext section over aset of moving averages show
that packing six to eight transformationsin arectangle make
amajor improvement over ST-index, but there is not much
improvement if we pack more transformations in a rectan-
gle. Theworst performance for MT-index, whichiscloseto
that of ST-index, is when we pack two clusters of transfor-
mationsinto onerectangle. A solutiontoavoid thisproblem
is to use a cluster detection agorithm (such as CURE [9])
and avoid packing two clusters into one rectangle.

44 Ordering Assumption on Transformations

So far, we have made no assumption on any possible or-
dering among transformations. In this section, we define a
notion of ordering among transformations and show that it
can be quite useful in guiding the search process more effec-
tively.

Definition 1 We call < 7, <> an ordering of 7" =
{t1,12,...,t,} wrt. value domain domand distance func-
tionDif Vu,, v; €Edom, Vi, 4 €T,

ty <t = D(ti(vi), ti(vy)) < D(te(vi), i (vi))

Once an ordering is established among transformations, we
can use this ordering to guide the search more cleverly.
To give an example, consider Query 1 and assume 7' =
{2,...,100} represents a set of scaling factors. Itiseasy to
show that “less than” defines an ordering among members
of Tw.rt. thedomain of time sequences and the Euclidean
distance (see Appendix A for a proof). To find all transfor-
mations that make a data sequence to become similar to a
guery sequence we do not need to apply al scale factorsto
sequences. Instead, we need to find the largest scale factor
that makes the distance predicate true. Suppose s; issuch a
scale factor. One way to find s; isto do a binary search on
the set of scale factors. Definition 1 easily implies that the
distance predicate istruefor al scae factorsless than s;.
We can use the binary search technique in al three a-
gorithms described earlier. In the case of the sequential
scan method, we still need to scan the whole stocks rela
tion. However, the number of sequence comparisons drops
to |stocks| * log|T|. Similarly in the case of the MT-index



algorithm, the number of disk accesses till will bethesame,
but the number of comparisonsfor every candidate sequence
dropsto log|T'|. The ordering assumption reduces the num-
ber of index traversalsfor ST-index to log|T|.

Onthe other hand, the ordering assumption does not hold
in general. There are useful transformationsthat are not or-
dered w.r.t. time sequences and the Euclidean distance. For
example, we can show that no ordering is possible for a set
of moving averages w.r.t. time sequences and the Euclidean
distance (see Appendix A for a proof).

5 Experimental Results

We implemented both ST-index and MT-index, on top of
Norbert Beckmann's Version 2 implementation of the R*-
tree [4]. We ran experiments on both stock prices data ob-
tained from the ftp site “ftp.ai.mit.edu/pub/stocks/results’
and synthetic data. All our experiments were conducted on
a 168MHZ Ultrasparc station. The stock prices database
consisted of 1068 stocks and for each stock its daily clos-
ing pricesfor 128 days. Each synthetic sequence was in the
formof & = [«;] wherex; = «;_1 +z; and z, isauniformly
distributed random number in the range [—500, 500].

For every time series, we first transformed it to the nor-
mal form for reasons described in Section 3.2, and then we
found its Fourier coefficients. Since the mean of a normal
form seriesis zero by definition, the first Fourier coefficient
is dways zero, so we can throw it away. We mapped the
mean and the standard deviation of the origina time series
respectively to thefirst and the second dimensionsof thein-
dex. We a so mapped the magnitude and the phase angle of
the second DFT term (computed for the normal form series)
respectively to thethird and the fourth dimensions of thein-
dex, and the magnitude and the phase angle of thethird DFT
term respectively to the fifth and the sixth dimensions. We
used the symmetry property of DFT in all our experiments
over theindex.

We report our experiments in two parts. In thefirst part,
we compare MT-index to ST-index and sequential scan. In
thispart, we made the choice of packing all transformations
into one rectangle though it did not necessarily give usthe
best possible performance of MT-index. In the second part,
we varied the number of transformation rectanglesfrom one
to its maximum to see the effect of having multipletransfor-
mation rectangles on the performance of MT-index. In all
our experiments over range queries, we ran each experiment
100 times and each time we chose arandom query sequence
fromthedataset and searched for al other sequences within
distance ¢ of the query sequence. We averaged the execu-
tion times from these runnings. We a so set the correlation
thresholdfixed t00.96 for al range queries. We pluggedthis
threshold in Equation 9 tofind avauefor the Euclidean dis-
tance threshold.

51 Comparing MT-index to ST-index and Se-
quential Scan
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Figure 5. time per query varying the number
of sequences

Figure 5 shows the running time of Query 1 using three
algorithms sequential-scan, ST-index, and MT-index. In
the experiment, we set the number of transformationsfixed
to 16, but we varied the number of sequences from 500
to 12,000. The experiment ran on synthetic sequences of
length 128. The transformationswere a set of moving aver-
ages ranging from 10-day moving average to 25-day mov-
ing average. The average output size was 7 or more de-
pending on the number of input sequences. The figure
showsthat MT-index performs better than both ST-indexand
sequential-scan.
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Figure 6. time per query varying the number
of transformations

Figure 6 shows the running time of Query 1 again using
three agorithms sequential-scan, ST-index, and MT-index.
In the experiment, we set the number of sequences fixed to



1068, but we varied the number of transformations from 1
to 30. The transformations were a set of moving averages
ranging from 5-day moving average to 34-day moving aver-
age. The experiment ran on red stock prices data. The av-
erage output size was 11 or more depending on the number
of transformations. The figure showsthat MT-index outper-
forms both ST-index and sequential-scan.
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Figure 7. time per query varying the number
of transformations

The next experiment was on a spatia join query which
was expressed as follows:

Query 2: “Given a set of transformations de-
noted by T, find every pair s; and s, of stocks
and every t € 71 such that the correation
p(t(s1.close), t(sa.close)) > 0.99.”

Thetransformationswere again a set of moving averages
ranging from 5-day moving average to 34-day moving av-
erage. We varied the number of transformations from 1 to
30. The experiment ran on real stock prices datawhich con-
sisted of 1068 sequences of length 128. The average out-
put size was at least 7. Figure 7 shows the running time of
Query 2 using three algorithms. sequential-scan, ST-index,
and MT-index. Both ST-index and MT-index perform bet-
ter than sequential-scan. As we increase the number of
transformations, the MT-index a gorithm a so performs bet-
ter than ST-index until the number of transformations gets
30. At this point the running time for both is the same.

5.2 Multiple Transformation Rectangles

Inthissection, we show that groupingall transformations
in one rectangle does not necessarily give usthe best possi-
ble performance. To show this, we ran Query 1 using MT-
index algorithm on real stock prices data, but thistime we
varied the number of transformationsper MBR from one to
its maximum. The transformation set consisted of m-day
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movingaveragesform = 6, ..., 29. Weegually partitioned
subsequent transformationsand built an MBR for each par-
tition. Asis shown in Figure 8, despite the fact that col-
lecting all transformations in one rectangle resulted in the
minimum number of disk accesses, it did not necessarily
give us the best performance. We also computed the cost
function C; given in Equation 20 assuming Cp4 = 1 and
Cemp = 0.4 % Cpa, i.e. asequence comparison takes as
much as 40 percent thetime of adisk access. It turnsout the
cost function gives a good estimate of the running time and
the best running timeis obtained when the cost function has
its minimum.
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Figure 8. both the running time and the num-
ber of disk accesses varying by the number
of transformations per MBRs

We later added the inverted version of each transforma-
tion, which was obtained by multiplying every coefficient
by -1, to the transformation set. This created two clusters
in amultidimensiona space. Again, we equaly partitioned
subsequent transformationsand built an MBR for each par-
tition. We varied the number of transformations per MBR
from one to 48 which was the size of the transformation
set. Asisshown inFigure9, the running time shows bumps
when we pack one third or al of the transformationsin a
rectangle. The same bumps are also observed in the num-
ber of disk accesses. Thisisdueto thefact that in these two
cases the gap between two clustersisincluded in atransfor-
mation rectangle.

These experiments show that as we start packing trans-
formationsinto rectangles, we see amajor performance im-
provement which continuesup to acertain point (six to eight
transformations per rectangle here). The performance after
thispoint either staysthe same or goes down. Theworst per-
formance for M T-index, which was even worse than that of
ST-index, was when we packed two clusters of transforma-
tions into one rectangle. A solution to avoid this problem
isto use a cluster detection algorithm in advance and avoid
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Figure 9. both the running time and the num-
ber of disk accesses varying by the number
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packing more than one cluster to arectangle.

6 Conclusons

In this paper, we have proposed an efficient method for
processing similarity queries that specify multiple transfor-
mations as the basis for similarity. We have shown that, in-
stead of applying many singletransformationsto the index,
we can group transformations and apply a group of them si-
multaneoudly to the index. We have discussed the possibil-
ity of grouping transformationsinto multiplerectanglesand
itseffects on the performance of thea gorithm. Wehavea so
shown that in the presence of some ordering among trans-
formations, the search can be guided more efficiently. We
evaluated our method over both real stock prices data and
synthetic data. Our experiments confirm that the given al-
gorithm for handling multiple transformations outperforms
both the sequentia scanning and the index traversal using
onetransformationat atime. Our contributionsmay be sum-
marized as follows:

o Thedevelopment of anew agorithm that applies mul-
tipletransformations specified in aquery to a set of se-
guences in one scan of the R-tree index built on those
sequences. Thealgorithmisguaranteed not to missany
qualifying sequence from the answer set of the query.

o Analytical resultsand experimentsthat show the effec-
tiveness of our proposed algorithm.

e The definition of an ordering among transformations
and itsusein efficiently processing similarity queries.

e The observation that there is a direct relationship be-
tween the two similarity measures, the Euclidean dis-
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tance and the cross-correlation, for norma form se-
guences. Given athreshold for one, we can easily ob-
tain athreshold for the other.
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A Some Proofs

Lemma?2 For T = {ay,as,...,a,} asaset of scalefac-
tors, operator “ <" (less than) defines an ordering among
the members of 7" w.r.t. the domain of time sequences and
the Euclidean distance.

Proof: Let a; and a; betwo arbitrary transformationsand
suppose, without loss of generality, a; < «;. Let £ and
be two arbitrary time sequences and D(Z, &) denotes their
Euclidean distance. Since D(Z#, ¢) isa positive number, we
can multiply it to both sides of inequality a; < a;. Thiswill
givesus

a;. D(Z,§) < a;.D(Z, ), (21)
but we have
n—1
a;. DE§) = ai(d(wx—ye)”)” (22)
k=0
n—1

= Z ai.xk — ai.yk )0 E = D(ai.i", algj)

Equations 21,22 imply D(a;.Z, a;.§) < D(a;.Z, a;.9). m

Lemma3 No ordering ispossiblefor transformation set 7'
as a set of (circular) moving averages w.r.t. the domain of
time sequences and the Euclidean distance.

Proof: We prove this lemma by contradiction. Suppose
thereisan ordering among members of 7". Consider thefol-
lowing sequences:

si= [10 12 10 12]

ss= [10 11 12 1]

ss3= [ 11 11 1]
If we denote the circular 2-day moving averages by mv2
and the circular 3-day moving averages by mv3, we can

write
mu2(si)= [ 11 11 11],
mv2(s3)= [105 105 115 115],
mu2(s3)= [11 11 11 11],
mv3(si)= [10.67 11.33 10.67 11.33],
mu3(s3)= [1 10.67 11 11.33],
mu3(s3)= [11 11 11 111].

There are two possible orderings between mv2 and mva3:

e Casel: mv2 < mv3
By Definition 1, D(mv2(s;), mv2(s;)) <
D(mwv3(s;), mv3(s;)) for all pairs s; and s;. How-
ever, thisdoes not hold for s5 and s3;

D(mwv2(s;), mv2(s;)) for all pairs s; and s;. How-
ever, thisdoes not hold for s7 and s3;

D(mwv3(s1), mv3(s3)) = 0.66 > D(mv2(s1), mv2(s3)) =

There are no other cases, so the proof iscomplete. g

Lemma4 No ordering ispossiblefor transformation set 7'
as a set of non-circular moving averages wir.t. the domain
of time sequences and the Euclidean distance.

Proof: The proof is similar to the proof of Lemma 3.
Supposethereisan ordering among membersof 7'. If wede-
notethe non-circular 2-day moving averages by mv2 and the
non-circular 3-day moving averages by mv3, we can write

mu2(si)= [11 11 11],
mv2(s3) = [105 115 115],
mu2(s3)= [11 11 11],
mv3(s1) = [10.67 11.33],
mu3(s3)= [11 11.33],

mu3(s3)= [11 11]
where sequences s1, 5 and s3 arethose givenin Lemma 3.
There are two possible orderings between mv2 and mva3:

o Cael: mv2 < muv3
By Définition 1, D(mv2(s;), mv2(s;)) <

D(mwv3(s;), mv3(s;)) for al pairs s; and s;. How-
ever, thisdoes not hold for s3 and s3;

D(mv2(s3), mv2(s3)) = 0.87 > D(mv3(s3), mv3(s3)) = 0.33

e Case2: mv3 < mv2
By Definition 1, D(muv3(s;), mv3(s;)) <
D(mwv2(s;), mv2(s;)) for el pairs s; and s;. How-
ever, thisdoes not hold for s7 and s3;

D(mv3(s1), mv3(s3)) = 0.47 > D(mv2(s1), mv2(s3)) =

There are no other cases, so the proof iscomplete. g

D(mv2(s3), mv2(s3)) = 1 > D(mwv3(s3), mv3(s3)) = 0.75

o Case2: mv3 < mv2
By Definition 1, D(muv3(s;), mv3(s;))
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