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ABSTRACT

A dynamical approach to atmospheric analogs extending the statistical formulation by Toth and Van den Dool
is developed. Explicit analytical formulas for the probability and the mean recurrence time of analogs displaying
the system’s intrinsic time scales are provided for both discrete and continuous time dynamical systems and are
evaluated numerically on a representative model. The analysis reveals strong dependence of recurrence times
of analogs on the local properties of the attractor and a pronounced variability around their mean. Finally, the
formulation is extended to stochastically forced systems such as a red noise atmosphere.

1. Introduction

It is now recognized that initially close states of the
atmosphere diverge subsequently in an exponential-like
fashion. Nevertheless, if the difference between them is
small enough the phase space trajectories emanating
from these initial configurations of the system will, for
some time and for all practical purposes, be indistin-
guishable from each other. The importance of such nat-
ural close states or ‘‘analogs’’ for the prediction of short-
term weather fluctuations has been recognized for a long
time (see, e.g., Barry and Perry 1973). Subsequently,
this idea was used in a variety of problems such as the
estimation of atmospheric predictability (Lorenz 1969),
seasonal forecasting (Barnett and Preisendorfer 1978),
probabilistic temperature forecasts (Kruizinga and Mur-
phy 1983), and cluster analysis (Wallace et al. 1991).

Ordinarily, the identification and classification of at-
mospheric analogs relies on the historical record of ob-
servations. As the full set of variables characterizing the
state of the atmosphere is very large, the selection of
analogs is carried out on a reduced phase space spanned
by a limited number of variables or empirical orthogonal
functions (see, e.g., Ruosteenoja 1988; Toth 1991a).
This subspace is endowed with a suitable metric, and
states within a prescribed distance are qualified as an-
alogs. Unfortunately, as most of the libraries available
are rather short (10–100 years) it turns out to be very
hard to find analogs within a reasonably small distance,
even when attention is limited to a single type of ob-
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servable such as the 500-mb geopotential height (Van
den Dool 1994).

In view of the above limitations, theoretical ideas
allowing one to arrive at a priori estimates of the prob-
ability of analogs of a given quality and of the waiting
times necessary for their realization become highly de-
sirable. An important development in this direction has
been the observation that in an averaged sense, the dis-
tribution of circulation patterns in phase space is prac-
tically indistinguishable from a multinormal distribution
(Toth 1991b). Van den Dool (1994) utilized this infor-
mation to estimate the analog waiting time, M. The basic
quantity involved in his estimate is the probability P(«)
that two arbitrary chosen states are within a distance «
(the confidence interval chosen to define an analog) at
a given point in physical space. To evaluate P(«) one
integrates the probability density function r(dy) of dif-
ferences of the relevant variable values over an interval
of order «. Given a library of M years and denoting by
m the number of independent cases in the time windows
considered, the chance, a, of finding a match in the
library resembling a selected base case is, then,

a 5 1 2 (1 2 PN(«))mM, (1)

where N is the number of independent degrees of free-
dom. Inverting this equation one finds, for N sufficiently
large (Van den Dool 1994),

|ln(1 2 a)|
M $ , (2)

NmP («)

leading to astronomical waiting time estimates for any
reasonably small value of «.

Implicit in the above reasoning is the idea that the
waiting time M is determined by the univariate proba-
bility distribution r(dy)—a static quantity assumed, in
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addition, to be normal. Now, in our view this description
needs to be enlarged for two reasons. First, the waiting
time M, should bear in one way or the other the signature
of the underlying dynamics, and yet, in Eq. (2) no in-
trinsic timescale is apparent. Second, accepting for a
moment that 1 yr is a ‘‘natural’’ time step, one is entitled
to inquire whether the full, multivariate probability r(y)
should not also enter in the estimate of M. This would
dispense us from making the assumption of normal dis-
tribution at the very detailed level of the individual vari-
ables since, as pointed out by Toth (1991b), normality
holds only in the averaged sense of distances from the
climatological mean. The principal goal of the present
work is to enlarge the description of analogs along the
above indicated lines, in particular, by formulating the
analog problem as a problem of recurrence time statis-
tics of a dynamical system.

In section 2 the formulation of recurrence for discrete
time dynamical systems is laid down. An explicit gen-
eral formula is derived and compared with the formu-
lation of Eqs. (1)–(2). In section 3 the formulation is
extended to continuous time systems. A formula orig-
inally due to Smoluchowski is proposed for the mean
recurrence times of such a system, which incorporates
the system’s intrinsic timescales through the presence
of two-time probability distributions. The formulation
is applied, in section 4, to Lorenz’s three-variable ther-
mal convection model (Lorenz 1963). The dependence
of recurrence times on the local properties of the at-
tractor, and their variance around the mean are computed
by direct numerical simulation and compared with Eqs.
(1)–(2). In section 5 the formulation is extended to sto-
chastically forced systems, such as a red noise atmo-
sphere. The main conclusions are drawn in section 6.

Reassessing the theoretical basis of analogs will also
allow one to cope with the fact that the phase space
attractors associated to atmospheric dynamics are most
probably fractal objects, implying that the invariant
probability r (y) cannot really be a smooth function of
the multinormal type. Evidence will also be given of a
wide dispersion of waiting times around their mean, an
aspect that, given the small number of samples available,
is usually not touched upon in analog studies.

2. Recurrence time statistics in discrete time
dynamical systems: Formulation

Suppose that a dynamical system like the atmosphere
is probed every t time units. Let x 5(x1, · · · , xn) be
the set of the state variables, taken to lie within a cell
C of phase space G whose linear dimension « is the
confidence interval chosen to define analogs. If the evo-
lution laws are deterministic, the state at time t will be
uniquely defined in terms of x, by the action of a certain
operator Ft

xt 5 Ft (x). (3)

Upon repeated action of Ft the system will leave, as a

rule, the cell C. However, if the evolution operator de-
fines an ergodic transformation, the system will be
bound to return to cell C, given enough time (Kac 1959).
One may derive an explicit formula for the mean re-
currence time ^ut & of cell C as follows. Let C1, C2, · · · ,
Ck be the sets of points such that

C : x ∈ C, x ∈ C (cell C1)1 t

C : x ∈ C, x /∈ C, x ∈ C (cell C2)2 t 2t

C : x ∈ C, x /∈ C, · · · x /∈ C, x ∈ C.k t (k21)t kt

(cell C )k

By definition, the mean recurrence time in cell C is
`t

^u & 5 km(C ), (4)Ot km(C) k51

where the measure m(C) of cell C is the integral over
C of the invariant probability r(x):

m(C) 5 dx r(x). (5)E
C

It is convenient to introduce the characteristic func-
tion x(x) of cell C

1, if x ∈ C
x(x) 5 (6)50, otherwise.

It is then a matter of algebra to show that (Kac 1959)

`

km(C ) 5 1 2 w, (7a)O k
k51

where

w 5 lim dx r(x) (1 2 x(x))(1 2 x(x )) · · ·E t
n→` G

3 (1 2 x(x )). (7b)nt

Clearly, w represents the probability that neither x nor
any of its future images are in cell C. In an ergodic
process this probability is zero. Substituting (7a) into
(4) one obtains then

t
^u & 5 . (8)t m(C)

Identifying t with the sampling time this relation should
be equivalent with Eq. (2). In this respect, the following
comments are in order:

1) Equations. (2) and (8) are in qualitative agreement
in the sense that they both express waiting or re-
currence times in terms of quantities related to the
invariant probability distribution.

2) Since the probability P(«) in Eq. (2) is, by construc-
tion, of order «, Eq. (2) predicts a scaling of M with
respect to the confidence interval in the form
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1
M ø , (9a)

N«

where N is the number of independent degrees of
freedom. On the other hand, since the support of
r(x) in Eq. (5) is the system’s attractor, an order of
magnitude estimate of m(C) in Eq. (8) is m(C) ø
«d, hence

t
^u & ø , (9b)t d«

where d is the attractor dimension. This statement
clarifies Van den Dool’s (1994) idea that analogs are
to be sought in a subspace spanned by a limited
number of ‘‘relevant’’ variables or by some ‘‘dom-
inant’’ empirical orthogonal functions, by identify-
ing this subspace as the part of phase space spanned
by the system’s attractor.

3) According to Eq. (8), the waiting (or recurrence
time) depends on the multivariate probability r(x)
on the attractor [see Eq. (5)]. In contrast, Eq. (2) is
based entirely on the univariate probability density,
r(dx). This difference relates to the assumptions of
factorization and normality made at the outset in the
statistical approach. The advantage of Eq. (8) is to
be independent of such properties, which as pointed
out previously (Toth 1991a) can be valid only in an
average sense anyway. An analytical argument sub-
stantiating this idea further is developed in the ap-
pendix. It must be borne in mind, however, that in
practice real world datasets may be too small and
noisy to allow for a more accurate estimate of m(C)
beyond the crude one, m(C) ø « d.

3. Recurrence time statistics in continuous time
dynamical systems

We turn now to the more realistic picture of the at-
mosphere as a continuous time dynamical system. In-
deed, while the typical sampling time of the data used
in a library is of the order of the day, the intrinsic
timescale relevant for the dynamics is substantially larg-
er. In reality one is therefore monitoring, through the
record, a continuous time dynamical system even though
one chooses for practical purposes to look at the system
through a particular window. Let the corresponding evo-
lution laws be

dx
5 f(x), (10)

dt

where, depending on the case, f 5 ( f 1, · · · , f n) may
represent the right-hand sides of the primitive equations,
of the thermodynamic equation etc., evaluated at suit-
able grid points. We are interested, again, in the event
that a phase space trajectory emanating from a cell C
is reentering this cell for the first time. Now, in the limit
t → 0 (continuous sampling) definition (4) and Eq. (8)
applied straightforwardly give the trivial (and wrong)

result ^ut & → 0. On the other hand it is clear that in
this limit cell C1 introduced in section 2 must be omitted
from the counting, otherwise one will have no way to
express appropriately that the system first leaves cell C1

before returning to it. A formulation accounting for this
point has been worked out by Smoluckowski. We do
not dwell here on the details of the method, referring
the interested reader to Kac’s (1959) classical mono-
graph. We merely write the result,

1 2 P(C)
^u & 5 t , (11)

P(C) 2 P(C, 0; C, t)

where t is again the sampling time (now with the pos-
sibility t → 0), P(C) is the probability to be in cell C,
and P(C, 0; C, t) is the joint probability to be in C both
initially and at time t .

To extend the results of section 2 to continuous time
systems one needs now to evaluate the two quantities
P(C) and P(C, 0; C, t) on the system’s attractor. As in
section 2 it is again convenient to introduce the char-
acteristic function x(x) of cell C through Eq. (6). The
invariant probability P(C) becomes, then,

P(C) 5 dx r(x)x(x), (12a)E
G

where G is the total phase space available to the system.
Likewise, the two-time distribution P(C, 0; C, t) be-
comes

P(C, 0; C, t) 5 dx r(x)x(x)x(x ), (12b)E t

G

where xt (x) denotes the phase space point on which x
is projected after a time interval t , according to the
evolution equations (10).

Let us choose, for concreteness, a cell C in the form
of a hypercube of relative side « (i.e., divided by the
size of the attractor) including a point x0 5 (x10, · · · ,
xn0) as its downleftmost summit. The presence of char-
acteristic function x(x) restricts, then, the integration in
(12a) to the limits {x0i, x0i 1 «},

x 1« x 1«01 0n

P(C) 5 dx · · · dx r(x). (13a)E 1 E n

x x01 0n

Since the support of r(x) is the system’s attractor, a good
estimate of P(C) is, again [see discussion preceding
(9b)]

P(C) ø «d. (13b)

Consider now Eq. (12b). The presence of both x(x)
and x(xt ) implies that the integration must be compat-
ible with the fact that the intervals {xt i(x0), xt i(x0 1
«)} must overlap with {x0i, x0i 1 «}. In plain terms this
means that integration in (12b) bears on the intersection
C ù C2t of cell C and the set of those points that will
be projected into C after a time interval t . This set is
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FIG. 1. Schematic representation of the steps involved in the eval-
uation of Eq. (11) in a one-dimensional phase space. (a) The analog
considered lies in cell C between x0 and x0 1 «. (b) Set of points in
cell C2t evolving to C after a time interval t . (c) The intersection C
ù C2t provides the domain of integration of Eq. (12b). (d) The
difference between C and the intersection C ù C2t represents the
domain of integration of the denominator of Eq. (11).

referred to as the preimage C2t of cell C. The situation
is illustrated in Fig. 1 for a one-dimensional space. To
evaluate the mean recurrence time from Eq. (11), one
actually needs the difference between (12a) and (12b).
This amounts to integrating the invariant density r(x)
over a support of the type indicated in Fig. 1d, which
is clearly O(t) and can therefore allow, in principle, for
cancellation with the t factor in the numerator of Eq.
(11). To estimate the « dependence of this overall ex-
pression we argue as follows: Consider the limit t →
0 (continuous sampling). The denominator, Q, of Eq.
(11) is then of the form

x 1« x 1«01 0n

Q 5 dx · · · dx r(x)E 1 E n

x x01 0n

9 9min(x 1«,x 1«1a t ) min(x 1«,x 1«1a t )01 01 1 0n 0n n

2 dx · · · dx r(x),E 1 E n

max(x ,x 1a t ) max(x ,x 1a t )01 01 1 0n 0n n

(14)

where {ai}, { } are related to {x0i} and « in a com-a9i
plicated way that needs not be specified at this stage.
We now expand (14) in powers of t , a process that is
legitimate as long as r is finite and integrable. The zero-
order term will cancel, while the first-order one will be
a sum of n contributions in which one of the n inte-
grations over the xi will disappear, whereas the others
will bear on the original limits {x0j, x0j1«}. Clearly, each
of the factors in Eq. (14) is of order «d. The suppression
of one coordinate in the integration over phase space in
Eq. (14) would affect the exponent d in this scaling by
a term d between 0 and 1, depending on whether the
direction in question is practically parallel or, on the
contrary, transversal to the motion on the attractor. We
express this complex dependence by the formal relation

n

d2diQ 5 ty « ,O i
i51

where y i is the velocity along the direction i. Clearly,
in the limit of small « this expression will be dominated
by the term corresponding to di 5 1. As this term refers
to a direction along the trajectory one will have then

Q ø t y«d21 (« → 0), (15)

where y is the mean phase space velocity. Combining
this with Eqs. (11) and (13b), we obtain

d1 2 «
^u& ø . (16)

d21y «

This result clarifies further Van den Dool’s estimate
[Eq. (2)]. Regarding dependence on «, it leads to a re-
duction by a factor «21 in the denominator and to the
presence of the extra factor 1 2 «d in the numerator
while showing, once again, that what really matters is
the attractor dimension, which is the only intrinsic way
to identify the number of relevant variables involved in
the dynamics. Naturally Eq. (16) is only a rough esti-
mate. In reality, as the developments of this section
amply illustrate, recurrence time statistics strongly de-
pends on the local properties of the attractor, and hence
on the nature (e.g., scale) of the regime of interest. This
point will be developed further in the next section,
where the ideas of this section will be illustrated on a
simple model.

4. A case study: Lorenz’s three-variable thermal
convection model

Lorenz’s three-variable model reads (Lorenz 1963;
Sparrow 1982)

dx
5 s(2x 1 y)

dt

dy
5 rx 2 y 2 xz

dt

dz
5 xy 2 bz, (17)

dt

where the variable x measures the rate of convective
(vertical) turnover, y the horizontal temperature varia-
tion, and z the vertical temperature variation. The pa-
rameters s and r are proportional, respectively, to the
Prandtl number (depending entirely on the intrinsic
properties of the fluid) and to the Rayleigh number (in-
corporating the effect of the thermal constraint). Finally,
the parameter b accounts for the geometry of the con-
vective pattern.

As is well known, for s 5 10, r 5 28, and b 5 8/3,
Eqs. (17) give rise to the classical Lorenz attractor, the
first clear-cut demonstration of deterministic chaos in
dissipative autonomous dynamical systems.

The distribution of Euclidean distances around the
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FIG. 2. Probability density of the Euclidean distances, D, around
the climatological mean of the Lorenz model, Eqs. (17), with b 5
8/3, s 5 10, and r 5 28 as obtained from 200 000 data points sampled
every 0.01 time units.

FIG. 3. Probability density of Py(t) as obtained from model (17) af-
ter an integration of 1000 time units. Parameter values as in Fig. 2.

‘‘climatic’’ (long time) average of the Lorenz attractor
induced by the probability r(x, y, z) is depicted in Fig.
2. We observe that this distribution is not—nor is it
supposed to be—a normal distribution as in Toth
(1991b) since, for one thing, the number of degrees of
freedom involved is small and the variables are highly
correlated. This property is expected to extend to all
systems possessing a low-dimensional attractor and is
further discussed in the appendix.

An estimate for the mean recurrence time can be ob-
tained by following the lines leading to Eqs. (15)–(16).
In the present case the dimensionality of the attractor
is d ; 2.06. To estimate the mean phase space velocity
y , we first observe, using Eqs. (17), that the instanta-
neous velocity field is

v(t) 5 {s(2x 1 y), rx 2 y 2 xz, xy 2 bz}

with

2 2 2y(t) 5 |v(t)| 5 [s (2x 1 y) 1 (rx 2 y 2 xz)
2 1/21 (xy 2 bz) ] .

Figure 3 depicts the probability density of y(t). We
observe a large dispersion around the mean, and a
marked asymmetry toward high values of y . The mean
and most probable velocities turn out to be y ø 95.7t21

and 55t21, respectively (t21 denotes here inverse units
of time), whereas the standard deviation is 57.3t21. For
comparison, the value of velocity at the ‘‘climatologi-
cal’’ mean of the model (0, 0, 23.5) is 62.5 t21.

Since « in Eq. (16) is between 0 and 1, the above
figures must be normalized by the size of the system’s
attractor before a realistic estimate of ^u& for the model
at hand can be performed. A detailed view of the at-
tractor shows a span of about 39 along x, of 54 along
y, and of 47 along z. This leads us to an estimate of y
ø 2.2 t21 in Eq. (16) yielding

2.061 2 «
^u& ø . (18)

1.062.2«

We shall now resort to a numerical simulation of the
recurrence process and the concomitant search of ana-
logs. We first address recurrence in a three-dimensional
box surrounding a point chosen to correspond to the
‘‘climatological’’ mean of the model ;(0, 0, 23.5). The
sides of the box have been normalized by the size of
the attractor in such a way that they correspond to the
same « along the directions x, y, and z. The system is
started initially in the box just defined and Eqs. (17) are
integrated over a long time period. The passage times
ti of the phase space trajectory from the box are mon-
itored and the corresponding recurrence times Dti 5 ti11

2 ti recorded. Clearly, the states at ti and ti11, i 5 0,
1, · · · can be regarded as analogs for the dynamics on
the Lorenz attractor. The experiment is conducted until
a large number of recurrences is achieved, and repeated
for box sizes ranging from 1/20 of the attractor size («
5 0.05) to one-half the size of the attractor (« 5 0.5)
with a step D« 5 0.025. Notice that the recurrence times
evaluated in this way are necessary multiples of the time
step used in the numerical integration method, the small-
est possible value being twice this step.

Figure 4 depicts the recurrence time distribution for
« 5 0.05 (a), « 5 0.15 (b), and « 5 0.5 (c) as obtained
from 20 000 realizations. The distributions are rather
delocalized entailing the existence of a nonnegligible
variance around the mean, which will be discussed fur-
ther. The empty circles in Fig. 5a depict the dependence
of the mean recurrence time ^u& on the box size « as
obtained from 100 000 realizations, whereas the full cir-
cles reproduce the rough estimate obtained from the
theoretical expression (18). The overall correspondence
between these two curves is qualitatively acceptable. As
« increases, that is, as the analogs become coarser, the
distance between the curves tends to zero, although at
first sight the agreement would be expected to be better
for small «. This trend may be attributed to the fact that
in deducing Eq. (18) an averaging approximation has
been made and hence any trace of the local character
of the attractor has been wiped out. Quantitatively, it is
largely due to the numerator of ^u&, which goes to zero
as « tends to unity. The crosses in Fig. 5a reproduce
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FIG. 4. Probability density of recurrence times of analogs sur-
rounding the climatological mean of model (17) as obtained from
20 000 recurrences. The distances « in the three phase space directions
have been normalized by the attractor’s size (a), « 5 0.05; (b), « 5
0.15; and (c), « 5 0.5. Parameter values as in Fig. 2.

FIG. 5. (a) Dependence of the mean recurrence time on the coarse-
ness, «, of the analog considered for model (17) as obtained from
direct numerical simulation of the trajectory (open circles), using
Smoluchowski’s formula (crosses) and the rough estimate, Eq. (18),
(full circles). (b) Dependence of the relative variance on «. Parameter
values as in Fig. 2. Number of realizations considered in each «:
100 000.

^u& as obtained using Smolukowski’s formula [Eq. (11)].
In this case the stationary probability distribution P(C)
of the particular cell C considered, as well as its joint
probability P(C, 0; C, t), have been estimated from a
long time integration of the model involving 100 000
passages through cell C. By identifying t in the formula
to the integration step the corresponding mean recur-
rence time has been evaluated. The agreement with the

values obtained by counting the time spent by the tra-
jectory outside the cell C (empty circles) is complete.

Figure 5b shows the properties of the variance of u
normalized by the square of the mean recurrence time
^u&. We observe that the dependence on « here is far
more complex than the one depicted in Fig. 5a. Spe-
cifically, contrary to ^u&, the normalized variance ex-
periences (at least for the step D« considered) a maxi-
mum value at « 5 0.15 and two minima at « 5 0.1 and
« 5 0.325, whereas for intermediate values of « the
dependence is close to linear. Moreover, the variability
seems to be much more important for good analogs
(small «) than for mediocre ones (large «). This last
point suggests that, contrary to what one could antici-
pate, the identification of good analogs in the Lorenz
attractor does not necessarily entail better predictability,
at least as far as waiting times of the analog to recur
are concerned.

We next introduce a coverage of the attractor in the
xy plane by 202 boxes spanning the entire region of
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FIG. 6. Distribution of the mean recurrence times of analogs in the
xy plane for z 5 23.5 6 0.05 Z (Z being the size of the attractor in
the z direction) for model (17) as obtained from a partitioning of the
attractor’s xy plane into 202 cells of equal relative size and 106 re-
alizations.

these phase space variables ;(220 # x # 20, 227 #
y # 27). For consistency with the previous experiments
care is taken that the climatological mean is in the center
of one of the grids of the partition. The system is in-
tegrated and the local recurrence times for a given z
range are registered as in the previous experiment. Fig-
ure 6 depicts the distribution of ^u& in the xy plane for
z 5 23.5 6 0.05 Z, Z being the size of the attractor in
the z direction as obtained from 106 realizations. We
observe that among the 400 partitions available in the
xy plane only about a quarter of them are visited by the
trajectory, a characteristic reminiscent of the determin-
istic nature of the underlying system. Moreover, the val-
ues of the mean recurrence times span more than two
orders of magnitude, giving a mean in the entire xy plane
of about 100 time units.

Finally, a coverage of the entire attractor by 193 grids
is performed and the mean recurrence times of these
three-dimensional phase space subvolumes are estimat-
ed. Figures 7a and 7b depict the probability density of
the mean recurrence times ^u& and of the relative var-
iances, respectively, over the entire attractor as obtained
from 107 realizations. We retained only values that have
been obtained through an averaging over a number of
occurrences such that the statistics remain robust as the
integration time considered increases. A reasonable low-
er limit was found to be about 500 occurrences, giving
a total number of subvolumes visited by the trajectory
of about 600. The mean recurrence time over the entire

attractor is found to be ;60 time units. It is worth no-
ticing that in Fig. 7a the probability (open circles) varies
with ^u&, definitely slower than exponentially (full line).
It is much closer to a power law (dotted line), though
not perfectly fitted for short ^u&. Given that recurrence
is a discrete time dynamics, one can argue that a purely
exponential dependence on ^u& could be reminiscent of
a Markovian process (Nicolis et al. 1997). On the other
hand, power laws are characteristic signatures of inter-
mittency. The behavior found here is probably indicative
of a situation closer to an infinite memory intermittent
dynamics than a memoryless Markovian process.

The distribution of the relative variance, d2u/^u&2,
over the attractor (Fig. 7b) reveals that most of the prob-
ability density is concentrated around a relatively sharp
peak around ;2, although large excursions up to three
times this value are possible. This implies serious lim-
itations in the practical usefulness of the mean recur-
rence times in prediction.

5. Stochastic dynamical systems: The case of a red
noise atmosphere

The earth’s energy and momentum budget or the
mass budget of minor constituents are continuously
perturbed by local imbalances of the various fluxes
or by changes in the boundary conditions. In many
instances such forcings can be accounted for, at least
qualitatively, by adding a random noise term in the
balance equations. This formulation has been used for
modeling, among others, surface temperature anom-
alies (Frankignoul and Hasselmann 1977; Kim and
North 1991), Quaternary glaciations (Nicolis 1982),
or El Niño events (Vallis 1988). In this section we
address the recurrence and analog problem for such
systems and comment on the insight afforded by this
analysis in the statistical prediction of the correspond-
ing events. We consider the simplest possible case of
a single observable, or more precisely of its deviation
x 5 X 2 X` , from the ergodic mean X` ,

dx
5 2lx 1 F (t), (19a)

dt

where l21 is the relaxation time associated to the
damping of x and F(t) a Gaussian white noise process:

^F (t)& 5 0
2^F (t)F (t9)& 5 q d (t 2 t9); (19b)

here the brackets denote statistical average over the
various realizations of F and q 2 is the variance of the
noise.

A more fundamental view of Eqs. (19) is to interpret
x as a collective, slowly varying quantity forced by a
large number of faster varying ones, undergoing chaotic
dynamics in a high-dimensional phase space. A similar
representation has been proposed some time ago for the
Lorenz model, the difference with Eq. (19) being that,
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FIG. 7. Probability density of (a) ^u& (open dots), best fit with an
exponential function (full line) and a power law (dotted line) and (b)
of d2u/^u&2, as obtained from a partitioning of the entire attractor of
model (17) into 193 cells of equal relative size and 107 realizations.

owing to the small number of variables involved, the
noise term F itself is not white but exhibits, rather, mem-
ory effects (Nicolis and Nicolis 1986).

Equations (19) define the Ornstein–Uhlenbeck pro-
cess—the most typical example of red noise. It is well
known that the invariant probability density, instanta-
neous variance, and two-time conditional probability
density for this process read (Gardiner 1983)

1/2
l 2 22(l/q )xr(x) 5 e (20a)

21 22pq
2q

2 22lts (t) 5 (1 2 e ) (20b)
2l

1 2lt 2 2[2(x2x e ) ]/[2s (t)]0r(x, t | x , 0) 5 e . (20c)0 2 1/2(2ps (t))

We now evaluate the quantities appearing in the Smo-
luchowski formula [Eq. (11)]. The cell C reduces here
to a one-dimensional interval, which we express in the
general form (a 2 «/2, a 1 «/2), taking for simplicity

« small. This entails that the numerator in Eq. (11) can
be replaced by unity. Using the explicit forms (20a),
(20c) we may write the two terms in the denominator
of Eq. (11) as

a1(«/2)

P(C) 5 dx r(x) (21a)E
a2(«/2)

P(C, 0; C, t)
a1(«/2) a1(«/2)

5 dx r(x ) dx r(x, t | x , 0)E 0 0 E 0

a2(«/2) a2(«/2)

  «
2lt  a 1 2 x e0a1(«/2) 1 2 erf

5 dx r(x )   E 0 0 2 1/22 (2s (t))  a2(«/2)

 « 
2lt x e 2 a 1 0 2 erf ,1   2 1/2(2s (t))  

(21b)

where erfw represents the error function
w2 22yerfw 5 dy e . (22)E1/2p 0

For any given (small) «, we are interested in the behavior
of (21b) for small t . As seen from Eq. (20b), in this
limit s 2(t) ; q2t and the argument of erf in (21b) tends
to infinity except for values of x0 belonging to a thin
layer of width 21/2s(t) near x0 5 a 1 «/2, for which it
tends to zero. Accordingly, the function itself switches
rapidly from 1 to 0. For the two pieces of (21b) the
transition takes place, respectively, at x0 5 a 6 «/2 7
21/2s. Equation (21b) may therefore be replaced, effec-
tively, by

P(C, 0; C, t)
1/2a1(«/2)22 s a1(«/2)1

5 dx r(x ) 1 dx r(x ) .E 0 0 E 0 0[ ]2 1/2a2(«/2) a2(«/2)12 s

(23)

Expanding this expression for small t (and hence small
s) yields

P(C, 0; C, t)

« «
21/2 1/25 P(C) 2 2 qt r a 1 1 r a 2 . (24)1 2 1 2[ ]2 2

When inserted in the Smoluchowski formula, Eq. (11),
this expression still leaves us with a t dependence,

1/2t
^u & ; . (25)

« «
21/22 q r a 1 1 r a 21 2 1 2[ ]2 2

One is thus led to the following conclusions:
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FIG. 8. Dependence of ^u& on the integration step t of Eqs. (19)
defining an Ornstein–Uhlenbeck process for an analog x0, 20.01 #
x0 # 0.01 (empty dots) and 20.02 # x0 # 0.02 (crosses). Dotted
line represents the power law predicted by Eq. (25). Parameter values
l 5 1, q2 5 1023. Number of realizations considered in each t :
10 000.

FIG. 9. A realization of the Ornstein–Uhlenbeck process, Eqs. (19),
using a time step t 5 0.001 time units, illustrating the tendency of
the trajectory to recur infinitely often to any given initial state. Pa-
rameter values as in Fig. 7.

1) ^u& is not determined entirely by the system’s in-
trinsic parameters but keeps an explicit t dependence.
In particular, if t is chosen to be the integration step
used in solving Eq. (19), ^u& is resolution dependent.
We have evaluated ^u& explicitly from the stochastic
trajectory generated by Eq. (19). Specifically, we have
chosen an analog of size « in the space of the variable
x surrounding the origin, which corresponds to the stable
steady state of Eq. (19) in the absence of the random
force, F(t). Adopting l 5 1 and q2 5 1023, a large
number of realizations, starting at x 5 0, have been
generated and the recurrence of the trajectory for each
realization to the analog considered has been registered.

Figure 8 depicts the mean recurrence times obtained
for « 5 0.02 (crosses) and « 5 0.04 (circles) using
10 000 realizations as a function of the integration time
step t . The results confirm entirely the theoretical scal-
ing law (dashed line) predicted by Eq. (25). A close
look at a single realization, depicted in Fig. 9, allows
us to reach a qualitative explanation: We see that the
process recurs many times around a given local ‘‘macro-
state’’ associated to the smoothing of the fluctuations,
before being suddenly driven to a new cluster of states.
Actually one can show that for a diffusion process (of
which the Ornstein–Uhlenbeck process is a particular
case) the system recurs infinitely often to any given
initial state, entailing that ^u& should tend to zero in the
limit t → 0, as stipulated by Eq. (25) (Feder 1988). As
a by-product, events associated with finite excursions
of the relevant variables—including extreme events for
which recurrence times are finite and often very long—
cannot be modeled by a linear regression equation driv-
en by white noise.

2) ^u& remains finite in the limit « → 0. This reflects
the fact, well known in the literature on stochastic pro-
cess (Feller 1967), that diffusion process in one and two
dimensions recurs with probability one in any given

state. This would be impossible in a deterministic ape-
riodic process [cf. Eq. (17)].

3) Recurrence is conditioned by the noise strength q
rather than by the correlation time l21. At first sight,
this conclusion seems surprising since one would tend
to predict the waiting time of analogs on the basis of
the correlation time of the underlying processes. In ac-
tual fact, the result is more in line with the analysis of
the preceding sections, in the sense that information on
the complexity of the underlying dynamics (accounted
by the fractal attractor in section 3 and 4) is now com-
pressed into the single variable q.

6. Concluding remarks

Despite their importance in the understanding of at-
mospheric variability, analogs remain poorly understood,
owing primarily to the limited amount of information
available in the relevant data libraries. Statistical ideas,
based in one way or another to central-limit-type theorems,
have so far dominated theoretical approaches to the prob-
lem.

In this paper we attempted a dynamical approach to
analogs, with special emphasis on the probability of their
occurrence and the associated waiting times. The main
quantities appearing in the theory are the invariant prob-
ability for the system to be in a part of phase space whose
linear dimension is given by the confidence interval used
to define the analogs, «, and the probability to remain in
this part during the sampling time t. This allowed us to
arrive at scaling laws expressing the mean analog waiting
times in terms of «, the attractor dimension d, the number
of variables involved, and, when the continuous time limit
t → 0 was taken, the system’s intrinsic timescales. The
theory was fully corroborated by numerical simulations
on Lorenz’s three-variable thermal convection model. The
simulations brought out two further important features: a
strong dependence of waiting times on the local properties
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of the attractor and their high variability around the mean
in a given phase space cell of fixed size.

The above results provide some interesting new insights
on analogs in the real atmosphere. First, the scaling law
derived extends the result previously obtained by Van den
Dool (1994) while providing a firm connection with the
underlying dynamics. Second, our findings draw attention
on the limitations of the usefulness of the mean recurrence
times in prediction since the dispersion around this mean
is typically comparable to the mean.

The extension of the original purely deterministic for-
mulation to a red noise atmosphere led to a rather unex-
pected resolution dependence of mean waiting times. On
the practical side, this entails that simple regression models
driven by noise are not suitable for describing the recur-
rence dynamics of finite size disturbances, of which ex-
treme events provide a particularly important class.

Future investigations in this area should aim at the anal-
ysis of more detailed models of atmospheric dynamics in
the perspective of our formulation. The main problem here
is how to cope with the large number of variables involved.
We foresee two ways out: either the dynamics happens to
reduce to a low-dimensional attractor or, otherwise, a clus-
ter analysis is first performed and serves to define the
‘‘states’’ on which the analog problem is to be formulated.

Stochastic models of the diffusion type are bound to
present the behavior found in section 5. An alternative can
be envisaged in connection with the problem of transitions
between simultaneously stable states. It would consist in
smoothing out small-scale variability and view the tran-
sitions as a jump process similar in some respect to a
random telegraph signal, but in which the transition prob-
abilities should bear the signature of the small-scale vari-
ability. Such ‘‘adiabatic approximations’’ have already
been suggested in the context of stochastic resonance mod-
els of Quaternary glaciations (Nicolis 1982).
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APPENDIX

Extended Central Limit Theorem

In this appendix it is shown how a Gaussian distri-
bution governing distances in phase space can emerge
out of N mutually independent variables xi having a
common distribution f (x) that need not be Gaussian. We
follow a method similar to that used in the proof of the
classical central limit theorem (Feller 1971).

We define distances u in the N-dimensional space of
{xi} through the Euclidean norm

u 5 1 · · · 1 .2 2x xÏ 1 N (A1)

By definition, the probability density r of the variable

w 5 u2 is (assuming for simplicity that {xi} are distances
from their mean values, so that their range of variation
is 2` to `)

` `

r(w) 5 dx · · · dxE 1 E N

2` 2`

2 23 d(w 2 (x 1 · · · 1 x )) f (x ) · · · f (x ).1 N 1 N

(A2)

Using the familiar representation of the delta function
one may further write Eq. (A2) as

`1
r(w) 5 dk exp(ikw)E2p

2`

N`

23 dx exp(2ikx ) f (x) . (A3)E1 2
2`

In the following we assume that f (x) decays to 0
sufficiently rapidly as |x| → ` to have finite moments
up to fourth order. Expanding exp(2ikx2) in powers of
(2ikx2) and retaining the first few terms, one then ob-
tains

`

2dx exp(2ikx ) f (x)E
2`

` 2 4k x
2ø dk 1 2 ikx 2 f (x)E 1 22

2`

2k
5 1 2 ikm 2 m , (A4)2 42

where m 2 and m 4 being the second and fourth mo-
ments.

The expression involved in the integral over k in Eq.
(A3) becomes

N`

2dx exp(2ikx ) f (x)E1 2
2`

N2k
5 1 2 ikm 2 m2 41 22

2k
5 expN ln 1 2 ikm 2 m . (A5)2 41 22

Expanding the logarithm and retaining dominant terms
yields

2k
ln 1 2 ikm 2 m2 41 22

1
2 2ø 2ikm 2 k (m 2 m ). (A6)2 4 22

Substituting (A5)–(A6) into (A3) one obtains
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`1
r(w) 5 dk exp[ik(w 2 Nm )]E 22p

2`

N
2 23 exp 2 k (m 2 m )]. (A7)4 2[ 2

Knowing that the Fourier transform of a Gaussian is
itself Gaussian, we conclude that r(w) is a Gaussian
distribution with mean M and variance V given by

M 5 Nm2

2V 5 N(m 2 m ). (A8)4 2

Alternatively, the normalized variable

N1
1/2 2N x 2 mO i 21 2N i51

is a normal distribution with zero mean and variance
equal to m4 2 .2m2

It is important to realize that the truncation of (A6)
to terms of order k2 is legitimate only in the limit of
large N, in the sense that higher-order terms would give
in this limit additional contributions to (A7) that would
be negligibly small.

The distribution of the norm u, Eq. (A1), followsr̃(u)
straightforwardly from (A7)–(A8) and the change of
variable w 5 u2

dw(u)
r̃(u) 5 r(w(u))) )du

or, in a more explicit form,

2 2(u 2 Nm )221r̃(u) 5 A u exp 2 , (A9)
2[ ]2N(m 2 m )4 2

where A is a normalization factor. As it stands, this
distribution is not Gaussian for the variable u. However,
setting

21r̃(u) 5 A exp[V(u)], (A10)

where
2 2(u 2 Nm )2V(u) 5 2 1 lnu,

22N(m 2 m )4 2

one easily checks that V(u)—and hence itself ex-r̃(u)
hibits for N → ` a sharp maximum at u* 5 (Nm2)1/2.
Expanding around this maximum reduces then as-r̃(u)
ymptotically to a Gaussian distribution.

The extent to which the large N limit is realized in
a problem of atmospheric interest depends, of course,
on the number of relevant independent degrees of free-
dom or, alternatively, on the attractor dimension. As we

saw in section 4, the statistics of the Lorenz model is
definitely non-Gaussian. This conclusion obviously ex-
tends to all phenomena amenable to a low-dimensional
attractor. On the other hand, the full-scale analysis of a
variety of atmospheric phenomena is likely to introduce
a high-dimensional dynamics. In such cases Gaussian
statistics can legitimately be applied for global quan-
tities as u, although there is no reason for the individual
variables {xi} themselves to be Gaussian.
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