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ABSTRACT

An analogue forecast scheme is described for multifield prediction of monthly and seasonal New Zealand climate
anomalies on the basis of the methodology of Livezey and Barnston (1988) for US seasonal temperatures. The method
is applied to predicting terciles of temperature and precipitation for six regions of New Zealand. Empirical orthogonal
function analysis is used to reduce sea surface temperature and sea-level pressure predictors down to a set of five
independent indices, which incorporate variations due to El Niño-Southern Oscillation, Indian Ocean sea temperatures
and a wave 3 pattern in the Southern Hemisphere westerlies. A full bootstrap cross-validation procedure is carried out,
along with Monte Carlo tests, to assess the skill of the method on independent data and to determine the significance of
the results. Significant skill is found for seasonal temperature forecasts for the summer and winter seasons; there is less
success in predicting monthly temperatures or rainfall at either timescale. Considerable care is required to constrain the
climate state vector, from which analogues are defined, and to constrain the search procedure itself, in order to produce
results that are stable with respect to small parameter changes in the model. For the New Zealand region, 5 to 7 is found
to be the optimum number of ‘closest analogues’, and the inclusion of anti-analogues improves the predictions, at least in
the seasonal case. Skill in predicting regional temperature and rainfall is shown to be related to a combination of skill in
predicting sea-level pressure patterns and to how strongly these patterns project onto temperature and rainfall anomalies.
Copyright  2005 Royal Meteorological Society.
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1. INTRODUCTION

The use of analogues to generate climate forecasts is an attractive idea, not the least because of its conceptual
simplicity, and many meteorological institutions around the world either still use analogue forecasts or have
done until recently (WMO, 2002). The analogues may be used to forecast temperature and precipitation
anomalies directly, or through the intermediary of an anomaly flow pattern. In some cases, the analogues are
used more indirectly: e.g. the Australian Bureau of Meteorology determines analogue years of the Southern
Oscillation Index (SOI) as a first step to subsequent analyses (Drosdowsky, 1994; Voice et al., 1996).

The technique involves searching the historical data, identifying previous periods that resembled the
immediate past period and predicting the following month’s or season’s climate anomalies on the basis
of what happened on those previous occasions. Analogues have been used in climate forecasting for a long
time. Namias (1968) reviews the early history, and Nicholls (1980) presents a somewhat more recent view.
There was a resurgence of interest in analogue techniques at the end of the 1980s, particularly in the United
States, with the publication of Livezey and Barnston (1988) and subsequent papers (Barnston and Livezey,
1989; Livezey et al., 1990; Chapman and Walsh, 1991; Barnston and van den Dool, 1993; Livezey et al.,
1994). The ongoing interest in analogue techniques is evidenced by a recent paper (Wetterhall et al., 2004)
that uses analogues to downscale general circulation model precipitation predictions over Europe.
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Analogues have even been tested as a forecast tool on the daily timescale (Gutzler and Shukla, 1984; Van
den Dool, 1989, 1994). Fraedrich et al. (2003) describe an analogue model that shows skill in forecasting
tropical cyclone tracks in the Australian region. Van den Dool (1994) considered how close a match could
be expected between daily flow patterns. According to his estimates, a library of 1030 years would be needed
in order for two observed flows to match within observational error over the entire Northern Hemisphere.
Obviously, a weaker requirement could be placed on a ‘match’, or the geographic area under consideration
could be reduced. What this calculation does show is the importance of the number of degrees of freedom
when identifying suitable analogues.

Analogy can be defined in a number of ways. Gutzler and Shukla (1984) define three different measures,
applied in their case to daily winter flow patterns at 500 hPa. Analogues were defined in terms of (1) the
root-mean-square difference between pairs of maps; (2) the spatial covariance between two maps over the
region of interest and (3) the spatial correlation. The first measure is most sensitive to anomaly amplitudes,
the second to matching up pronounced highs and lows, whereas the third is more sensitive to the phase of the
patterns with less emphasis on amplitudes. Each measure will tend to generate a somewhat different set of
analogues, although there will certainly be commonly occurring analogues, and it is not clear whether there
is an optimum way in which analogue similarity should be identified. Barnett and Preisendorfer (1978) called
this type of analogy definition the classical approach and described two other methods that took account of
the evolution of the forecast and observed states. In their comparative study, the use of state evolution in
defining an analogue sometimes gave a superior prediction and at other seasons and lead times gave a worse
result.

For monthly and seasonal forecasting, the emphasis is no longer entirely on initial atmospheric conditions,
and any anomalies at the lower boundary become important. For the Southern Hemisphere, this means
primarily sea surface temperature (SST) anomalies, although the state of seasonal sea ice around Antarctica
may also play a role. Numerical model simulations have demonstrated that both initial conditions and boundary
conditions must be considered (Palmer and Anderson, 1994). The predictors developed in the New Zealand
context are therefore drawn from indices describing both the mean sea-level pressure (MSLP) anomalies and
the SST anomalies at the start of the forecast period.

There is also a link between analogue forecasts and ensemble forecasts, which are at the forefront of long-
range forecasting research. Ensemble integrations involve the use of numerical weather prediction models
where the simulations are extended well beyond the limit of predictability of individual synoptic weather
systems. Each integration starts from a slightly different initial atmospheric state: these may be perturbations
about an analysis at the same starting time, or forecasts initialised at staggered times. Whatever the method
of generating the ensemble, one ends up with a set of forecasts from which a probability distribution could
be calculated. The analogue method also comes up with a set of forecast states, and from this point on both
analogue and ensemble forecasting have the same problem: what is the best way to generate a forecast from
a group of possible future states, given that some disagreement within the group is inevitable? The simplest
answer is to take the ensemble average, although even here it is necessary to assess how many ensemble or
analogue members should be included. Anderson and Stern (1996) argue that ensemble (or analogue) forecasts
are most useful when the forecast distribution is significantly different from an appropriate climatological
distribution, and simply using the ensemble mean discards valuable information.

Section 2 details the data sets used. In developing the predictors, previous research guides the selection of
the most appropriate variables. A number of observational studies have identified the SOI as a useful predictor
of New Zealand rainfall and temperature anomalies (Gordon, 1986; Mullan, 1995, 1996). In general, during El
Niño events New Zealand experiences lower temperatures, with more precipitation in the south and west and
less precipitation in the north and east of the country. Mullan (1998) has found Indian Ocean sea temperatures
to have an important influence on New Zealand too. Higher SSTs in the Indian Ocean result in stronger anti-
cyclones over and north of the North Island and more persistent northwesterly airflow onto the remainder
of the country. This results in higher South Island temperatures, wetter conditions in the west of the South
Island and drier conditions in the north and east of the country. The same teleconnection pattern has been
identified in Australian research, where it produces drier winters in southern Australia (Drosdowsky, 1993;
Smith, 1994).
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The Indian Ocean SST influence is confined to the austral autumn and winter seasons. The El Niño-
Southern Oscillation (ENSO) effect can occur at any time of year, but is strongest in the spring and summer
half-year. (Note that Southern Hemisphere seasons are used throughout, so summer is taken as December,
January and February; autumn as March, April and May; and so on.) Thus, when predicting New Zealand
climate variability, it is important to allow for seasonal stratification of the data. This is catered for within
the analogue model by retaining the same predictors year round, but allowing these predictors to be weighted
differently from season to season according to a hindcast optimisation.

The analogue methodology is described in Section 3, and the model is now run operationally at the
National Institute of Water and Atmospheric Research (NIWA). As part of NIWA’s programme on climate
variability, monthly climate outlook meetings are held to discuss future circulation and climate anomalies
over New Zealand (Salinger, 1996). A range of guidance material is used, and the analogue model that
identifies monthly and 3-monthly analogues is a very useful tool in developing a mental picture of climate
developments.

2. DATA

Two rather distinct data sets were developed for this study, and they required considerable preprocessing.
The predictand data set comprised time series of the monthly or seasonal anomalies of temperature and
precipitation over New Zealand. A decision was taken early on to generate forecasts for regions within New
Zealand, rather than for individual sites, which meant amalgamating station data into coherent regions. The
predictor data set was made up of circulation anomalies local to New Zealand (MSLP) and SST anomalies
over a wide extent of the Southern Hemisphere. Because of the interest in predicting flow anomaly, the MSLP
was used as a predictand as well as a predictor. The analogue model was developed using data for the period
1957–1994, and additional validations were made on independent data up to 2003.

2.1. Predictands

The New Zealand station data used are monthly average temperature and monthly total precipitation, taken
from the NIWA Climate Database for a wide range of locations around New Zealand. The station data set
and initial processing were the same as described in Mullan (1998). A total of 51 temperature stations and 74
precipitation stations were used. The annual cycle was removed from the temperatures by subtraction of the
monthly mean for each calendar month, at each station. Rainfalls were normalised by conversion to percentage
deviation from 1957 to 1994. Three-monthly seasonal anomalies were generated by taking 3-month averages
of the individual monthly normalisations.

In order to amalgamate the stations into regions, empirical orthogonal function (EOF) analysis was applied,
followed by varimax rotation. EOF rotation, as recommended by Richman (1986), acts to isolate subgroups
of stations that co-vary similarly, and thus is useful for regionalising variations. Six coherent regions were
identified from the rotated EOF analysis of the rainfall data and are shown schematically in Figure 1, three
regions in the North Island and three in the South Island (see Mullan, 1998, for full details of the procedure
and the actual eigenvector patterns). Variations in temperature across the country can be explained by fewer
rotated EOFs (Mullan, 1998, retained only three EOFs). Two of the temperature regions correspond quite
closely to Regions 5 and 6 of Figure 1, with the third temperature district encompassing the entire North
Island. However, in order to keep the analogue forecasts as straightforward as possible, temperature is forecast
for the same six regions as for rainfall. Regional averages of temperature and rainfall anomalies comprised
the basic predictand input to the analogue search model.

2.2. Predictors

The predictor data comprise MSLP and SST anomalies. The MSLP fields are taken from the NCEP/NCAR
reanalysis data set for the period July 1957 through December 1994. The annual cycle was removed by
subtraction of the long-term mean pressure for each month at each grid point.
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Figure 1. Location map showing the six regions of New Zealand for which temperature and rainfall hindcasts were generated

EOF analysis using a correlation matrix was performed, followed by varimax rotation, for the domain
15° –65 °S by 120 °E–160 °W, which covers the Tasman Sea–New Zealand region. The first four rotated
EOFs were retained, and these are shown in Figure 2, which also records the explained variance in the
monthly anomalies for the 450-month period July 1957 to December 1994. Virtually identical patterns, and
associated time series, are found in seasonal data. The first four EOFs, denoted MSL1 through MSL4, account
for 73% of the monthly variance over this region. MSL1 shows a pattern of northeast (or southwest) flow
over New Zealand, with a high (low) pressure centre to the southeast of the country. MSL2 shows weaker
(stronger) westerly flow south of about 50 °S. MSL3 shows an anti-cyclonic (cyclonic) anomaly in the south
Tasman Sea, centred near 45 °S, 160 °E. MSL4 shows an anti-cyclonic (cyclonic) anomaly south of Australia
with southerly (northerly) flow in the southwest Tasman.

The SST data used was the UK Meteorological Office SST data set, known as HadISST (Rayner et al.,
2003). The SST grid-point data were averaged over eight ‘key areas’ identified by Mullan (1998) as having
significant correlations with New Zealand rainfall and temperature variations (Figure 3). These areas, SST1
through SST8, can be described as follows: New Zealand region (SST1), Australian Bight–Tasmania (SST2),
NINO3 region in the eastern tropical Pacific (SST3), NINO4 region in the central tropical Pacific (SST4),
New Caledonia region north of New Zealand (SST5), central Pacific east–northeast of New Zealand (SST6),
central Indian Ocean (SST7) and equatorial Indian Ocean (SST8).

Since these 12 predictors are not all independent of one another, a second EOF analysis was then applied,
this time without rotation, following the approach of Barnston and Livezey (1989). The resulting final set of
five predictors is discussed in Section 4.

3. ANALOGUE METHODOLOGY

The analogue technique involves searching the historical data, identifying previous months (or seasons as
appropriate) that resembled the immediate past period and predicting the following month’s climate anomalies
on the basis of what happened on those previous occasions. While this is straightforward in principle, a number
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Figure 2. The leading four rotated EOFs of seasonal mean MSLP anomalies over the New Zealand region, all seasons of the year
combined. Contours of the pattern weightings are plotted every 0.1, with negative contours dashed and the zero contour dotted. The

percentage variance accounted for by the REOF, and the REOF number, is given above each panel

Figure 3. SST index ‘key areas’, delineating regions that have significant lag correlations with New Zealand temperature and rainfall
(from Mullan, 1998)

of decisions have to be made about the experimental design. Firstly, a quantitative method for assessing
‘similarity’ between periods in the historical data is required. Secondly, a decision must be made on how to
score the forecasts. This is intrinsic to the whole procedure, because the similarity formula used to select the
analogues needs to be optimised, through a hindcast bootstrap validation, in order to maximise the success
rate. An additional parameter that the hindcast validation exercise can determine is the optimal number of
analogue months to use in the forecast. It has been known since the early work of Bergen and Harnack (1982)
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that forecasts based on only the single best analogue are subject to a large sampling error and do not verify
well.

3.1. Analogue/anti-analogue similarity

The purpose is to find months in the historical record (the analogue month) when the state of the climate
is closely similar to the analysis (or base) month, for which a forecast is to be made. In looking for potential
analogues to the base month in other years of record, analogues are searched for in the same calendar month
and also in adjacent months. By this means, the number of potential analogues is increased threefold.

There are a number of ways in which a ‘climate state vector’ (CSV) and analogue ‘similarity’ may be
defined. However, in terms of the experimental set-up, the CSV (see e.g. Barnett and Preisendorfer, 1978;
Livezey and Barnston, 1988) is simply the time series of the five predictor indices, INDEX 1 to INDEX 5.
The analogue similarity metric, S, is measured in terms of the weighted root-mean-squared difference between
the two states as

S =
√√√√ N∑

1

wi(I i
a − I i

b)
2

where I i
a and I i

b are the ith indices for the candidate analogue and base months respectively and wi is
the weighting given to the ith index. The smaller the similarity value, the closer the agreement between
the analogue and base months. The weights wi are determined by the bootstrap cross-validation exercise.
This metric is the so-called ‘classical’ approach (Barnett and Preisendorfer, 1978) based on an instantaneous
comparison of analogue and base months.

As first suggested by Van den Dool (1987) and developed by Livezey and Barnston (1988), ‘anti-analogue’
situations are also sought. For anti-analogues, the indices describing the CSV are reversed, and previous
months are searched for situations most similar to the ‘reverse’ climate. Mathematically, if the similarity
metric S is a function of the base month indices, S = S(Ib), then the closest anti-analogues have the smallest
S(−Ib). Thus, two models are tested on the data set: an analogue-only model and a ‘mixed’ model where
both analogues and anti-analogues are allowed for simultaneously.

3.2. Scoring of forecasts

The measure of forecast success chosen is the Hanssen Skill Score (HSS) of 3 × 3 contingency tables
(i.e. predicted vs observed terciles for rainfall and temperature over the six regions of New Zealand). Other
measures of skill could of course be used, and will likely have some small impact on the optimised predictor
weights. However, contingency tables are a good way of explicitly presenting uncertainty in the forecasts, a
desirable attribute to emphasise to prospective users.

The data for regional rainfall and temperature anomalies were therefore discretised and placed into terciles
for validation purposes. Since the analogue model is also to be applied to forecasting future MSLP anomalies,
terciles of the rotated EOF scores (the time series associated with the MSLP patterns of Figure 2) were also
computed.

When an anti-analogue is selected, the forecast tercile is ‘reversed’ (i.e. tercile 1 becomes tercile 3, etc)
and entered into the contingency table. Initial tests with the model where the 3 × 3 contingency table was
accumulated for all six regions combined produced a very low skill score overall. This result of grouped
stations scoring poorly has been noted in previous work (e.g. Bergen and Harnack, 1982). The US operational
system also uses different predictors for each station (Livezey and Barnston, 1988).

3.3. Analogue search procedure

The principle behind the analogue search procedure is to perform a base-line bootstrap or ‘cross-validation’
on N years of data, where each datum in the series is used for both the determination and verification of skill
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in the optimised index weights. Cross-validation is relatively intensive on computing resources; each year of
the data is withheld in turn (i.e. N times) for verification purposes and the N − 1 remaining years are used
as the developmental data set.

The analogue search is performed for each region and for rainfall or temperature separately with optimised
index weights wi computed for each season separately. Taking (austral) spring, e.g. analogues are sought
for September (and October, then November) by searching for closest similarity in other years in months
July/August/September (and August/September/October, then September/October/November). The search
procedure, which is detailed below, is performed for each of the six regions in turn. The sequence of steps is
described for monthly forecasts, but the same procedure is applied to 3-month forecasts where the seasonal
stratification is according to the centre month of the period. The flowchart in Figure 4 summarises the steps
described in the following text, and a specific example (Table II) is discussed later in Section 4 to help the
reader understand the procedure details.

3.3.1. Tuning of index weights. The bootstrap procedure involves looping over the N(= 38) years of data.
Tuning index weights consists of two main steps:

(1) Looping over the remaining N − 1 years to identify the best set of index weights. Three weights (values
of 0, 1 and 4) were selected on the basis of pre-testing of the number and values of weights and from
computational-time considerations. A total of approximately 35 weighting combinations are possible
(actually slightly less because of effective duplicates) from which to select the closest potential analogues

Select: Climate element, NZ region, Month (Season)
# of closest analogues (M)

Withhold "Independent Year"

Select weights of 5 predictors

Select dependent Year

Calculate similarity metric with respect to all other allowed months..
Calculate M hindcasts from closest analogues & enter results in contingency table

Finished loop
over dependent
years?

NO NOYES

NO YES

YES

Score
result

Finished all
weight
combinations?

Apply set of weights with highest score on dependent data to independent (withheld) year.
Calculate M hindcasts from closest analogues & enter results in contingency table.
Calculate skill score over accumulated independent years.

Finished loop over
independent years?

Output: Average & Standard
Deviation of optimised
weights, and Skill Score,
over all independent years.

Figure 4. Flowchart showing step-by-step process for tuning weights of analogue model
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to the analysis (or base) month. Using the 0,1,4 subset of weights is essentially a computational short
cut to efficiently span the subspace. Results are relatively insensitive to the precise value of the weights,
although it is crucial to allow the possibility of a zero weight (i.e. elimination of predictors), as discussed
in Section 4.2.

(2) Evaluation of skill. For a given combination of index weights, over all base months in the season (a total of
3 × [N − 1]) should be looped. For each base month, the similarity metric for potential analogue months
(3 × [N − 2] for analogue-only models, twice this number for a mixed analogue–anti-analogue model)
should be evaluated. The ‘M’ best analogues, with the lowest similarity metric, are selected and used to
determine the rainfall or temperature forecasts for the following 1-month (i.e. the verifying month) period.
A 3 × 3 contingency table is accumulated (3 × M × [N − 1] entries when all base months have been
considered), matching the observed tercile categories with the forecast tercile categories. (Anti-analogue
terciles are reversed.) The accumulated contingency table for the given set of index weights with the
Hanssen skill-score test statistic, (HSS) should be calculated (Hanssen and Kuipers, 1965). Then the next
weight combination is selected until the approximately 35 combinations are tested.

3.3.2. Evaluation of skill on independent data. The best set of weights is then used to select analogues for
the ‘independent’ (withheld) data year. Forecast and observed tercile information is then entered in another
contingency table, which will have 3 × M entries for each independent year. HSSs can be computed for each
year separately. However, these scores are unstable for small samples, and indeed the score is indeterminate
if, e.g. the observed tercile was the same for all 3 months in the seasonal sample. Thus, in practice, the HSS
is accumulated over the N independent years.

The next year is then selected as the independent year and the above search procedure is repeated until all
N years of data have been analysed and the best sets of index weights computed. The final result is N sets of
‘best weights’, i.e. for each independent year, there is, at least potentially, a different weight combination that
maximises the skill on dependent data. In practice, the weights often do not vary much with the independent
year. Section 4 provides an example that helps explain how the search procedure works.

3.4. Stability of results

The search procedure described above involves trying all possible weight combinations across all five
predictors and taking the single best combination. In practice, the objective is to find a volume in the solution
phase space where the dependent skill score maximises. The exhaustive search samples this phase space at
discrete points. Near neighbours to the selected best point will also have similar skill scores. Also, as the
search procedure loops through the 38 independent years, noisiness in the data can make the selected best
point jump around. A single very bad verification for an ‘outlier’ set of best weights can destroy what appears
to be a skilful forecast model in all other years.

After an analysis of the causes of this instability, it was concluded that just as it is unwise to choose the
single closest analogue (M = 1), it is also unwise to take the single best set of weights. The stability of
results was greatly enhanced by taking an average over the closest ‘K’ sets of top weights, where K was
a small number. Examples and implications are described in Section 4. The flowchart (Figure 4) omits this
step for ease of presentation.

3.5. Significance testing

The analogue model involves a number of parameters, some of which are tuned explicitly in the hindcast
cross-validation (i.e. the index weights). An important preselected parameter is the number of closest analogues
M that are made use of in the forecast. It is also well known that with analogue models, the skill score decreases
as the total number of analogues (M) increases. Obviously, the skill score will approach zero (climatology)
if all other months in the data set are included as analogues. The best value for M is unclear, except that
it should be greater than 1. Livezey and Barnston (1988) found that 8 to 11 closest analogues were optimal
for an analogue model of US winter temperatures. Because of the number of choices available in specifying
model parameters, it is crucial that significance testing be done very carefully.
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Gordon (1982) presented a generalised skill score for evaluating the skill of categorical forecasts, and,
in particular, also showed how to assess the significance of the resulting score. Gordon’s method involved
computing the ‘no-skill’ standard deviation and applying the Student’s t-test to check significance. The
standard deviation depends, in general, on the entries in the contingency table, the probabilities of occurrence
of the forecast categories and the mark or penalty assigned to each forecast/observed combination. In the
idealised case of equal probabilities of occurrence (close to what is expected with a tercile data set), the
standard deviation becomes independent of these quantities and simplifies to σ = 1/

√
2 × Neff, where Neff is

the effective number of degrees of freedom.
Applying this formula suggests that the null hypothesis of ‘no skill at the 95% level’ would be rejected in

favour of a hypothesis of positive skill (therefore a one-sided test is appropriate) for an HSS that exceeded
approximately 0.050 for number of closest analogues M = 5 in the case of 1-month forecasts and 0.085 in
the case of 3-month forecasts. Corresponding 99% significance levels would be 0.070 and 0.120 respectively,
again for M = 5. The appropriate significance level reduces as M increases.

Gordon’s approach would suggest that the significance levels depend only on the sample size and are
independent of season and climatic element. However, it does depend on simplifying assumptions for a large
sample (i.e. central limit theorem). Also, the observed tercile frequencies will not be exactly equal, since the
number of years in the data set (38) is not divisible by three, and the terciles are computed separately for each
month or centred 3-month period. There have been a number of papers that have pointed out problems with
assessing significance of skill scores (Barnston and van den Dool, 1993; Elsner and Schmertmann, 1994).
These problems arise from degeneracy in the data and become particularly severe when predictor–predictand
relationships are weak (Barnston and van den Dool, 1993), which is a fairly standard occurrence in long-range
forecasting.

To minimise these instabilities in cross-validated skill, the following approach has been taken:

(1) The ‘K’ top scoring set of weights was averaged, as noted above. This greatly improved stability of the
resulting skill scores.

(2) A Monte Carlo simulation approach for estimating the significance levels was adopted instead of using
Gordon’s (1982) theoretical formula. To test the significance of a particular model, the exact same
bootstrap cross-validation procedure described in Section 3.3 is used, but the ‘observed’ anomaly data
is randomly reordered and terciles are recalculated. Having determined the optimised index weights and
associated skill score, the data are randomised again and the cross-validation are repeated. Tests were
made for 500 randomised samples, for a range of cases: varying M , K , type of analogue model, climate
variable, region and season.

(3) The skill scores were computed for a range of M , typically from 3 to 9, and the skill had to be significant
over most of this range for the particular forecast model to be accepted.

The simple direct calculation of significance level from the t-test described earlier was found to be a
reasonable guide, although the Monte Carlo results did show variations with the data set (e.g. temperature vs
rainfall) and with the season.

4. RESULTS

4.1. Final set of predictors

The first important result is the determination of a parsimonious set of predictors, which are discussed in this
subsection. The remainder of Section 4 considers the application of these predictors in the analogue model.
Section 2 described a group of 12 predictors derived from an EOF analysis of MSLP and from previous work
on SST indices at key locations. After applying a second EOF analysis, the leading five EOFs explained
73.6% of the monthly variance of the original 12-predictor set. Table I shows the variance contribution of
each eigenvector and the contributions to that EOF made by the four MSLP and eight SST variables.
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Table I. Principal component scores of four MSLP REOFs and eight SST regions as they contribute to the final five
predictor indices used in analogue search. Scores larger than 0.30 in magnitude are given in bold. The overall variance

of each EOF is also shown

Variable INDEX 1 INDEX 2 INDEX 3 INDEX 4 INDEX 5
Variance (%) 27.3 15.0 14.3 9.9 7.1

MSL1 −0.23 0.03 −0.30 −0.60 0.17
MSL2 −0.22 −0.19 −0.14 −0.46 −0.60
MSL3 0.03 0.47 −0.46 0.03 0.02
MSL4 0.06 0.39 −0.43 0.09 −0.18
SST1 −0.36 0.28 0.14 −0.24 0.19
SST2 −0.15 0.49 0.07 0.18 −0.35
SST3 0.43 −0.02 0.04 −0.20 −0.35
SST4 0.45 −0.08 −0.00 −0.24 −0.17
SST5 −0.29 0.17 0.43 −0.28 0.03
SST6 −0.30 −0.01 0.25 0.29 −0.51
SST7 0.23 0.38 0.35 −0.16 0.08
SST8 0.35 0.29 0.30 −0.19 −0.02

These final five predictors, simply called INDEX 1 to INDEX 5, are used to define the analogues. Although
these indices were derived from a more fundamental data set that relates specifically to New Zealand
local climate, it is of interest to examine the broader-scale teleconnections associated with these indices.
From Table I, positive INDEX 1 is associated (because of high principal component scores) with stronger
southwesterlies across New Zealand (negative MSL1, MSL2), colder sea conditions surrounding the country
(negative SST1), high SST anomalies in the tropical Pacific (positive SST3, SST4) and warmer Indian Ocean
seas (positive SST7, SST8). All these features together comprise what is known about an El Niño ‘warm’
event in the tropical Pacific and its teleconnection patterns to New Zealand (Gordon, 1986). The time series
of INDEX 1 is indeed significantly correlated with the SOI (−0.66 on monthly data and −0.70 on 3-month
running means over the model training period). Figure 5(a) shows the time series that has been normalised
by its mean and standard deviation, with its sign reversed to highlight the similarity to the SOI. The time
series shows the large La Niña events of the 1970s, the 1982/1983 and 1987 El Niños and the long-running
El Niño in the early 1990s.

Figure 5(b) shows the time series of the normalised INDEX 5. This is of interest because indices 4 and
5 are the indices that show the greatest trend: in this case, there seems to be an abrupt change at the end
of the 1970s. Some abrupt changes in rainfall in New Zealand have been identified as occurring at this time
(Salinger and Mullan, 1999), which may be related to regime changes of the Interdecadal Pacific Oscillation
(Salinger et al., 2001). It is possible that INDEX 5, which is most highly correlated to increased westerlies
south of New Zealand (Figure 2 and Table I), is picking up on this regime change. Figure 6 shows the
seasonal correlation, all seasons combined over 1958–1994, between indices INDEX 2 through INDEX 5
and the Southern Hemisphere MSLP anomalies. The SOI–MSLP teleconnection pattern, the Tahiti–Darwin
seesaw, is of course so well known (e.g. see Trenberth and Shea, 1987) that it is unnecessary to show the
INDEX 1 correlation.

Positive INDEX 2 is associated with higher pressures in the Tasman Sea and south of Australia (positive
MSL3, MSL4 in Table I), in warmer seas south of Australia (positive SST2) and in the Indian Ocean (positive
SST7, SST8). The MSLP–INDEX 2 correlation (Figure 6(a)) indicates a very strong and significant variation
in zonal pressure gradient across about 60 °S, which is clearly hemispheric in extent. A similar pattern is present
in all seasons individually (not shown): in summer the correlations show the greatest zonal uniformity, and
the weakening of the correlation gradient that is apparent in the South America–Atlantic sector is mainly a
feature of winter.

The striking zonal uniformity in the MSLP correlation with INDEX 2 suggested that this time series may
be related to the ‘high latitude mode’ (HLM) that is a notable and stable feature of the Southern Hemisphere
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Figure 5. Time series of INDEX 1 and INDEX 5 derived by EOF reduction of four MSLP and eight SST indices. Plots show 3-month
running means

circulation (Kidson, 1986, 1999), and is also known as the Antarctic Oscillation. A time series of the HLM was
derived from NCEP/NCAR reanalysis detrended MSLP and 500 hPa heights and from correlations calculated
with the analogue indices. The HLM Index, defined here as the first unrotated EOF over 20 °S–80 °S, is
positive when the polar vortex is enhanced, with negative height anomalies over the South Pole and stronger
westerlies at about 55 °S. The HLM is more strongly correlated to INDEX 2 than to any of the other indices:
+0.60 for monthly data (+0.39 for 3-monthly data) using 500 hPa data. These correlations are virtually the
same for MSLP data instead, and are only slightly weakened if the grid-point fields were not detrended first.
INDEX 5 also has a highly significant, if somewhat weaker, correlation with the HLM (+0.48 for 1-month
data on 500 hPa data).

INDEX 4 and INDEX 5 Figure 6(c) and (d)) both show a marked wave 3 pattern, with an out-of-phase
relationship between the two. There are many studies of Southern Hemisphere circulation that comment on
the importance of zonal wavenumber 3 at middle and high latitudes. A large increase in the amplitude of
wavenumber 3, at 500 hPa and 60 °S, was noted by van Loon et al. (1993) as occurring between 1977 and
1981, which corresponds well with the time series in Figure 5. The late 1970s also corresponded with the
marked weakening of the semi-annual oscillation (van Loon et al.,1993).

Lastly, INDEX 3 appears to be more localised to Australasia in its influence (Figure 6(b)). Positive
INDEX 3 is associated with cyclonic anomalies south of Australia and New Zealand and with higher SSTs
north of New Zealand (positive SST5) and in the Indian Ocean (positive SST7, SST8). INDEX 3 also shows
the greatest seasonal variation in its correlation pattern with MSLP.
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and times series of analogue indices INDEX 2 to INDEX 5 for the period 1958–1994

4.2. Application of search procedure

Table II shows an example of 1-month rainfall forecasts for Region 5 (west of South Island) for the winter
season. In this case, the five closest analogues (M = 5) are selected from an analogue-only model. Predictors
IND3 and IND4 are selected every year, with maximum weighting on almost all occasions. Predictors IND1
and IND2 are never selected in the best weight set, except on just one occasion: when year 27 (1983) is
withheld as independent data, the tuning on the remaining 37 years selects IND1 with low weighting. Two
columns of skill scores are shown in Table II. The dependent skill against each year is the HSS on the
3 × M × [N − 1] forecasts for the best weight set. The final column is the skill score on the independent
data that accumulates year by year over the 38 years of data. This independent skill score is highly unstable
for the first few years, and the number of interest is the final value after all 38 years have been assessed. In
this example, the HSS on independent data is 0.091.

As the final step in the analogue search procedure, the best sets of index weights are averaged to get an
overall set of ‘optimised index weights’ for the month and region in question. It is this set of optimised
index weights that would be used in any operational version of the analogue model, provided the model was
deemed to be producing statistically significant forecasts. Applying the optimised weights across the whole
data set results in another skill score (0.137 in Table II) that can no longer be considered independent, of
course; this score will almost always lie between the true independent skill (0.091) and the average of the N

dependent skills (0.141). In an extreme case where the same set of best weights are chosen every year (this
never actually happens), all three skill scores would be the same.

The variation of the index weights over these N independent years is computed by the root-mean-squared
deviation (average of the standard deviations for each index separately). This provides an assessment of the
‘consistency’ and stability of the chosen weights; a small RMS variation indicates a highly consistent set of
weights, as in the chosen example of Table II.

The ‘exhaustive’ search option through all 0,1,4 weight combinations across five predictor indices was not
the only option considered in the preliminary test of the analogue model. One option tested was to apply a
‘simplex downhill search’ algorithm (Press et al., 1986). While this method was much faster in finding the
best set of index weights wi, it did not always converge to the same solution. Particularly, in cases where the
solution surface was ‘flat’ with no well-defined minimum (actually maximum in the skill score), the simplex
search converged to different points depending on the initial guess set provided. In most of these situations, the
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Table II. Sample output from analogue bootstrap test. For each withheld independent year (not all years shown), the
columns below show the best weights for each of the five predictor indices, the same weights normalised out of 1000 and
Hanssen skill scores (×1000) on dependent and independent data. See accompanying text for further explanation Case:

1-Month forecast, winter rainfall, Region 5 Options: Analogues only, # closest analogues (M) = 5

Year Best weights Normalised best weights Skill Score

1 2 3 4 5 IND1 IND2 IND3 IND4 IND5 Dep Ind

1 0 0 4 4 1 0 0 444 444 111 151 0
2 0 0 4 4 1 0 0 444 444 111 152 −33
3 0 0 4 4 1 0 0 444 444 111 135 140
4 0 0 4 4 1 0 0 444 444 111 118 220
5 0 0 4 4 1 0 0 444 444 111 141 142
6 0 0 4 4 1 0 0 444 444 111 117 177
7 0 0 4 4 1 0 0 444 444 111 139 171
8 0 0 4 4 4 0 0 333 333 333 146 125
9 0 0 4 4 1 0 0 444 444 111 135 133

10 0 0 4 4 1 0 0 444 444 111 154 122
11 0 0 4 4 1 0 0 444 444 111 151 91
12 0 0 4 1 1 0 0 667 167 167 138 74
. . ..
24 0 0 4 4 1 0 0 444 444 111 138 73
25 0 0 4 4 1 0 0 444 444 111 149 66
26 0 0 4 4 1 0 0 444 444 111 151 56
27 1 0 4 4 4 77 0 308 308 308 129 54
28 0 0 4 4 1 0 0 444 444 111 137 56
29 0 0 4 4 1 0 0 444 444 111 134 61
30 0 0 4 1 1 0 0 667 167 167 158 56
31 0 0 4 4 1 0 0 444 444 111 146 65
32 0 0 4 4 4 0 0 333 333 333 138 68
33 0 0 4 4 1 0 0 444 444 111 133 81
34 0 0 4 4 1 0 0 444 444 111 145 86
35 0 0 4 4 1 0 0 444 444 111 132 92
36 0 0 4 4 1 0 0 444 444 111 149 86
37 0 0 4 4 1 0 0 444 444 111 132 97
38 0 0 4 4 1 0 0 444 444 111 160 91

Average over all years 2 0 452 400 145 141 91

Skill over all years using average weights 137
Index weight ‘consistency’ 64.6

forecast skill would not be significant, so the analogue model would have been discarded anyway. However,
any unnecessary instability in the method was to be avoided.

With the exhaustive search option, it was important to allow for predictors to be omitted. Thus, tests with
no zero-weight option (e.g. weights 1, 2, 4) showed that forcing the inclusion of all predictors was definitely
detrimental in some cases.

4.3. Stability of predictor weights

Looping through the set of weight combinations of the five predictors, an HSS was calculated for the
dependent 37 years and then applied to the omitted year. Figure 7 shows two examples, where the HSS is
averaged over the 38 independent years (each year potentially having a different set of predictor weights as
in Table II). An important modification here was that instead of choosing the single weight combination that
scored highest on the dependent data (as in Table II), an average over the set of K best weights was used. This
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was found to be necessary to minimise the effect of outliers and produce a more stable solution. Figure 7(a)
compares the skill for K = 1 (the single best set of weights) versus K = 5, as the number of closest analogues
used is allowed to vary. The skill score maximises near 2–3 closest analogues, and then again at 9–10. There
is no obvious reason why an intermediate number of analogues (like 7) should be so much worse. Using
K = 5 produces a result that is much more stable. Figure 7(b) shows another comparison: here it is apparent
that the forecast models for 1-month winter rainfall in Regions 1 and 2 are unstable since the significance
is reduced drastically when the predictor weights are ‘smoothed’ over a larger region of phase space. The
model for Region 5, however, remains significant. Subsequently, K = 5 was used for all model selection.

4.4. Skilful forecast models

Tables III and IV list all forecast models found to exhibit significant skill (95% level) on independent data,
where the skill level was estimated according to the Monte Carlo simulations described above. A number of
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Table III. Hanssen skill scores (×1000) for all analogue (A) and mixed (M) models showing skill on independent data
for temperature and rainfall over 1-month and 3-month periods. Table entries are ordered horizontally by season (spring,

summer, autumn, winter) and vertically by region (as in Figure 1). Blank entries indicate no skilful model

Temp 1-month Temp 3-month Rain 1-month Rain 3-month

Sp Su Au Wi Sp Su Au Wi Sp Su Au Wi Sp Su Au Wi

Region 1 A 70 83 70
M 89 79 142

Region 2 A 74 107 70 124 80
M 75 67 96 117 84 101

Region 3 A 74 58 68 189 129 86 80 105 101
M 68 116 173 101 110 91 87 77

Region 4 A 108 95 110 145 79 72
M 74 71 119 163 74 88 81

Region 5 A 83 130 75 113
M 220 193

Region 6 A 102 70 139 80
M 119 84 144 135 78 89

Table IV. As in Table III, but for MSLP forecasts, ordered vertically by EOF pattern (as in Figure 2)

MSLP 1-month MSLP 3-month

Sp Su Au Wi Sp Su Au Wi

EOF 1 analogue 72 74 151
mixed 101 73 105

EOF 2 analogue 101 79 92 204 91 72 183
mixed 107 256 87 90 148

EOF 3 analogue 68
mixed 86 135 89 63

EOF 4 analogue 84 94 80
mixed 116 104

general comments can be made about the success of the forecast models in terms of model type (analogue-
only or mixed analogue–anti-analogue), forecast element (temperature, rainfall, MSLP), forecast period (1 vs
3 months), season and region or EOF pattern.

It is clearly useful to have both analogue and mixed models. There are about an equal number of
occasions when only an analogue model is available as when only a mixed model is available. How-
ever, for those cases where both model types verify significantly, the mixed model has a higher skill
score about twice as often as the analogue model. Comparing the forecast periods, there are more 3-
month than 1-month models, with substantially higher skill, for both temperature and pressure. How-
ever, the skill of the rainfall models shows little difference between the two forecast periods. A sea-
sonal breakdown of the successful models suggests little influence on forecasts of pressure. However,
it appears to be ‘easier’ to forecast rainfall in the winter season, and temperature in either winter or
spring. The inability to forecast over summer and autumn is most noticeable for 3-month tempera-
tures.

In terms of geographic variation, Region 1 (north of North Island, Figure 1) and Region 5 (west of South
Island) are the most difficult parts to forecast for. Of the four pressure patterns, EOF2, a measure of the
strength of the westerlies over and south of South Island has the most skilful models, and, in particular, the
3-month winter and spring models have some of the highest skill scores of all the analogue models tested.
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4.5. Validation on independent period

The analysis of model performance so far has focussed on the 1958–1994 period over which the
bootstrapping approach was applied. Skill was also assessed over the completely independent period from
September 1994 to June 2003. This substantially shorter recent period leads to noisier results, so skill is
aggregated over all seasons and over combined regions, one each for the North Island and South Island. The
HSS is also compared with other measures of skill frequently found in the literature.

A wide variety of validation procedures exist (see, e.g. Chapter 7 of Wilks, 1995) for quantifying the
strength of relationships between matched pairs of model forecasts and the corresponding observed outcomes.
Since the analogue model provides regional probabilities of occurrence of precipitation and temperature for
each tercile of the distribution, only performance measures that take account of probabilistic information are
examined. Examples are shown for seasonal forecasts, where greater skill was demonstrated in the bootstrap
tests. Table V shows the HSS as before and also the Ranked Probability Skill Score (RPSS, see Wilks,
1995). Of these two skill scores, the RPSS is the more stringent statistic that penalises severe predictions
in the incorrect tercile category with high probabilities. Figure 8 shows the skill of temperature and rainfall
3-month forecasts in terms of the relative operating characteristic (ROC) curves (Mason and Graham, 1999),
which characterise the relationship between the hit rate and false-alarm rate. These quantities, derived from
contingency tables for each tercile category, are conditional probabilities of a ‘yes’ prediction given either
occurrence or non-occurrence of the event (Wilks, 2001). For predictions to show skill, the hit rates must
be larger than the false-alarm rates, i.e. the curves should lie in the upper left quadrant above the diagonal
‘no-skill’ line. ROC scores (Table V) can be calculated for each tercile separately as the area between the
diagonal and the ROC curves for the tercile in question.

Seasonal rainfall predictions (Figure 8) for the North Island are quite poor, with the HSS and the RPSS
being 0.004 and −0.03 respectively. The diagram also shows that the middle tercile (near normal rainfall) has
negative forecasting skill, with the (dotted) line in the lower right half of the plot field. The ROC score for
tercile 2 is −0.16. South Island seasonal rainfall is influenced to some extent by the strength of the westerlies
over and to the south of New Zealand, and the westerlies correspond to the EOF2 pattern that is best predicted
by the analogue models. The two scalar skill scores show a very small and insignificant improvement over
their climatological values. The ROC scores are positive for all terciles and particularly so for the above
normal tercile, suggesting that the analogue models are most successful in the ‘heavy’ rain situations.

The lack of apparent skill in the seasonal precipitation predictions for the North Island has also been noted
by others (Francis and Renwick, 1998), who found for New Zealand no significant forecast relationships for
rainfall anomalies at both monthly and seasonal timescales.

Seasonal temperature predictions over the North Island indicate an encouraging level of skill in the model.
For forecast probabilities that are typically within 20% of their climatological values, the RPSS are often in
the range of 5–20% (Goddard et al., 2003). Seasonal temperature predictions over the South Island are not
as skilful as those for the North Island. When compared to the North Island, the scalar skill scores are lower,
and the deviations from the no-skill line in the ROC curves are smaller. Note, again, that forecasts of tercile
2 (near normal temperature) show no skill in the ROC scores. This tendency for lower skill in middle tercile
forecasts has been noted by others (Van den Dool and Toth, 1991).

5. SUMMARY AND DISCUSSION

The methodology and bootstrap validation of an analogue model for forecasting New Zealand regional rainfall
and temperature anomalies has been described. The five predictors used have a straightforward physical
interpretation, are associated with large-scale fluctuations in Southern Hemisphere flow and are therefore
expected to be stable. The first predictor is essentially the SOI, and three of the next four indices show
teleconnection patterns of hemispheric extent, which provides a lot of confidence that the data set reduction
procedure has produced a sensible result. The analogue indices INDEX 2, INDEX 4 and INDEX 5 may well
be useful as predictors of climate variations in other parts of the Southern Hemisphere besides New Zealand.
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Table V. Skill scores (×1000) on independent period September 1994–June 2003, for 3-month predictions
of temperature and rainfall terciles. Results are aggregated over all seasons and over the three North Island

and three South Island regions

Skill score Rainfall Temperature

North Island South Island North Island South Island

Hanssen 4 68 105 65
Ranked probability −30 20 230 20
ROC (Terc 1, 2, 3) 40 −160 100 300 220 240 260 180 480 220 0 340

Copyright  2005 Royal Meteorological Society Int. J. Climatol. 26: 485–504 (2006)



502 A. B. MULLAN AND C. S. THOMPSON

There were many options available in the tuning of index weights, and great care was taken to minimise the
effect of outliers, which could otherwise lead to a choice of weights that did not validate well on independent
data. Test results where the 3 × 3 contingency table was accumulated for all six regions combined produced
a very low skill score overall. Hence, the decision was taken to optimise for each region separately. This
approach probably requires some philosophical justification. Not requiring a common set of indices and
weights for all regions means accepting that there is no unique set of large-scale anomalies (in SST and
circulation) that lead to a coherent New Zealand–wide pattern of MSLP, rainfall and temperature anomalies.
Instead, it is argued that the appropriate best analogue depends on the region (and climatic element) being
predicted, e.g. some elements of the CSV may be important predictors for next month’s rainfall on the east
coast of the South Island, but predictors for temperature forecasts in the west of the North Island require
different weighting.

Another consistency test that increases confidence in the results is to compare how the skilful models for
rainfall or temperature (by season and region) match up to skilful models of MSLP (by season and EOF).
This can be understood in terms of Tables III and IV, which show the significant analogue models, and
from Table VI, which notes when there are significant correlations between the EOF time series and regional
anomalies. The example is discussed for 3-month correlations and models, but similar comments apply to
the 1-month timescale. The 3-month analogue temperature models in Table III suggest there is little skill
in the summer and autumn seasons in almost all regions of the country. In five of the six regions, EOF3
is the pressure pattern most strongly correlated to summer temperature (Table VI), but no skill is shown in
predicting this EOF (Table IV). While EOF3 also cannot be predicted for spring either, this pattern is not
significantly associated with spring temperatures except for Region 2. For autumn temperatures, predicting
EOF1 would seem to be crucial, and although a validated MSLP model for this season is available, the skill
is not high (Hanssen score of 0.074 in Table IV).

For seasonal rainfall predictions, a noticeable feature is that more of the EOFs tend to project on to the
North Island regions, where three or even all four of the EOFs ‘need’ to be predicted. This is a difficult task
and possibly the reason why North Island rainfall validated so poorly on the recent decade. Region 5, the
west of South Island, has no skilful rainfall models in any season. This can be explained qualitatively in terms
of the importance of EOF3 for this region and the absence of good MSLP models for EOF3. Thus, although
the presence or absence of skilful analogue models cannot be justified in all cases, there is generally a clear
association with how significantly a particular pressure EOF projects onto the data and whether the analogue
approach is able to predict that MSLP pattern.

Research has shown that it is generally more difficult to predict variations within a season than variations
of the season as a whole (Rowell et al., 1995). Thus, it is not surprising that the 1-month forecasts are much
less successful than the 3-month ones. Having the option of using anti-analogues in addition to analogues
increases the usefulness of the forecasts, particularly to the seasonal case. Where both analogue and mixed
models are available, more often than not the mixed model demonstrates higher skill.

Table VI. Seasonal correlations, by season, between EOF time series and regional rainfall and temperature anomalies.
The EOF number (1–4) is shown only where correlation is significant at the 95% level, or (in bold) at the 99% level

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

RAIN
Spring 1 2 3 4 1 2 3 4 1 2 3 4 3 4
Summer 1 3 4 2 3 4 1 2 4 3 3
Autumn 1 2 3 4 1 3 1 2 3 1 2 3
Winter 2 3 1 2 3 4 1 2 3 1 2 2 3 3

TEMP
Spring 2 4 1 3 1 4 1 1
Summer 1 3 1 3 1 3 1 1 3 1 3
Autumn 1 4 1 4 1 2 1 3 4 1 4 1
Winter 2 1 2 3 1 3 4 1 3 4 1 2 4 1 2
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A number of issues associated with analogue models have not been addressed in this paper. For example,
Barnett and Preisendorfer (1978) suggest that analogues be chosen using the recent history of the climate
system instead of just the latest or current state. Thus, rather than a similarity metric derived from the latest
month or season, a weighted metric from two consecutive months or seasons could be used. Another relevant
issue is whether some a priori indicator of confidence in the forecast can be estimated. The analogue similarity
metric is obviously an indicator one might use – do forecasts based on closer past analogues score higher?

One question that has been considered is whether the forecast can be improved by ‘sharpening’ the tercile
probability distribution. Sharpness refers to the forecast having large deviations from mean values fairly
frequently, which is accepted as being more informative than forecasts near the climatological distribution
(Wilks, 2001). Since there is a sample of closest analogues to select from, a simple sharpening algorithm can be
applied and the consequences assessed. Tests to maximise the sharpness of the forecast tercile distribution were
carried out by ranking the closest analogues, successively dropping off the poorest match and recalculating the
tercile forecasts. The number of analogues retained maximises the difference between the highest probability
tercile and the second highest. For example, if ten analogues led to a tercile forecast of 50 : 40 : 10 and
the poorest two analogues were in the middle tercile, then dropping these off would lead to the sharper
probability distribution of approximately 62 : 25 : 13. Applying this algorithm, with a lower limit of at least
three analogues retained, produced the interesting result that the HSS was almost always improved but that
the RPSS was almost always worsened. Thus, the resulting skill of the sharpening procedure depends on the
skill score one chooses to use.

In implementing the analogue forecast system operationally at NIWA, a few modifications to the procedures
described above have been made. One is to use a default set of 10 closest analogues in the models: this is a
convenient number when specifying tercile probabilities and avoids giving the impression of spurious precision
in the forecasts. Another modification is that after seeking analogues using the hindcast optimised predictor
weights, the weights are ‘dithered’ and the search repeated. The dithering is implemented by increasing and
decreasing each weight in turn by 5% and renormalising. There are occasions when this leads to the discovery
of very close (low similarity metric) analogues not previously identified.

Since a number of models (i.e. for different region or climate element) can have closest analogues in
common, it is sometimes helpful to aggregate all the chosen analogues, order them in terms of frequency
of selection and inverse similarity score and apply these analogues to regions or climate elements where
there is no direct model available. This additional information, assigned a lower confidence than direct model
predictions, can be included with the wide range of other predictive information in the monthly climate
outlook discussions.
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