
Ensemble Approaches for Regression: a

Survey

João M. Moreira a,∗, Carlos Soares b,c, Aĺıpio M. Jorge b,c and
Jorge Freire de Sousa a

aFaculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n
4200-465 Porto PORTUGAL

bFaculty of Economics, University of Porto, Rua Dr. Roberto Frias, s/n
4200-464 Porto PORTUGAL

cLIAAD, INESC Porto L.A., R. de Ceuta, 118, 6, 4050-190, Porto PORTUGAL

Abstract

This paper discusses approaches from different research areas to ensemble regression.
The goal of ensemble regression is to combine several models in order to improve
the prediction accuracy on learning problems with a numerical target variable. The
process of ensemble learning for regression can be divided into three phases: the
generation phase, in which a set of candidate models is induced, the pruning phase,
to select of a subset of those models and the integration phase, in which the output
of the models is combined to generate a prediction. We discuss different approaches
to each of these phases, categorizing them in terms of relevant characteristics and
relating contributions from different fields. Given that previous surveys have focused
on classification, we expect that this work will provide a useful overview of existing
work on ensemble regression and enable the identification of interesting lines for
further research.

Key words: ensembles, regression, supervised learning

1 Introduction

Ensemble learning typically refers to methods that generate several models
which are combined to make a prediction, either in classification or regression

∗ Tel.: +351225081639; fax: +351225081538
Email address: jmoreira@fe.up.pt (João M. Moreira).

Preprint submitted to Elsevier 19 December 2007



problems. This approach has been the object of a significant amount of re-
search in recent years and good results have been reported (e.g., [1–3]). The
advantage of ensembles with respect to single models has been reported in
terms of increased robustness and accuracy [4].

Most work on ensemble learning focuses on classification problems. However,
techniques that are successful for classification are often not directly appli-
cable for regression. Therefore, although both are related, ensemble learning
approaches have been developed somehow independently. Therefore, existing
surveys on ensemble methods for classification [5,6] are not suitable to provide
an overview of existing approaches for regression.

This paper surveys existing approaches to ensemble learning for regression.
The relevance of this paper is strengthened by the fact that ensemble learning
is an object of research in different communities, including pattern recog-
nition, machine learning, statistics and neural networks. These communities
have different conferences and journals and often use different terminology and
notation, which makes it quite hard for a researcher to be aware of all contri-
butions that are relevant to his/her own work. Therefore, besides attempting
to provide a thorough account of the work in the area, we also organize those
approaches independently of the research area they were originally proposed
in. Hopefully, this organization will enable the identification of opportunities
for further research and facilitate the classification of new approaches.

In the next section, we provide a general discussion of the process of ensem-
ble learning. This discussion will lay out the basis according to which the
remaining sections of the paper will be presented: ensemble generation (Sect.
3), ensemble pruning (Sect. 4) and ensemble integration (Sect. 5). Sect. 6
concludes the paper with a summary.

2 Ensemble Learning for Regression

In this section we provide a more accurate definition of ensemble learning
and provide terminology. Additionally, we present a general description of the
process of ensemble learning and describe a taxonomy of different approaches,
both of which define the structure of the rest of the paper. Next we discuss
the experimental setup for ensemble learning. Finally, we analyze the error
decompositon of ensemble learning methods for regression.

2



2.1 Definition

First of all we need to define clearly what ensemble learning is, and to define a
taxonomy of methods. As far as we know, there is no widely accepted definition
of ensemble learning. Some of the existing definitions are partial in the sense
that they focus just on the classification problem or on part of the ensemble
learning process [7]. For these reasons we propose the following definition:

Definition 1 Ensemble learning is a process that uses a set of models, each
of them obtained by applying a learning process to a given problem. This set
of models (ensemble) is integrated in some way to obtain the final prediction.

This definition has important characteristics. In the first place, contrary to
the informal definition given at the beginning of the paper, this one covers
not only ensembles in supervised learning (both classification and regression
problems), but also in unsupervised learning, namely the emerging research
area of ensembles of clusters [8].

Additionally, it clearly separates ensemble and divide-and-conquer approaches.
This last family of approaches split the input space in several sub-regions
and train separately each model in each one of the sub-regions. With this
approach the initial problem is converted in the resolution of several simpler
sub-problems.

Finally, it does not separate the combination and selection approaches as it
is usually done. According to this definition, selection is a special case of
combination where the weights are all zero except for one of them (to be
discussed in Sect. 5).

More formally, an ensemble F is composed of a set of predictors of a function
f denoted as f̂i.

F = {f̂i, i = 1, ..., k}. (1)

The resulting ensemble predictor is denoted as f̂f .

2.1.1 The Ensemble Learning Process

The ensemble process can be divided into three steps [9] (Fig. 1), usually
referred as the overproduce-and-choose approach. The first step is ensemble
generation, which consists of generating a set of models. It often happens
that, during the first step, a number of redundant models are generated. In
the ensemble pruning step, the ensemble is pruned by eliminating some of the
models generated earlier. Finally, in the ensemble integration step, a strategy

3



to combine the base models is defined. This strategy is then used to obtain
the prediction of the ensemble for new cases, based on the predictions of the
base models.

Generation Pruning Integration

Fig. 1. Ensemble learning model

Our characterization of the ensemble learning process is slightly more detailed
than the one presented by Rooney et al. [10]. For those authors, ensemble
learning consists on the solution of two problems: (1) how to generate the
ensemble of models? (ensemble generation); and (2) how to integrate the pre-
dictions of the models from the ensemble in order to obtain the final ensemble
prediction? (ensemble integration). This last approach (without the pruning
step), is named direct, and can be seen as a particular case of the model
presented in Fig. 1, named overproduce-and-choose.

Ensemble pruning has been reported, at least in some cases, to reduce the size
of the ensembles obtained without degrading the accuracy. Pruning has also
been added to direct methods successfully increasing the accuracy [11,12]. A
subject to be discussed further in Sect. 4.

2.1.2 Taxonomy and Terminology

Concerning the categorization of the different approaches to ensemble learning,
we will follow mainly the taxonomy presented by the same authors [10]. They
divide ensemble generation approaches into homogeneous , if all the models
were generated using the same induction algorithm, and heterogeneous , oth-
erwise.

Ensemble integration methods, are classified by some authors [10,13] as com-
bination (also called fusion) or as selection. The former approach combines
the predictions of the models from the ensemble in order to obtain the final
ensemble prediction. The latter approach selects from the ensemble the most
promising model(s) and the prediction of the ensemble is based on the se-
lected model(s) only. Here, we use, instead, the classification of constant vs.
non-constant weighting functions given by Merz [14]. In the first case, the
predictions of the base models are always combined in the same way. In the
second case, the way the predictions are combined can be different for different
input values.

As mentioned earlier, research on ensemble learning is carried out in different
communities. Therefore, different terms are sometimes used for the same con-
cept. In Table 1 we list several groups of synonyms, extended from a previous
list by Kuncheva [5]. The first column contains the most frequently used terms
in this paper.

4



Table 1
Synonyms

ensemble committee, multiple models, multiple classifiers (regressors)

predictor model, regressor (classifier), learner, hypothesis, expert

example instance, case, data point, object

combination fusion, competitive classifiers (regressors), ensemble approach,

multiple topology

selection cooperative classifiers (regressors), modular approach,

hybrid topology

2.2 Experimental setup

The experimental setups used in ensemble learning methods are very differ-
ent depending on communities and authors. Our aim is to propose a general
framework rather than to do a survey on the different experimental setups
described in the literature. The most common approach is to split the data
into three parts: (1) the training set, used to obtain the base predictors; (2)
the validation set, used for assessment of the generalization error of the base
predictors; and (3) the test set, used for assessment of the generalization error
of the final ensemble method. If a pruning algorithm is used, it is tested to-
gether with the integration method on the test set. Hastie et al. [15] propose
to split 50% for training, 25% for validation and the remaining 25% to use
as test set. This strategy works for large data sets, let’s say, data sets with
more than one thousand examples. For large data sets we propose the use of
this approach mixed with cross-validation. To do this, and for this particular
partition (50%, 25%, and 25%), the data set is randomly divided in four equal
parts, two of them being used as training set, another one as validation set
and the last one as test set. This process is repeated using all the combinations
of training, validation and test sets among the four parts. With this partition
there are twelve combinations. For smaller data sets, the percentage of data
used for training must be higher. It can be 80%, 10% and 10%. In this case
the number of combinations is ninety. The main advantage is to train the base
predictors with more examples (it can be critical for small data sets) but it
has the disadvantage of increasing the computational cost. The process can
be repeated several times in order to obtain different sample values for the
evaluation criterion, namely the mse (eq. 3).

5



2.3 Regression

In this paper we assume a typical regression problem. Data consists of a set of
n examples of the form {(x1, f (x1)) , . . . , (xn, f (xn))}. The goal is to induce
a function f̂ from the data, where

f̂ : X → <, where, f̂(x) = f(x),∀x ∈ X, (2)

where f represents the unknown true function. The algorithm used to obtain
the f̂ function is called induction algorithm or learner. The f̂ function is called
model or predictor. The usual goal for regression is to minimize a squared error
loss function, namely the mean squared error (mse),

mse =
1

n

n∑

i

(f̂(xi)− f(xi))
2. (3)

2.4 Understanding the generalization error of ensembles

To accomplish the task of ensemble generation, it is necessary to know the
characteristics that the ensemble should have. Empirically, it is stated by
several authors that a good ensemble is the one with accurate predictors and
making errors in different parts of the input space. For the regression problem
it is possible to decompose the generalization error in different components,
which can guide the process to optimize the ensemble generation.

Here, the functions are represented, when appropriate, without the input vari-
ables, just for the sake of simplicity. For example, instead of f(x) we use f .
We closely follow Brown [16].

Understanding the ensemble generalization error enables us to know which
characteristics should the ensemble members have in order to reduce the over-
all generalization error. The generalization error decomposition for regression
is straightforward. What follows is about the decomposition of the mse (eq.
3). Despite the fact that the majority of the works were presented in the con-
text of neural network ensembles, the results presented in this section are not
dependent of the induction algorithm used.

Geman et al. present the bias/variance decomposition for a single neural net-
work [17]:

E{[f̂ − E(f)]2} = [E(f̂)− E(f)]2 + E{[f̂ − E(f̂)]2}. (4)

The first term on the right hand side is called the bias and represents the

6



distance between the expected value of the estimator f̂ and the unknown pop-
ulation average. The second term, the variance component, measures how the
predictions vary with respect to the average prediction. This can be rewritten
as:

mse(f) = bias(f)2 + var(f). (5)

Krogh & Vedelsby describe the ambiguity decomposition, for an ensemble of
k neural networks [18]. Assuming that f̂f (x) =

∑k
i=1[αi× f̂i(x)] (see Sect. 5.1)

where
∑k

i=1(αi) = 1 and αi ≥ 0, i = 1, ..., k, they show that the error for a
single example is:

(f̂f − f)2 =
k∑

i=1

[αi × (f̂i − f)2]−
k∑

i=1

[αi × (f̂i − f̂f )
2]. (6)

This expression shows explicitly that the ensemble generalization error is less
than or equal to the generalization error of a randomly selected single predic-
tor. This is true because the ambiguity component (the second term on the
right) is always non negative. Another important result of this decomposition
is that it is possible to reduce the ensemble generalization error by increasing
the ambiguity without increasing the bias. The ambiguity term measures the
disagreement among the base predictors on a given input x (omitted in the
formulae just for the sake of simplicity, as previously referred). Two full proofs
of the ambiguity decomposition [18] are presented in [16].

Later, Ueda & Nakano presented the bias/variance/covariance decomposition
of the generalization error of ensemble estimators [19]. In this decomposition
it is assumed that f̂f (x) = 1

k
×∑k

i=1[f̂i(x)]:

E[(f̂f − f)2] = bias
2
+

1

k
× var + (1− 1

k
)× covar, (7)

where

bias =
1

k
×

k∑

i=1

[Ei(fi)− f ], (8)

var =
1

k
×

k∑

i=1

{Ei{[f̂i − Ei(f̂i)]
2}}, (9)

covar =
1

k × (k − 1)
×

k∑

i=1

k∑

j=1,j 6=i

Ei,j{[f̂i − Ei(f̂i)][f̂j − Ej(f̂j)]} . (10)

7



The indexes i, j of the expectation mean that the expression is true for par-
ticular training sets, respectively, Li and Lj.

Brown provides a good discussion on the relation between ambiguity and co-
variance [16]. An important result obtained from the study of this relation is
the confirmation that it is not possible to maximize the ensemble ambiguity
without affecting the ensemble bias component as well, i.e., it is not possi-
ble to maximize the ambiguity component and minimize the bias component
simultaneously.

The discussion of the present section is usually referred in the context of
ensemble diversity, i.e., the study on the degree of disagreement between the
base predictors. Many of the above statements are related to the well known
statistical problem of point estimation. This discussion is also related with the
multi-collinearity problem that will be discussed in Sect. 5.

3 Ensemble generation

The goal of ensemble generation is to generate a set of models, F = {f̂i, i =
1, ..., k}. If the models are generated using the same induction algorithm the
ensemble is called homogeneous, otherwise it is called heterogeneous.

Homogeneous ensemble generation is the best covered area of ensemble learn-
ing in the literature. See, for example, the state of the art surveys from Di-
etterich [7], or Brown et al. [20]. In this section we mainly follow the former
[7]. In homogeneous ensembles, the models are generated using the same algo-
rithm. Thus, as explained in the following sections, diversity can be achieved
by manipulating the data (Section 3.1) or by the model generation process
(Section 3.2).

Heterogeneous ensembles are obtained when more than one learning algorithm
is used. This approach is expected to obtain models with higher diversity [21].
The problem is the lack of control on the diversity of the ensemble during
the generation phase. In homogeneous ensembles, diversity can be systemati-
cally controlled during their generation, as will be discussed in the following
sections. Conversely, when using several algorithms, it may not be so easy to
control the differences between the generated models. This difficulty can be
solved by the use of the overproduce-and-choose approach. Using this approach
the diversity is guaranteed in the pruning phase [22]. Another approach, com-
monly followed, combines the two approaches, by using different induction
algorithms mixed with the use of different parameter sets [23,10] (Sect. 3.2.1).
Some authors claim that the use of heterogeneous ensembles improves the
performance of homogeneous ensemble generation. Note that heterogeneous

8



ensembles can use homogeneous ensemble models as base learners.

3.1 Data manipulation

Data can be manipulated in three different ways: subsampling from the train-
ing set, manipulating the input features and manipulating the output targets.

3.1.1 Subsampling from the training set

These methods have in common that the models are obtained using different
subsamples from the training set. This approach generally assumes that the
algorithm is unstable, i.e., small changes in the training set imply important
changes in the result. Decision trees, neural networks, rule learning algorithms
and MARS are well known unstable algorithms [24,7]. However, some of the
methods based on subsampling (e.g., bagging and boosting) have been suc-
cessfully applied to algorithms usually regarded as stable, such as Support
Vector Machines (SVM) [25].

One of the most popular of such methods is bagging [26]. It uses randomly
generated training sets to obtain an ensemble of predictors. If the original
training set L has m examples, bagging (bootstrap aggregating) generates a
model by sampling uniformly m examples with replacement (some examples
appear several times while others do not appear at all). Both Breiman [26]
and Domingos [27] give insights on why does bagging work.

Based on [28], Freund & Schapire present the AdaBoost (ADAptive BOOST-
ing) algorithm, the most popular boosting algorithm [29]. The main idea is
that it is possible to convert a weak learning algorithm into one that achieves
arbitrarily high accuracy. A weak learning algorithm is one that performs
slightly better than random prediction. This conversion is done by combining
the estimations of several predictors. Like in bagging [26], the examples are
randomly selected with replacement but, in AdaBoost, each example has a
different probability of being selected. Initially, this probability is equal for all
the examples, but in the following iterations examples with more inaccurate
predictions have higher probability of being selected. In each new iteration
there are more ’difficult examples’ in the training set. Despite boosting has
been originally developed for classification, several algorithms have been pro-
posed for regression but none has emerged as being the appropriate one [30].

Parmanto et al. describe the cross-validated committees technique for neural
networks ensemble generation using υ-fold cross validation [31]. The main idea
is to use as ensemble the models obtained by the use of the υ training sets on
the cross validation process.

9



3.1.2 Manipulating the input features

In this approach, different training sets are obtained by changing the repre-
sentation of the examples. A new training set j is generated by replacing the
original representation {(xi, f (xi)) into a new one {(x′i, f (xi)) . There are two
types of approaches. The first one is feature selection, i.e., x′i ⊂ xi. In the sec-
ond approach, the representation is obtained by applying some transformation
to the original attributes, i.e., x′i = g (xi).

A simple feature selection approach is the random subspace method, consisting
of a random selection [32]. The models in the ensemble are independently
constructed using a randomly selected feature subset. Originally, decision trees
were used as base learners and the ensemble was called decision forests [32].
The final prediction is the combination of the predictions of all the trees in
the forest.

Alternatively, iterative search methods can be used to select the different fea-
ture subsets. Opitz uses a genetic algorithm approach that continuously gen-
erates new subsets starting from a random feature selection [33]. The author
uses neural networks for the classification problem. He reports better results
using this approach than using the popular bagging and AdaBoost methods.
In [34] the search method is a wrapper like hill-climbing strategy. The criteria
used to select the feature subsets are the minimization of the individual error
and the maximization of ambiguity (Sect. 2.4).

A feature selection approach can also be used to generate ensembles for al-
gorithms that are stable with respect to the training set but unstable w.r.t.
the set of features, namely the nearest neighbors induction algorithm. In [35]
the feature subset selection is done using adaptive sampling in order to re-
duce the risk of discarding discriminating information. Compared to random
feature selection, this approach reduces diversity between base predictors but
increases their accuracy.

A simple transformation approach is input smearing [36]. It aims to increase
the diversity of the ensemble by adding Gaussian noise to the inputs. The
goal is to improve the results of bagging. Each input value x is changed into
a smeared value x′ using:

x′ = x + p ∗N(0, σ̂X) (11)

where p is an input parameter of the input smearing algorithm and σ̂X is
the sample standard deviation of X, using the training set data. In this case,
the examples are changed, but the training set keeps the same number of
examples. In this work just the numeric input variables are smeared even if
the nominal ones could also be smeared using a different strategy. Results

10



compare favorably to bagging. A similar approach called BEN - Bootstrap
Ensemble with Noise, was previously presented by Raviv & Intrator [37].

Rodriguez et al. [3] present a method that combines selection and transfor-
mation, called rotation forests. The original set of features is divided into k
disjoint subsets to increase the chance of obtaining higher diversity. Then, for
each subset, a principal component analysis (PCA) approach is used to project
the examples into a set of new features, consisting of linear combinations of
the original ones. Using decision trees as base learners, this strategy assures
diversity, (decision trees are sensitive to the rotation of the axis) and accuracy
(PCA concentrates in a few features most of the information contained in the
data). The authors claim that rotation forests outperform bagging, AdaBoost
and random forests (to be discussed further away in Sect. 3.2.2). However, the
adaptation of rotation forests for regression does not seem to be straightfor-
ward.

3.1.3 Manipulating the output targets

The manipulation of the output targets can also be used to generate different
training sets. However, not much research follows this approach and most of
it focus on classification.

An exception is the work of Breiman, called output smearing [38]. The basic
idea is to add Gaussian noise to the target variable of the training set, in
the same way as it is done for input features in the input smearing method
(Sect. 3.1.2). Using this approach it is possible to generate as many models as
desired. Although it was originally proposed using CART trees as base models,
it can be used with other base algorithms. The comparison between output
smearing and bagging shows a consistent generalization error reduction, even
if not outstanding.

An alternative approach consists of the following steps. First it generates a
model using the original data. Second, it generates a model that estimates
the error of the predictions of the first model and generates an ensemble that
combines the prediction of the previous model with the correction of the cur-
rent one. Finally, it iteratively generates models that predict the error of the
current ensemble and then updates the ensemble with the new model. The
training set used to generate the new model in each iteration is obtained by
replacing the output targets with the errors of the current ensemble. This ap-
proach was proposed by Breiman, using bagging as the base algorithm and
was called iterated bagging [39]. Iterated bagging reduces generalization error
when compared with bagging, mainly due to the bias reduction during the
iteration process.

11



3.2 Model generation manipulation

As an alternative to manipulating the training set, it is possible to change the
model generation process. This can be done by using different parameter sets,
by manipulating the induction algorithm or by manipulating the resulting
model.

3.2.1 Manipulating the parameter sets

Each induction algorithm is sensitive to the values of the input parameters.
The degree of sensitivity of the induction algorithm is different for different
input parameters. To maximize the diversity of the models generated, one
should focus on the parameters which the algorithm is most sensitive to.

Neural network ensemble approaches quite often use different initial weights
to obtain different models. This is done because the resulting models vary
significantly with different initial weights [40]. Several authors, like Rosen, for
example, use randomly generated seeds (initial weights) to obtain different
models [41], while other authors mix this strategy with the use of different
number of layers and hidden units [42,43].

The k-nearest neighbors ensemble proposed by Yankov et al. [44] has just
two members. They differ on the number of nearest neighbors used. They are
both sub-optimal. One of them because the number of nearest neighbors is
too small, and the other because it is too large. The purpose is to increase
diversity (see Sect. 5.2.1).

3.2.2 Manipulating the induction algorithm

Diversity can be also attained by changing the way induction is done. There-
fore, the same learning algorithm may have different results on the same data.
Two main categories of approaches for this can be identified: Sequential and
parallel. In sequential approaches, the induction of a model is influenced only
by the previous ones. In parallel approaches it is possible to have more ex-
tensive collaboration: (1) each process takes into account the overall quality
of the ensemble and (2) information about the models is exchanged between
processes.

Rosen [41] generates ensembles of neural networks by sequentially training
networks, adding a decorrelation penalty to the error function, to increase
diversity. Using this approach, the training of each network tries to minimize
a function that has a covariance component, thus decreasing the generalization
error of the ensemble, as stated in [19]. This was the first approach using the

12



decomposition of the generalization error made by Ueda & Nakano [19] (Sect.
2.4) to guide the ensemble generation process. Another sequential method to
generate ensembles of neural networks is called SECA (Stepwise Ensemble
Construction Algorithm) [30]. It uses bagging to obtain the training set for
each neural network. The neural networks are trained sequentially. The process
stops when adding another neural network to the current ensemble increases
the generalization error.

The Cooperative Neural Network Ensembles (CNNE) method [45] also uses a
sequential approach. In this work, the ensemble begins with two neural net-
works and then, iteratively, CNNE tries to minimize the ensemble error firstly
by training the existing networks, then by adding a hidden node to an existing
neural network, and finally by adding a new neural network. Like in Rosen’s
approach, the error function includes a term representing the correlation be-
tween the models in the ensemble. Therefore, to maximize the diversity, all the
models already generated are trained again at each iteration of the process.
The authors test their method not only on classification datasets but also on
one regression data set, with promising results.

Tsang et al. [46] propose an adaptation of the CVM (Core Vector Machines)
algorithm [47] that maximizes the diversity of the models in the ensemble by
guaranteeing that they are orthogonal. This is achieved by adding constraints
to the quadratic programming problem that is solved by the CVM algorithm.
This approach can be related to AdaBoost because higher weights are given
to instances which are incorrectly classified in previous iterations.

Note that the sequential approaches mentioned above add a penalty term to
the error function of the learning algorithm. This sort of added penalty has
been also used in the parallel method Ensemble Learning via Negative Cor-
relation (ELNC) to generate neural networks that are learned simultaneously
so that the overall quality of the ensemble is taken into account [48].

Parallel approaches that exchange information during the process typically
integrate the learning algorithm with an evolutionary framework. Opitz &
Shavlik [49] present the ADDEMUP (Accurate anD Diverse Ensemble-Maker
giving United Predictions) method to generate ensembles of neural networks.
In this approach, the fitness metric for each network weights the accuracy
of the network and the diversity of this network within the ensemble. The
bias/variance decomposition presented by Krogh & Vedelsby [18] is used. Ge-
netic operators of mutation and crossover are used to generate new models
from previous ones. The new networks are trained emphasizing misclassified
examples. The best networks are selected and the process is repeated until
a stopping criterion is met. This approach can be used on other induction
algorithms. A similar approach is the Evolutionary Ensembles with Negative
Correlation Learning (EENCL) method, which combines the ELNC method

13



with an evolutionary programming framework [1]. In this case, the only genetic
operator used is mutation, which randomly changes the weights of an exist-
ing neural network. The EENCL has two advantages in common with other
parallel approaches. First, the models are trained simultaneously, emphasizing
specialization and cooperation among individuals. Second the neural network
ensemble generation is done according to the integration method used, i.e., the
learning models and the ensemble integration are part of the same process,
allowing possible interactions between them. Additionally, the ensemble size
is obtained automatically in the EENCL method.

A parallel approach in which each learning process does not take into ac-
count the quality of the others but in which there is exchange of information
about the models is given by the cooperative coevolution of artificial neural
network ensembles method [4]. It also uses an evolutionary approach to gener-
ate ensembles of neural networks. It combines a mutation operator that affects
the weights of the networks, as in EENCL, with another which affects their
structure, as in ADDEMUP. As in EENCL, the generation and integration of
models are also part of the same process. The diversity of the models in the
ensemble is encouraged in two ways: (1) by using a coevolution approach, in
which sub-populations of models evolve independently; and (2) by the use of
a multiobjective evaluation fitness measure, combining network and ensemble
fitness. Multiobjective is a quite well known research area in the operational
research community. The authors use a multiobjective algorithm based on the
concept of Pareto optimality. Other groups of objectives (measures) besides
the cooperation ones are: objectives of performance, regularization, diversity
and ensemble objectives. The authors do a study on the sensitivity of the algo-
rithm to changes in the set of objectives. The results are interesting but they
cannot be generalized to the regression problem, since authors just studied
the classification one. This approach can be used for regression but with a
different set of objectives.

Finally we mention two other parallel techniques. In the first one the learn-
ing algorithm generates the ensemble directly. Lin & Li formulate an infinite
ensemble based on the SVM (Support Vector Machines) algorithm [50]. The
main idea is to create a kernel that embodies all the possible models in the
hypothesis space. The SVM algorithm is then used to generate a linear com-
bination of all those models, which is, in fact, an ensemble of an infinite set of
models. They propose the stump kernel that represents the space of decision
stumps.

Breiman’s random forests method [2] uses an algorithm for induction of de-
cision trees which is also modified to incorporate some randomness: the split
used at each node takes into account a randomly selected feature subset. The
subset considered in one node is independent of the subset considered in the
previous one. This strategy based on the manipulation of the learning algo-

14



rithm is combined with subsampling, since the ensemble is generated using
the bagging approach (Sect. 3.1). The strength of the method is the combined
use of boostrap sampling and random feature selection.

3.2.3 Manipulating the model

Given a learning process that produces one single model M , it can potentially
be transformed into an ensemble approach by producing a set of models Mi

from the original model M . Jorge & Azevedo have proposed a post-bagging
approach for classification [51] that takes a set of classification association
rules (CAR’s), produced by a single learning process, and obtains n models
by repeatedly sampling the set of rules. Predictions are obtained by a large
committee of classifiers constructed as described above. Experimental results
on 12 datasets show a consistent, although slight, advantage over the single-
ton learning process. The same authors also propose an approach with some
similarities to boosting [52]. Here, the rules in the original model M are itera-
tively reassessed, filtered and reordered according to their performance on the
training set. Again, experimental results show minor but consistent improve-
ment over using the original model, and also show a reduction on the bias
component of the error. Both approaches replicate the original model without
relearning and obtain very homogeneous ensembles with a kind of jittering ef-
fect around the original model. Model manipulation has only been applied in
the realm of classification association rules, a highly modular representation.
Applying to other kinds of models, such as decision trees or neural networks,
does not seem trivial. It could be, however, easily tried with regression rules.

3.3 A discussion on ensemble generation

Two relevant issues arise from the discussion above. The first is how can the
user decide which method to use on a given problem. The second, which is
more interesting from a researcher’s point of view, is what are the promising
lines for future work.

In general, existing results indicate that ensemble methods are competitive
when compared to individual models. For instance, random forests are consis-
tently among the best three models in the benchmark study by Meyer et al.
[53], which included many different algorithms.

However, there is little knowledge about the strengths and weaknesses of each
method, given that the results reported in different papers are not comparable
because of the use of different experimental setups [45,4].

It is possible to distinguish the most interesting/promising methods for some

15



of the most commonly used induction algorithms. For decision trees, bagging
[26] by its consistency and simplicity, and random forest [2] by its accuracy,
are the most appealing ensemble methods. Despite obtaining good results on
classification problems, the rotation forests method [3] has not been adapted
for regression yet.

For neural networks, methods based on negative correlation are particularly
appealing, due to their theoretical foundations [16] and good empirical results.
EENCL is certainly an influent and well studied method on neural network
ensembles [1]. Islam et al. [45] and Garcia-Pedrajas et al. [4] also present
interesting methods.

One important line of work is the adaptation of the methods described here to
other algorithms, namely support vector regression and k-nearest neighbors.
Although some attempts have been made, there is still much work to be done.

Additionally, we note that most research focuses on one specific approach to
build the ensemble (e.g., subsampling from the training set or manipulating
the induction algorithm). Further investigation is necessary on the gains that
can be achieved by combining several approaches.

4 Ensemble pruning

Ensemble pruning consists of eliminating models from the ensemble, with the
aim of improving its predictive ability or reducing costs. In the overproduce
and choose approach it is the choice step. In the direct approach, ensemble
pruning, is also used to reduce computational costs and, if possible, to increase
prediction accuracy [11,54]. Bakker & Heskes claim that clustering models
(later described in Sect. 4.5) summarizes the information on the ensembles,
thus giving new insights on the data [54]. Ensemble pruning can also be used
to avoid the multi-collinearity problem [42,43] (to be discussed in Sect. 5).

The ensemble pruning process has many common aspects with feature se-
lection, namely, the search algorithms that can be used. In this section, the
ensemble pruning methods are classified and presented according to the used
search algorithm: exponential, randomized and sequential; plus the ranked
pruning and the clustering algorithms. It finishes with a discussion on ensem-
ble pruning, where experiments comparing some of the algorithms described
along the paper are presented.

16



4.1 Exponential pruning algorithms

When selecting a subset of k models from a pool of K models, the searching
space has 2K − 1 non-empty subsets. The search of the optimal subset is a
NP-complete problem [55]. According to Mart́ınez-Muñoz & Suárez it becomes
intractable for values of K > 30 [12]. Perrone & Cooper suggest this approach
for small values of K [42].

Aksela presents seven pruning algorithms for classification [56]. One of them
can also be used for regression. It calculates the correlation of the errors for
each pair of predictors in the pool and then it selects the subset with minimal
mean pairwise correlation. This method implies the calculus of the referred
metric for each possible subset.

4.2 Randomized pruning algorithms

Partridge & Yates describe the use of a genetic algorithm for ensemble pruning
but with poor results [57].

Zhou et al. state that it can be better to use just part of the models from an
ensemble than to use all of them [11]. Their work on neural network ensem-
bles, called GASEN (Genetic Algorithm based Selective ENsemble) starts by
the assignment of a random weight to each one of the base models. Then it
employs a genetic algorithm to evolve those weights in order to characterize
the contribution of the corresponding model to the ensemble. Finally it selects
the networks whose weights are bigger than a predefined threshold. Empirical
results on ten regression problems show that GASEN outperforms bagging and
boosting both in terms of bias and variance. Results on classification are not
so promising. Following this work, Zhou & Tang successfully applied GASEN
to build ensembles of decision trees [58].

Ruta & Gabrys use three randomized algorithms to search for the best subset
of models [59]: genetic algorithms, tabu search and population-based incre-
mental learning. The main result of the experiments on three classification
data sets, using a pool of K = 15, was that the three algorithms obtained
most of best selectors when compared against exhaustive search. These re-
sults may have been conditioned by the small size of the pool.

17



4.3 Sequential pruning algorithms

The sequential pruning algorithms iteratively change one solution by adding
or removing models. Three types of search algorithms are used:

• Forward: if the search begins with an empty ensemble and adds models to
the ensemble in each iteration;

• Backward: if the search begins with all the models in the ensemble and
eliminates models from the ensemble in each iteration;

• Forward-backward: if the selection can have both forward and backward
steps.

4.3.1 Forward selection

Forward selection starts with an empty ensemble and iteratively adds models
with the aim of decreasing the expected prediction error.

Coelho & Von Zuben describe two forward selection algorithms called Cw/oE
- constructive without exploration, and CwE - constructive with exploration
[60]. However, to use a more conventional categorization, the algorithms will
be renamed Forward Sequential Selection with Ranking (FSSwR) and Forward
Sequential Selection (FSS), respectively. The FSSwR ranks all the candidates
with respect to its performance on a validation set. Then, it selects the can-
didate at the top until the performance of the ensemble decreases. In the FSS
algorithm, each time a new candidate is added to the ensemble, all candidates
are tested and it is selected the one that leads to the maximal improvement of
the ensemble performance. When no model in the pool improves the ensem-
ble performance, the selection stops. This approach is also used in [9]. These
algorithms were firstly described for ensemble pruning by Perrone & Cooper
[42].

Partridge & Yates present another forward selection algorithm similar to the
FSS [57]. The main difference is that the criterion for the inclusion of a new
model is a diversity measure. The model with higher diversity than the ones
already selected is also included in the ensemble. The ensemble size is an input
parameter of the algorithm.

Another similar approach is presented in [61]. At each iteration it tests all the
models not yet selected, and selects the one that reduces most the ensemble
generalization error on the training set. Experiments to reduce ensembles gen-
erated using bagging are promising even if overfitting could be expected since
the minimization of the generalization error is done on the training set.

18



4.3.2 Backward selection

Backward selection starts with all the models in the ensemble and iteratively
removes models with the aim of decreasing the expected prediction error.

Coelho & Von Zuben describe two backward selection algorithms called Pw/oE
- pruning without exploration, and PwE - pruning with exploration [60]. Like
for the forward selection methods, they will be renamed Backward Sequential
Selection with Ranking (BSSwR) and Backward Sequential Selection (BSS),
respectively. In the first one, the candidates are previously ranked according to
their performance in a validation set (like in FSSwR). The worst is removed.
If the ensemble performance improves, the selection process continues. Oth-
erwise, it stops. BSS is related to FSS in the same way BSSwR is related to
FSSwR, i.e., it works like FSS but using backward selection instead of forward
selection.

4.3.3 Mixed forward-backward selection

In the forward and backward algorithms described by Coelho & Von Zuben,
namely the FSSwR, FSS, BSSwR and BSS, the stopping criterion assumes that
the evaluation function is monotonic [60]. However, in practice, this cannot
be guaranteed. The use of mixed forward and backward steps aims to avoid
the situations where the fast improvement at the initial iterations does not
allow to explore solutions with slower initial improvements but with better
final results.

Moreira et al. describe an algorithm that begins by randomly selecting a pre-
defined number of k models [62]. At each iteration one forward step and one
backward step are given. The forward step is equivalent to the process used by
FSS, i.e., it selects the model from the pool that most improves the accuracy
of the ensemble. At this step, the ensemble has k +1 models. The second step
selects the k models with higher ensemble accuracy, i.e, in practice, one of the
k +1 models is removed from the ensemble. The process stops when the same
model is selected in both steps.

Margineantu & Dietterich present an algorithm called reduce-error pruning
with back fitting [63]. This algorithm is similar to the FSS in the two first
iterations. After the second iteration, i.e., when adding the third candidate
and the following ones, a back fitting step is given. Consider C1, C2 and C3

as the included candidates. Firstly it removes C1 from the ensemble and tests
the addition of each of the remaining candidates Ci(i > 3) to the ensemble. It
repeats this step for C2 and C3. It chooses the best of the tested sets. Then it
executes further iterations until a pre-defined number of iterations is reached.

19



4.4 Ranked pruning algorithms

The ranked pruning algorithms sort the models according to a certain criterion
and generate an ensemble containing the top k models in the ranking. The
value of k is either given or determined on the basis of a given criterion,
namely, a threshold, a minimum, a maximum, etc.

Partridge & Yates rank the models according to the accuracy [57]. Then, the k
most accurate models are selected. As expected, results are not good because
there is no guarantee of diversity. Kotsiantis & Pintelas use a similar approach
[64]. For each model a t-test is done for comparison of the accuracy with the
most accurate model. Tests are carried out using randomly selected 20% of the
training set. If the p-value of the t-test is lower than 5%, the model is rejected.
The use of heterogeneous ensembles is the only guarantee of diversity. Rooney
et al. use a metric that tries to balance accuracy and diversity [10].

Perrone & Cooper describe an algorithm that removes similar models from the
pool [42]. It uses the correlation matrix of the predictions and a pre-defined
threshold to identify them.

4.5 Clustering algorithms

The main idea of clustering is to group the models in several clusters and
choose representative models (one or more) from each cluster.

Lazarevic uses the prediction vectors made by all the models in the pool [65].
The k-means clustering algorithm is used over these vectors to obtain clusters
of similar models. Then, for each cluster, the algorithms are ranked according
to their accuracy and, beginning by the least accurate, the models are removed
(unless their disagreement with the remaining ones overcomes a pre specified
threshold) until the ensemble accuracy on the validation set starts decreasing.
The number of clusters (k) is an input parameter of this approach, i.e., in
practice this value must be tested by running the algorithm for different k
values or, like in Lazarevic’s case, an algorithm is used to obtain a default k
[65]. The experimental results reported are not conclusive.

Coelho & Von Zuben [60] use the ARIA - Adaptive Radius Immune Algorithm,
for clustering. This algorithm does not require a pre specified k parameter.
Just the most accurate model from each cluster is selected.

20



4.6 A Discussion on ensemble pruning

Partridge & Yates compare three of the approaches previously described [57]:
(1) Ranked according to the accuracy; (2) FSS using a diversity measure; and
(3) a genetic algorithm. The results are not conclusive because just one data
set is used. The FSS using a diversity measure gives the best result. However,
as pointed out by the authors, the genetic algorithm result, even if not very
promising, can not be interpreted as being less adapted for ensemble pruning.
The result can be explained by the particular choices used for this experiment.
Ranked according to the accuracy gives the worst result, as expected.

Roli et al. compare several pruning algorithms using one data set with three
different pools of models [9]. In one case, the ensemble is homogeneous (they
use 15 neural networks trained using different parameter sets), in the other
two cases they use heterogeneous ensembles. The algorithms tested are: FSS
selecting the best model in the first iteration and selecting randomly a model
for the first iteration, BSS, tabu search, Giacinto & Roli’s clustering algorithm
[66], and some others. The tabu search and the FSS selecting the best model
in the first iteration give good results for the three different pools of models.

Coelho & Von Zuben also use just one data set to compare FSSwR, FSS,
BSSwR, BSS and the clustering algorithm using ARIA [60]. Each one of these
algorithms are tested with different integration approaches. Results for each
one of the tested ensemble pruning algorithms give similar results, but for dif-
ferent integration methods. Ensembles obtained using the clustering algorithm
and BSS have higher diversity.

The ordered bagging algorithm by Mart́ınez-Muñoz & Suárez is compared with
FSS using, also, just one data set [12]. The main advantage of ordered bagging
is the meaningfully lower computational cost. The differences in accuracy are
not meaningful.

Ruta & Gabrys compare a genetic algorithm, a population-based incremen-
tal learning algorithm and tabu search on three classification data sets [59].
Globally, differences are not meaningful between the three approaches. The
authors used a pool of fifteen models, not allowing to explore the differences
between the three methods.

All of these benchmark studies discussed are for ensemble classification. It
seems that more sophisticated algorithms like the tabu search, genetic algo-
rithms, population based incremental learning, FSS, BSS or clustering algo-
rithms are able to give better results, as expected. All of them use a very small
number of data sets, limiting the generalization of the results.

21



5 Ensemble integration

Now that we have described the process of ensemble generation, we move to
the next step: how to combine the strengths of the models in one ensemble to
obtain one single answer, i.e., ensemble integration.

For regression problems, ensemble integration is done using a linear combina-
tion of the predictions. This can be stated as

f̂f (x) =
k∑

i=1

[hi(x) ∗ f̂i(x)], (12)

where hi(x) are the weighting functions.

Merz divides the integration approaches in constant and non-constant weight-
ing functions [14]. In the first case, the hi(x) are constants (in this case αi will
be used instead of hi(x) in eq. 12); while in the second one, the weights vary
according to the input values x.

When combining predictions, a possible problem is the existence of multi-
collinearity between the predictions of the ensemble models. As a consequence
of the multi-collinearity problem, the confidence intervals for the αi coefficients
will be wide, i.e., the estimators of the coefficients will have high variance [14].
This happens because to obtain the αi’s we must determine the inverse of a
linearly dependent matrix.

A common approach is to handle multi-collinearity in the ensemble generation
(Sect. 3) or in the ensemble pruning (Sect. 4) phases. If the principles referred
in Sect. 2.4, namely the accuracy and diversity ones are assured, then it is
possible, if not to avoid completely, at least ameliorate this problem.

This section follows Merz classification. It finishes with a discussion on ensem-
ble integration methods.

5.1 Constant weighting functions

Constant weighting integration functions always use the same set of coeffi-
cients, independently of the input for prediction. They are summarized in Fig.
2. Some methods use the test data to obtain the αi weights of the integration
function (eq. 12).

Next, we describe the main constant weighting functions following closely Merz
[14].

22



Fig. 2. Constant weighting functions model

The BEM - Basic Ensemble Method [42] uses as estimator for the target
function

f̂BEM(x) =
k∑

i=1

[
1

k
∗ f̂i(x)]. (13)

This formula can be written as

f̂BEM(x) = f(x)− 1

k

k∑

i=1

mi(x), (14)

where

mi(x) = f(x)− f̂i(x). (15)

BEM assumes that the mi(x) are mutually independent with zero mean.

To address this issue, Perrone & Cooper propose the GEM - Generalized
Ensemble Method [42]. For GEM, the estimator is

f̂GEM(x) =
k∑

i=1

[αi ∗ f̂i(x)] = f(x) +
k∑

i=1

[αi ∗mi(x)], (16)

where

k∑

j=1

αi = 1,

αi =

∑k
j=1 C−1

ij∑k
l=1

∑k
j=1 C−1

lj

,

Cij = E[mi(x) ∗mj(x)].

The drawback of this method is the multi-collinearity problem, since it is

23



necessary to calculate the inverse matrix C−1. The multi-collinearity problem
can be avoided by pruning the ensemble [42] (Sect. 4).

The well known linear regression (LR) model is another possible combination
method. The predictor is the same as in GEM case but without the constraint∑k

j=1 αi = 1.

The use of a constant in the LR formula is not relevant in practice (the stan-
dard linear regression formulation uses it) because E[f̂i(x)] ' E[f(x)] [67]. It
would be necessary if predictors were meaningfully biased.

All the methods discussed so far suffer from the multi-collinearity problem
with the exception of BEM. Next we discuss methods that avoid this problem.

Caruana et al. embed the ensemble integration phase in the ensemble selection
one [22]. By selecting with replacement the models from the pool to include in
the ensemble, and using the simple average as the weighting function, the αi

coefficients are implicitly calculated as the number of times that each model is
selected over the total number of models in the ensemble (including repeated
models).

Breiman presents the stacked regression [68] method based on the well known
stacked generalization framework [69] firstly presented for the classification
problem. Given a L learning set with M examples, the goal is to obtain the
αi coefficients that minimize

M∑

j=1

[f(xj)−
k∑

i=1

αi ∗ f̂i(xj)]
2. (17)

To do so, the learning set used to obtain the αi coefficients will be the same one
used to train the f̂i estimators, over-fitting the data. This problem is solved
by using υ-fold cross-validation,

M∑

j=1

[f(xj)−
k∑

i=1

αi ∗ f̂i

(−υ)
(xj)]

2. (18)

The second problem is the possible existence of multi-collinearity between the
f̂i predictors. Breiman presents several approaches to obtain the αi coefficients
but concludes that a method that gives consistently good results is the mini-
mization of the above equation under the constraints αi ≥ 0, i = 1, ..., k [68].
One of the methods tried by Breiman to obtain the αi coefficients is ridge
regression, a regression technique for solving badly conditioned problems. but
results were not promising [68]. An important result of Breiman is the empir-
ical observation that, in most of the cases, many of the αi weights are zero.

24



This result supports the use of ensemble pruning as a second step after the
ensemble generation (Sect. 4).

Merz & Pazzani use principal component regression to avoid the multi-collinearity
problem [70]. The PCR* method obtains the principal components (PC) and,
then, it selects the number of PCs to use. Once the PCs are ordered as a
function of the variation they can explain, the search of the number of PCs to
use is much simplified. The choice of the correct number of PCs is important
to avoid under-fitting or over-fitting.

Evolutionary algorithms have also been used to obtain the αi coefficients [71].
The used approach is globally better than BEM and GEM on twenty five
classification data sets. Compared to BEM wins nineteen, draws one and looses
five. Compared to GEM wins seventeen, draws one and looses seven. These
results were obtained by direct comparison, i.e., without statistical validity.

The main study comparing constant weighting functions is presented by Merz
[14]. The functions used are: GEM, BEM, LR, LRC (the LR formula with a
constant term), gradient descent, EG, EG+

− (the last three methods are gradi-
ent descent procedures discussed by Kivinen & Warmuth [72]), ridge regres-
sion, constrained regression (Merz [14] uses the bounded variable least squares
method from [73]), stacked constrained regression (with ten partitions) and
PCR*. Two of the three experiments reported by Merz are summarized next.
The first experiment used an ensemble of twelve models on eight regression
data sets: six of the models were generated using MARS [74] and the other
six using the neural network back-propagation algorithm. The three globally
best functions were CR, EG and PCR*. The second experiment tests how
the functions perform with many correlated models. The author uses neural
network ensembles of size ten and fifty. Just three data sets were used. The
PCR* function presents more robust results. See [14] to get details on the
experiments and their results.

5.2 Non-constant weighting functions

The non-constant weighting functions use different coefficients according to
the input for prediction. They can be static (defined at learning time) or
dynamic (defined at prediction time). The static ones can use two different
approaches: (1) to assign models to predefined regions, this is the divide-
and-conquer approach already discussed in Sect. 3.1.1; or (2) to define the
areas of expertise for each model, also called static selection [13], i. e., for
each predictor from the ensemble it is defined the input subspace where the
predictor is expert. In the dynamic approach the hi(x) weights from eq. 12
are obtained on the fly based on the performances of the base predictors on

25



data similar to x obtained from the training set.

5.2.1 The approach by areas of expertise

The work on meta decision trees [75] for classification induces meta decision
trees using as variables meta-attributes that are previously calculated for each
example. The target variable of the meta tree is the classifier to recommend. In
practice, the meta decision tree, instead of predicting, recommends a predictor.
Despite this work has been developed for classification, it could be easily
adapted for regression by an appropriate choice of the meta attributes.

Yankov et al. use support vector machines with the gaussian kernel to select
the predictor to use from an ensemble with two models [44].

5.2.2 The dynamic approach

In the dynamic approach, the predictor(s) selection is done on the fly, i.e.,
given the input vector for the prediction task, it chooses the expected best
predictor(s) to accomplish this task. While in the approach by areas of exper-
tise these areas are previously defined, in the dynamic approach the areas are
defined on the fly. Selection can be seen as a kind of pruning on the fly. The
most usual way to select the predictor(s) is by evaluating their performances
on similar data from the training set, for a chosen performance metric. Often
the similar data is obtained by the use of the k-nearest neighbors with the
Euclidean distance [76]. Puuronen et al. [77] use the more advanced weighted
k-nearest neighbor.

Rooney et al. [10] adapt for regression the dynamic integration methods orig-
inally presented by Puuronen et al. [77] for classification. Dynamic selection
(DS) selects the predictor with less cumulative error on the k-nearest neighbors
set. Dynamic weighting (DW) assigns a weight to each base model according
to its localized performance on the k-nearest neighbors set [10] and the final
prediction is based on the weighted average of the predictions of the related
models. Dynamic weighting with selection (DWS) is similar to DW but the
predictors with cumulative error in the upper half of the error interval are
discarded. From the three methods tested the DWS one using just the subset
of the most accurate predictors for the final prediction gets the best results.

Wang et al. use weights hi(x) (see eq. 12) inversely proportional to f̂i(x)
expected error [78]. This approach is similar to the variance based weighting
presented in [79].

Figure 3 summarizes the dynamic approach. Given an input vector x, firstly it
selects similar data. Then, according to the performance of the models on this

26



similar data, a number k1 of models are selected from the ensemble F (Eq.
1. Merz describes in detail this approach, namely the use of a performance
matrix to evaluate locally the models [23]. It consists of a m×k matrix, where
m is the number of past examples and k is the number of models in F . Each
cell has a performance measure of each model for each example obtained from
the models’ past predictions and the respective real target values for these
examples. In regression, this measure can be, for instance, the squared error,
the absolute error, or other performance measure. If k1 = 1 then f̂f is the
identity function. It is the case of the DS method. If k1 > 1 (like in the DW
method, for example) then the integration method uses the performances of
similar data (sd) obtained from the test data (td) used to estimate the hi(x)
weights. Despite the good results reported with this approach, Didaci et al.
show, for the case of the selection of just one model for prediction, that they
are still far away from the best possible (the oracle), i.e., they are still far away
from the use of the model with the best accuracy prediction for each example.
The tests were done on five classification data sets [80].

Fig. 3. Dynamic approach model

5.3 A discussion on ensemble integration

The works on how to handle the multi-collinearity problem, quite common
in the nineties, became less frequent in the last years, apparently because
most of the effort shifted to the generation phase. The approach seems to
have changed from ”what integration function to use for a given ensemble?”
to ”how to generate the ensemble for a given integration function?”. In all
the works highlighted in Sect. 3.3 constant weighting functions were used. It
is already known by the decomposition of the generalization error (Sect. 2.4)
which are the expected characteristics of the ensemble when using constant
weighting functions. The question now is: ”how to generate ensembles for non-
constant weighting functions?”.

The experiments described by Merz (Sect. 2) were published in 1998 [14].
However, since 1995, maybe due to the advances in the studies on the general-
ization ensemble error (Sect. 2.4), the ensemble generation research was driven
towards the quality of the ensembles [41,1,11,3]. These examples show that an

27



important part of the problems at the integration phase can be solved by a
joint design of the generation, pruning (when appropriate) and the integration
phases.

The main disadvantage of constant weighting functions is that the αi weights,
being equal for all the input space, can, at least theoretically, be less adequate
for some parts of the input space. This is the main argument for using non-
constant weighting functions [81]. This argument can be particularly true for
time changing phenomena [78].

Ensemble integration approaches can also be classified as selection or combi-
nation ones [13]. In the selection approach the final prediction is obtained by
using just one predictor, while in the combination one the final prediction is
obtained by combining predictions of two or more models. Kuncheva presents
an hybrid approach between the selection and the combination ones [13]. It
uses paired t-hypothesis test to verify if there is one predictor meaningfully
better than the others. If positive, it uses the best predictor, if not it uses a
combination approach.

An approach that can be explored and seems to be promising is to combine
different ensemble integration methods. The method wMetaComb [82] uses a
weighted average to combine stacked regression (described in Sect. 5.1) and
the DWS dynamic method (Sect. 5.2.2). The weights are determined based
on the error performance of both methods (see [82] for details). Tests on 30
regression data sets never looses against stacked regression (it wins 5 and
draws the remaining 25) and looses 3 against DWS (it wins 13 and draws 14).

6 Conclusions

The use of ensemble methods has as main advantages the increase in accuracy
and robustness, when compared to the use of a single model. This makes en-
semble methods particularly suited for applications where small improvements
of the predictions have important impact.

For ensemble learning, as for other research areas, methods for regression
and for classification have different solutions, at least partially. This paper is
focused in the regression problem, less referred in the literature. The methods
for ensemble learning have, typically, three phases: generation, pruning (not
always) and integration.

The generation phase aims to obtain an ensemble of models. It can be classi-
fied as homogeneous or as heterogeneous. This classification depends on the
induction algorithms used. If just one is used, the ensemble is classified as

28



Table 2
Main homogeneous ensemble generation methods

Method Reference Algorithm Class/Regr

Bagging [26] Unst. learners yes / yes

AdaBoost [29] Unst. learners yes / ?

Random forests [2] Decis. trees yes / yes

Rotation forests [3] Decis. trees yes / ?

EENCL [1] ANN yes / yes

CNNE [45] ANN yes / yes

Coop. Coev. [4] ANN yes / ?

homogeneous, otherwise it is classified as heterogeneous. The most success-
ful methods for ensemble generation are developed for unstable learners, i.e.,
learners that are sensitive to changes in the training set, namely decision trees
or neural networks. Table 2 summarizes some of the most important methods
on homogeneous ensemble generation. The mark ? means that there is not,
until the moment, promising versions of this algorithm for regression (the case
of AdaBoost), or that these methods are not even adapted and tested for re-
gression (rotation forests and cooperative co-evolution), and consequently it
is not known how these methods could work for regression.

Ensemble pruning aims to select from a pool of models a subset in order
to reduce computational complexity and, if possible, to increase accuracy. It
has many similarities with the well known feature subset selection task. This
happens because in both cases the goal is to select from a set, a subset in order
to optimize a given objective function. Like in the feature subset selection case,
randomized heuristics, such as evolutionary algorithms or tabu search, seem
to be very effective.

Ensemble integration functions use the predictions made by the models in
the ensemble to obtain the final ensemble prediction. They can be classified
as constant or non-constant weighting functions. As it was previously under-
lined, constant weighting functions are the most used ones. Maybe because
it is easier to generate ensembles in order to minimize known generalization
error functions. Since non-constant weighting functions seem to be attractive
in order to increase accuracy, further research is needed to obtain ensemble
methods that take advantage of such integration functions.

This paper described the complete process for ensemble based regression. As it
is shown, at each step there are many challenging problems to be solved, and
many ideas still need theoretical and experimental development. We believe
that this survey provides a thorough road map that can serve as a stepping

29



stone to new ideas for research.

Acknowledgements

This work was partially supported by FCT (POCT/TRA/61001/2004) and
FEDER e Programa de Financiamento Plurianual de Unidades de I&D.

References

[1] Yong Liu, Xin Yao, and Tetsuya Higuchi, “Evolutionary ensembles
with negative correlation learning”, IEEE Transactions on Evolutionary
Computation, vol. 4, no. 4, pp. 380–387, 2000.

[2] Leo Breiman, “Random forests”, Machine Learning, vol. 45, pp. 5–32, 2001.

[3] Juan J. Rodŕıguez, Ludmila I. Kuncheva, and Carlos J. Alonso, “Rotation
forest: a new classifier ensemble”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 10, pp. 1619–1630, 2006.

[4] Nicolás Garćıa-Pedrajas, César Hervás-Mart́ınez, and Domingo Ortiz-Boyer,
“Cooperative coevolution of artificial neural network ensembles for pattern
classification”, IEEE Transactions on Evolutionary Computation, vol. 9, no.
3, pp. 271–302, 2005.

[5] Ludmila I. Kuncheva, Combining pattern classifiers, Wiley, 2004.

[6] Romesh Ranawana and Vasile Palade, “Multi-classifier systems: review and a
roadmap for developers”, International Journal of Hybrid Intelligent Systems,
vol. 3, no. 1, pp. 35–61, 2006.

[7] Thomas G. Dietterich, “Machine-learning research: four current directions”, AI
magazine, vol. 18, no. 4, pp. 97–136, 1997.

[8] Alexander Strehl and Joydeep Ghosh, “Cluster ensembles - a knowledge reuse
framework for combining multiple partitions”, Journal of Machine Learning
Research, vol. 3, pp. 583–617, 2003.

[9] Fabio Roli, Giorgio Giacinto, and Gianni Vernazza, “Methods for designing
multiple classifier systems”, in International Workshop on Multiple Classifier
Systems. 2001, vol. LNCS 2096, pp. 78–87, Springer.

[10] Niall Rooney, David Patterson, Sarab Anand, and Alexey Tsymbal, “Dynamic
integration of regression models”, in International Workshop on Multiple
Classifier Systems. 2004, vol. LNCS 3181, pp. 164–173, Springer.

[11] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang, “Ensembling neural networks: many
could be better than all”, Artificial Intelligence, vol. 137, pp. 239–263, 2002.

30



[12] Gonzalo Mart́ınez-Muñoz and Alberto Suárez, “Pruning in ordered bagging
ensembles”, in International Conference on Machine Learning, 2006, pp. 609–
616.

[13] Ludmila I. Kuncheva, “Switching between selection and fusion in combining
classifiers: an experiment”, IEEE Transactions on Systems, Man, and
Cybernetics-Part B, vol. 32, no. 2, pp. 146–156, 2002.

[14] Cristopher J. Merz, Classification and regression by combining models, Phd
thesis, University of California - U.S.A., 1998.

[15] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman, The elements of
statistical learning: data mining, inference, and prediction, Springer series in
statistics. Springer, 2001.

[16] Gavin Brown, Diversity in neural network ensembles, Phd thesis, University of
Birmingham - United Kingdom, 2004.

[17] Stuart Geman, Elie Bienenstock, and Rene Doursat, “Neural networks and the
bias/variance dilemma”, Neural Computation, vol. 4, no. 1, pp. 1–58, 1992.

[18] Anders Krogh and Jesper Vedelsby, “Neural network ensembles, cross
validation, and active learning”, Advances in Neural Information Processing
Systems, vol. 7, pp. 231–238, 1995.

[19] Naonori Ueda and Ryohei Nakano, “Generalization error of ensemble
estimators”, in IEEE International Conference on Neural Networks, 1996,
vol. 1, pp. 90–95.

[20] Gavin Brown, Jeremy L. Wyatt, Rachel Harris, and Xin Yao, “Diversity
creation methods: a survey and categorisation”, Information Fusion, vol. 6,
pp. 5–20, 2005.

[21] Geoffrey I. Webb and Zijian Zheng, “Multistrategy ensemble learning: reducing
error by combining ensemble learning techniques”, IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 8, pp. 980–991, 2004.

[22] Rich Caruana, Alexandru Niculescu-Mozil, Geoff Crew, and Alex Ksikes,
“Ensemble selection from libraries of models”, in International Conference on
Machine Learning, 2004.

[23] Cristopher J. Merz, “Dynamical selection of learning algorithms”, in
International Workshop on Artificial Intelligence and Statistics, D. Fisher and
H.-J. Lenz, Eds. 1996, vol. Learning from Data: Artificial Intelligence and
Statistics V, Springer-Verlag.

[24] Leo Breiman, “Heuristics of instability and stabilization in model selection”,
Annals of Statistics, vol. 24, no. 6, pp. 2350–2383, 1996.

[25] Hyun-Chul Kim, Shaoning Pang, Hong-Mo Je, Daijin Kim, and Sung-Yang
Bang, “Constructing support vector machine ensemble”, Pattern Recognition,
vol. 36, no. 12, pp. 2757–2767, 2003.

31



[26] Leo Breiman, “Bagging predictors”, Machine Learning, vol. 26, pp. 123–140,
1996.

[27] Pedro Domingos, “Why does bagging work? a bayesian account and its
implications”, in International Conference on Knowledge Discovery and Data
Mining. 1997, pp. 155–158, AAAI Press.

[28] R. Schapire, “The strength of weak learnability”, Machine learning, vol. 5, no.
2, pp. 197–227, 1990.

[29] Y. Freund and R. Schapire, “Experiments with a new boosting algorithm”, in
International Conference on Machine Learning, 1996, pp. 148–156.

[30] P.M. Granitto, P.F. Verdes, and H.A. Ceccatto, “Neural network ensembles:
evaluation of aggregation algorithms”, Artificial Intelligence, vol. 163, no. 2,
pp. 139–162, 2005.

[31] Bambang Parmanto, Paul W. Munro, and Howard R. Doyle, “Reducing
variance of committee prediction with resampling techniques”, Connection
Science, vol. 8, no. 3, 4, pp. 405–425, 1996.

[32] Tin Kam Ho, “The random subspace method for constructing decision forests”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no.
8, pp. 832–844, 1998.

[33] David W. Opitz, “Feature selection for ensembles”, in 16th National Conference
on Artificial Intelligence, Orlando - U.S.A., 1999, pp. 379–384, AAAI Press.

[34] Gabriele Zenobi and Pádraig Cunningham, “Using diversity in preparing
ensembles of classifiers based on different feature subsets to minimize
generalization error”, in European Conference on Machine Learning. 2001, vol.
LNCS 2167, pp. 576–587, Springer.

[35] Carlotta Domeniconi and Bojun Yan, “Nearest neighbor ensemble”, in
International Conference on Pattern Recognition, 2004, vol. 1, pp. 228–231.

[36] Eibe Frank and Bernhard Pfahringer, “Improving on bagging with input
smearing”, in Pacific-Asia Conference on Knowledge Discovery and Data
Mining. 2006, pp. 97–106, Springer.

[37] Yuval Raviv and Nathan Intrator, “Bootstrapping with noise: an effective
regularization technique”, Connection Science, vol. 8, no. 3, 4, pp. 355–372,
1996.

[38] Leo Breiman, “Randomizing outputs to increase prediction accuracy”, Machine
Learning, vol. 40, no. 3, pp. 229–242, 2000.

[39] Leo Breiman, “Using iterated bagging to debias regressions”, Machine Learning,
vol. 45, no. 3, pp. 261–277, 2001.

[40] John F. Kolen and Jordan B. Pollack, “Back propagation is sensitive to initial
conditions”, Tech. Report TR 90-JK-BPSIC, The Ohio State University, 1990.

32



[41] Bruce E. Rosen, “Ensemble learning using decorrelated neural networks”,
Connection Science, vol. 8, no. 3, 4, pp. 373–383, 1996.

[42] Michael P. Perrone and Leon N. Cooper, “When networks disagree: ensemble
methods for hybrid neural networks”, in Neural Networks for Speech and Image
Processing, R.J. Mammone, Ed. Chapman-Hall, 1993.

[43] Sherif Hashem, Optimal linear combinations of neural networks, Phd thesis,
Purdue University, 1993.

[44] Dragomir Yankov, Dennis DeCoste, and Eamonn Keogh, “Ensembles of nearest
neighbor forecasts”, in European Conference on Machine Learning. 2006, vol.
LNAI 4212, pp. 545–556, Springer.

[45] Md. Monirul Islam, Xin Yao, and Kazuyuki Murase, “A constructive algorithm
for training cooperative neural network ensembles”, IEEE Transactions on
Neural Networks, vol. 14, no. 4, pp. 820–834, 2003.

[46] Ivor W. Tsang, Andras Kocsor, and James T. Kwok, “Diversified svm ensembles
for large data sets”, in European Conference on Machine Learning. 2006, vol.
LNAI 4212, pp. 792–800, Springer.

[47] Ivor W. Tsang, James T. Kwok, and Kimo T. Lai, “Core vector regression
for very large regression problems”, in International Conference on Machine
Learning, 2005, pp. 912–919.

[48] Y. Liu and X. Yao, “Ensemble learning via negative correlation”, Neural
Networks, vol. 12, pp. 1399–1404, 1999.

[49] David W. Opitz and Jude W. Shavlik, “Generating accurate and diverse
members of a neural-network ensemble”, Advances in Neural Information
Processing Systems, vol. 8, pp. 535–541, 1996.

[50] Hsuan-Tien Lin and Ling Li, “Infinite ensemble learning with support vector
machines”, in European Conference on Machine Learning. 2005, vol. LNAI
3720, pp. 242–254, Springer.

[51] Aĺıpio M. Jorge and Paulo J. Azevedo, “An experiment with association
rules and classification: post-bagging and conviction”, in Discovery science,
Singapore, 2005, vol. LNCS 3735, pp. 137–149, Springer.

[52] Paulo J. Azevedo and Aĺıpio Mário Jorge, “Iterative reordering of rules for
building ensembles without relearning”, in 10th International Conference on
Dicovery Science. 2007, vol. LNCS 4755, pp. 56–67, Springer.

[53] David Meyer, Friedrich Leisch, and Kurt Hornik, “The support vector machine
under test”, Neurocomputing, vol. 55, no. 1-2, pp. 169–186, 2003.

[54] Bart Bakker and Tom Heskes, “Clustering ensembles of neural network models”,
Neural Networks, vol. 16, no. 2, pp. 261–269, 2003.

[55] Christino Tamon and Jie Xiang, “On the boosting pruning problem”, in
European Conference on Machine Learning. 2000, vol. LNCS 1810, pp. 404–
412, Springer.

33



[56] Matti Aksela, “Comparison of classifier selection methods for improving
committee performance”, in International Workshop on Multiple Classifier
Systems. 2003, vol. LNCS 2709, pp. 84–93, Springer.

[57] D. Partridge and W. B. Yates, “Engineering multiversion neural-ney systems”,
Neural Computation, vol. 8, no. 4, pp. 869–893, 1996.

[58] Zhi-Hua Zhou and Wei Tang, “Selective ensemble of decision trees”, in
International Conference on Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing. 2003, vol. LNAI 2639, pp. 476–483, Springer.

[59] Dymitr Ruta and Bogdan Gabrys, “Application of the evolutionary algorithms
for classifier selection in multiple classifier systems with majority voting”, in
International Workshop on Multiple Classifier Systems. 2001, vol. LNCS 2096,
pp. 399–408, Springer.

[60] Guilherme P. Coelho and Fernando J. Von Zuben, “The influence of the pool
of candidates on the performance of selection and combination techniques in
ensembles”, in International Joint Conference on Neural Networks, 2006, pp.
10588–10595.

[61] Daniel Hernández-Lobato, Gonzalo Mart́ınez-Muñoz, and Alberto Suárez,
“Pruning in ordered regression bagging ensembles”.

[62] João M. Moreira, Jorge Freire Sousa, Aĺıpio M. Jorge, and Carlos Soares, “An
ensemble regression approach for bus trip time prediction”, in Meeting of the
EURO Working Group on Transportation, 2006, pp. 317–321.

[63] Dragos D. Margineantu and Thomas G. Dietterich, “Pruning adaptive
boosting”, in International Conference on Machine Learning, 1997, pp. 211–
218.

[64] S.B. Kotsiantis and P.E. Pintelas, “Selective averaging of regression models”,
Annals of Mathematics, Computing & Teleinformatics, vol. 1, no. 3, pp. 65–74,
2005.

[65] Aleksandar Lazarevic, “Effective pruning of neural network classifier
ensembles”, in International Joint Conference on Neural Networks, 2001, pp.
796–801.

[66] Giorgio Giacinto and Fabio Roli, “Design of effective neural network ensembles
for image classification purposes”, Image and Vision Computing, vol. 19, no. 9,
pp. 699–707, 2001.

[67] Michael LeBlanc and Robert Tibshirani, “Combining estimates in regression
and classification”, Journal of the American Statistical Association, vol. 91, pp.
1641–1650, 1996.

[68] Leo Breiman, “Stacked regressions”, Machine Learning, vol. 24, pp. 49–64,
1996.

[69] David H. Wolpert, “Stacked generalization”, Neural Networks, vol. 5, no. 2,
pp. 241–259, 1992.

34



[70] Cristopher J. Merz and Michael J. Pazzani, “A principal components approach
to combining regression estimates”, Machine Learning, vol. 36, pp. 9–32, 1999.

[71] Domingo Ortiz-Boyer, César Hervás-Mart́ınez, and Nicolás Garćıa-Pedrajas,
“Cixl2: A crossover operator for evolutionary algorithms based on population
features”, Journal of Artificial Intelligence Research, vol. 24, pp. 1–48, 2005.

[72] Jyrki Kivinen and Manfred K. Warmuth, “Exponentiated gradient versus
gradient descent for linear predictors”, Information and Computation, vol. 132,
no. 1, pp. 1–63, 1997.

[73] P. Stark and R. Parker, “Bounded-variable least squares: an algorithm and
applications”, Computational Statistics, vol. 10, no. 2, pp. 129–141, 1995.

[74] J.H. Friedman, “Multivariate adaptive regression splines”, The Annals of
Statistics, vol. 19, no. 1, pp. 1–141, 1991.

[75] Ljupco Todorovski and Saso Dzeroski, “Combining classifiers with meta
decision trees”, Machine Learning, vol. 50, no. 3, pp. 223–249, 2003.

[76] Kevin Woods, “Combination of multiple classifiers using local accuracy
estimates”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 4, pp. 405–410, 1997.

[77] Seppo Puuronen, Vagan Terziyan, and Alexey Tsymbal, “A dynamic integration
algorithm for an ensemble of classifiers”, in International Symposium on
Methodologies for Intelligent Systems. 1999, vol. LNCS 1609, pp. 592–600,
Springer.

[78] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han, “Mining concept-drifting
data streams using ensemble classifiers”, in ACM International Conference on
Knowledge Discovery and Data Mining, 2003.

[79] Volker Tresp and Michiaki Taniguchi, “Combining estimators using non-
constant weighting functions”, Advances in Neural Information Processing
Systems, vol. 7, pp. 419–426, 1995.

[80] Luca Didaci, Giorgio Giacinto, Fabio Roli, and Gian Luca Marcialis, “A study
on the performances of dynamic classifier selection based on local accuracy
estimation”, Pattern Recognition, vol. 38, no. 11, pp. 2188–2191, 2005.

[81] Antanas Verikas, Arunas Lipnickas, Kerstin Malmqvist, Marija Becauskiene,
and Adas Gelzinis, “Soft combining of neural classifiers: a comparative study”,
Pattern Recognition Letters, vol. 20, no. 4, pp. 429–444, 1999.

[82] Niall Rooney and David Patterson, “A weighted combination of stacking and
dynamic integration”, Pattern Recognition, vol. 40, no. 4, pp. 1385–1388, 2007.

35


