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Abstract

In this thesis, methods of probabilistic weather forecasting using ’analogs’ are tested

and compared. Using ’analogs’ means that states of the atmosphere (in forecast or

observation space), similar to the current one, are sought in an archive of past fore-

casts and observations and utilized for forecasting.

The idealized Lorenz96 model, rather than a far higher-dimensional numerical

weather prediction (NWP) model is used for testing these methods.

Three basic methods are presented: The first one, termed no-forecast-model method,

involves scanning the archive for past observations similar to the current one and us-

ing their temporal progress as a forecast. The idea of the second approach (analogs

of a deterministic forecast) is that similar states in model space correspond to similar

states in observation space. The archive is scanned for NWP forecasts analog to the

current one and the corresponding observations are extracted. These observations

then are assumed to form an improved forecast. For the third method, called analog

dressing, the same technique as for analogs of a deterministic forecast is applied

separately to each member of an ensemble forecast.

By taking several ’analogs’ respectively, these approaches all provide probabilistic

forecasts.

In addition, a raw ensemble forecast and methods that statistically postprocess en-

semble forecasts are also tested and compared. These are ensemble dressing, logistic

regression, nonhomogenous Gaussian regression and Bayesian model averaging.

The approaches using analogs show very promising results in this simple model.

For longer lead times, the analogs of a deterministic forecast and analog dressing

approaches even perform best among all tested methods.
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Zusammenfassung

In dieser Arbeit werden Methoden zur probabilistischen Wettervorhersage, die

’Analoge’ verwenden, getestet und verglichen. ’Analoge’ verwenden, bedeutet, dass

zum aktuellen Zustand der Atmosphähre (im Modell- oder Beobachtungsraum),

ähnliche in einem Archiv aus alten Vorhersagen und Beobachtungen gesucht und

zur Vorhersage genutzt werden.

Zum Testen dieser Verfahren, wird anstatt eines viel höher-dimensionalen nu-

merischen Wettervorhersage (NWP) Modells, das idealisierte Lorenz96 Modell ver-

wendet.

Dabei werden drei grundsätzliche Methoden vorgestellt: Für die erste Methode (no-

forecast-model) werden analoge Beobachtungen zur aktuellen gesucht, und deren

weiterer zeitlicher Verlauf als Vorhersage verwendet. Die Idee des zweiten Verfahrens

(analogs of a deterministic forecast) ist, dass ähnliche Zustände im Modellraum mit

ähnlichen Zuständen im Beobachtungsraum zusammenhängen. Das Archiv wird

nach analogen NWP Vorhersagen zur aktuellen durchsucht und die dazugehörigen

Beobachtungen dem Archiv entnommen. Diese sollen dann eine verbesserte Vorher-

sage bilden. Die 3. Methode (analog dressing) enspricht dem zweiten Verfahren

(analogs of a deterministic forecast), angewandt jeweils auf die einzelnen Mitglieder

einer Ensemble Vorhersage.

Indem jeweils mehrere ’Analoge’ verwendet werden, wird durch alle 3 Verfahren eine

probabilistische Vorhersage geliefert.

Zum Vergleich werden weiters eine rohe Ensemble Vorhersage und Methoden,

die Ensemble Vorhersagen statistisch nachbearbeiten (Ensemble MOS Methoden),

getestet. Dazu gehören Ensemble Dressing, Logistic Regression, Non-homogenous

Gaussian Regression und Bayesian Model Averaging.
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Die Methoden, die Analoge verwenden, liefern dabei in diesem einfachen Modell

sehr vielversprechende Ergebnisse. Für längere Vorhersagezeiträume funktionieren

das zweite und dritte Verfahren (analogs of a deterministic forecast und analog

dressing) sogar besser als alle anderen getesteten Methoden.
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Chapter 1

Introduction

1.1 Motivation

The common method to predict future weather is to run a numerical weather model.

If the present state of the atmosphere is known, future states can be computed with

the largely known physical laws of the weather system.

However, due to imperfection of observations, the state of the atmosphere can at

most be approximated. In addition, because of limited computational resources, not

all processes in the atmosphere can be resolved (e.g. convection), and therefore have

to be parametrized. Because of both uncertainties in the initial conditions and im-

perfection of the model equations, forecasts always exhibit uncertainties. Therefore,

for many users, a probabilistic forecast (i.e. predicting a probability distribution),

quantifying these uncertainties, is superior to a deterministic one (i.e. forecasting a

single value).

The most common way to obtain an outline of these uncertainties is to run an

ensemble system. One or several deterministic numerical forecast models are in-

tegrated several times with slightly perturbed initial conditions. If the perturbed

initial conditions represent the uncertainty of the analysis (i.e. approximation of

the state of the atmosphere), it is assumed that after integrating the model forward

in time, the different model states represent the uncertainty of the forecast. Large

ensemble dispersion (i.e. large differences between the ensemble members) indicates

large uncertainty, while a forecast is assumed to be more certain if the ensemble
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2 Introduction

members are similar to each other.

Furthermore, the use of different models (multi-model ensemble) or model equations

can take into account model errors.

To obtain a probabilistic forecast from an ensemble, the simplest approach is to

take the ensemble relative frequencies as probability density function. However, it

is a well known problem of many ensemble systems that they are subject to under-

dispersion (e.g. Hamill 2001; Wang and Bishop 2005; Bishop 2008). In this case,

probabilistic forecasts made with ensemble relative frequencies are overconfident (i.e.

the forecasted probability density function is sharper than the density function of

truth given the forecast).

As well as improving the ensemble forecasts themselves, statistical postprocessing

(model output statistics - MOS) is a good way to achieve better probabilistic fore-

casts. Therefore, an archive of past ensemble forecasts with a frozen model (refore-

cast archive) and observations is needed. By utilizing past forecast errors, current

forecasts can be corrected. In other words, forecasts made in model space (phase

space of the simplified atmosphere, described by the numerical model) are projected

into observation space (phase space of the true atmosphere).

Several ensemble MOS approaches have been developed and tested in the past few

years. In particular a lot of research has been carried out on ensemble dressing

(e.g. Roulston and Smith 2003; Wang and Bishop 2005; Fortin et al. 2006), re-

gression (e.g. Hamill et al. 2004; Gneiting et al. 2005), and Bayesian methods

(e.g. Stephens 2005; Raftery et al. 2005; Bishop 2008). Furthermore, some of these

methods have been compared in Wilks (2006b, 2007), both, theoretically in a sim-

ple model framework (Lorenz96 model - Lorenz 1996) and for a real atmospheric

variable (temperature).

In contrast, very simple but quite promising ensemble MOS approaches that use

analogs (Hamill et al. 2006; Hamill and Whitaker 2006) are treated rarely in liter-

ature. The basic idea of the analog methods of Hamill and Whitaker (2006) is that

similar states in model space correspond to similar states in observation space. So if

a forecast similar to the current one can be found in the archive, the corresponding

observed state of the atmosphere is assumed to be similar to the state to be fore-



1.2 Outline 3

casted.

The aim of this study is to compare these and further methods using analogs with

some of the best-working ensemble MOS methods - ensemble dressing, logistic re-

gression, nonhomogeneous Gaussian regression and Bayesian model averaging - in

the same simple model setting (Lorenz96) as used in Wilks (2006b).

One of the biggest difficulties of analog methods is to find an appropriate criterion

for the analogy (i.e. variables, region, height levels, ...). In a simple system like the

Lorenz96 model (one resolved variable, 1 dimensional grid), the criterion is clearly

much more simple than in the real atmosphere. Thus, the use of such a model to

test these methods can reveal their theoretical performance without testing a large

number of different criteria.

1.2 Outline

In the second chapter, first the Lorenz96 system is described. Subsequently, several

scores used to test the different methods are introduced.

In chapter three, both the ensemble MOS methods and the approaches using analogs

are presented. Their comparison can be found in chapter four. Chapter five provides

a summary and conclusion.
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Chapter 2

Lorenz96 model and performance

measures

In the first part of this chapter, the Lorenz96 model is described. In the second part,

several measures to estimate the performance of probabilistic forecast methods are

presented

2.1 Lorenz96 model

To test the various ensemble MOS methods and approaches using analogs, a forecast

and verification dataset is needed. For simplicity, the Lorenz96 model, which shall

simulate weather and weather forecasts, is used instead of real weather data. After

a basic description of the model, the initialization of ensembles is explained in this

section.

2.1.1 Model equations

The Lorenz96 model describes a system that consists of two types of variables. A

set of a large scale quantity, which is connected to a set of a faster, smaller scale

parameter. The ’true’ state of the systems is described by the two equations:

dXk

dt
= −Xk−1(Xk−2 − Xk+1) − Xk + F − hc

b

kj
∑

j=J(k−1)+1

Yj; k ∈ {1, ..., K} (2.1a)

dYj

dt
= −cbYj+1(Yj+2 − Yj−1) − cYj +

hc

b
Xint[(j−1)/J]+1; j ∈ {1, ..., JK} (2.1b)

5



6 Lorenz96 model and performance measures

The variables Xk∈{1,...,K} and Yj∈{1,...,JK} are assumed to have cyclic boundary con-

ditions (XK = X0, YJK = Y0) and can thus be interpreted as gridpoints (in a one

dimensional grid), arranged in a latitudinal circle (Lorenz 2004). Each Xk∈{1,...,K} is

connected to J variables with smaller amplitude and frequency (Yj∈{J(k−1)+1,...,kJ}).

The system is illustrated schematically in Figure 2.1.

Figure 2.1: Schematic illustration of the Lorenz96 system with K=8 large scale variables

Xk (large circles) each connected with J=32 smaller scale variables Yj (small circles) (Wilks

2005)

The smaller scale Yj can be interpreted as a quantity unresolved in NWP (e.g. con-

vection), while the larger scale Xk represents a parameter that favors the unresolved

mechanism (e.g. static instability; Lorenz 1996).

The system simulates advection (quadratic terms), dissipation (linear terms) and

external forcing (constant terms) (Lorenz 1996). The last terms on the right sides

of Eq. (2.1a) and (2.1b) specify the coupling between the large scale variable Xk

and the J small scale variables Yj, which refer to it.

In the literature two different methods to specify 1 ’day’ can be found: Eq. (2.1a)

is scaled such that the quadratic and linear term do not have coefficients. Hence, a

time unit has to be regarded as the damping time of the system. This is approx-
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imately 5 days for the atmosphere (Lorenz 2004). With this definition, one ’day’

equals 0.2 time units.

Wilks (2006a) defined one day as the timespacing with a lag-1 autocorrelation of

0.5 for each of the X variables. This corresponds to 0.15 time units, and a damping

time of 6.6̇ days. In this thesis, the second definition is used.

The coefficients c and b denote that the smaller scale variables have a c times higher

frequency, while their amplitude is b times smaller. Furthermore, the parameter h

describes the strength of the coupling (Lorenz 1996).

The specific parameter values used in the present study are K=8, J=32, h=1, b=10,

c=10 and F=20, as used by Wilks (2005, 2006a).

The equations are advanced using fourth-order Runge-Kutta integration scheme

with time step 0.0001. While Eq. (2.1a) and (2.1b) are used to compute the ’true’

state of the system, the equations

dX∗
k

dt
= −X∗

k−1(X
∗
k−2 − X∗

k+1) − X∗
k + F − hc

b
U(X∗

k) (2.2a)

U(X∗
k) = 0.262 + 1.45X∗

k − 0.0121X∗2
k − 0.00713X∗3

k + 0.000296X∗4
k (2.2b)

shall simulate a forecast for the system. The parameterization of the unresolved

variable Y (Eq. 2.2b) is obtained through calculating a polynomial regression (eq.

2.2b) of the unresolved tendencies U(t) (Eq. 2.3) as function of Xk(t) (Wilks 2005,

2006a).

U(t) = [−Xk−1(t)(Xk−2(t) − Xk+1(t)) − Xk(t) + F ] − [
Xk(t + ∆t) − Xk(t)

∆t
] (2.3)

In addition to the fact that the Y variables are parametrized here, Eq. (2.2a) is

integrated with Runge-Kutta 2nd order and a timestep of 0.005. Together with a

perturbed initialization, the main reasons for forecast errors in operational numer-

ical weather prediction (NWP) are simulated. Consequently, it is quite probable

that ensemble forecasts in the Lorenz96 model behave similarly to ensemble fore-

casts in real NWP, and the results obtained here also have relevance for the true

atmosphere.

For the testing, two sets of data are required. First a ’historical database’ was

created by integrating Eq. (2.1a) and (2.1b), sampling every 0.15 time units, and
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thus simulating a sequence of daily analyses (Wilks 2006a). The integration was

performed over 10000 ’days’. To test the influence of the dataset size, sequences of

the first 50, 100, 200, 500, 1500 and 3500 ’days’ of the database are also used.

Additionally, a verification dataset of size n=10000 was created, again by integrat-

ing the model equations sampling 10000 sets of 6 points (T=0,1,..,5), the 6 points

spaced by 1 time unit respectively. The sets are separated by 50 time units to ensure

that they are independent.

’Climate’ is given by the ’historical database’ (figure 2.2 shows the ’climatological’

distribution of Xk∈{1,...,K}). Probabilistic forecasts are made for six categories, sepa-

rated by five quantiles of the climatological distribution of the predictand Xk∈{1,...,K}.

The specific values of the quantiles are: q1/10 = −2.867, q2/3 = 1.2886, q1/2 = 3.5338,

q2/3 = 6.0279 and q9/10 = 10.9403.
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Figure 2.2: Histogram of the X values from the training data, illustrating the climato-

logical distribution of the predictand X

2.1.2 Initialization of ensembles

According to Anderson (1996), in a good initialization ensemble members need to

lie on the attractor of the system (points in phase space that can occur in a system).
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Investigation of the structure of the attractor can be very difficult, however extremely

long integration of the model can reveal the nature of its attractor (Anderson 1996).

Therefore, Eq. (2.1) was integrated through a very large number of timesteps to find

at least 100 analogs for all of the 20000 (10000 for the training data and 10000 for

the test data) initial points. In this context, analog means that each Xk,analog has to

lie within an interval of 5% of the climatological range (which is the same for every

Xk: 1.2) centered on the Xk of the initial point (Xk − 0.6 < Xk,analog < Xk +0.6 for

all k = 1, ..., K) (Wilks 2005). Of these analogs, a (8*8) covariance matrix

[Slocal]i,j =
1

nanalogs − 1

nanalogs
∑

i=1

(Xi − X̄i)(Xj − X̄j) (2.4)

was computed for each initial point. Moreover, matrices [Sinit] can be computed

through

[Sinit] =
0.052σ2

clim
1
8

∑8
k=1 λk

[Slocal] (2.5)

where λk are the eigenvalues of [Slocal]. These matrices [Sinit] shall be the covariance

matrices of the initial ensemble distribution and have the same correlations and

eigenvectors as [Slocal], but scaled such that the standard deviation in each of the K

directions is 5% of the climatological standard deviation (σclim = 5.07)(Wilks 2005).

To simulate the imperfection of the analysis, the ’true’ values of Xk first have to be

perturbed. This is realized with:

Xanal = Xtrue + chol([Sinit])z (2.6)

for all initial points. Here X denotes a vector with K=8 elements Xk∈{1,..K}, chol([A])

the Cholesky decomposition of a matrix [A] ([A] = [L][L]T , [L] = chol([A])) and z a

K=8 dimensional vector of independent Gaussian random draws, which is different

for each initial point.

Centered on this analysis, ensembles are initialized by:

Xj = Xanal + chol([Sinit])zj, j = 1, ..., nens (2.7)

To create an ’historical’ archive of ensemble forecasts (reforecast archive) and a

dataset of ensemble forecasts, in order to test the ensemble MOS and analog meth-

ods, ensembles of sizes nens = 5, 10, 25, 51 and 100 were initialized for each of the
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20000 (10000 for the training data and 10000 for the test data) initial points. Each

member was advanced through Eq. (2.2) with a Runge Kutta 2nd order integration

scheme with timestep 0.005. Five day ensemble forecasts were simulated by sam-

pling every 0.15 time units.

Hereafter, these ensemble forecasts are termed dynamical ensemble forecasts, in

order to discern them from statistically obtained ensembles.



2.2 Performance measures

To estimate and compare the performance of the various methods, several measures

are used. These measures are described in this section.

2.2.1 Brier (skill) score

To compare the quality of different probabilistic forecast methods, a scalar measure

is very convenient. For two-category forecasts (an event can or cannot occur) the

Brier score (Wilks 2006b) can be used:

BS =
1

n

n
∑

k=1

(yk − ok)
2 (2.8)

n is the number of events available for testing (here: 10000), yk denotes the predicted

probability of the k-th event to occur and ok becomes 0 if the event is not observed,

and 1 if it is. Because 0 ≤ yk, ok ≤ 1, the Brier score can only take on values in the

range 0 ≤ BS ≤ 1 (Wilks 2006b). A perfect forecast attains a Brier score of 0.

The Brier skill score specifies the performance of one method relative to another:

BSS =
BS − BSref

0 − BSref

= 1 − BS

BSref

, (2.9)

where BSref indicates the Brier score of the reference method. If BSS > 0, the

tested method is better than the reference method and if BSS < 0, it is worse. In

the present study, mostly the climatology (i.e. climatological relative frequencies) is

used as reference.

2.2.2 Ranked probability (skill) score

Since the forecasts in this study have more than 2 categories, one single Brier (skill)

score cannot fully characterize a forecast method. To get an overall scalar measure

for a method, the ranked probability score (RPS) (Wilks 2006b; Epstein 1969) can

be used:

(RPS)k =

J
∑

m=1

(Ym − Om)2 (2.10a)

11



12 Lorenz96 model and performance measures

Ym =
m

∑

j=1

yj, m = 1, ..., J ; (2.10b)

Om =
m

∑

j=1

oj, m = 1, ..., J ; (2.10c)

Here J is the number of categories, yj the probability of the verification to fall in

the j-th category and oj becomes 1 if the observation falls in the j-th category, and

0 otherwise.

The forecast categories that have been used here are −∞ to q1/10, q1/10 to q1/3,

q1/3 to q1/2, q1/2 to q2/3, q2/3 to q9/10 and q9/10 to ∞, where q are the climatological

quantiles of the predictand X.

The ranked probability score denoted by Eq. (2.10a) only gives a measure for a single

forecast event (subscript k denotes the RPS of the kth event). For a set of n (here

10000) events, the (RPS)k are simply averaged:

RPS =
1

n

n
∑

k=1

(RPS)k (2.11)

For our purposes the advantage of a method over a reference method is sometimes

more meaningful (ranked probability skill score):

RPSS =
RPS − RPSref

0 − RPSref
= 1 − RPS

RPSref
, (2.12)

where RPSref is the ranked probability score of the reference method. The climatol-

ogy is used as reference in this study. Its predicted probabilities of the verification

(V) being smaller than a quantile q per definition equal the subscripts of the quantile

(Y1 = p(V < q1/10) = 1/10, Y2 = y1 + y2 = p(V < q2/3) = 2/3),...)

2.2.3 Reliability diagram

Unlike single-number scores, such as the Brier score or the ranked probability score,

the reliability diagram shows the full joint distribution of forecasts and observations

(Wilks 2006b). Like the Brier score it can only be used for binary predictands (2

categories). It consists of 2 elements, the calibration function and the refinement

distribution (Wilks 2006b).

For the calibration function, the conditional probability p(o|y) is plotted against the
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predicted probability y for the event to occur. The conditional probability is the

probability of positive observations (event occurs), given that the predicted prob-

ability is y. For a perfect forecast, y and p(o|y) should be equal. The calibration

function of a perfect forecast is thus a straight line with slope 1 (slashed line in

subsequent figures).

For the practical realization, the probabilities have to be divided into categories.

Here I=21 categories are used, with probabilities rounded to the nearest multiple

of 0.05. The conditional probability for one category is then assessed through the

relative frequency of positive observations for forecasts of this category. See Figure

2.3a for examples of calibration functions.

In the second part of the reliability diagram, the refinement distribution, the fre-

quency of use p(y) of a probability forecast y is shown. Its dispersion can indicate

the overall confidence of the forecaster. Because the probabilities of binary pre-

dictands are regarded, little dispersion (forecasts frequently near the climatological

relative frequencies) reflects low confidence, and forecasts with frequently extreme

values (probabilities close to 0 or 1) exhibit high confidence (Wilks 2006b).

Multiplying the calibration with the refinement function leads to the joint distribu-

tion of forecasts and observations.

p(yi, o) = p(o|yi)p(yi) (2.13)

In addition to the two functions, the values of the ”Reliability” and ”Resolution”

terms of the algebraic decomposition of the Brier Score (BS; Wilks 2006b; Murphy

1973) are displayed in the reliability diagrams here.

BS =
1

n

I
∑

i=1

Ni(yi − oi)
2 − 1

n

I
∑

i=1

Ni(oi − o)2 + o(1 − o) (2.14)

”Reliability” ”Resolution” ”Uncertainty”

Here Ni denotes the number of forecasts predicting yi, oi = p(o|yi) is the conditional

probability of a positive observation, given a forecast y and o = 1
n

∑I
i=1 Nioi is the

overall climatological relative frequency of o.

The reliability in Eq. (2.14) is a weighted average of squared vertical distances be-

tween the calibration function and the 1:1 reference line (calibration function of a
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perfect forecast). Because smaller Brier scores are better, smaller values of reliabil-

ity are desirable. The weights Ni/n = p(yi) (how often yi was forecasted) are shown

in the reliability diagram as refinement distribution. So if the refinement distribu-

tion is small, a calibration function that differs to a greater extent from the reference

line does not imply a bad reliability. Likewise, for a ’reliable’ forecast method, the

calibration function has to be closer to the 1:1 line, if the refinement distribution

takes on high values (Bröcker and Smith 2007).

The resolution term in Eq. (2.14) is a weighted average of squared differences be-

tween the calibration function and the overall climatological relative frequency o.

Since the resolution term is subtracted in Eq. (2.14), higher values are better.

Therefore, for a given reliability, steeper calibration functions are desirable. As with

reliability, the squared differences are weighted with p(yi), shown by the refinement

distribution.

Figure 2.3 shows example calibration and refinement functions.

The center panel of Figure 2.3a depicts a well calibrated forecast. With small dif-

ferences between the 1:1 line and the calibration function, it obtains small values

for the reliability, and thus achieves a good Brier score. The top and bottom panels

show typical calibration functions of unconditionally biased forecasts. If the pre-

dicted probability is frequently too high, the calibration function has the same slope

as the 1:1 line but is offset downwards. If, for example, forecasts are made for pre-

cipitation, the predicted precipitation is stronger than the actual precipitation (wet

bias).

If the predicted probability is frequently too low, the calibration function is off-

set upwards (bottom panel). In the case of forecasting precipitation, the predicted

weather is drier than the actual weather (dry bias).

The right and left panels of Figure 2.3a show characteristic calibration functions of

forecasts exhibiting conditional biases. Forecasts with calibration functions similar

to the one in the left panel exhibit overforecasting for smaller and underforecasting

for larger forecast probabilities. Because the averaged squared difference between

the function and the overall climatological frequency is large, the resolution term

becomes large (good resolution) and thereby the Brier score becomes small. In
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Figure 2.3: Example characteristic forms for the two elements of the reliability diagram.

(a) calibration function and (b) refinement distribution taken from (Wilks 2006b)
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contrast, the averaged squared distance to the 1:1 line is large, which enlarges the

reliagibity and thus the Brier score.

In the right panel of Figure 2.3a, low forecast probabilities are associated with un-

derforecasting, while high forecast probabilities are associated with overforecasting.

For both reasons, because the resolution term is small and the reliability term large,

such a forecast reaches bad Brier scores.

Typically, a calibration function with a shallower slope than the 1:1 reference line

(right panel in Figure 2.3a) is associated with a refinement distribution similar to

the one shown in the right panel of Figure 2.3b (high confidence), because extreme

probabilities are predicted too often. Conversely, forecasts with a calibration func-

tion steeper than the 1:1 line mostly have refinement distributions exhibiting low

confidence (left panel of Figure 2.3b).



Chapter 3

Forecast methods

In this chapter, several methods of probabilistic forecasting are described. In the

first section, the ensemble MOS approaches tested by Wilks (2006a) are presented.

Subsequently, the methods using analogs are explained.

3.1 Ensemble-MOS approaches

Wilks (2006a) showed that the methods ensemble dressing, logistic regression and

non-homogeneous Gaussian regression work best in the Lorenz96 model. A modified

new Bayesian model averaging method is also tested here and direct model output

is used as a reference method. These five approaches are described in this section.

3.1.1 Direct model output (DMO)

Direct model output, as the name suggests, is not a MOS method, however, it is used

here as a reference method. A reasonably efficient MOS method should give better

results than this approach (Wilks 2006a).

It is assumed that the distribution of the ensemble reflects the probability distri-

bution of the predictand. The simplest approaches for computing the cumulative

distribution function are:

Pr(V ≤ q) =
Rank(q)

(nens + 1)
(3.1)

Pr(V ≤ q) =
Rank(q) − 1

(nens)
(3.2)

17
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Pr(V ≤ q) is the probability of the verification V to be smaller or equal the quantile

q, and Rank(q) specifies the rank of the quantile q in the ensemble (Rank(q) = 1 if

all ensemble members are greater and Rank(q) = nens + 1 if all ensemble members

are smaller than the quantile q)

Note that in Eq. (3.1), Pr(V ≤ q) = 1 if all nens members are smaller than q and

that in Eq. (3.2) additionally Pr(V ≤ q) = 0 if all members are greater than q.

Since these extreme probabilities are not desired, different approaches are needed.

Several estimates for constructing cumulative frequency distributions, known as plot-

ting positions, are described in Wilks (2006b). Here, the so called Tukey plotting

position is used

Pr(V ≤ q) =
Rank(q) − 1/3

(nens + 1) + 1/3
, (3.3)

which approximates the median of the sampling distribution (Wilks 2006b). Thus,

the cumulative probability can take on values between 2/(3nens + 4) and (3nens +

2)/(3nens + 4).

3.1.2 Ensemble dressing

In the ensemble dressing approaches of Roulston and Smith (2003) and Wang and

Bishop (2005), a statistically-derived daughter ensemble is applied to each mem-

ber of a dynamical ensemble forecast. The probability distribution of the resulting

greater ensemble should better estimate the distribution of truth given the forecast

than the raw dynamical ensemble.

The daughter ensemble is obtained from historical forecast errors. In Roulston and

Smith (2003), errors of the best members (members that are closest to the verifi-

cation in phase space) are used to dress the ensemble. After the best members are

identified in the historical database, their errors are resampled to obtain a daughter

ensemble for each ensemble member. Normally, only best member errors, of one

member itself, are used to dress this. However, in ensembles where no member is

superior to any other (like in the Lorenz96 ensemble 1 ), best member errors of all

1the first member is slightly more likely to be the best member, because it is initialized with

the analysis (i.e. best approximation of the current state). However, the difference is marginal and

therefore disregarded.
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members can be applied to them.

Wang and Bishop (2005) argued, that this best member approach of Roulston and

Smith (2003) does not guarantee a ’reliable’ (Wilks 2006b) ensemble (i.e. it is not

mathematically constrained to be drawn from the same distribution as the verifica-

tion). Hence, they developed an approach that forces the variance of the dressed

ensemble to be the same as the error variance of the ensemble mean in the training

data.

In contrast to Wang and Bishop (2005), instead of dressing the ensemble with daugh-

ter ensembles, Wilks (2006a) proposed using Gaussian dressing distributions (ker-

nels) and averaging them. Using Gaussian kernels is appropriate for the use of the

Lorenz96 model, however for the real atmosphere, some variables (e.g. precipita-

tion) might need different distributions. The variance of the Gaussian distributions

is given by:

σ2
D = σ2

X−V
− (1 +

1

nens
)σ2

ens, (3.4)

where the first term on the right-hand side is the historical error variance of the

(debiased) ensemble mean, and the second term denotes the ensemble variance.

The factor (1+ 1
nens

) is needed to account for the fact that the ensemble mean in the

training data has been debiased (Wang and Bishop 2005). The debiasing is realized

through:

X̃ t
i = at + btX

t
i , (3.5)

where the parameters at and bt minimize the function

n
∑

i=1

nens
∑

j=1

K
∑

k=1

(at + btX
t
i,j,k − V t

i,k)
2 (3.6)

for the training data (n=training data size, K=number of ’gridpoints’). at and bt are

computed separately for each timestep (t=1,2,..,5) and are equal for all members.

The cumulative distribution function of the forecast can then be computed, dressing

all ensemble members with a Gaussian kernel with variance σD and averaging them:

Pr(V ≤ q) =
1

nens

nens
∑

i=1

Φ[
q − x̃i

σD
] (3.7)

where Φ[•] is the standard Gaussian cumulative distribution function

Φ[h] =
1

2π

∫ h

−∞

exp(−t2

2
)dt (3.8)
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and x̃i the debiased value of the ith ensemble member.

The approaches of Wang and Bishop (2005) and Roulston and Smith (2003) are lim-

ited to underdispersive ensembles, because by dressing all members symmetrically,

they increase the dispersion in all cases. Because underdispersion is a common

problem of current dynamical ensemble systems (Wang and Bishop 2005; Bishop

2008), including the Lorenz96 model used in this study, this is for most cases not a

limitation.

In the approach of Fortin et al. (2006), the members are dressed and weighted differ-

ently, dependent on their rank. This makes their method also usable for overdisper-

sive ensembles (Fortin, Favre, and Said 2006). However, due to the underdispersion

of the Lorenz96 ensemble system, this enhancement did not display better results,

so the simpler approach of Wang and Bishop (2005) is used here

3.1.3 Logistic regression

Another method to postprocess a dynamical ensemble forecast is logistic regression.

With this, the probability of a binary predictand (2 categories) falling into one cat-

egory can be estimated (Wilks 2006b). Hamill et al. (2004) used only the ensemble

mean as predictor, because they found the correlation between ensemble mean error

and ensemble spread to be low in their data. However, for the Lorenz96 system

this spread skill relationship is sufficiently strong (Wilks 2006a), so the use of the

ensemble standard deviation as a second predictor increases the forecast accuracy

of this method. According to Wilks (2006b and 2006a), the distribution function is

given by:

Pr(V ≤ q) =
exp(b0 + b1xens + b2σens)

1 + exp(b0 + b1xens + b2σens)
(3.9)

The parameters b0, b1 and b2 are computed, maximizing the log likelihood function

ln(Λ) =
n

∑

i=1

{I(Vi ≤ q)[b0 + b1xens,i + b2σens,i] − ln[1 + exp(b0 + b1xens,i + b2σens,i)],

(3.10)

where n is the number of training events and the indicator function I(•)=1 if the

argument is true and I(•)=0 if it is not. Eq. (3.10) was maximized iteratively

using the simplex search method (Lagarias, Reeds, Wright, and Wright 1998), as
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implemented in Matlab R© 2007a. The regression parameters are fitted separately

for each quantile and lead time.

3.1.4 Non-homogeneous Gaussian regression (NGR)

Gneiting et al. (2005) presented a different regression method for predictands that

are normal distributed. A predictand v can be estimated using linear regression

v = a + bxens + ǫ (3.11)

where ǫ is an error term that averages to zero. Inversely, once the regression coef-

ficients a and b are estimated using historical data, a probabilistic forecast can be

made, setting ǫ as a Gaussian distribution. To account for the spread skill relation-

ship, the variance of this Gaussian distribution can be estimated by

σ2
ǫ = c + dσ2

ens (3.12)

(Gneiting, Raftery, Westveld, and Goldman 2005). This estimation is certainly only

appropriate if the error term ǫ is distributed normally .

As proposed by Gneiting et al. (2005), the regression parameters a,b,c and d have

been derived by minimizing the continuous ranked probability score (CRPS) (Hers-

bach 2000; Matheson and Winkler 1976; Wilks 2006b)

CRPS =
1

n

n
∑

i=1

(c + dσ2
ens,i)

1/2(zi[2Φ(zi) − 1] + 2φ(zi) − π−1/2) (3.13a)

zi =
vi − (a + bxens,i)

(c + dσ2
ens,i)

1/2
, (3.13b)

where Φ(•) and φ(•) are the cumulative distribution function (CDF) and the prob-

ability density function (PDF) of the normal distribution, respectively. Eq. (3.13)

is minimized iteratively for each timestep with the same regression parameters a

through d for each quantile.

With the parameters a,b,c and d, the distribution function is given by

Pr(V ≤ q) = Φ[
q − (a + bxens)

(c + dσ2
ens,i)

1/2
]. (3.14)
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3.1.5 Bayesian model averaging (BMA)

Bayesian model averaging (BMA) has already been used for a long time for statistic

models (Leamer 1978; Hoeting et al. 1999). Raftery et al. (2005) were the first who

proposed also using BMA for dynamical models. Like in ensemble dressing, kernel

distributions are generated around each member of the ensemble. The main differ-

ence is that the dressing distributions are different for each member. Additionally,

the different members are weighted and debiased separately, which is quite reason-

able, especially for multi model ensembles. Like the ensemble dressing method used

here, BMA is only appropriate for underdispersive ensembles.

First, each member is debiased separately and dressed with its own kernel distri-

bution, using its historical errors for the occasions where it was the best member.

Then the probability of each member being the best member is obtained once again

using historical data. These probabilities of being the best of all members add up

to one, and can thus be seen as weights (wk∈{1,...,nens}). The probability distribution

of truth given a forecast is then expressed by:

ρ(v|x1, ..., xnens) =
nens
∑

k=1

wkρD(v; x̃k, σ
2
k), (3.15)

where ρD(•; x̃k, σ
2
k) denotes the dressing distribution with mean x̃k and standard

deviation σk. For the Lorenz96 model, a Gaussian distribution can be used as

dressing function. The tilde again denotes that the value has been debiased through

Eq. (3.5)

Bishop (2008) found that both the BMA approach of Raftery et al. (2005) and the

dressing methods (Wang and Bishop 2005; Roulston and Smith 2003; Fortin et al.

2006) overestimate the probability of climatologically extreme events, by increasing

the spread of the ensemble symmetrically in every forecast. They argued that this

failure follows the incorrect assumption that the raw ensemble forecast estimates a

distribution of truth given the forecast.

In the following, they discovered that the distribution obtained with Eq. (3.15) is a

better estimator for the distribution of the ensemble mean, provided the verification
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equals the current ensemble mean forecast.

ρ(x̃|v = x̃c) =

nens
∑

k=1

wkρD(x̃; x̃k, σ
2
k) (3.16)

With Bayes’ theorem

ρ(v|x̃c) =
ρ(x̃c)ρ(v)

ρ(x̃)
(3.17)

and some conversion, the probability of the verification being smaller the quantile q

can be computed by

Pr(V ≤ q) =

K
∑

k=1

wa
kΦ[

q − µa
k

σak
] (3.18a)

σ2
ak = (

1

σ2
k

+
1

σ2
clim

)−1 (3.18b)

µa
k = (

g̃k

σ2
k

+
µclim

σ2
clim

) (3.18c)

g̃k = x̃c − (x̃k − x̃c) (3.18d)

wk
a =

wkφ[ g̃k−µclim√
σ2

k+σ2
clim

]

∑K
k=1 wkφ[ g̃k−µclim√

σ2
k+σ2

clim

]
(3.18e)

Eq. (3.18a) appears quite complicated. However, it simply gives higher weights to

members that are closer to the climatological mean. Thus, the resulting probability

distribution is shifted towards the mean of the climatological distribution. Thereby,

the probability of climatological extreme events is reduced to a realistic extent.

Because in the Lorenz96 ensemble all members are computed with the same model

equations, all members basically have equal likelyhood of being the best member.

However, because the first member is initialized with the analysis (i.e. best approx-

imation of the current state), it is assumed to have a slightly higher probability of

being the best member. Hence, it should be weighted more strongly than the other

members. Thus, the first member is weighted with its relative frequency of being

the best member in the training data (w1), and the weights for the other members

are equally (wk)k∈{2,...,nens} = (1 − w1)/(nens − 1).



3.2 Approaches using analogs

In this section, 3 basic methods of forecasting using analogs are first described.

Because the quantification of similarity is an issue for all of these methods, the used

analogy criteria are subsequently discussed.

3.2.1 No-forecast-model (NFM)

As the name suggests, this very simple approach provides a probabilistic forecast

without the use of any numerical forecast model. It is assumed that similar pat-

terns of specific meteorological variables (e.g. geopotential height, temperature, ...)

progress similarly in time.

To obtain a forecast for an arbitrary lead time T=t, a historical database is scanned

for synoptic situations (analyses) analog to the one at the initial time (T=0). The

nanalogs analyses that are the most similar to the current analysis are taken and their

progress in time is extracted. Finally, for each lead time a set of nanalogs situations

that are likely to recur is available. This set can be interpreted as an ensemble with

nanalogs members, and thus with Eq. (3.3) a probabilistic forecast can be computed.

A schematic illustration of this method is shown in Figure 3.1.

Note that in addition to the current analysis (T=0), it is also possible to take ac-

count of previous analyses (e.g. T=-1). However, this did not improve results for

the Lorenz96 model, so it will not be further pursued here.

3.2.2 Analogs of a deterministic forecast (ADF)

For this method, first proposed by Hamill et al. (2006), a current +t deterministic

forecast is compared with all +t forecasts in the reforecast-archive. The nanalogs

historical dates with the most similar reforecasts are extracted (Dj∈{1,...,nanalogs}).

The corresponding recorded analyses (Dj + t) then form an ensemble, which can be

shaped into a probabilistic forecast using Eq. (3.3).

As an example, imagine that the deterministic forecast made on the 13th of June

1999 (D1) for the 14th (t=24h) is very similar to the current forecast for tomorrow.

Then the analysis of the 14th of June 1999 (23th + 24h) is taken as one member. If

24
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Figure 3.1: Schematic illustration of the no-forecast-model method

several similar forecasts are found, the corresponding analyses form an ensemble that

with Eq. (3.3) provide a probabilistic forecast. Figure 3.2 illustrates this method

graphically.

In this study, the ensemble mean is used as the deterministic forecast.

3.2.3 analog dressing

As suggested by Roulston et al. (2003), a combination of a dynamical and a sta-

tistical ensemble unites the advantages of both. Because in fact the analogs of a

deterministic forecast approach uses a statistical ensemble, dressing each ensemble

member with this method is quite reasonable. Hamill and Whitaker (2006) already

tested this method for precipitation forecasts over the USA.

For a current +t ensemble forecast (nens members), a meteorological archive is

scanned for analog +t forecasts to each member.

If the members are computed differently (e.g. multi model ensembles), only histor-

ical forecasts of the member itself can be used. For the Lorenz96 model, where all



26 Forecast methods

Figure 3.2: Schematic illustration of the analogs of a deterministic forecast method

members are equally calculated 2, forecasts of all members can also be compared

among each other.

Thus, each member of the ensemble forecast is dressed with the corresponding anal-

yses of the ndens most similar forecasts in the training data. The resulting ensemble

with nens ∗ ndens members should then be drawn from a similar distribution as the

truth.

Like the approaches of Wang and Bishop (2005) and Roulston et al. (2003), this

method is only appropriate for underdispersive ensembles. However, sorting the

members from the smallest to the largest value and weighting them, like Fortin

et al. (2006) proposed in their approach, is also feasible for this method. Thus,

the method could also be used for overdispersive ensembles. However, because the

Lorenz96 ensemble exhibits underdispersion, this has not been tested.

2except the first member (initialized with the analysis). However, the difference is marginal and

therefore disregarded.
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3.2.4 Analogy criterion

Regardless of whether the current analysis is compared to past analyses, or a current

forecast is compared to a set of reforecasts, finding an appropriate criterion for the

analogy is one of the main problems of all of these methods.

Given an infinite set of analyses/reforecasts, nearly identical analyses/reforecasts to

the current one could be found. However, since the database is limited, there is

a low chance of finding even similar states of global weather. However, some ap-

proximations can be made in order to obtain enough meaningful analogs (e.g. using

smaller regions or fewer variables; Hamill and Whitaker 2006).

However, in global weather forecasting, because of both its high dimensionality

(pressure, temperature, humidity,...) and the high resolution (high amount of grid-

points), an extremely large number of possibilities exist to test the similarity (choice

of region, choice of variables,...).

In contrast, only one resolved variable exists in the Lorenz96 model, however, even

in this simple model it is practically impossible to find a perfect analogy criterion.

For example, if a forecast is to be made for the variable X1, the analogy of the

neighbour-gridpoints (X2, X8) might be more important than the analogy of far-

ther gridpoints (e.g. X5; see Figure 2.1). Furthermore, for the no-forecast-model

method, the gridpoints ’upstream’ might have to be examined more closely than the

ones ’downstream’ (Lorenz (1996) found, that the structures of X slowly progress

’westwards’). A good technique to account for these differences, would be to weight

the absolute differences between Xk (current) and X̂k (historical) differently on each

gridpoint. However, finding adequate weights leads to an extremely complicated op-

timization problem, for which at most local optima can be found. Thus, to retain

simplicity and generality, in this study only two simple analogy criteria were tested:

1. a simple root mean square (rms) of the differences between Xk (analysis or

forecast) and the X̂k (historical analysis or reforecast) to be compared.

AC(X, X̂) =

√

√

√

√

K
∑

k=1

(Xk − X̂k)2 (3.19)

where X and X̂ are K-dimensional vectors with elements Xk∈{1,...K} and

X̂k∈{1,...K} Smaller values of AC signify greater similarity.
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2. Hamill and Whitaker (2006) found that in their data the rms criterion led to

an underforecasting bias. A similar problem is also present in the Lorenz96

model. Because of the approximately normal distribution of the predictand

X, it can be assumed that generally more analogs are found that are closer

to the climatological mean. Thus, forecasts using these analogs are shifted

towards the climatological mean. In Figure 3.3 this problem is illustrated

schematically.

Figure 3.3: Problem of the rms analogy criterion. The small bars represent the

historical data X̂k and the large bar the current value of Xk. It is clear that in this

example more analog X̂k smaller Xk than greater Xk are found

As a solution, Hamill and Whitaker (2006) proposed an analogy criterion that

operates with rank differences. For each gridpoint k, the rank of the current

values Xk when pooled with n (training data size) historical values X̂k is

derived. This rank of the current value is then compared with the ranks of the

historical values X̂k. The smaller the sums of absolute rank differences, the

more similar X and X̂ are.

AC(X, X̂) =

K
∑

k=1

|rank(Xk) − rank(X̂k)| (3.20)

Furthermore, this analogy criterion is also applied locally to nr neighbour

gridpoints of the gridpoint to be forecasted.

AC(Xm, X̂m) =

m+nr/2
∑

k=m−nr/2

|rank(Xk) − rank(X̂k)| (3.21)

If, for example, a forecast for X3 has to be made, the sum of rank differences

of X2, X3, and X4 is used as analogy criterion. Thus, the effect of different

’regions’ is tested. ’Region’ sizes of nr = 0, 2, 4 were used (rank difference

analogy criterion with ’region size’ 4 is termed rankdiff4 in subsequent figures).



Chapter 4

Results

Wilks (2006a) tested several ensemble MOS methods (hereafter termed ’traditional’

ensemble MOS methods) in the same idealized Lorenz96 setting as the one used

here. In this chapter, his results are first summarized. Subsequently, the new

approaches using analogs are tested and compared with these ’traditional’ ensemble

MOS Methods.

4.1 ’Traditional’ ensemble MOS methods

Figures 4.1a and 4.1b show the ranked probability skill scores (RPSS; section

2.2.2), relative to the climatology, for direct model output (DMO) and the ensemble

MOS methods ensemble dressing, logistic regression, non-homogenous Gaussian

regression (NGR) and Bayesian model averaging (BMA).

The training sample size used for Figure 4.1a is n = 50. This relatively small size

shall simulate the small amount of historical data used in a continuously updated

MOS system that can cope with NWP model changes or seasonal variations of

climate (Wilks 2006a; Mao et al. 1999; Wilson and Vallée 2002). Figure 4.1b is

computed using a training data length of 1500, which is comparable to the size of

historical databases in traditional deterministic MOS settings (Wilks 2006a; Carter

et al. 1989; Hamill et al. 2004). In both figures the ensemble size is nens = 51.

For both lengths of training data it can be seen that, except BMA at lead time

29
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Figure 4.1: Ranked probability skill scores (RPSS) relative to the climatological rela-

tive frequencies for the six-category probabilistic forecasts, defined by the climatological

quantiles q1/10, q1/3, q1/2, q2/3 and q9/10. Ensemble size is nens = 51 and training data

length is (a) n=50 and (b) n=1500. RPSS are shown for direct model output (DMO), en-

semble dressing, non-homogeneous Gaussian regression (NGR), Bayesian model averaging

(BMA) and logistic regression. The exact values of (b) are also shown in Table 4.1.
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T = 11, all ensemble MOS methods improve more or less significantly over

DMO. Using the larger training sample, the RPSS of the regression methods

(NGR and logistic regression) and BMA actually remain positive (superior to

climatology) throughout the whole forecast period (Figure 4.1b). For shorter lead

times (T = 1, 2) NGR performs best, while logistic regression best estimates the

probability distributions at longer lead times (T = 3, 4, 5).

Since a larger number of regression parameters have to be fitted for logistic

regression (separate regressions for each quantile and forecast lead time), a larger

training data set is needed. Consequently, with the small training sample used in

Figure 4.1a, the improvement over the other approaches at longer lead times is

smaller or even disappears.

Ensemble dressing shows good scores for all lead times and both training sample

sizes.

Finally, the new BMA approach of Bishop (2008) performs poorly for shorter lead

times (T = 1, 2), even worse than DMO at T = 1. However, for longer lead times,

it can keep up with the regression methods. For T = 5 and the smaller training

sample it even receives the best RPSS of the tested ensemble MOS methods.

Figure 4.1 shows the Brier skill scores (BSS; section 2.2.1) of the ensemble

MOS methods, relative to DMO, for the climatological quantiles q1/10, q1/3 and

q1/2. Because of the climatological symmetry of the Lorenz96 model, the Brier skill

scores for the quantiles q2/3 and q9/10 are expected to be the same as for q1/3 and

q1/10. The training data set with length n = 1500 and an ensemble size of nens = 51

is used.

Consistent with the ranked probability skill score, logistic regression and non-

homogeneous Gaussian regression generally receive best Brier skill scores for

all quantiles and lead times. Non-homogeneous Gaussian regression performs

slightly better at shorter and logistic regression is preferred at longer lead times.

Because in ensemble dressing the members are dressed symmetrically with the same

distribution for all forecast occasions, extreme events are overestimated (Fortin

11 time unit corresponds to 6.6̇ ’days’, see section 2.1.1
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Figure 4.2: Brier skill scores (BSS), relative to direct model output (DMO), for the

probabilities of the predictand not to exceed the climatological quantiles (a) q1/10, (b)

q2/3 and (c) q1/2. Training data size used is n=1500 and ensemble size is nens = 51. BSS

are shown for ensemble dressing, non-homogeneous Gaussian regression (NGR), Bayesian

model averaging (BMA) and logistic regression.
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et al. 2006; Bishop 2008). Therefore, these methods do not improve over DMO

for q1/10 and longer lead times (T = 3, 4, 5). The main feature of the new BMA

approach of Bishop (2008) is to correct this overestimation of extreme events. As

can be seen in Figure 4.2a, this correction works well for longer lead times, while

for T = 1 there is no improvement over the old BMA method of Raftery et al.

(2005) (not shown).
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Figure 4.3: Reliability diagrams for q1/10 at lead time T = 1. Ensemble size is nens = 51

and training data length n = 1500. The solid lines are the graphs of the calibration

function, the dashed gray lines (1:1 line) characterize the calibration function of a per-

fect forecast and the dashed black lines specify the refinement distributions. See section

2.2.3 for further information. Reliability diagrams are shown for (DMO), ensemble dress-

ing, non-homogeneous Gaussian regression (NGR), Bayesian model averaging (BMA) and

logistic regression.

Figures 4.3, 4.4, 4.5 and 4.6 show the reliability diagrams (section 2.2.3) of DMO

and the ensemble MOS methods for different quantiles and lead times.

The calibration function (heavy line) of DMO is less steep than the 1:1 reference

line (dashed line - calibration function of a perfect forecast) for all quantiles and

lead times. This overconfidence (Wilks 2006b) results from the underdispersion

of the ensemble and is also reflected in the higher values of reliability (REL).
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Figure 4.4: As Figure 4.3 but for q1/3
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Figure 4.5: As Figure 4.3 but for q1/10 and T=4
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Figure 4.6: As Figure 4.3 but for q1/3 and T=4

Except BMA at T = 1 for q1/10 and ensemble dressing at T = 1 for q1/10, the other

methods are all better calibrated (smaller value of reliability). Logistic regression

and non-homogeneous Gaussian regression achieve the best reliability in all cases,

which is consistent with their good Brier scores (Figure 4.1). The overforecasting

of rare events (V ≤ q1/10) by ensemble dressing can be seen in its calibration

function, shifted downwards in Figure 4.5b. Because of this, its reliability for q1/10

and T = 4 is even smaller than that of DMO. This can also be seen its Brier scores

(Figure 4.2a). In Figure 4.3b it is shown that this overforecasting is hardly present

at shorter lead times.

Because the BMA method corrects this overforecasting, it reaches good reliability

at longer lead times. However, for T = 1, Figure 4.3e shows that this correction is

too strong, leading to a strong underforecasting bias (calibration function shifted

upwards). This can explain the poor ranked probability skill scores and Brier skill

scores for q1/10 at this lead time.
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4.2 Analog methods

In this section the results of the analog methods are presented and discussed. In

Figure 4.7 the ranked probability skill scores (RPSS), relative to the climatology,

of selected analog methods, DMO and logistic regression are shown. The RPSS of

all ensemble MOS and analog methods tested can be found in Table 4.1. Because

generally, logistic regression achieves the best, whereas DMO obtains the worst

RPSS of the ’traditional’ ensemble MOS methods (Figure 4.1b), these methods are

chosen to indicate the boundaries of the previously tested approaches. Because the

training data length for the analog methods should be significantly larger than the

ensemble size, only the RPSS for the larger training sample (n=1500) are shown.
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Figure 4.7: Ranked probability skill scores (RPSS) relative to the climatology for the

six-category probabilistic forecasts defined by the climatological quantiles q1/10, q1/3, q1/2,

q2/3 and q9/10. Ensemble size is nens = nanalogs = 51, daughter ensemble size is ndens = 15

and training data length is n=1500. RPSS are shown for logistic regression, direct model

output (DMO), no-forecast-model (NFM), analogs of a deterministic forecast (ADF) and

analog dressing. Area between DMO and logistic regression is shaded. Terms in brackets

denote the used analog criteria rank difference (rankdiff) or RMS.

Overall, the analog methods achieve relatively bad scores at short lead times

(T = 1). However, for longer lead times (T = 3, 4, 5), they all improve significantly

over DMO and even have scores comparable to or better than logistic regression.
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Forecast Lead Time, T

1 2 3 4 5

DMO 0.5394 0.2020 0.0662 -0.0108 -0.0677

Logistic Regression 0.5471 0.2480 0.1155 0.0806 0.0545

NGR 0.5639 0.2530 0.1043 0.0586 0.0260

ensemble dressing 0.5581 0.2435 0.1118 0.0371 -0.0175

BMA 0.5274 0.2275 0.1117 0.0600 0.0224

NFM (rms) 0.2681 0.1592 0.0855 0.0581 0.0363

NFM (rankdiff) 0.2693 0.1600 0.0864 0.0587 0.0369

NFM (rankdiff4) 0.2159 0.1462 0.0743 0.0547 0.0316

ADF (rms) 0.4579 0.1982 0.0837 0.0490 0.0213

ADF (rankdiff) 0.4951 0.2420 0.1190 0.0847 0.0560

ADF (rankdiff4) 0.5127 0.2490 0.1239 0.0869 0.0572

analog dressing (rms) 0.5225 0.2540 0.1180 0.0803 0.0550

analog dressing (rankdiff) 0.5203 0.2536 0.1179 0.0801 0.0551

analog dressing (rankdiff4) 0.5330 0.2582 0.1184 0.0790 0.0536

Table 4.1: As Figure 4.7 but tabulated for all tested methods. Best method for each

lead time is highlighted.

For shorter forecast periods, analog dressing performs best, while for longer lead

times, the analogs of a deterministic forecast (ADF) method achieves the best

RPSS of all tested approaches. The no-forecast-model (NFM) method performs

poorly at short lead times. For longer forecast periods, however, it can keep up

with the other ensemble MOS and analog methods. The reason for this will be

discussed later.

For the NFM method, the rank difference analogy criterion works best, though the

RMS criterion is hardly worse. Applying the rank difference criterion to a smaller

’region’ (rankdiff4) diminishes the skill scores of this method (Table 4.1). This

is because the development of the predictand is influenced by the X-values on all

gridpoints. Hence, analogy on all gridpoints is required.

For the ADF approach, the rank difference criterion is considerably superior to the

RMS similarity measure. With the smaller ’region’, this method can be improved

additionally. At shorter lead times (T=1,2,3), the use of fewer gridpoints also

improves the analog dressing method, however, for longer lead times (T=4,5) it

slightly worsens its skill scores. The differences between the rank difference and the

RMS analogy criterion are small for this approach.
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Figure 4.8: Brier skill scores (BSS), relative to climatology, for the probabilities of

the predictand not exceeding the climatological quantiles (a) q1/10, (b) q2/3 and (c) q1/2.

Ensemble size is nens = nanalogs = 51, daughter ensemble size is ndens = 15 and training

data length is n=1500. BSS are shown for logistic regression, direct model output (DMO),

no-forecast-model (NFM), analogs of a deterministic forecast (ADF) and analog dressing.

Area between DMO and logistic regression is shaded. Terms in brackets denote the used

analog criteria rank difference (rankdiff) or RMS.
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In Figure 4.8 the Brier skill scores, relative to the climatological relative fre-

quencies, are plotted for selected analog methods, DMO and logistic regression.

Similar to the RPSS, the analog approaches perform quite well at longer lead times

and relatively poorly for shorter forecast ranges. In comparison to the ’traditional’

ensemble MOS methods, all analog methods are slightly less suitable for rarer

(V ≤ q1/10) than for common (V ≤ q1/2) events. This is because in the training

data these events appear less frequently. Therefore, the analogs found for extreme

(rare) events are generally less similar than for common events. This leads to an

overdispersive ensemble and hence to underconfident forecasts for these events.

This can also be seen in the reliability diagrams for the q1/10-quantile (Figure 4.9;

calibration function steeper than the 1:1 reference line). Using a larger training

data set reduces this problem (see Figure 4.15), because more close analogs can be

found.

For the ADF method, the differences (of the Brier skill scores) between the two

analogy criteria are considerably smaller for q1/10 than for the other quantiles.

This leads to the assumption that the just described problem of overdispersion is

somewhat intensified with the rank difference analogy criterion (Figure 4.9b and

c). This is easy to understand, because the rank difference criterion partially forces

the analog historical forecasts to be more extreme than the current one. Then the

found analogs are still less similar, because few of them exist overall.

Comparing the reliability diagrams of the analog (Figures 4.9, 4.10 ,4.11 and

4.12) and the ’traditional’ MOS methods (Figures 4.3, 4.4 ,4.5 and 4.6), one can

see that overall the reliability is good (small) for the analog methods, while the

resolution is generally better (large) for the other approaches. Bad resolutions

signify that the forecasts poorly discern between different events (Wilks 2006b).

As an extreme example, the climatological relative frequencies are the same for all

forecast occasions and achieve a reliability of 0 (perfect) but only a resolution of 0

(worst).

Better values of resolution can be achieved, if the rank difference or the 4-neighbor

rank difference analogy criterion (rankdiff4) is used. With the RMS criterion, the
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Figure 4.9: Reliability diagrams of the analog methods for q1/10 and lead time T = 1.

Training data length is n = 1500. Ensemble size is nens = nanalogs = 51 and the size of

daughter ensembles for analog dressing is ndens = 15
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Figure 4.10: As Figure 4.9 but for q1/3 and T=1
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Figure 4.11: As Figure 4.9 but for q1/10 and T=4
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Figure 4.12: As Figure 4.9 but for q1/3 and T=4



42 Results

forecasts are typically shifted towards the climatological mean. It thereby converges

slightly towards the climatology, which can explain the worse resolution. With the

4-neighbor rank difference criterion, the analogs found are locally closer, which

further improves the resolution.

Intuitively, one would think that a larger training sample would increase the

resolution. However, comparing Figures 4.9b, 4.10b, 4.11b and 4.12b with Figure

4.15, it can be seen that for the ADF method this is only true at short lead times

(T = 1). This suggests that for longer lead times, enough close analogs can be

found already with the n=1500 training dataset. Thus, an even longer training

data set does not further improve this method at longer forecast periods. This

problem will be discussed later.

The ensembles of the analog methods exhibit overdispersion at T = 1 and q1/10.

This can be seen in their calibration functions steeper than the 1:1 reference line

in Figures 4.9 and 4.10. Therefore, the reliability of these approaches reaches

significantly smaller (worse) values than of the ’traditional’ ensemble MOS methods

for this lead time and quantile. Together with the bad resolution, this causes the

bad Brier and ranked probability scores of the analog methods at T = 1.

For analog dressing, all information of the dynamical ensemble is used. Since the

raw ensemble performs quite well at T = 1 and 2, this method is best among

the analog methods for these lead times, however it is still worse than DMO at

T = 1. Better RPSS than DMO at T = 1 can be achieved, using a larger dataset

(n=3500,10000) or smaller ’regions’ for the analogy criterion (0- and 2-neighbor

rank difference analogy criterion). For longer forecast periods, the ensemble mean

(ADF) contains sufficient information, and using the entire ensemble (analog

dressing) even worsens the performance.

Generally, it can be said that the no-forecast-model method works quite badly. So

how can it perform better than DMO and other ensemble MOS methods at longer

lead times? To explain this, the results of the ensemble MOS methods have to be

examined more closely. For lead times T = 4 and 5, DMO produces forecasts that

are worse than the climatology. The ensemble MOS methods can then only correct

these forecasts and hence their RPS can becomes slightly superior to that of the
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Figure 4.13: Ranked probability scores (RPS; smaller values are better!) of the no-

forecast-model (NFM) method for different ensemble and training sample sizes for lead

times (a) T = 1 and (b) T = 4

climatology. On the contrary, the NFM method is completely independent from

the dynamical ensemble and can maintain its advantage over climatology for the

entire forecast period. This leads to the suggestion, that the good results of this

method can not be traced back to the fact that it performs well, rather, it results

from the bad performance of the dynamical ensemble and hence of the ensemble

MOS approaches.

Figures 4.13 and 4.14 show the effects of different training sample and ensemble

sizes for the NFM and the ADF methods respectively. As expected, there is a

strong dependency on the training data length at T = 1, whereas the influence

of the ensemble size is weak. However, at longer lead times the performance of

these methods is affected strongly by the ensemble size, while the dependency on

the training sample size is not clear. If the training data set is short, an increase

improves the RPS. However, if the dataset is already large enough (n > 500), a

further enlargement even worsens the score. A possible explanation is that the

calibration functions of these methods at T = 4 are slightly less steep than the
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Figure 4.14: Same as Figure 4.13 but for the analogs for a deterministic forecast (ADF)

method

1:1 reference line (Figures 4.11b and 4.12b). This indicates an underdispersive

ensemble and thus an overconfident forecast. With a greater training dataset,

closer analogs can be found, intensifying this underdispersion (compare Figures

4.11b and 4.12b with Figure 4.15). In fact this should be visible in the value of

reliability. However, differences exist only in the resolution term. The reliability is

the same for both training data lengths (Figures 4.11b, 4.12b and 4.15). Therefore

the reason for the increase of RPS with longer training data at longer lead times

has to remain unclear. Furthermore, the differences are essentially tiny, so maybe

this increase should not be overemphasized.

In Figure 4.16, a similar graphic is shown for analog dressing. Instead of the

ensemble size, the effects of different daughter ensemble sizes are tested. The

influence of the training data size is similar to the other methods, however, the

dependency on the daughter ensemble size remains largely unclear. Only the

smallest daughter ensembles (ndens = 1, 5) can be identified to be worse.

Finally, Figure 4.17 depicts the effects of different ’region’ sizes, to which the rank

difference analogy criterion is applied. For the NFM method it can be seen that
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Figure 4.15: Reliability diagrams of the analogs for a deterministic forecast (ADF)

method for different quantiles and lead times. The RMS analogy criterion is used. En-

semble size is nens = nanalogs = 51 and training sample size is n=10000
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Figure 4.16: Ranked probability scores (RPS) of the analog dressing method for different

daughter ensenmble and training sample sizes for lead times (a) T = 1 and (b) T = 4.

Size of the dynamical ensemble is nens = nanalogs = 51
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Figure 4.17: Ranked probability scores (RPS) of the 3 basic analog methods as function

of the ’region’-size for the rank difference analogy criterion. The values on the abscissa

specify the number of used neighbors.

irrespective of lead time, the best scores are achieved if all gridpoints are used.

For the other two approaches, at T = 1 the 0-neighbors rank difference analogy

criterion works best. This is evident, because then the forecasts made with these

methods display the highest similarity to DMO. Since DMO generally performs

better than these approaches at T = 1, this leads to improved scores. However, at

T = 4, the results achieved with the 0-neighbor criterion are significantly worse .

At this lead time, for the ADF approach, taking into account 2 or 4 neighbors is

slightly better than using all gridpoints. For analog dressing, the best results are

achieved by applying the analogy criteria to all gridpoints.

All in all, a medium number of gridpoints is best for both methods.



Chapter 5

Summary and conclusion

In this thesis, several methods of probabilistic forecasting were tested and compared

in the idealized Lorenz96 model (Lorenz 1996). The main focus was on three basic

methods that use ’analogs’.

For the first, imagine that an analysis very similar to the current one can be found

in a historical database. Then it is quite probable that the weather of tomorrow is

similar to the weather that was observed the day after this similar historical analysis.

Thus, the analysis of the next day can provide a forecast for tomorrow. If not only

the single best, but a set of analogs is taken, an ensemble can be formed to provide

a probabilistic forecast. This method has been called no-forecast-model, because it

does not use any numerical forecast model.

For the second approach, termed analogs of a deterministic forecast, a reforecast

dataset is needed. If deterministic forecasts similar to the current one can be found

in the reforecast database, it should be appropriate to take the corresponding anal-

yses (the day for which the forecast was made) as a forecast. Again, by taking a set

of analogs, a probabilistic forecast is provided.

The third method is an extension of the analogs of a deterministic forecast approach.

The same technique is applied separately to each member of a dynamical ensemble.

Hence, a greater ensemble is formed, which again provides a probabilistic forecast.

This method has been called analog dressing, because of the similarity to ensemble

dressing.

To determine which analyses/forecasts are more similar than others, an analogy cri-
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terion is needed. Besides a simple root mean square (RMS) of the differences on all

gridpoints, a measure that uses rank differences was introduced. Furthermore, dif-

ferent ’region’ sizes (number of gridpoints) to which these criteria are applied were

compared.

For comparison, other approaches that statistically postprocess ensemble forecasts

were tested. Ensemble dressing, logistic regression and nonhomogeneous Gaussian

regression (NGR) were chosen, because Wilks (2006b) showed that they perform

best in the Lorenz96 system. Since Direct model output (DMO) is the method com-

monly used in operational weather prediction, this also was compared. Moreover,

a new Bayesian model averaging (BMA) approach, which Bishop (2008) proposed,

was tested here in the Lorenz96 model.

The no-forecast-model method generally performs poorly, with the exception of

longer lead times, for which it can keep up with the other methods. This was

found not to result from the good quality of the method, but rather from the bad

performance of the dynamical ensemble, and thus, the other methods that postpro-

cess this dynamical ensemble.

The two other analog methods showed very promising results. The analogs of a

deterministic forecast method even performs better than all other tested methods

at longer lead times. However, for shorter forecast ranges the applicability of this

method is limited. For these cases, it is even inferior to direct model output (worse

than the ensemble MOS methods).

Analog dressing achieves slightly better results at these short lead times. However,

for longer forecast periods, its skills are somewhat inferior to the analogs of a deter-

ministic forecast method. The analog dressing method uses the entire information of

the dynamical ensemble, whereas for the analogs of a deterministic forecast method,

all information is compressed into the ensemble mean. Hence, it can be said that

if the raw ensemble forecast already predicts well, its entire information is useful.

However, when the raw ensemble becomes worse (i.e. longer lead times), the ensem-

ble mean provides better information than the whole ensemble.

For the no-forecast-model method, the RMS and the rank difference analogy criteria

work quite similarly. Larger ’regions’ to which the criteria are applied are definitely
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superior for this method.

The analogs of a deterministic forecast method showed better results when the rank

difference similarity measure was used. For analog dressing, it does not matter which

criterion is used.

For both methods, analog dressing and analogs of a deterministic forecast, fewer

gridpoints for the criteria are better at short lead times. For longer forecast periods,

a medium number of gridpoints showed the best skills for the analogs of a deter-

ministic forecast, while the use of all gridpoints works best for analog dressing. All

in all, a medium number should be used for both approaches.

At short lead times, all analog methods can be improved by increasing the training

data size. On the contrary, for longer lead times, the approaches do not show better

results when a larger training sample is used.

The new BMA approach of Bishop (2008), which was tested here, showed a signif-

icant improvement over the old BMA method of Raftery et al. (2005). However,

at very short lead times, the ill treatment of climatological extreme events (Bishop

2008), which the old BMA method exhibits, is overcorrected. Therefore, this ap-

proach in fact performs worse than direct model output for these short forecast

ranges.

For the most part, observations have significantly higher resolutions than model

forecasts. Because in the final step, all analog methods use well resolved historical

observations, their forecasts provide the same resolution as these observations. This

downscale ability is one of the biggest advantages of the analog techniques. However,

this advantage was not used in the Lorenz96 system. Therefore it is very probable

that for variables that are resolved poorly in NWP models, these methods in fact

perform better than in the present study. However, because of the considerable

higher dimensionality of the true atmosphere, it might be harder to find enough

meaningful analogs.

For precipitation forecasts over the USA, Hamill and Whitaker (2006) already ob-

tained very promising results, especially with the analogs of a deterministic forecast

method. Hence, further investigation should be carried out to test and improve

these methods, including for other meteorological variables.
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