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Abstract

The k-Nearest Neighbor (k-NN) technique has become extremely popular for a variety of forest inventory mapping and estimation
applications. Much of this popularity may be attributed to the non-parametric, multivariate features of the technique, its intuitiveness, and its ease
of use. When used with satellite imagery and forest inventory plot data, the technique has been shown to produce useful estimates of many forest
attributes including forest/non-forest, volume, and basal area. However, variance estimators for quantifying the uncertainty of means or sums of k-
NN pixel-level predictions for areas of interest (AOI) consisting of multiple pixels have not been reported. The primary objectives of the study
were to derive variance estimators for AOI estimates obtained from k-NN predictions and to compare precision estimates resulting from different
approaches to k-NN prediction and different interpretations of those predictions. The approaches were illustrated by estimating proportion forest
area, tree volume per unit area, tree basal area per unit area, and tree density per unit area for 10-km AOIs. Estimates obtained using k-NN
approaches and traditional inventory approaches were compared and found to be similar. Further, variance estimates based on different
interpretations of k-NN predictions were similar. The results facilitate small area estimation and simultaneous and consistent mapping and
estimation of multiple forest attributes.
Published by Elsevier Inc.
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1. Introduction

Forest inventory programs typically report estimates for
medium to large geographic areas using data collected from
arrays of field plots. Due to budgetary constraints and natural
variability in the resource, sufficient numbers of plots
frequently cannot be observed to satisfy precision guidelines
for the estimates of many variables unless the estimation
process is enhanced using ancillary data. Satellite imagery has
been accepted as a source of ancillary data that can be used with
stratified estimation techniques to increase the precision of
estimates with little corresponding increase in costs (Hansen &
Wendt, 2000; Liknes et al., 2004; McRoberts et al., 2006,
2002a,b; Nilsson et al., 2005). In addition to greater estimation
precision, users frequently request estimates for smaller areas
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than those reported and, ultimately, maps depicting the spatial
distributions of forest resources. Although stratified estimation
using classified satellite imagery can produce greater precision,
it cannot address small area estimation and can only produce
maps of broad categories of resources. The latter issues require
more spatially intense sampling designs, more and different
kinds of ancillary data, and/or methods that extract more
information from the ancillary data. The increased costs
associated with more intense sampling and larger suites of
ancillary data often preclude these approaches. Therefore,
approaches that make greater use of the satellite imagery merit
consideration. One such approach, which is appropriate for
mapping categorical forest attributes such as forest cover type,
is to use the plot data to train classifiers of satellite imagery. A
second approach, which is appropriate for mapping continuous
attributes such as proportion forest area and tree volume, is to
use the plot data to calibrate models that predict values of these
forest attributes for individual pixels (McRoberts, 2006).
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Several aspects of the model-based approach merit considera-
tion. First, the literature pertaining to variance estimation for
model-based estimates for regions consisting of multiple pixels is
sparse; Gregoire (1998), Aubry and Debouzie (2000), and
McRoberts (2006) are among the few references. Second, unlike
sample-based approaches, including stratified estimation, the issue
of biasmay bemore difficult to assess formodel-based approaches.
Third, the highly correlated nature of suites of forest variables
mitigates against separate, univariate models for individual
variables. For example, univariate models for proportion forest
area and volumemay predict large volumes for pixels having small
proportion forest area predictions and vice versa. Fourth, many
multivariate approaches require that the response variables follow
specified statistical distributions, usually Gaussian.

If issues associated with the model-based approach could be
satisfactorily resolved, several advantages would accrue. First, in
addition to estimates for medium and large regions, users would
obtain spatial distributions of forest resources fromwhich estimates
for small areas could be calculated by aggregating individual pixel
predictions. Second, the model-based approach has the potential to
use more information from the satellite imagery than simply broad
categories in the form of strata. Third, many natural resource
inventory programs prohibit release of exact plot locations and
proprietary plot information, thus limiting sample-based small area
estimation and user-defined analyses. Estimates based on
aggregations of model predictions for individual pixels circumvent
this prohibition, because model predictions are typically aggrega-
tions of observations for multiple plots, and the particular plots,
their locations, and their ownerships need not be revealed.

Among techniques that have been investigated for predicting
forest attributes from satellite imagery and ground data,
parametric regression (Ardö, 1992; Dungan, 1998; McRoberts,
2006; Tomppo, 1988) and the nonparametric k-Nearest Neighbor
(k-NN) technique have been popular. The k-NN technique is an
intuitive, non-parametric approach to either univariate or multi-
Fig. 1. Stud
variate prediction based on the similarity in a covariate space
between the unit for which a prediction of the response variable is
desired and units for which observations of the response variable
are available. The k-NN technique has gained popularity in
forestry applications for mapping forest attributes using the
spectral values of satellite imagery (Franco-Lopez et al., 2001;
McRoberts et al., 2002a; Trotter et al., 1997). Themaps have been
used to depict the spatial distribution of forest attributes, to
increase the precision of estimates via stratified estimation
(McRoberts et al., 2002a; Nilsson et al., 2005), and to estimate
the relative land area represented by individual plots (Tomppo &
Halme, 2004). The k-NN technique has been particularly popular
in Finland (Halme & Tomppo, 2001; Katila & Tomppo, 2001,
2002; Tomppo, 1991; Tomppo et al., 1999).

Because of its utility for mapping forest attributes and its lack
of distributional assumptions, the k-NN technique was investi-
gated for simultaneously mapping four forest attributes: propor-
tion forest area (PFA), volume (m3/ha) (VOL), basal area (m2/ha)
(BA), and stem density (tree count/ha) (D). Estimates for an area
of interest (AOI) consisting of multiple pixels may be obtained by
calculating sums or means for all pixels in the AOI. One
disadvantage of this technique for inferential purposes, however,
is that variance estimators for AOIs consisting of multiple pixels
have not been reported. Thus, the objectives of the study were
fourfold: (1) to construct compatible maps of PFA,VOL, BA, and
D using the non-parametric, multivariate k-NN technique with
forest inventory data and satellite imagery, (2) to compare
estimates of PFA, VOL, BA, and D obtained by aggregating pixel
predictions for multiple pixel AOIs and estimates obtained solely
from inventory plot data, (3) to derive variance estimators for AOI
estimates obtained from k-NN predictions, and (4) to compare
precision estimates obtained when considering a k-NN prediction
as an estimate of the mean of the distribution of possible
observations for a particular covariate value or as an estimate of an
individual observation from that distribution.
y area.
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2. Data

2.1. Study area

The study area was located in northeastern Minnesota, USA,
and was defined by Landsat scene row 27, path 27 (Fig. 1).
Elevation in the study area is generally in the range 350–450 m,
although small areas have elevations as great as 550 m. Land
cover in the study area is approximately 75% forest land and is
characterized by uneven-aged, naturally regenerated, mixtures
of hardwoods and conifers dominated by aspen-birch and
spruce-fir associations. Average daily temperatures range as low
as −18 °C in winter and as high as 27 °C in summer. Average
annual precipitation ranges from 60 cm to 75 cm, and average
annual snowfall ranges from 115 cm to 255 cm.

2.2. Satellite imagery

Landsat imagery for row 27 of path 27, was obtained from the
Multi-Resolution Land Characterization 2001 (MRLC 2001) land
cover mapping project (Homer et al., 2004) of the U.S. Geological
Survey (Fig. 1). The imagery was characterized by several salient
features: (1) a combination of Landsat 5 TM and Landsat 7 ETM+
data, (2) geometrically and radiometrically corrected, (3) cubic
convolution resampling to 30 m×30 m spatial resolution, (4)
visible and infrared bands (1–5,7), and (5) conversion to at-satellite
reflectance. Imagery for three dates, April 2000, July 2001, and
November 1999, corresponding to early, peak, and late vegetation
green-up (Yang et al., 2001) were obtained for the scene. Pre-
liminary analyses indicated that the Normalized Difference
Vegetation Index (NDVI) (Rouse et al., 1973) and the tassel cap
(TC) transformations (brightness, greenness, and wetness) (Kauth
& Thomas, 1976; Crist & Cicone, 1984) were superior to both the
raw spectral band data and principal component transformations
with respect to predicting the four forest attributes. Thus, 12
satellite image-based predictor variables were used, NDVI and the
three TC transformations for each of the three image dates.

2.3. Forest inventory plot data

The Forest Inventory and Analysis (FIA) program of the
USDA Forest Service has established field plots in permanent
locations using a sampling design that is assumed to produce a
random, equal probability sample (Bechtold & Patterson,
2005; McRoberts et al., 2005). The plot array has been divided
into five non-overlapping, interpenetrating panels, and mea-
surement of all plots in one panel is completed before
measurement of plots in the next panel is initiated. Panels
are selected on a 5- or 10-year rotating basis, depending on the
region of the country. Over a complete measurement cycle, the
sampling intensity is approximately one plot per 2400 ha.
Some states provide additional funding to double or triple the
sample size in which case the sampling intensity is
approximately one plot per 1200 ha or 800 ha, respectively.
In general, locations of forested or previously forested plots
are determined using global positioning system (GPS)
receivers, while locations of non-forested plots are determined
using aerial imagery and digitization methods. Each field plot
consists of four 7.31-m radius circular subplots. The subplots
are configured as a central subplot and three peripheral
subplots with centers located at 36.58 m and azimuths of 0°,
120°, and 240° from the center of the central subplot. Field
crews measure the diameter at breast height (DBH) (1.37 m)
above bark and the height of each tree with DBH≥12.5 cm.
Statistical models are then used to predict the volume of each
tree from the DBH and height measurements, and volumes of
all trees with DBH≥12.5 cm on each subplot are added to
obtain an estimate of subplot volume per unit area. Field crews
also obtain the proportions of subplot areas that satisfy specific
land use class conditions. Subplot estimates of proportion
forest area are then obtained by collapsing land use classes into
forest and non-forest classes consistent with the FIA definition
of forest land. For this study, all plots were observed between
1998 and 2003. Observations were available for 2266 plots
consisting of 9064 subplots of which 2393 had no forest cover,
156 had partial forest cover, and 6515 were completely
forested.

2.4. Combining forest inventory and satellite image data

The response variables observed or calculated for the FIA
subplots were PFA, VOL, BA, and D, and the covariate space of
independent variables was defined by the 12 satellite image-
based variables, NDVI and the three TC transformations for each
of the three dates. The spatial configuration of the FIA subplots
with centers separated by 36.58 m and the 30-m×30-m spatial
resolution of the imagery permits individual subplots to be
associated with individual image pixels. The set of all pixels was
divided into a reference set consisting of pixels containing
subplot centers and a target set consisting of pixels not containing
subplot centers. The subplot area of 167.87 m2 is approximately
19% of the 900 m2 pixel area and is assumed to yield a
representative sample of the four response variables for the pixel.
Thus, for a pixel in the reference set, the subplot observations of
PFA, VOL, BA, and D were attributed to the entire pixel.

3. Methods

Traditionally, inventory programs have used probability-based
approaches to inference for estimates of forest attributes. Proper-
ties of variance estimators for these approaches are based on
random variation resulting from the probabilities of selection of
sampling units associated with the prescribed sampling design,
thus their characterization as probability-based (Hansen, Madow,
&Tepping, 1978). Although the term “design-based” is sometimes
used to characterize these approaches, the term “design” in a
sample survey context is not well-defined in the sense that it may
refer simply to the selection of sample units or additionally to the
entire inferential process (Kendall & Buckland, 1982). With
probability-based approaches, the value of each response variable
associated with a sampling unit is considered fixed. A crucial
property of the combination of the FIA sampling design and
probability-based estimators is that in expectation the samplemean
is an asymptotically unbiased estimate of the population mean.
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A second category of approaches to inference is characterized
as model-based. With these approaches, the value of a variable
associated with a sampling unit is considered a realization from
an assumed probability distribution designated a superpopula-
tion. The superpopulation parameters of interest include the
mean, μ, and variance, σ2, associated with the distribution of
possible values for each sampling unit, and the correlation, ρ,
among realizations between sampling units. With model-based
approaches, both the estimates of means of distributions for the
same values of covariates and the predictions of realizations
from those distributions are based on the assumed model, and
the assessment of their uncertainty is based on estimates of
superpopulation variances. For inventory applications, areal
estimates obtained by aggregating predictions for all sampling
units in an AOI are often of interest.

Several distinctions between probability-based and model-
based approaches merit noting. First, the population associated
with a probability-based approach is only one of the possible
populations that could be realized from the superpopulation,
and the sample is only one of the possible samples that could be
realized for the same sampling units. Second, inference with
probability-based approaches requires estimates of population
parameters, while inference with model-based approaches
requires estimates of superpopulation parameters which are
not even relevant with probability-based approaches. Third,
unbiasedness of probability-based estimators depends only on
assumptions concerning the sampling design, while unbiased-
ness of model-based estimators depends on the validity of the
assumed superpopulation model. Fourth, variances obtained
using probability-based approaches are generated from the
sampling design, while variances obtained using model-based
approaches result from random components in the assumed
superpopulation model. Finally, finite population correction
factors (Cochran, 1977) cause the limit of the probability-based
variance of the estimate of a population mean as the sample
approaches a complete census to be zero. Such would not be the
case with model-based approaches.

Although estimates of forest attributes obtained using
probability- and model-based approaches are based on different
conceptual assumptions, at least two reasons for comparing them
are relevant. First, the forest inventory community has tradition-
ally used probability-based approaches, and the resulting
estimates of population means have become a standard for
comparison. Second, concern for model prediction bias would be
alleviated if the estimate of the superpopulation mean obtained as
the average of the estimates of means of distributions over all
sampling units using a model-based approach were close to the
estimate of the population mean obtained using a probability-
based approach. Because the population assumed for probability-
based approaches is only one of the possible populations that
could be realized from the superpopulation, differences in
estimates of the population mean and the superpopulation mean
could be interpreted with respect to the distribution of possible
population means. If the model is adequately formulated and the
sample is representative of the population, then the estimate of the
populationmean should be close in a relative sense to the estimate
of the superpopulation mean. If they are not close, then the model
is biased, the probability-based sample is not representative of the
population, or an unlikely population has been realized from the
superpopulation. Attention is usually focused on the first two
alternatives, although it is difficult to distinguish between them.

3.1. Probability-based approach

The FIA program uses a probability-based approach to infer-
ence based on a sampling design that is assumed to produce an
equal probability sample (Bechtold&Patterson, 2005;McRoberts
et al., 2005). The program attributes the aggregation of data for the
four subplots of the FIA plot to the center point of the central
subplot. The estimator of the population mean for an AOI is,

Ȳ P ¼ 1
n

Xn
i¼1

yi ð1Þ

where yi is the observation of the response variable of interest for
the ith plot, n is the sample size, and the subscript P denotes a
probability-based estimator. Although the FIA program uses post-
sampling stratification and stratified estimation, probability-based
variance estimators for this study are based on an assumption of
simple random sampling (SRS) because sufficient numbers of
plots per stratum are not available for small AOIs which are of
particular interest for this study. An estimate of the variance of ȲP

is,

Vâr Ȳ Pð Þ ¼

Xn
i¼1

ðyi � Ȳ PÞ2

nðn� 1Þ : ð2Þ

When calculating ȲP for this study, data were included for all
four subplots of each FIA plot with center in the AOI, regardless
of whether parts of some subplots were outside the AOI. In
addition, finite population correction factors (Cochran, 1977)
were ignored because forest inventory sample sizes are orders of
magnitude smaller than population sizes.

3.2. Model-based approach

Because the subplot observations of forest attributes are
attributed to the entire Landsat pixel for this study, the pixel is
hereafter considered the sampling unit even though the subplot
area is slightly less than 20% of the pixel area.

3.2.1. The k-NN technique
The criteria for k-NN prediction include observations of the

response variables for a subset of pixels and observations of
covariates for all pixels. The set of pixels for which observations
of both the response variables and the covariates are available is
designated the reference set, and the set of all pixels for which
predictions are sought is designated the target set. The k-NN
prediction for the ith pixel is,

ỹi ¼
Xk
j¼1

wij

 !�1 Xk
j¼1

wijy
i
j

 !
ð3Þ
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where {yj
i, j=1,…k} is the set of observations for the k pixels in

the reference set nearest to the ith pixel with respect to a distance
metric, d, in the covariate space, and the set {wij, j=1,…k}
consists of pixel weights. Common selections for the distance
metric are Mahalanobis distance (Kendall & Buckland, 1982), or
weighted Euclidean distance,

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

vlðxil � xjlÞ2
vuut

where i and j denote arbitrary pixels, l indexes the covariates, xil
is the value of the lth covariate for the ith pixel, and the set {vl}
consists of weights associated with individual covariates.
Common selections for the pixel weights are wij=1, wij=dij

−1,
or wij=dij

−2.
The k-NN technique is one of several nearest neighbor

techniques that have gained popularity for natural resources
applications. Other variations include the Most Similar Neigh-
bor (MSN) technique for which k=1 and the distance metric is
based on canonical correlation (Hassani et al., 2004; Moeur &
Stage, 1995) and the Gradient Nearest Neighbor (GNN)
technique for which k=1 and the distance metric is based on
canonical correspondence (Ohmann & Gregory, 2002).

For this study, only the k-NN technique was considered.
Selections of the k-value and the particular spectral variables used
for determining distance in the covariate space are often obtained
using a leave-one-out approach (Lachenbruch & Mickey, 1986)
and a measure of the quality of predictions such as proportion
correctly classified for categorical variables or root mean square
error (RMSe) for continuous variables. Frequently, however, all
the available covariates are used in the distance measure, and an
arbitrary but small k-value is selected. The rationale for selecting a
small k-value is that when the k-NN technique is used to predict
values for multiple variables simultaneously, predictions resulting
from smaller k-values may better preserve observed covariance
structures which results in more consistent estimates of multiple
response variables.

The k-NN technique has attributes that make it appealing for
predicting and mapping forest attributes. First, it can simulta-
neously impute multiple forest attributes to mapping units such
as satellite image pixels, and second, it is nonparametric and does
not require assumptions of Gaussian distributions or homo-
geneous variances among observations of response variables.
However, because k-NN predictions may extrapolate poorly
beyond the range of the data, the technique is less robust to
violations of the assumption that the total range and variation of
the covariates in the target set are represented in the reference set.

Katila and Tomppo (2001) provide an excellent survey of the
early k-NN literature for estimating forest attributes. McRoberts et
al. (2002a) provide an overview of the k-NN method, offer and
illustrate several precautions that should be observed, and
demonstrate how maps constructed with the k-NN technique
may be used with stratified estimation to increase the precision of
forest attribute estimates. Franco-Lopez et al. (2001) discuss the
utility of the k-NN technique for mapping and estimating volume
and forest type. For estimating volume at stand and regional
scales, Mäkelä and Pekkarinen (2001) examined different pixel
window and image segment approaches to Landsat TM feature
extraction and later (Mäkelä & Pekkarinen, 2004) used Landsat
TMand stand-level inventory data to predict species specific stand
volume. Tokola et al. (1996) and Katila and Tomppo (2001)
investigated the combined use of forest inventory plot data and
satellite imagery to predict volume and other continuous variables.
Holmström and Fransson (2003) explored a combination of
SPOT-4 XS and SAR data for use with the k-NN technique.

Tomppo and Halme (2004), proposed an improved k-NN
algorithm that uses large-scale variation of forest variables as
ancillary data coupled with a genetic algorithm to derive
optimal covariate weights. Fazakas and Nilsson (1996) and
Tomppo et al. (2002) used Landsat TM and forest inventory plot
data to produce k-NN predictions of forest volume. Fazakas &
Nilsson calculated TM pixel averages for AVHRR pixels, while
Tomppo et al. (2002) calculated averages for IRS-1C WiFS
pixels. Both then used regression techniques to calibrate models
of the relationships between the TM spectral averages and
spectral values of the larger pixels, and both then applied the
models to larger geographic areas.

3.2.2. k-NN estimation
Because a primary focus of the study was derivation of

variance estimators rather than refinement of predictions, a
basic approach to k-NN prediction was used; i.e., the
unweighted Euclidean distance metric with pixel and covariate
weights equal to a constant value of 1 was used. In the
superpopulation context, let μi, and σi

2 denote the mean and
variance, respectively, of the distribution of possible realiza-
tions of a response variable associated with the same vector, Xi,
of covariate values as the ith pixel, and let yi denote a
realization from this distribution. The realization of a single
response variable, yi, may be expressed as,

yi ¼ Ai þ ei ð4Þ
where E(εi)=0, Var(εi)=σi

2, Cov(εi,εj)=ρijσiσj, and ρ denotes
spatial correlation. Further, let the k-NN prediction be,

ỹi ¼
1
k

Xk
j¼1

yj i

 !
: ð5Þ

where the set {yj
i: j=1,…,k} consists of the observations for k

pixels in the reference set nearest to the ith pixel in the covariate
space with respect to the distance metric

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

ðxil � xjlÞ2
vuut ;

and where l indexes the 12 spectral band transformations used
as covariates.

3.2.3. Estimators for superpopulation parameters
Greater utility of the k-NN technique requires estimators for

the parameters, μi, σi
2, and ρij; estimators for the variances and

covariances of estimates of μi and yi; and estimators for the
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variances of areal estimates obtained by aggregating pixel
predictions for multiple pixel AOIs. As previously defined, let
{yj

i, j=1,…k} denote the set of observations for the k pixels in the
reference set that are nearest to the ith pixel with respect to the
unweighted Euclidean distance metric. Assuming approximate
symmetry in the distribution of nearest neighbors around Xi in the
covariate space, and assuming μj

i≈μi where μi is the mean
corresponding to Xi, and μj

i is the mean of the distribution of
which yj

i is a realization, then E( ỹi)≈μi. The derivation of
variance estimators begins with the equivalence of the k-NN
prediction, ỹi, as the estimator of both the mean, μi and the
realization, yi; i.e., μ̂i=ŷi= ỹi. Draper and Smith (1981, pp. 28–30)
articulate this equivalence in a regression context. They note that
the regression model prediction for a given value of the covariate
may be considered “the predicted mean value” of the response
variable or “a predicted value of an individual observation”which
will vary about the true mean value of the response variable.

Several approaches to developing an estimator for σi
2 for

k-NN applications are feasible. The leave-one-out method
(Lachenbruch & Mickey, 1986) or RMSe method for which,

̂r2 ¼ 1

n

Xn
i¼1

yi � ỹið Þ2;

where i indexes the n pixels in the reference set is often used.
However, this approach assumes homogeneity of variance, and,
as Kim and Tomppo (2006) note, it does not produce a direct
measure of uncertainty for k-NN predictions and does not
accommodate dependence due to spectral similarity of neighbor-
ing pixels or spatial dependence among observations. Kim and
Tomppo (2006) propose an approach that uses a model of the
covariate space variogram. Although this approach merits
consideration, variance estimators for aggregations of pixel
predictions for multiple pixel AOIs have not been derived. A
third approach developed for this study incorporates spatial
correlation and features an estimator of σi

2 as,

̂r2i ¼

Xk
k¼1

ðy i
j � ỹiÞ2

k � 1
k

Pk
j1¼1

Pk
j2¼1

qj1 j2

; ð6aÞ

(Appendix A.1) where j, j1 and j2 index the k neighbors in
covariate space nearest to the ith pixel, and ρj1 j2 is the spatial
correlation between the observations for the j1th and the j2th
nearest neighbors. In the absence of spatial correlation, σ̂ i

2 from
(6a) reduces to,

r̂2i ¼

Xk
j¼1

ðy i
j � ỹiÞ2

k � 1
: ð6bÞ

Because of fragmentation in the predominantly forested land-
scapes resulting from features such as lakes, roads, and clearings,
spatial correlation is not continuous; nevertheless, an assumption of
continuous spatial correlation leads to a useful approximation.
Under this continuity assumption, an estimator for ρ may be
obtained using the variogram approach of Gumpertz et al. (2000):

(1) calculate the standardized residuals,

̂di ¼ yi � ỹi
̂ri

;

(2) construct an empirical semi-variogram,

̂g dð Þ ¼ 1
2jjNðdÞjj

X
NðdÞ

̂di � ̂dj
� �2

where N(d) denotes a collection of pairs, (δ̂i, δ̂j), whose
Euclidean distance apart, dij, in geographic space lies
within a given neighborhood of d, and ||N(d)|| denotes the
number of pairs in N(d).

(3) fit a semivariogram (e.g., the exponential model),

̂gðhÞ ¼ ̂a0 þ ̂a1½1� expð ̂a2hÞ� ð7aÞ
to the empirical semi-variogram;

(4) and calculate,

̂qij ¼ 1� ̂gðdijÞ
̂gtotal

¼ 1� ̂a0 þ ̂a1 ½1� expð ̂a2dijÞ�
̂a0 þ ̂a1

: ð7bÞ

An approach that iterates between estimating σi
2 from (6a)

and the steps leading to (7a,b) should be used; convergence may
be expected after only a few iterations. For the first iteration, σi

2

may be estimated from (6b) under the assumption of no spatial
correlation.

3.2.4. Variance estimators
The covariance between estimates of the ith and jth means,

μ̂i and μ̂j, may be approximated as,

Cov ̂Ai;Âj
� �

c
rirj
k2
Xk
li¼1

Xk
lj¼1

qli lj ; ð8aÞ

(Appendix A.2) where li and lj index the k neighbors nearest to
the ith and jth pixels, respectively. In the absence of spatial
correlation, Cov(μ̂i, μ̂j) from (8a) reduces to,

Cov Âi; Âj
� �

c
mijrirj
k2

; ð8bÞ

where mij is number of nearest neighbors common to both the ith
and jth pixels. In the absence of spatial correlation, and if the ith
and jth pixels share no common nearest neighbors, Cov(μ̂i, μ̂j)=0.

The estimate of the variance of the ith mean, μ̂i, is simply the
special case of (8a) where i= j, so that,

Var Âið Þc r2i
k2
Xk
l1¼1

Xk
l2¼1

ql1l2 ð9aÞ

where l1 and l2 index the k neighbors nearest to the ith pixel. In
the absence of spatial correlation, (9a) reduces to,

Var Âið Þc r2i
k
: ð9bÞ
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The covariance between predictions of realizations, yi
and yj, could be formulated in two ways: either Cov( ŷi, ŷj) =
E[(ŷi−yi)(ŷj−yj)] or Cov(ŷi, ŷj)=E[(ŷi−μi)(ŷj−μj)]. Because
the emphasis is on predictions of realizations, the first formulation
is used for this study. An estimator may then be derived as,

Cov ̂yi; ̂yj
� �

c
rirj
k2

Xk
li¼1

Xk
lj¼1

qli lj � k
Xk
li¼1

qli j � k
Xk
lj¼1

qilj þ k2

0
@

1
A;

ð10aÞ

(Appendix A.3) where li and lj index the k neighbors nearest to
the ith and jth pixels, respectively. In the absence of spatial
correlation, and if the ith and jth pixels are both included in the
reference set, then for exactly one li and one lj, ρli j=ρilj=1. In this
case, (10a) reduces to,

Cov ̂yi; ̂yj
� �

crirj 1� 2
k
þ mij

k2

� �
ð10bÞ

wheremij is the number of nearest neighbors common to both the
ith and jth pixels. If only one of the ith or jth pixels is included in
the reference set, then in the absence of spatial correlation, (10a)
reduces to,

Cov ̂yi; ̂yj
� �

crirj 1� 1
k
þ mij

k2

� �
; ð10cÞ

and if neither the ith or jth pixels is included in the reference set,
then in the absence of spatial correlation, (10a) reduces to,

Cov ̂yi; ̂yj
� �

crirj 1þ mij

k2

� �
: ð10dÞ

In the absence of spatial correlation, and if the ith and jth
pixels share no common nearest neighbors, Cov(ŷi, ŷj)=σiσj.

The estimate of the variance of the prediction of a realization,
yi, is simply the special case of (10a) where i= j, so that,

Var ̂yið Þc r2i
k2

Xk
l1¼1

Xk
l2¼1

ql1l2 � 2k
Xk
l¼1

qli þ k2
 !

ð11aÞ

where l, l1, and l2 index the k neighbors nearest to the ith pixel.
In the absence of spatial correlation, and if the ith pixel is
included in the reference set, then (11a) reduces to,

Var ̂yið Þcr2i 1� 1
k

� �
; ð11bÞ

otherwise if the ith pixel is not included in the reference set,
then in the absence of spatial correlation, (11a) reduces to

Var ̂yið Þcr2i 1þ 1
k

� �
: ð11cÞ

3.2.5. Estimation for aggregations of pixel predictions
Two approaches may be considered for estimating the mean

of a response variable for an AOI consisting of multiple pixels.
First, the estimate may be obtained as the mean over estimates
of the means, μi,

Ȳ M1 ¼ 1
N

XN
i¼1

Âi; ð12Þ

where i indexes the N pixels in the AOI, μ̂i= ỹi from (5), and the
subscript M1 denotes the first of two estimators. An estimate
obtained using (12) may be interpreted as the mean over all
possible realizations of populations from the superpopulation.
Second, the estimate may be obtained as the mean over
predictions of realizations from the superpopulation,

Ȳ M2 ¼ 1
N

XN
i¼1

̂yi; ð13Þ

where ŷi= ỹi and M2 denotes the second estimator. An estimate
obtained using (13) may be interpreted as the mean over one
realization of a population from the superpopulation. Because

μ̂ i=ŷi= ỹi, then ȲM1= ȲM2 and E Ȳ M1ð Þ ¼ E Ȳ M2ð Þ ¼ 1
N

PN
i¼1

Ai.
The variance of ȲM1 is,

Var Ȳ M1ð Þ¼ 1
N2

Var
XN
i¼1

Âi

 !
¼ 1

N2

XN
i¼1

XN
j¼1

Cov Âi; Âj
� �

:

ð14aÞ
Substituting from (8a) into (14a),

Var Ȳ M1ð Þc 1
N 2

XN
i¼1

XN
j¼1

rirj
k2

Xk
li¼1

Xk
lj¼1

qli lj

0
@

1
A

2
4

3
5; ð14bÞ

where li and lj index the k neighbors nearest to the ith and
jth pixels, respectively. In the absence of spatial correlation,
Var(Ȳ M1) from (14b) reduces to,

Var Ȳ M1ð Þc 1
N2

XN
i¼1

XN
j¼1

rirj
mij

k2
; ð14cÞ

where mij is the number of nearest neighbors common to both
the ith and jth pixels.

The variance of ȲM2 is,

Var Ȳ M2ð Þ¼ 1
N2

Var
XN
i¼1

̂yi

 !
¼ 1

N2

XN
i¼1

XN
j¼1

Cov ̂yi; ̂yj
� �

:

ð15aÞ

Substituting from (10a) into (15a),

Var Ȳ M2ð Þc

1
N 2

XN
i¼1

XN
j¼1

rirj
k2

Xk
li¼1

Xk
lj¼1

qlilj�k
Xk
li¼1

qli j�k
Xk
lj¼1

qiljþk2

0
@

1
A

2
4

3
5;

ð15bÞ
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and, after substitution from (14b),

Var Ȳ M2ð ÞcVar Ȳ M1ð Þ

þ 1
N2

XN
i¼1

XN
j¼1

rirj
k2

k2 � k
Xk
li¼1

qlij � k
Xk
lj¼1

qilj

0
@

1
A

2
4

3
5;
ð15cÞ

where li and lj index the k neighbors nearest to the ith and jth
pixels, respectively. Thus, E(ȲM1)=E(ȲM2), but Var(ȲM1)≠
Var(ȲM2). When considering Var(ȲM2) in the absence of spa-
tial correlation, the effects of the ith or jth pixels being in the
reference set are ignored, because the target set is assumed to
be orders of magnitude larger than the reference set. Thus, in
the absence of spatial correlation, (15b) reduces to,

Var Ȳ M2ð Þc 1
N2

XN
i¼1

XN
j¼1

rirj 1þ mij

k2

� �h i
; ð15dÞ

where mij is the number of nearest neighbors common to both
the ith and jth pixels.

All covariances and variances, Cov( μ̂i, μ̂j), Var( μ̂i), Cov(ŷi, ŷj),
Var(ŷi), Var(ȲM1), andVar(ȲM2) are nowexpressed in terms of only
the variances, σi

2, and the correlations, ρij. Substituting the estima-
tor for σi

2 from (6a,b) and the estimator for ρij from (7a,b) into (8a,
b), (9a,b), (10a,b,c,d), (11a,b,c), (14a,b,c), and (15a,b,c,d) provides
estimators for the variances and covariances of means and indi-
vidual predictions and for the variances of areal estimates obtained
as aggregations of pixel predictions for multiple pixel AOIs.

3.3. Analyses

Although the primary emphases of the study were related to
issues of precision rather than bias, derivation of the variance
estimators assumed unbiasedness in pixel predictions. Thus,
investigation of the validity of this assumption was investigated
using the reference set observations. First, the leave-one-out
technique was used to obtain k-NN predictions for each reference
set pixel with the constraint that only one nearest neighbor could
be selected from among pixels corresponding to subplots of the
same FIA plot. Second, for each response variable, the residuals
resulting from these predictions were graphed against four
measures: (1) observations, (2) standard deviations among
observations for the five nearest neighbors, (3) feature space
distances to the fifth nearest neighbors, and (4) distances to feature
space center. The latter measure addresses the concern that at the
edges of feature space, sparseness in the distribution of reference
set pixels may lead to bias as the result of greater feature space
distances to nearest neighbors and greater standard deviations
among those observations for those nearest neighbors.

For each of the four response variables, two sets of graphs were
constructed. First, the residuals were graphed against the four
measures. This set of graphs indicates the general pattern of the
distribution of residuals for eachmeasure andprovides information
on heterogeneity of variance of the residuals. However, because of
the large number of reference set observations, determining if the
residuals were generally symmetrically distributed around zero
was difficult. Therefore, second, the residuals were ordered with
respect to the values of each measure and divided into equal size
groupings beginning with the smallest value of the measure. The
means of the residuals and the measures were calculated for each
grouping, and the residual mean was graphed against the measure
mean. This set of graphs indicates whether there are systematic
patterns of deviations of residuals from a mean residual of zero.

The association of each of the four subplots of the FIA plot
with a different pixel raises issues of the effects of spatial
correlation. The approximately 35–40 m separation among sub-
plots is considerably less than the expected effective ranges of
spatial correlation among residuals. Therefore, because of the
expected similarity among observations for subplots of the same
plot and, hence, the expected similarity in spectral values for the
associated pixels, the nearest neighbors for a particular pixel may
tend to include pixels associated with multiple subplots of the
same plot. This phenomenon may have two effects on variance
estimates. First, the similarity among the assumed spatially
correlated observations for subplots of the same plot may
decrease the denominator in (6a), thus increasing the estimate of
σi
2. Second, this same spatial correlation may also decrease the

numerator of (6a), thus decreasing the estimate of σi
2. To assess

these effects, two k-NN predictions were calculated for each
pixel: the first permitted only one nearest neighbor from among
the pixels associated with the four subplots of each FIA plot, and
the second permitted multiple neighbors.

Within the study area, 15 points were selected to serve as
centers of 10-km radius AOIs. The AOI centers were system-
atically distributed throughout the study area with minor
adjustment to ensure they represented the range of conditions
in the scene. For each pixel in each AOI, k-NN predictions for
PFA, VOL, BA, and D were calculated for each combination of
1≤k≤10 and for both single and multiple nearest neighbors
associated with subplots of the same FIA plot. For each AOI
and each combination, ȲP and ȲM= ȲM1= ȲM2 were calculated.
For each AOI and number of permitted neighbors among
subplots of the same FIA plot, Vâr(ȲM1) and Vâr(ȲM2) were
calculated for the selected k-value. Because neither ȲP nor ȲM

are without uncertainty, and because they are correlated as a
result of their basis in the same underlying data, no rigorous
statistical test for comparing them was used. Rather, ȲP and ȲM

were compared graphically and both root mean square and
mean absolute differences were calculated.

Although the selection of k could be based on comparisons
of pixel-level observations and predictions as is often done, this
approach tends to produce large pixel-level RMSEs which do
not, however, necessarily translate to large variances for areal
estimates, a criterion of interest for this study. Therefore, the
selection of k was based on comparisons of ȲP and ȲM for the
15 AOIs. Two approaches were used. First, for 1≤k≤10 and
for each combination of forest attribute variable and AOI,

s ¼ Ȳ P � Ȳ M

SEðȲ PÞ ð16Þ

was calculated, and then, for each variable and k-value, the mean
of τ over the 15 AOIs was calculated. Although τ is similar to
Student's t-statistic, it does not incorporate the uncertainty in
ȲM, and it does not incorporate the covariance between ȲP and



Table 1

Area
of
interest

Probability-based approach Model-based approach a

No.
plots

ȲP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ PÞ

q
1 neighbor only per plot Multiple neighbors per plot

ȲM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ M1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ M2Þ

q
ȲM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ M1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ M2Þ

q

a. Proportion forest area estimates
1 24 0.8607 0.0560 0.8594 0.00523 0.00529 0.8601 0.00519 0.00523
2 25 0.7866 0.0642 0.8182 0.00470 0.00479 0.8205 0.00446 0.00453
3 23 0.7935 0.0697 0.7365 0.00516 0.00522 0.7356 0.00493 0.00497
4 21 0.8929 0.0407 0.8460 0.00664 0.00666 0.8460 0.00632 0.00634
5 20 0.9625 0.0205 0.9075 0.00691 0.00696 0.9037 0.00692 0.00695
6 25 0.6684 0.0772 0.6604 0.00657 0.00667 0.6554 0.00590 0.00598
7 22 0.7169 0.0659 0.8307 0.00481 0.00492 0.8302 0.00460 0.00468
8 24 0.8120 0.0501 0.8101 0.00494 0.00504 0.8130 0.00458 0.00466
9 24 0.6797 0.0751 0.6559 0.00623 0.00635 0.6523 0.00588 0.00596
10 19 0.6556 0.0746 0.6963 0.00709 0.00719 0.6883 0.00662 0.00670
11 22 0.6538 0.0727 0.6969 0.00716 0.00728 0.6986 0.00686 0.00694
12 23 0.7717 0.0701 0.8455 0.00660 0.00671 0.7887 0.00625 0.00633
13 24 0.6146 0.0752 0.6427 0.00648 0.00661 0.6389 0.00620 0.00629
14 19 0.8491 0.0546 0.8758 0.00636 0.00641 0.8734 0.00581 0.00585
15 24 0.6792 0.0730 0.7956 0.00560 0.00572 0.7910 0.00521 0.00531

b. Volume (m3/ha) estimates
1 24 75.50 10.78 56.76 1.66 1.67 56.84 1.76 1.77
2 25 56.08 10.33 51.98 1.19 1.21 51.98 1.15 1.17
3 23 57.82 10.50 56.60 1.48 1.49 57.45 1.51 1.52
4 21 67.48 9.42 64.89 2.31 2.32 65.53 2.27 2.27
5 20 81.43 13.51 74.59 2.50 2.51 73.05 2.41 2.42
6 25 37.77 9.09 40.67 1.33 1.34 39.94 1.30 1.31
7 22 34.28 7.94 53.57 1.18 1.19 54.31 1.15 1.16
8 24 52.88 6.45 49.12 1.20 1.22 48.83 1.17 1.18
9 24 61.98 10.85 41.53 1.23 1.25 42.55 1.23 1.25
10 19 37.23 6.29 50.11 1.64 1.65 50.85 1.52 1.53
11 22 31.45 8.16 41.33 1.33 1.34 41.44 1.33 1.34
12 23 55.32 8.15 51.80 1.57 1.58 52.55 1.57 1.59
13 24 34.99 6.93 39.75 1.20 1.21 39.80 1.14 1.15
14 19 75.55 9.18 74.62 2.14 2.15 74.92 2.08 2.09
15 24 35.33 7.81 49.68 1.14 1.15 49.13 1.10 1.12

c. Basal area per acre (m2/ha) estimates
1 24 14.860 2.064 10.637 0.283 0.285 10.715 0.287 0.289
2 25 9.634 1.681 9.430 0.195 0.197 9.411 0.189 0.189
3 23 9.912 1.655 10.300 0.245 0.247 10.360 0.243 0.245
4 21 12.674 1.476 11.942 0.387 0.388 12.033 0.373 0.374
5 20 13.432 1.942 13.827 0.410 0.412 13.592 0.388 0.390
6 25 7.168 1.683 7.338 0.211 0.213 7.219 0.208 0.210
7 22 6.681 1.368 9.689 0.196 0.199 9.770 0.189 0.192
8 24 10.344 1.290 8.975 0.198 0.189 8.943 0.192 0.194
9 24 10.523 1.690 7.276 0.202 0.204 7.421 0.199 0.201
10 19 6.785 1.068 8.736 0.249 0.251 8.821 0.236 0.238
11 22 5.602 1.380 7.291 0.206 0.208 7.285 0.208 0.210
12 23 10.346 1.449 9.251 0.246 0.249 9.372 0.253 0.255
13 24 6.117 1.102 6.998 0.193 0.195 6.989 0.188 0.190
14 19 12.678 1.433 13.537 0.343 0.345 13.576 0.335 0.337
15 24 6.789 1.582 8.906 0.186 0.188 8.808 0.450 0.455
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ȲM as a result of both being based on the same sample data.
Second, a multivariate approach was used in which,

w ¼ ðȲ P
⁎� Ȳ M

⁎Þ VV�1ðȲ P
⁎� Ȳ M

⁎Þ ð17Þ
was calculated for 1≤k≤10 and each AOI where the super-
script, ⁎, indicates a vector of means for all four response
variables, and V is the 4×4 matrix of covariances for the plot
observations of the four variables for the AOI. For each k-value,
the mean of ψwas then calculated over the 15 AOIs. Although ψ
is similar to a χ2 statistic (Graybill, 1961), it does not incorporate
the uncertainty in ȲM

⁎ or the covariances between ȲP
⁎ and ȲM

⁎ as a
result of both being based on the same sample data.

For the selected k-value, each response variable, and each
permitted number of neighbors associated with subplots of the
same FIAplot, spatial variability among the standardized residuals
was evaluated for the entire study area under the assumptions of



d. Stem density estimates
1 24 437.24 60.96 318.44 7.81 7.87 321.43 7.57 7.63
2 25 257.01 46.13 267.31 5.07 5.13 265.31 4.92 4.98
3 23 245.10 41.09 292.47 6.57 6.63 289.16 6.25 6.30
4 21 404.40 34.35 382.19 11.22 11.05 382.56 10.77 10.80
5 20 313.77 38.33 382.56 10.50 10.55 377.20 9.84 9.88
6 25 217.15 47.29 210.31 5.48 5.53 206.35 5.64 5.68
7 22 210.95 40.52 275.32 5.14 5.20 274.60 5.14 5.21
8 24 322.44 49.57 253.77 5.15 5.21 253.15 4.99 5.05
9 24 245.99 40.20 191.28 5.06 5.11 192.76 5.01 5.06
10 19 200.47 32.64 226.69 5.72 5.77 226.54 5.62 5.66
11 22 150.14 35.90 198.05 5.08 5.13 196.79 5.11 5.15
12 23 306.45 42.77 285.91 6.26 6.31 262.07 6.08 6.13
13 24 187.18 32.57 188.74 5.11 5.16 187.87 5.04 5.08
14 19 333.44 35.09 357.26 8.13 8.18 355.03 8.19 8.24
15 24 205.17 52.85 256.76 4.92 4.99 254.54 4.83 4.89
a ȲM= ȲM1= ȲM2.

Table 1 (continued )

Area
of
interest

Probability-based approach Model-based approacha

No.
plots

ȲP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ PÞ

q
1 neighbor only per plot Multiple neighbors per plot

ȲM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ M1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ M2Þ

q
ȲM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ M1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VârðȲ M2Þ

q
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stationary (i.e., spatial correlation does not change within the
scene) and isotropy (i.e., spatial correlation is the same in all
directions). Although these assumptions are likely only approxi-
mately satisfied for areas as large as TM scenes, nevertheless
single fitted variograms were used for the entire scene.

4. Results and discussion

The results of the graphical, pixel-level bias analyses were that,
although there was heterogeneity of variance among the residuals,
therewas no indication of bias for any of the four response variables.
Although homogeneity of variance would simplify analyses, the
variance estimators accommodate heterogeneity of variance.

The effects of thek-value on estimates for the 10-km radiusAOIs
were minimal. For 1≤k≤10, none of the four τ-means (16) or the
ψ-mean (17) was more than 5% greater than the minimum value.
Therefore, k=5 was selected on the basis that it is an approximate
minimum sample size for obtaining reliable estimates of σi

2.
For k=5, variogram models were fit to the standardized

residuals for each combination of response variable and permitted
number of nearest neighbors associated with subplots of the same
FIA plot. There was not sufficient information from the data
available to conclude that α̂0=0 from (7) for any of the response
variables. Therefore, the variogram model (7a) was simplified to,

ĝðhÞ ¼ ̂a1½1� expð ̂a2dijÞ�;
where α̂1 is the estimate of the variogram sill. The effective range,
r, of spatial correlation, defined as the distance at which 95% of
the variogram sill is reached, is estimated as,

r ¼ lnð0:05Þ
̂a2

:

Effective ranges of spatial correlation for residuals were
relatively small, less than 100 m for all combinations except for
PFAwhen only one neighbor associated with the same FIA plot
was permitted; for the latter combination, the effective range of
spatial correlation was approximately 155 m.
Estimates obtained when only one neighbor associated with
subplots of the same FIA plot was permitted were similar to those
obtai ned when mul tipl e neighbor s w e re p er mitt ed (Tab le 1 ). Fo r
k=5, one neighbor associated with subplots of the same FIA
plot, and each response variable, ȲP was graphed against ȲM for
each of the 15 AOIs. Generally, the estimates, ȲP, were along the
1:1 l i ne ha vi ng i n t er ce pt 0 a nd s l op e 1 ( Fi g. 2a –d). In addition, with
only a few exceptions, vertical lines centered at ȲP and extending
two probability-based standard errors in either direction intersected
the 1:1 line. Root mean square and mean absolute differences were
nearly indistinguishable with respect to whether one neighbor or
multiple neighborswere permitted for subplots of the sameFIAplot
(Table 2).

Calculating the variance estimates was computationally in-
tensive because covariances among all pairs of pixel predictions
were theoretically necessary. Each 10-km radius circular AOI
included approximately 350,000 30-m×30-m Landsat pixels
whichmeant that approximately 1.2×1011 covariance calculations
were necessary. To mitigate this computational problem, two steps
were taken. First, for each response variable, each AOI was
tessellated into squares with side dimensions equal to the range of
spatial correlation. Thus, for a given pixel, other pixels for which
spatial correlation may be non-zero must be in the square
containing the given pixel or in adjacent squares. Therefore, for
a given pixel, calculation of covariances among pixel predictions
was restricted to pixels in the same square containing the given
pixel and adjacent squares. Second, the order in which pixels were
selected for calculation of covariances with other pixels was
randomized. For each response variable for three AOIs, the
accumulated variance estimates, scaled to reflect the total pixels in
the AOI, were graphed against the proportion of pixels for which
covariances had been calculated. The variance estimates stabilized
to within 0.5% of the final estimate by the time covariances for
15% of pixels had been calculated (Fig. 3). For the remaining 12
AOIs, variance estimates were based on a 20% random sample of
all pixels in theAOI. These two steps reduced computation time by
a factor of more than 50.



Fig. 2. (A) Comparison of probability-based and model-based (k-NN, k=5) estimates for proportion forest area. (B) Comparison of probability-based and model-based
(k-NN, k=5) estimates for volume (m3/ha). (C) Comparison of probability-based and model-based (k-NN, k=5) estimates for basal area (m2/ha). (D) Comparison of
probability-based and model-based (k-NN, k=5) estimates for stem density (tree count/ha).

476 R.E. McRoberts et al. / Remote Sensing of Environment 111 (2007) 466–480
For each AOI and response variable combination, the standard
error estimates were compared for the four combinations resulting
from selecting either one or multiple neighbors per plot and
considering the k-NN pixel prediction as either an estimate of a
mean or as an estimate of a realization from the superpopulation.
Although the four estimates were very similar, the standard error
estimates corresponding to the k-NN pixel predictions considered
as estimates of means were smaller than when predictions were
considered as predictions of realizations from the superpopula-
Table 2
Comparison of estimates for probability-based and k-NN approaches and for
one or multiple neighbors per plot

Variable Number of neighbors permitted per plot

1 Multiple

Mean
squared
difference

Mean
absolute
difference

Mean
squared
difference

Mean
absolute
difference

Proportion forest area 0.098 0.078 0.099 0.080
Volume (m3/ha) 10.82 8.82 11.12 8.95
Basal area (m2/ha) 1.87 1.45 1.91 1.46
Stem density (count/ha) 51.30 42.38 51.84 42.38
tion. Although this result was as required as per (15c), the
differences were small, a result attributed to the relatively small
effective ranges of spatial correlation. Also, standard errors were
Fig. 3. Scaled standard error estimate versus proportion of pixels for volume, the
fifth AOI, multiple neighbors per plot, and k-NN prediction considered as an
estimate of the mean.



ðA2Þ
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generally smaller when multiple neighbors associated with the
same FIA plot were permitted than when only one neighbor was
permitted, although the differences were again slight. This result
should not be construed to suggest that multiple neighbors
associated with subplots of the same FIA plot were only
infrequently selected. For k=2, 20% of pixels exhibited this
phenomenon; for k=5, it was 64%; and for k=10, it was 92%.
The conclusion is that the reduction in the numerator of the
estimate ofσi

2 from (6a) as a result of this phenomenonwas nearly
offset by a comparable reduction in the denominator. Overall,
coefficients of variation were small; less than 0.011 for PFA, less
than 0.036 for VOL, less than 0.052 for BA, and less than 0.030
for D. Variance estimates for PFA were of the same order of
magnitude as those reported by McRoberts (2006) for the same
AOIs and datasets using a logistic regression model approach.

5. Conclusions

Multiple conclusions may be drawn from this study. First, the
computational intensity necessary to calculate the covariancesmay
be mitigated using the techniques described in the first paragraph
of the Results and discussion section. Nevertheless, in the absence
of faster processing capabilities and more efficient algorithms, the
k-NN model-based approach may still be too computationally
intensive for large areas. Second, the similarity between the
estimates obtained using the probability-based and model-based
approaches suggests unbiasedness for the k-NN areal estimates.
Third, spatial correlation had little effect on the variances of
estimates, although other applicationswith greater ranges of spatial
correlation may produce different results. Fourth, the effects of
permitting only one versus multiple neighbors among the pixels
associated with subplots of the same FIA plot were minimal. Fifth,
the advantages of the k-NN model-based approach include small
area estimation, multivariate estimation, and compatible maps as
by-products. The variances obtained using the probability-based
and model-based approaches cannot be compared in a conceptual
sense because of the differences in underlying assumptions and the
manner in which variability is generated. Nevertheless, from a
practical perspective, disadvantages accruing from the k-NN
model-based approach do not include loss of precision relative to
the probability-based approach.

Finally, the results of the study lead to a 3-part recommen-
dation for obtaining areal estimates of forest attributes using the
k-NN model-based approach when ranges of spatial correlation
are small and the reference set is relatively large. First, consider
the k-NN prediction to be an estimate of the mean of the
distribution of possible observations for the same values of the
covariates and use the estimator for Var(ȲM1); second, permit
only one nearest neighbor within the range of spatial correlation
of other neighbors; and third, use algorithms similar to those
described to reduce computational intensity. The effects of the
first two parts of the recommendation further reduce the
computational intensity because spatial correlation and covar-
iances may be ignored when estimating σi

2, although they must
still be considered when estimating Cov(μ̂i,μ̂j).

The benefits of the results of this investigation are threefold.
First, the utility of the k-NN technique has been extended from
producing estimates of only means and totals of forest attributes
over spatial areas to producing estimates of the uncertainty of
estimates of those means and totals. Thus, the statistical signifi-
cance of differences in estimates of forest attributes for different
areas or under different conditions may be assessed. Second,
the k-NN model-based approach contributes to alleviating the
problem of inadequate sample sizes for small area inventory esti-
mation. Third, the k-NN model-based approach facilitates simulta-
neous and consistent mapping and estimation of multiple forest
attributes.

This study represents one of the first attempts to derive
variance estimators for nearest neighbor methods. As such,
there are numerous future research issues. First, investigations
should be conducted on the robustness of the superpopulation
and variance estimators to violations of assumptions such as
unbiasedness, symmetry of the distribution of neighbors in
covariate space, and adequacy of the range of reference set
observations in covariate space. In addition, the effect of the
selection of k on variances has not been investigated, nor has the
effect of weighting individual neighbors when calculating k-NN
predictions using (3) rather than the simplified form of (5).

Appendix A A.1. An estimator for σi
2

The derivation of the estimator for σi
2 begins with,
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Assuming independence between the μ's and the ε's, (A2)
simplifies to,
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In the neighborhood of the ith pixel defined by its k nearest
neighbors in covariate space, the following approximations are
reasonable:
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A.2. Cov(μ̂i, μ̂j)

An approximation of the covariance of estimates of arbitrary
superpopulation means, μ̂i and μ̂j, may be derived as,
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where {yli
i: li=1, …,k}and {ylji

j: lj=1, …,k} are the sets of k
neighbors in the reference set nearest to the ith and jth pixels,
respectively, in covariate space. Assuming independence
between the μ's and ε's, (B1) may be expressed as,
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Further, assuming that in the neighborhoods of the ith and
jth pixels σli≈σi and σlj≈σj, then,
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A.3. Cov(ŷi, ŷj)

An approximation of the covariance of predictions of
realizations, ŷi and ŷj, from arbitrary ith and jth distributions
may be derived as,
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where {yli
i:li=1, …,k} and {ylj

j: lj=1, …,k} are the sets of k
neighbors in the reference set nearest to the ith and jth pixels,
respectively, in covariate space. Assuming independence
between the μ's and ε's, (C1) may be expressed as,
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