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Abstract This study examines the performance of the

analog method for downscaling daily precipitation. The

evaluation is performed for (1) a number of similarity

measures for searching analogs, (2) various ways to include

the past atmospheric evolution, and (3) different truncations

in EOF space. It is carried out for two regions with complex

topographic structures, and with distinct climatic charac-

teristics, namely, California’s Central Valley (together with

the Sierra Nevada) and the European Alps. NCEP/NCAR

reanalysis data are used to represent the large scale state of

the atmosphere over the regions. The assessment is based on

simulating daily precipitation for 103 stations for the month

of January, for the years 1950–2004 in the California re-

gion, and for 70 stations in the European Alps (January

1948–2004). Generally, simulated precipitation is in better

agreement with observations in the California region than in

the European Alps. Similarity measures such as the

Euclidean norm, the sum of absolute differences and the

angle between two atmospheric states perform better than

measures which introduce additional weightings to princi-

pal components (e.g., the Mahalanobis distance). The best

choice seems dependent upon the target variable. Lengths

of wet spells, for instance, are best simulated by using the

angular similarity measure. Overall, the Euclidean norm

performs satisfactorily in most cases and hence is a rea-

sonable first choice, whereas the use of Mahalanobis dis-

tance is less advisable. The performance of the analog

method improves by including large-scale information for

bygone days, particularly, for the simulation of wet and dry

spells. Optimal performance is obtained when about 85–

90% of the total predictor variability is retained.

1 Introduction

The analog method (AM) has been commonly used in

weather prediction (Elliot 1951; Baur 1951; Lorenz 1969)

and in seasonal forecasting (Livezey and Barnston 1988).

Lorenz (1969) studied atmospheric predictability by the

use of analogs but achieved poor results as the analogs

were drawn from sparse weather archives (van den Dool

1994). Livezey et al. (1994) compared analog prediction

systems, developed in the US (Livezey and Barnston 1988)

and the former Soviet Union (Gruza and Ran’kova 1986)

for the purpose of enhancing US seasonal temperature

predictions. Even though seasonal forecasts are presently

processed by ensemble forecasts of a number of general

circulation models (GCMs), an analog prediction scheme

still can act as a benchmark. Recently, Hamill and Whi-

taker (2006) explored a set of analog techniques for the

statistical correction of weather forecasts. A successful

application of AM requires an extensive archive of obser-

vations, and depends on the size and complexity of the

considered region. In general it is more difficult to find a

close match for an atmospheric state over a large region of

complex structure than over a small, simply structured

region.

Zorita et al. (1995) and Zorita and von Storch (1999)

introduced AM into the field of downscaling. One objective
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of downscaling is to generate statistics of local scale cli-

mate features that are consistent with the large scale

atmospheric state (von Storch et al. 1993). When down-

scaling is used to generate future climate on local scales,

archives should ideally cover the range of all possible fu-

ture states.

The AM is a simple downscaling method, easy to

implement and featuring two merits: AM uses observed

weather patterns and hence, the spatial covariance structure

of local scale weather is maintained in the simulated fields,

important for hydrological studies, for instance, that rely on

spatially meaningful patterns and; AM does not assume the

form of probability distribution of downscaled variables,

making it easy to construct scenarios for non-normally

distributed variables such as daily precipitation.

AM is based on the selection of similar atmospheric

states, and hence, its performance is dependent upon how

similarity is quantified. Therefore, downscaling skill de-

pends on the specific similarity measure used, and more

generally on the overall selection process. Zorita and von

Storch (1999) used an empirical orthogonal function

(EOF) analysis to filter the noise on spatial small scales

and to reduce the dimensionality of daily atmospheric

states (see e.g., von Storch and Zwiers 1999). Subse-

quently they used the Euclidean norm for principal

components to identify closest atmospheric states. They

also suggested the use of different weights of the prin-

cipal components. Toth (1991) compared nine different

similarity measures for forecasting circulation at 700-hPa

height without filtering the atmospheric data. He found

that the mean absolute difference in the gradient of the

height results in best circulation forecasts and concluded

in favor of root-mean-square difference over correlation

as a similarity measure.

The main purpose of the present study is to examine the

dependence of AM’s performance on the way similarity

between large scale patterns is quantified. AM is evaluated

for the regions of California and the European Alps, both

with complex terrain but with different precipitation cli-

mates. Like any other statistical downscaling method, the

success of AM relies on the existence of a strong relation

between predictors and predictand. Therefore, we focus on

January, as winter is when the large scale state of the

atmosphere exerts strongest influence on precipitation in

these regions. Based on this condition AM is expected to

feature reasonable performance, a necessary prerequisite to

study the sensitivity of the results to different similarity

measures. Summer precipitation characteristics are cer-

tainly of great importance too. Especially changes in dry

spells play a key role in impact considerations. However,

their investigation is beyond the scope of the present paper,

because during summer the link between the scales is

rather loose (see e.g., Hamill and Whitaker 2006).

2 Study regions and data

2.1 Study regions

The Sierra Nevada, east of California’s Central Valley, is

a meridional oriented mountain ridge extending over

600 km. It is located about 250 km inland from the

Pacific ocean and the highest peaks exceed 4,000 m.

Altitude increases from Mt. Lassen (�3,200 m) south-

ward to Mt. Whitney (�4,400 m). South-westerlies in

January are the main source of precipitation for Califor-

nia. Compared to summer, the westerlies in winter are

shifted southwards advecting humid air from the Pacific

Ocean into California, that together with orographic lift-

ing along the Sierra Nevada, makes winter the major

precipitation season (Pandey et al. 1999). ENSO exerts a

strong influence on precipitation as well (Ropelewski and

Halpert 1986) causing above average precipitation during

La Niña years and below average totals during El Niño

years (Schonher and Nicholson 1989). Mean precipitation

is largest in the north at high altitudes and lowest in the

south at low elevations. Precipitation totals generally in-

crease with altitude from West to East, peak at the

summits of the Sierra Nevada and rapidly decrease further

eastward (see Fig. 1, left column). Hence, the Sierra

Nevada acts as a meteorological divide supplying water

for agriculture and California’s cities. The California re-

gion (hereafter CA) spans several climatic zones ranging

from Desert Climate/Hot Steppe at low elevations

(<150 m), to Mediterranean Climate at higher elevations

(150–750 m) to Alpine Climate in the mountains

(>750 m).

Contrary to the Sierra Nevada, the European Alps

(hereafter EA) extent over the study region parallel to the

westerlies. This region in Central Europe is about

1,000 km away from the Atlantic Ocean. There are areas of

low altitude (<100 m), mountain peaks close to 3,800 m,

and steep valleys. The region is under the influence of three

air masses originating in the Atlantic, the Mediterranean

and the European continent. The Alpine ridge acts as a

barrier to these air masses. In January, the northern Alps

receive most precipitation as a result of advection from the

northern North Atlantic and the North Sea. The eastern part

of the region is influenced by dry and cold continental air.

Areas in the south of the main Alpine ridge receive more

precipitation than the eastern parts. Largest amounts of

precipitation occur north and north-west of the Alpine

ridge (see Fig. 1 right column). Inner-Alpine valleys are

particular dry due to the shadowing effect of the northern

and southern ranges. Differing from the California region,

winter is the driest season in the investigated part of the

European Alps. Auer et al. (2001) provides a detailed

overview of the climate of this region.
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2.2 Datasets

The first step in the analysis involves the selection of large

scale predictors that are closely linked to local scale pre-

cipitation. There is no universal rule which fields to choose,

but a number of downscaling studies for precipitation

suggest the use of an atmospheric circulation and/or a

moisture field in the lower troposphere (see e.g., IPCC

2001 for a list of studies). Here we use sea level pressure

and specific humidity at 700 hPa to represent the atmo-

spheric circulation and moisture, respectively.

Daily fields of mean sea level pressure (SLP) and specific

humidity at 700 hPa (SH7) are retrieved from the NCEP/

NCAR reanalysis data archives (Kalnay et al. 1996). Data-

sets are provided on a 2.5� · 2.5� lat-long grid. Geographical

sectors cover 20� N/150�W to 50�N/110�W and 35�N/10�W

to 65�N/30�E for CA and EA, respectively. Daily precipi-

tation levels from 103 stations in California drawn from the

GHCN dataset (Gleason 2002), covering 1950–2004,

(assembled by the National Climatic Data Center (NCDC),

NOAA) are employed in the analysis. In the European Alps,

daily precipitation levels for 70 stations are employed in the

analysis, covering the period 1948–2004 (data are provided

by the Austrian weather service, see Schöner et al. 2003).

3 Method

Subsection 3.1 lists several similarity measures acting

between two large scale atmospheric states that are used in

this study. These measures are the basis for the analog-

selection process, outlined in Subsect. 3.2.

3.1 Similarity measures

To reduce the dimensionality and to filter the atmospheric

data, anomalies are projected onto the leading EOFs. To

rescale the SLP and SH7 fields we divide them by their

averaged standard deviations. Rescaling can be done using

the square root of the averaged variances as weights as

well, but differences are small in our case. Similarity

measures are then computed using the values of the leading

principal components (PCs) of the joint daily SLP and SH7

anomaly fields. The sensitivity to EOF-truncation is

examined by varying the number of PCs from 5 to 26 in

steps of 3. Five measures are considered to quantify simi-

larity between atmospheric states. Let x and y be vectors

containing the values of the leading n PCs and z be their

difference (z = x – y). We consider the following measures

of similarity:

EUK: L2 norm of z, the Euclidean distance between x

and y:

kzk2 ¼
Xn

i¼1

z2
i

 !1
2

ð1Þ

XPL: Weightening the components with the corresponding

explained variance (pi, see e.g., Zorita and von Storch

1999):

kzkw ¼
Xn

i¼1

piz
2
i

 !1
2

ð2Þ

SUM: The sum of absolute differences in the components:

Fig. 1 Long term mean January precipitation at stations in the

Californian region (left) and in the European Alps (right). Totals

(mm) are listed next to the stations. Colorbars indicate the range of

precipitation amount (note the different ranges). Grey shadings
characterize altitudinal belts (increasing from dark-grey to white)

referred to in the text

C. Matulla et al.: Influence of similarity measures for downscaling daily precipitation

123



kzk1 ¼
Xn

i¼1

jzij ð3Þ

COS: The negative cosine of the angle between x and y:

� cos \ x; yð Þð Þ ¼ �
Pn

i¼1 xiyi

kxk2kyk2

ð4Þ

MAH: Mahalanobis distance as taken from Yambor et al.

(2002), where ki is the ith eigenvalue corresponding to the

ith component:

d x; yð Þ ¼ �
Xn

i¼1

xiyiffiffiffiffi
ki

p ð5Þ

Abbreviations introduced above will be used hereafter. The

measures evaluate similarity between state-vectors by dif-

ferent mappings of the components. EUK and SUM do not

introduce component sensitive weights, but map rather

differently the way differences are distributed across the

components. XPL weights the components by the explained

variance and MAH divides them by the square root of the

eigenvalues. Lower order EOFs represent the large scale

structure of the atmospheric variability, while the higher

order EOFs stand for the more local features. Therefore,

XPL reduces the influence of the small scale features, while

MAH increases their significance. Together these measures

of similarity account for a considerable range of ap-

proaches for identifying analogs.

3.2 Selection process

We consider precipitation at a given target-day (w0) as

determined by the state of the atmosphere on that day and

the preceding 7 days. Such a sequence is called a target-

sequence ~w ¼ w7; . . . ;w0
� �

: The search for the closest

analog is conducted in the 61-day interval centered at the

target-date, for all years except for the target-year. For

every target-sequence ~w and any possible sequence

~u ¼ u7; . . . ;u0ð Þ the following expression is evaluated:

Scp;d
~w;~u
� �

¼
X7

k¼0

cp kð Þ d wk;uk
� �

ð6Þ

where wk and uk stand for single-day-patterns of the se-

quences (0 £ k £ 7) and d represents a measure of sim-

ilarity (see Subsect. 3.1). The weighting sequences cp(k)

are lag-weights that depend on the index p = 1,...,9,

shown in Fig. 2. They control to what extent preceding

days influence the analog search and thereby the use of

different sequences will result in different analogs. This

variety in addressing bygone days is meaningful as

different quantities (e.g., totals of heavy precipitation

events or the length of dry spells) are expected to feature

a different dependence on the evolution of the atmo-

sphere. Low-indexed sequences give a higher weighting

for the days shortly preceding the target day than for

other days in the analysis. High indexed sequences also

attach most weight to days close to the target day, but

comparable large weights are applied to days constituting

a longer time period. The pattern-sequence minimizing

the left hand side of Eq. (6) is selected as the analog to

the target-sequence. The precipitation field corresponding

to its eighth day (u0) is taken as the downscaled pre-

cipitation field of the target-day (w0).

4 Results

Our main focus is on weather features such as the

occurrence of wet and dry spells over a period of some

decades (i.e., quantities that should be properly repro-

duced by a downscaling technique). The modeling of the

interannual maximal lengths of dry spells (Subsect. 4.2.1),

or the assessment of AM’s skill to estimate precipitation

events by comparison to the persistence method (Subsect.

4.2.4), characterize desirable features of a model that

links large scale processes to local scale precipitation.

However, high model performance regarding these

quantities is not a prerequisite when considering the

application as a downscaling-technique to generate cli-

mates on regional scales.
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Fig. 2 Weighting-sequences used to identify the analog to the target-

sequence. The rightmost mark on the abscissa refers to the target day,

those to its left to preceding days. Associated y-values are applied as

weights to the state-vectors of these days
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4.1 Monthly precipitation

Figure 3 shows AM’s skill at replicating regionally aver-

aged, monthly precipitation calculated from daily totals.

Panels are based on different settings listed in the titles

(‘setting’ stands for a combination of similarity measure,

weighting-sequence and EOF-truncation). Using the setting

of the left panel, observed anomalies in CA are well

reproduced, with correlation of about 0.9. Correlation is

significant for all stations at the 5% significance level. The

station averaged long term mean is underestimated by 13%

and its variability by 9%. The performance is poorer for

XPL for which correlation drops to 0.7. The long term mean

and the interannual variance are underestimated again.

The second row in Fig. 3 refers to EA with the same

settings as in the upper left panel. Correlations are signif-

icant for 93% of the stations and the correlation for

regionally averaged precipitation is about 0.7. Long term

mean and interannual variance are underestimated by 8%

and overestimated by 10%, respectively. The performance

in EA is poor when XPL is used. Hence, regardless of the

region, the setting in the left hand panels yields a better

reproduction of the observations.

Taking both regions together, there are 720 different

settings composed of similarity measures, weighting-se-

quences and EOF-truncation. The left panel of Fig. 4

shows the correlation across all settings for CA. Except for

XPL, all similarity measures show the poorest correlation
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Fig. 3 Observed and downscaled January precipitation for CA

(upper panels) and EA (lower panels). Settings are indicated in the

panel-titles. Numbers close to the panel-bottoms refer to: correlation

coefficient; percentage of stations exhibiting significant correlation

values (a = 0.05); difference in mean between simulation and

observation, relative to the observed value and the ratio of the

simulated to the observed variance
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for low EOF-truncation and high indexed weighting-se-

quences. High values of the Pearson’s correlation coeffi-

cient are found for EOF-truncation at medium to high

dimensions and for low to medium indexed weighting-se-

quences. Hence, AM performs better in simulating monthly

precipitation when small scale atmospheric features are

included and when no, or only little information about the

past evolution is considered. In case of XPL almost no

dependence on the EOF-truncation is found. This behavior

is caused by assigning smaller weights to small scale de-

tails, that is, higher order EOFs contribute very little to the

similarity measure. Figure 4 further indicates that perfor-

mance saturates for EOF-truncations larger than about 17

(i.e., approximately 85% of the total variance in both re-

gions). EUK, XPL and SUM generally underestimate the

amount of total precipitation and variability (not shown).

COS and MAH overestimate both the mean amount and

variability. Based on weighting-sequence 4, COS is closest

to the observed total but overestimates variability by about

20%. MAH reaches for low indexed weighting-sequences

twice the observed amount for the total and temporal var-

iability (not shown).

Results for EA (Fig. 4, right panel) are similar to CA but

less distinct and correlation is poorer. Regarding correla-

tion, MAH performs closer to EUK, SUM and COS than to

XPL, which shows poorest results. MAH still overestimates

both total precipitation and variability, albeit far less pro-

nounced than for CA (not shown).

Overall, EUK, SUM and COS results in simulated monthly

precipitation closer to the obseration, whereas XPL and

MAH perform worse. Thus, enhancing local details as in

MAH or surpressing them as in XPL, is not beneficial. The

performance of COS falls behind those of EUK and SUM but

is better then that of XPL and MAH, suggesting that the

angle between state-vectors already carries enough infor-

mation to achieve meaningful results. Performance for EA

is clearly reduced compared to CA, which will be discussed

later.

4.2 Daily precipitation based quantities

In the following we evaluate AM’s ability to reproduce

the year to year observed maximum length of dry spells

(Subsect. 4.2.1) and compare the fraction of correct cate-

gorical precipitation estimates based on AM to that of a

random approach (Subsect. 4.2.2). We further discuss

persistence by means of climatological frequencies of dry

and wet spells (Subsect. 4.2.3), followed by a brief testing

of AM’s ‘forecasting’ (quotes are discussed below)

power.

4.2.1 Maximum dry spell lengths

Figure 5 shows results which are based on the same set-

tings as in Fig. 3. In CA, EUK achieves a correlation of 0.64

and results are significant at single station series (84%).

These values drop to 0.60 and 61% in EA, but results

should still be regarded as considerable. For CA XPL,

reaches 0.46 for the correlation and simulations are sig-

nificant at 45% of all stations and overall there is not much

difference in performance regarding the two study regions.

Correlation all over the settings as shown in Fig. 4 are

generally in agreement with the findings based on monthly

totals (not shown).
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Fig. 4 Correlation between simulated and observed monthly, station averaged precipitation series. x-axis: distance measures; y-axis: weighting-

sequences (see Fig. 2); z-axis: EOF-truncation; left/right panel: CA/EA
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4.2.2 Fraction of correct categorical precipitation

estimates

Even though an accurate simulation of daily precipitation

amounts from the large scale atmosphere is not an ultimate

goal of downscaling, when being used to produce regional

climates, it is a desirable feature. The probability of esti-

mating correctly the precipitation amount is of high prac-

tical importance. In the following, daily precipitation is

classified into six categories: ‘zero’ (no precipitation),

‘light’ (below the 25th percentiles),‘medium’ (between the

25th and 75th percentiles), ‘enhanced’ (75th to 90th),

‘strong’ (90th to 95th) and ‘heavy’ (above the 95th per-

centiles). Categories as simulated by AM are validated

against the observations. Skill is compared to that in the

random selection approach.

Figure 6 shows the fraction of a correct categorical

classification using AM divided by the fraction due to

chance as obtained in the random approach, which is the

fraction of correct choices to all possible choices. The

panels refer to ‘light’, ‘enhanced’ and ‘heavy’ categories

and are based on EUK. In CA (EA) ‘light’ precipitation

events are correctly classified from 10 to 14% (10–12%).

Based on the random approach 9% of the ‘light’ events are

correctly classified. Depending on the applied lag-sequence

and EOF truncation, ‘enhanced’ events (middle panels) are

correctly identified by AM from 14 to 21% (8–14%) for

CA (EA) compared to about 5% by the random approach.
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Fig. 5 Observed and downscaled maximal length of dry spells in

January for CA (upper panels) and EA (lower panels). Numbers close

to the panel-tops refer to: correlation coefficient; percentage of

stations exhibiting significant correlation values (a = 0.05); differ-

ence in mean between simulation and observation, relative to the

observed value and the ratio of the simulated to the observed variance
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Hence, in CA the AM skill is about four times that of the

random approach. Ratios become larger for the ‘heavy’

case (right panels).

‘Skill-patterns’ as shown in Fig. 6 are computed for all

measures of similarity (not shown). AM generally outper-

forms the random approach for all classes. For all simi-

larity measures, correct categorical estimates by AM are

more probable when based on low to medium indexed

weighting-sequences and medium to high values of EOF-

truncation. The ratio of successful estimates by AM and by

the random approach increases towards ‘heavy’ events, as

indicated by the findings for EUK. The shapes of the skill-

patterns for EUK, SUM and COS share similarities and the

achieved values are higher than those for XLP or MAH. In

both regions XPL shows a pronounced dependency on the

lag-sequences but almost no dependency on EOF trunca-

tion. Again, AM performs better in CA than in EA, which

will be discussed later.

4.2.3 Distribution of dry and wet spells

Frequency distributions of dry and wet spells summarize

persistent features of weather variability. Ideally these

features should be correctly reproduced by a downscaling

technique. In the following we examine AM skill in simu-

lating frequency distributions of 3, 6 and 9 consecutive dry

days and of 2, 3 and 4 consecutive wet days. Averaged

over all stations in CA, dry spells of length 3, 6, and

9 days occur 250, 90, and 45 times, respectively, in the

study period. The corresponding numbers in EA are 240,

105 and 55, indicating that EA is drier in January than CA.

This is reflected by the occurrence of wet spells as well.

The number of 2, 3, and 4 day wet spells is approximately

200, 100 and 60, respectively, in CA and 50, 15, and 6 in

EA. Winter is the driest season in EA and the wettest

season in CA (e.g., Auer et al. 2001; Pandey et al. 1999).

Figure 7 shows AM’s ability to model dry and wet spell

frequencies for CA, based on weighting-sequence 5.

Generally, frequencies of dry spells are underestimated.

This negative bias increases with the length of spells.

However, the simulations of dry spell frequencies using

EUK, SUM and to a lesser degree COS, appears reasonable.

The performance improves when more information from

the past evolution is included in the analysis. This

improvement is common to all similarity measures and is

particularly pronounced for 6 and 9 day-spells (not

shown). EOF truncation around 17 allows for best results.

MAH and XPL show pronounced negative biases reaching

about 40% (not shown). This ought to be related to how

the frequency distributions of precipitation are reproduced.

EUK, XPL and SUM tend to slightly underestimate percen-

tiles of observed precipitation, COS overestimates some-

what and MAH strongly overestimates medium to high

percentiles. This causes too many cases of rain and too
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Fig. 6 Probability of a correct categorical precipitation estimate for

AM based on EUK, divided by that of the random approach (see text).
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many strong to heavy events, which in turn suggests less

dry spells. This is a serious caveat and hence MAH should

not be used in the analysis of precipitation unless there is a

particular reason to do so.

The right panel in Fig. 7 shows the results for wet spells

based on weighting-sequence 5 again. Frequencies of wet

periods are somewhat underestimated by EUK, XPL and

SUM, closely matched by COS and strongly overestimated

by MAH. There is an increase in performance up to

weighting-sequence 3, followed by a decrease, most

apparent for EUK and SUM (not shown). This seems to re-

flect the shorter lengths of the considered wet spells com-

pared to the dry spells, making more distant days less

important. XPL shows not much dependence on weighing

sequences and overall COS performs best. EOF-truncation

around 17 is a reasonable choice again. This remains

essentially the same for EA, albeit at poorer performance.

One difference to CA, worthwhile mentioning is that fre-

quencies of wet periods are best reproduced by consider-

ation of medium to high indexed weighting sequences.

The rather reasonable performance of COS in modeling

wet spell frequencies in both regions, indicates that the

shape of the large scale atmospheric state is particularly

important. COS addresses high similarity to states that are

represented by parallel state vectors, regardless of their

difference in length, which is different from EUK and SUM,

emphasizing the shape of atmospheric patterns over their

strength when simulating wet spell length.

4.2.4 Comparison to persistence method

AM was also used as a forecasting tool (see e.g., Soucy

1991 for the Canadian Metrological Center or Livezey

et al. 1994 for the United States). Obviously, it is not

intended to recommend AM over today’s numerical

weather forecasting approach based on ensembles of

model-runs. However, the ability to predict precipitation is

an important feature of today’s forecasting models and

hence, AM can still serve its purpose as a bench mark that

has to be surpassed. As such, it is of interest to compare

AM’s ’forecasting’-skill to the persistence method (PM).

PM predicts tomorrow’s weather from today’s weather by

assuming conditions will not change. PM works well for

regions where weather patterns do not change quickly.

In the following we compare AM to PM by evaluation

of the associated daily based correlation coefficients

between estimation and observation. We have put fore-

casting in quotes above as AM is provided with the best

large scale field-estimates available, the reanalysis data.

This shall be understood and hence, findings represent an

upper limit of performance.

Figure 8 compares AM to PM at all stations for a spe-

cific setting (see title). AM almost always outperforms PM

at quite high correlation values. As the stations are num-

bered eastward (see Fig. 1), those in the left of the panel

tend to be closer to the Pacific ocean at lower altitudes,

while the ones in the right are more likely to be located
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Fig. 7 Assessment of AM’s ability to reproduce dry (left) and wet

(right) spell frequencies based on weighting-sequence 5. The

subpanels show the measures of similarity and display (fAM–fobs/fobs

with f, the frequency of occurence. Groups of bars (left to right) refer

to 3-, 6-, 9-day dry spells and 2-, 3-, and 4-day wet spells respectively.

Bars within these groups (left to right) correspond to EOF-truncations

from 5 to 26 in steps of 3
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within the Sierra Nevada at higher elevations. AM shows

no prominent dependency on elevation. An analysis (not

shown) of the reproduction of precipitation distributions

across three altitudinal ranges (indicated in Fig. 1) has not

identified a dependence either. Hence, the chosen fields

(SLP and SH7) demonstrate similar levels of utility in

modeling local scale precipitation at stations of different

elevation and thus across different climatic zones (as

indicated in Fig. 1). This is different from EA, where

stations in the north-eastern lowlands exhibit particular

weak correlations (not shown), a region known for its

particular precipitation climate (Auer et al. 2001).

Figure 9 provides a comprehensive survey of the dif-

ference between AM and PM based correlation coefficients

across all possible settings and all stations located in CA.

Basically, up to weighting-sequence 4, AM reaches values

of correlation higher than PM. From weighting-sequence 6

onward this picture reverses. Except for XPL, all measures

of similarity depend on EOF-truncation. Performance in-

creases up to 17 EOFs, remains the same or slightly de-

creases at higher EOF-truncation. Weighting-sequence 2 is

a reasonable choice for all measures. Hence, estimates of

the target-day’s precipitation pattern across the stations

benefit most from the use of the target-day and the pre-

ceding two to three days in terms of weighting-sequence 2.

Inclusion of longer elapsed states degrades skill. Among

the similarity measures XPL performs poorest. For EA (not

shown) these features remain generally in effect, but there

is a pronounced overall drop in performance, that let PM

outperform AM at almost all settings.

5 Discussion

The study provides a comprehensive assessment of AM in

two regions that are characterized by rather distinct pre-

cipitation climates. The assessment is done across a large
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variety of settings covering reasonable measures of simi-

larity and broadly based approaches to regard the predictor-

fields and their temporal evolution. For every single setting

a temporal cross-validation was performed, resulting in

about 40 k simulated months. Hence, derived results

should be significant and settings, identified to allow AM

for considerable performance, are expected to be a rather

reasonable starting point for other regions as well.

Most obviously and for all considered tasks, downscaled

precipitation is at a higher level of accordance to obser-

vations in CA than in EA. That should be attributed to the

closeness of the link between the large scale state of the

atmosphere and the local scale precipitation. California is

located at the US west coast next to the Pacific Ocean and

the Sierra Nevada is perpendicular oriented to the wester-

lies. Proximity to the ocean, storms approaching frontally

Sierra Nevada’s mountain sides and orographic lifting,

exert strong influence on local scale precipitation. The

study region in the European Alps, on the other hand, is

about 1000 km away from the Atlantic Ocean and parallels

the westerlies. Large distance and a considerable variety of

air masses approaches to the region perturb the link

between the scales, causing AM to achieve higher perfor-

mance in CA. However, most of AM’s characteristics re-

main in effect for both regions, putting statistical weight on

the findings. First, throughout all tasks, best performance

was achieved at EOF-truncation accounting for 85–90% of

explained variability. Inclusion of more EOFs does not

enhance results. This could be related to the decreasing

statistical significance of higher order EOFs (von Storch

and Hannoschöck 1985).

Recommendation regarding weighting-sequence i.e., the

extent to which inclusion of more distant past atmospheric

states is beneficial, depends on the considered task. Map-

ping the run of monthly totals or issuing categorical esti-

mates of the intensities of precipitation events is generally

most successful when based on weighting-sequence 2 and 3

(sixth and fourth power weighting, see Fig. 2). Quantities,

dealing with persistence are found to be better reproduced

when addressing more weight to the more distant past,

depending on the considered endurance.

Measures of similarity that introduce different weights

to the components fall behind in performance. XPL under-

weights local detail of the atmospheric state and hence,

cannot take advantage of higher order EOFs. MAH reverses

this effect and strongly overestimates medium to high daily

percentiles, yielding too large monthly sums, too few dry

spells and too many wet spells. Hence, MAH should not be

considered for downscaling and XPL cannot be recom-

mended either, as its performance falls behind the others.

MAH and XPL are two special cases to introduce different

weights to the EOF coordinates as formulated in generality

by Zorita and von Storch (1999). The attachment of

different weights to the components is a transformation that

may significantly alter the EOF assembly. Findings show

that neither a monotonically increasing (MAH) nor a

decreasing (XPL) sequence of weights is of help. So, if a

component-sensitive weighting is desired, considerable

effort is required to solve properly formulated optimization

procedures that define these weights. COS overestimates

medium to high percentiles and performs at some tasks

weaker than EUK and SUM, but has advantages over them

for wet-spell length (particularly together with weighting-

sequence 5) and when modeling the maximal length of dry

spells. COS identifies the most parallel state vectors as

analogs (see Subsect. 3.1). So, the mentioned features (e.g.,

wet spell length) are shared more by sequences of days

having almost parallel state vectors. Such states are similar

in terms of pattern shapes but can have large differences in

length and hence would not be selected by EUK or SUM.

However, pronounced difference in length should impact

the totals. EUK and SUM perform very comparable. So, both

approaches quantifying similarity between atmospheric

states lead to rather reasonable results.

This study is an extension of previous work (Zorita et al.

1995; Zorita and von Storch 1999) and was motivated by

problems raised therein. It addresses these issues by using a

broad setup. Findings of this study may serve as guidelines

when using AM for downscaling of daily precipitation. It

also provides the opportunity to demonstrate the achieve-

ments of more complex models by comparison to AM,

based on recommended settings.

Acknowledgments This work was supported by a Visiting Fellow-

ship to Canadian Government Laboratories awarded to C. Matulla

through NSERC. J. Wang was supported by CFCAS. We are thankful

to H. Kuhn who has enabled us to a trouble free processing of our

calculations, to E. Watson, V. Kharin and D. Bray for stimulating

suggestions and comments on this study. Furthermore we are grateful

to two anonymous reviewers who helped to strenghten the manu-

script.

References
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