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3 Direction de la Recherche, Pôole Economie, Statistiques et Sociologie, Saint-Denis la Plaine Cedex, France

An improvement of analog model strategy
for more reliable local climate change scenarios

A. Imbert1;3 and R. E. Benestad2

With 5 Figures

Received August 4, 2003; revised January 28, 2005; accepted February 8, 2005
Published online April 26, 2005 # Springer-Verlag 2005

Summary

Downscaled results derived using a linear regression model
are compared with corresponding analysis based on an
analog model, and the effect of systematic biases in
climate models is examined. Here, a correction of the
biases in the climate model is achieved using a common
principal component analysis basis and by adjusting the
part of the principal components corresponding to the
control period. The results suggests that the downscaled
results have a distribution more similar to the observations
if the systematic biases are corrected for. The analog
model can utilise weighted as well as unweighted principal
components as input, and the effect of this choice was ex-
amined. The results suggest that the weighted principal com-
ponents yield more realistic results than the unweighted
ones.

Analog models are by definition incapable of making
extrapolations outside the range of observed values
whereas a linear model is well-suited for extrapolation. A
combined approach involves superimposing a linear trend
from the regression-based model onto the results of the
analog model. It is theoretically possible for the combined
method to make projections with a realistic level of var-
iance as well as higher values than in the calibration data
sample. A comparison between the linear, analog, and the
combined strategies suggest that the linear model not
always give the strongest trend, but also that the combined
method may shift the analog-derived distribution towards
higher values.

1. Introduction

Global general circulation models (GCMs) repre-
sent an important tool for studying our climate,
however, they do not give a realistic description
of the local climate in general. It is therefore
common to downscale the results from the
GCMs either through a nested high-resolution
regional climate model (RCM) (Christensen and
Christensen, 2002; Christensen et al., 2001, 1998)
or through empirical=statistical downscaling (von
Storch et al., 1993; Rummukainen, 1997). The
GCMs do not give a perfect description of the real
climate system as they include ‘parameterisations’
that involve simple statistical models giving an
approximate or ad-hoc representation of sub-grid
processes. In order to balance the air-sea exchange
of heat and freshwater fluxes, some GCMs also
need to employ a so-called ‘flux correction’ (e.g.
because of a mis-match in the horizontal transport
in coarse resolution oceanic models and atmo-
spheric models). Several state-of-the-art GCMs
do not use flux correction but often produce local
biases (Benestad et al., 2002) despite giving a
realistic representation of the climate system on
continental and global scales. furthermore, the
downscaling stage may introduce additional



errors, but systematic model biases may also se-
verely degrade the downscaling performance.
Table 1 gives a brief list of typical shortcomings
associated with various models and analyses used
in climate research.

It is important to stress that the various down-
scaling approaches have different strengths and
weaknesses and that one method cannot be uni-
versally considered as the ‘best’. Skaugen et al.
(2002b) have evaluated results for Norway from
a nested RCM and they found that the RCM did
not give sufficiently realistic descriptions of the
local climate as required by many impact studies.
Empirical downscaling can, however, be used
to provide more realistic local scenarios. It is
well-known that linear regression (least squares
methods) tends to yield lower variance than the
original data (Klein et al., 1959; von Storch,
1999). One way to produce realistic variance
levels in downscaling is to employ analog models
(van den Dool, 1995; Zorita and von Storch,
1997, 1999; Dehn, 1999; Fernandez and Saenz,
2003) instead of linear regression. The analog
model basically consists of re-sampling past
data according to which coincide with the large-
scale circulation regime that corresponds most
closely with a given state of the atmosphere
(Wilks, 1995, p. 198).

One concern regarding the analog approach is
that it is incapable of predicting new record mag-
nitudes since the predicted values are taken from
archives of past observations. It is likely that
extreme events may become more frequent in
the future (Huntingford et al., 2003; Horton

et al., 2001; Palmer and R€aais€aanen, 2002; Frich
et al., 2002; IPCC, 2002; Skaugen et al., 2002a;
DeGaetano and Allen, 2002; Prudhomme and
Reed, 1999) and there is a non-zero probability
of seeing new record-high values (Benestad,
2004b, 2003b). If the analog model is to be used
for studying extreme events for a future climate,
it is necessary to modify the models so that they
can extrapolate values outside the sample of ob-
served magnitudes.

This paper presents some solutions to reduce
the effects caused by the problems listed in
Table 1. A method for ‘correcting’ (adjusting)
the GCMs=RCMs is presented and evaluated.
Then the question of how the results differ be-
tween the linear and analog models is addressed.
Finally, a combined-approach, where the trends
derived from linear models are combined with
the distributions from the analog models, is
described and assessed.

2. Method and data

The downscaling is based on the common princi-
pal component analysis (Flury, 1988; Sengupta
and Boyle, 1998) and is described by Benestad
(2001). The analysis was implemented with
the R-environment (Ellner, 2001; Gentleman and
Ihaka, 2000), and the actual downscaling was
made using the contributed R-packages clim.
pact (Benestad, 2003a, 2004a) and anm (Imbert,
2002), where the former package performs the
downscaling with the linear model and the latter
provides an extra method required for the analog

Table 1. A list of typical drawbacks associated with the different models commonly used in climate research

GCMs May have systematic biases=errors.
Unable to give a realistic description of local climate in general.
Processes described by parameterisation may be non-stationary.

Nested RCMs May have systematic biases=errors.
Require large computer resources.
Processes described by parameterisation may be non-stationary.
Often not sufficiently realistic description of local climate (Skaugen et al., 2002b).

empirical downscaling:

Analog models Cannot extrapolate values outside the range of the calibration set.
Do not account for non-stationary relationships between the large-scale and local climate.
Needs a large training sample (often unsuited for monthly means)
Do not ensure a consistency in the order of consecutive days.

Linear models Assume normally distributed data.
Tend to reduce the variance (Fig. 1).
Do not account for non-stationary relationships between the large-scale and local climate.
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model. The R-software and the contributed
packages are freely available from the Internet
site cran.r-project.org/, and both these
packages are open source. The downscaling
involved no de-trending, removal of the annual
cycle, nor ‘‘inflation’’ (von Storch, 1999) in order
to carry out a direct comparison between the lin-
ear and analog methods. The linear model used
here was a standard linear stepwise multiple
regression (R function ‘lm’) whereas the analog
model consisted of a simple search for the nearest
point in the principal components (PC) phase
space. The linear model was applied first and only
the PCs which were retained in the stepwise re-
gression through an Akaike information criterion
(AIC) (Wilks, 1995, p. 313) were then used to de-
fine the PC phase space used in the corresponding
analog search, ensuring that both approaches used
exactly the same predictors. The daily pre-
cipitation was not Gaussian in this case, and the
linear models were therefore not able to yield
unbiased predictions of response to variations in
the large-scale circulation, yet a least-squares
approach would still from a pure mathematical
point of view provide a solution for the regres-
sion coefficients that yields the lowest root-
mean-squared-error, provided the coefficients
are smooth functions with respect to the sums of
the series (Press et al., 1989, p. 555). The same
stepwise regression method would also provide

useful information as to which PCs to include in
the analog model. Figure 1 shows a comparison
between typical variance levels of downscaled

Fig. 1. Comparison between the predicted variance from
linear (lm) and analog (anm) models. The results shown are
for daily precipitation (Imbert, 2003)

Fig. 2. An illustration of how the RCM results are adjusted
in order to ensure that the PCs describing the RCM control-
period (CTL) have the same location and spread as the
observations. The adjustment consisted of centering and
scaling the CTL part of the PCs to match the ERA-15 data,
i.e. subtracting the mean value for the CTL part, multiply-
ing with the fractional standard deviation (sERA-15=sCTL),
and adding the mean for the part of the PCs representing
ERA-15. Panel a) shows a scatter-plot between PCs 1 and 2
for the observations and the unadjusted results for the CTL,
whereas b) shows the adjusted PCs. The example shown
here is for the December–February daily T(2 m) field cover-
ing the region 7� E20� E–60� N70� N
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results for daily precipitation using the analog and
the linear models, respectively.

The use of common principal components has
to the authors’ knowledge only recently been
introduced in empirical downscaling (Benestad,
2001), and this new type of reference frame
allows for a simple ‘correction’ of systematic
biases in the climate model results. This correc-
tion entails an adjustment of the model results
and involves forcing the mean value and standard
deviation of the PCs describing the GCM=RCM
for the ‘‘present-day’’ climate (control period, or
‘CTL’) to be the same as in the observations
(ERA-15), and then use the same offset and scal-
ing for the future. The adjustment process is
illustrated in Fig. 2. The climate scenarios
(henceforth referred to as ‘SCE’) was represent-
ed by the RCM results driven by ECHAM4=

OPYC3 for the period ‘2030’–‘2049’. Table 2
gives an overview of the acronyms and symbols
used here.

The term ‘linear trend’ is in this context used
to mean the long-term temporal evolution of a
given quantity, and is estimated through the
linear regression in time (t): ŷyðtÞ ¼ c0 þ c1t.
The combination of the analog and linear
methods (hereafter referred to as the ‘combined
approach’) consisted of adding the linear trend
derived from the linear-based downscaling to
the de-trended results from the analog-approach.
The linear trends in the results from the analog
model were subtracted (de-trended) in order to
avoid double counting.

The empirical downscaling used two predic-
tors: large-scale sea level pressure (SLP) fields
for downscaling of precipitation and large-scale

Table 2. Definition and explanation of symbols, abbreviations and variables

CTL Results from the control integration (‘1980’–‘1999’) from the RCM.
ECHAM4=GSDIO A particular GCM.
edf Empirical distribution function.
EOF Empirical Orthogonal Functions (similar to PCA).
ERA-15 The 15-year ECMWF reanalysis (www.ecmwf.int).
GCM Global Climate Model.
GSDIO A transient model run with ozone, direct and indirect effects of aerosols as well as greenhouse gases.
HIRHAM A particular RCM.
PC Principal Component (see PCA):

‘unweighted’¼ ordinary PC (standardised),
‘weighted’¼ ordinary PC (scaled by corresponding principal values).

PCA Principal Component Analysis (Wilks, 1995).
RCM Regional Climate Model.
SCE Results from the scenario integration (‘2030’–‘2049’) from the RCM.
SLP Sea level pressure (units used¼ hPa).
STARDEX Statistical and Regional dynamical Downscaling of Extremes for European regions

URL: ‘‘http:==www.cru.uea.ac.uk=cru=projects=stardex=’’.
T(2 m) 2 meter air temperature (�C).

Table 3. A summary of the regression results for the four sites in Norway associated with the downscaling using a linear
regression model. The lower values for R2 in Nesbyen in winter can be explained by a higher frequency of inversions for this
location

Location Parameter R2 F-statistic Degrees Pr(> jtj)

Bergen precip 0.36 78.45 7 and 984 <2.2e� 16
Nesbyen precip 0.23 63.06 6 and 1257 <2.2e� 16
Oslo precip 0.22 44.43 8 and 1255 <2.2e� 16
Tromsø precip 0.22 49.99 7 and 1256 <2.2e� 16

Bergen T(2 m) 0.75 534.2 7 and 1256 <2.2e� 16
Nesbyen T(2 m) 0.64 324.5 7 and 1256 <2.2e� 16
Oslo T(2 m) 0.79 579.4 8 and 1255 <2.2e� 16
Tromsø T(2 m) 0.82 703.8 8 and 1255 <2.2e� 16
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two-meter temperature fields (T(2 m)) for the
local temperature. The predictors describing the
observed large-scale SLP and T(2 m) anomalies
were obtained by dynamically downscaled ERA-
15 (Gibson et al., 1997) data using the HIRHAM
(Haugen et al., 1999) RCM. Similarly, down-
scaled results from Max-Planck Institute for
Meteorology’s ECHAM4=OPYC3 GSDIO ex-
periment (Roeckner et al., 1999, 1998, 1992;
Oberhuber, 1993) were used to represent the cli-
mate scenario as well as providing a control inte-
gration. The GSDIO integration followed the
IS92a emission scenario and included direct
and indirect effects of aerosols as well as tropo-
spheric ozone. One new aspect of this study is
the two-stage approach, where the results from
ERA-15 and ECHAM4=OPYC3 first are down-
scaled using the HIRHAM RCM, and subse-
quently empirical downscaling techniques are
applied to the RCM results in order to refine
the description of the local climate further. The
advantage of the two-stage approach is that a
smaller predictor domain can be utilised, as the
RCM produces more realistic regional climate
over Scandinavia than do the GCMs. A smaller
predictor domain implies a lower degree of non-
stationarity between the large (synoptic) and the
local scales.

Here, the results are presented only for winter
(December–February) days, and the interval
1980–1993 was used for calibration of the linear
and analog models (1354 daily data points). Two
different set-ups were used for the analog model:
i) a ‘weighted’ approach where the PCs have
been scaled according to their principal values
(eigenvalues), and ii) ‘unweighted’ where stan-
dardised PCs (jPCij ¼ 1 where i is the empirical
orthogonal function number) are used. Thus, the
weighting has the same effect as ‘stretching’ the
PC phase space. The linear empirical downscal-
ing is described in further detail in Benestad and
Hanssen-Bauer (2003), and the analog models
have been evaluated by Imbert (2002) for a large
number of locations in Norway who reported
correlations for precipitation in the ranges
0.34–0.67 for the linear, 0.10–0.56 for un-
weighted, and 0.07–0.60 for weighted analog
models within the calibration period 1980–1993.
The corresponding results for the daily 2-meter
temperature are 0.07–0.89 (linear), 0.06–0.78
(unweighted analog), and 0.72–0.91 (weighted

Fig. 3. A comparison between edfs for the daily winter
temperature and precipitation in Oslo derived from the
RCM control-period with unadjusted and adjusted principal
components (see Fig. 2). The border between the white and
the shaded area marks the edf for the observations. Panel a)
shows the results for the temperature derived using the
T(2 m)-field, whereas b) shows the results for the precip-
itation based on SLP. The legend notation ‘lm(gcm-ctl)’
refers to the linear downscaling of the CTL from the
RCM using adjusted PCs, ‘anm(gcm-ctl)’ to analog down-
scaling of the CTL with adjusted PCs, ‘lm(gcm-ctl-unadj.)’
to linear downscaling of the CTL using original PCs, and
‘anm(gcm-ctl-unadj.)’ to analog downscaling of the CTL
using original PCs. Negative precipitation values obtained
with the linear models have been removed
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analog). A very small subset of the stations
achieved correlation scores less than 0.60 as a
result of problems with missing data, and both
the linear and analog models produce higher
scores for these locations when the missing data

were removed prior to the analysis. The correla-
tions for the precipitation are generally lower
than for temperature, and it is only the analog
model that can reproduce realistic variance levels
(Fig. 1).

Fig. 4. Same as Fig. 3, but for the comparison between edfs for Bergen temperature and precipitation derived using
unweighted and weighted principal components. a) Unweighted temperature, b) weighted temperature, c) unweighted pre-
cipitation, d) weighted precipitation. These results were derived using the adjusted PCs. The unweighted PCs are standardised
whereas the weighted PCs have been scaled by the principal values. The legend notation ‘lm(dep)’ refers to the linear
downscaling of ERA-15, ‘lm(gcm-ctl)’ to linear downscaling of CTL, ‘anm(dep)’ to analog downscaling of ERA-15, and
‘anm(gcm-ctl)’ to analog downscaling of CTL. Negative precipitation values obtained with the linear models have been
removed
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The local temperature and precipitation used as
predictands in this analysis were daily mean
values taken from the Norwegain Climate Station
Database (‘‘Klimadatavarehuset’’). The winter
precipitation observations included the water
equivalent for snow, but has not been corrected
for loss of snow due to catch deficiency of the

gauges (Førland and Hanssen-Bauer, 2000). The
precipitation series contain errors due to under-
catch of the gauges as well as being non-Gaussian.
In places with mild winters along the west coast of
Norway (e.g. in Bergen) most of the precipitation
falls as rain, and the undercatch is less severe than
for inland stations.

Fig. 5. Similar as Fig. 3, but comparing the results from the linear, analog and combined methods for the projected (assuming
a global warming) 2030–2049 temperature in a) Oslo, b) Tromsø, as well as precipitation in c) Nesbyen, and d) Bergen. The
analog model used weighted PCs and adjusted PCs for this example. The weighted PCs have been scaled by the principal
values and the adjusted PCs have same mean and standard deviation for CTL part as ERA-15. The legend notation ‘lm’ refers
to the linear downscaling of SCE, ‘anm’ to analog downscaling of SCE, and ‘cbn’ to combined linear-analog downscaling of
SCE. Negative precipitation values obtained with the linear models have been removed

An improvement of analog model strategy for climate change scenarios 251



The downscaling was carried out for four sites
in Norway with different climate characteristics
(Table 3). Bergen has a coastal climate with mild
and wet winters, and Nesbyen has a continental
climate and is located in the bottom of a valley
with frequent inversions. The local climate in
Oslo can be described as a mix between conti-
nental and coastal climate, and Tromsø offers an
example of an Arctic coastal climate type.

3. Results

Figure 3 shows the empirical distribution func-
tions (edf) for downscaled winter temperature
(a) and precipitation (b) in Oslo using unadjusted
and adjusted PCs. For the temperature (predic-
tor¼T(2 m)), the adjusted PCs give a better
description of the distribution, whereas the ad-
justment has little effect on the precipitation
(predictor¼SLP). The SLP from the RCM have
similar mean values and standard deviations
within CTL as the observations, and therefore
an adjustment does not have a significant effect
for the SLP (not shown). The edf from the analog
model is closer to the observations than for the
linear model, especially as the linear model does
not give a realistic distribution for the daily
precipitation (b).

The effect of using weighted PCs (i.e. scaled
by the principal values) is examined in Fig. 4,
where panels (a) and (b) show the results for
unweighted and weighted downscaling of the
daily winter temperature in Bergen and panels
(c) and (d) the corresponding analysis for daily
winter precipitation. Weights primarily affect the
analog results, as the step-wise regression analy-
sis compensates for the amplitudes of the individ-
ual PC. The results in Figs. 3 and 4 show that
the analog model gives a good description of the
distribution functions if the PCs are unadjusted
and weighted.

Figure 5 shows the edfs for downscaled tem-
perature in Oslo and Tromsø as well as precipita-
tion in Nesbyen and Bergen. In Oslo (a), the trend
predicted by the linear regression was weaker than
for the analog model, whereas the linear model
predicted stronger long-term warming in Tromsø
(b). The general similarity between projected tem-
perature distribution obtained with the analog and
the linear models is noteworthy. The greatest dif-
ferences between these two approaches are seen

in the upper tail of the projected temperature
distribution for Tromsø (b). Similar results for
precipitation in Nesbyen and Bergen are shown
in panels (c) and (d). Although the shapes of the
distribution from the linear and analog models
differ, their location are similar, and adding the
trend from the linear model has little effect on
the distribution. In general, the downscaled results
suggest insignificant changes in the precipitation
due to changes in the circulation patterns, in good
agreement with the conclusions of Benestad
(2002).

4. Discussion and conclusions

For some fields, such as T(2 m), an adjustment
correcting for systematic model biases is re-
quired in order to obtain realistic distributions
in the downscaled results. As described in the
method section above, the adjustment consisted
of setting the mean and standard deviation of the
part of the PCs describing the CTL to the same
values as those of the observations (downscaled
ERA-15). The adjustment forces the CTL from
RCMs to have similar features as those observed
in terms of the location and spread of the PCs.
The PCs describe the weighting of the empirical
orthogonal functions (EOFs) (Lorenz, 1956;
North et al., 1982; Preisendorfer, 1988) for the
combined data, and hence the common spatial
climatic patterns for both ERA-15 and the
RCM. A large offset or a scaling factor substan-
tially different from unity is an indication of sub-
stantial systematic bias in the RCM results. The
offset and scaling factor can be used for compar-
ing the RCM skill.

The results indicated that generally the PCs
ought to be scaled by the principal values from
the EOF analysis in order for the analog model to
give good results. Such a weighting puts more
emphasis on meaningful (leading) EOFs and
reduces the effect of noise (high-order EOFs).

The analog model is in principle able to pre-
dict changes in the shape of the distribution as
long as the range of values remains constant. The
fact that the analog and linear methods produce a
similar shift in the location of the distribution
function for temperature, suggests that the synop-
tic situations projected by the RCMs correspond-
ing to warm days in present-day climate are to
become more common in the future. The results
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from the combined method in Fig. 5 add little
extra in this case because of the analog and linear
methods produce similar distributions (this may
not always be the case), and the tails of the dis-
tributions still present a problem as the linear
model suggests a more dramatic increase in the
frequency of extreme warm temperatures than
do the analog and combined methods. Another
shortcoming associated with analog models is
that they do not ensure a consistency in the order
of consecutive days if weather regimes are not
well-defined, however, this may to some degree
depend on the evolution in the PC phase space
and clustering of past states as defined by the
predictors.

Climate and weather extremes have been the sub-
ject of study in the EU project STARDEX (http:==
www.cru.uea.ac.uk=cru=projects=stardex=) under
the Fifth Framework Programme (2002–2005) as
one of its overall objectives is to ‘‘provide scenar-
ios of expected changes in the frequency and
intensity of extreme events’’. The scientific ob-
jectives encompasses the identification of robust
methods for inferring extreme events through
downscaling and providing a standard set of
indices describing extremes in Europe. Method-
ologies for statistical downscaling or modelling
extremes are often invalid under changing condi-
tions, but one approach involving computation of
a set of indices or upper=lower percentiles may
be one solution. Alternatively, the recurrence of
records and trends in extreme-event counts or
threshold analysis (Benestad and Chen, 2004) can
provide useful diagnostics.

The daily precipitation is not Gaussian and
hence ordinary regression models will not give
an unbiased estimate of the values. One solution
can be to normalise the data prior to the regres-
sion analysis (e.g. a power transform) or the use
of logistic regression (Frei and Sch€aar, 2001).
A transform would usually involve separating
‘rainy’ days with ‘non-rainy’ days and is beyond
the scope of the present paper. The linear model
is used here merely as a reference, and the focus
of this study is to investigate different ways to
improve the analog model approach. In either
case, errors due to undercatch of snow caused
by local wind conditions could require correction
factors up to �4 in the most severe cases
(Førland and Hanssen-Bauer, 2000). Table 3 sug-
gests that the R2 values for Bergen with mostly

liquid precipitation is higher than for locations
with more snowfall. Measurement errors deterio-
rate statistical correlations and affect the variance
of the linear model predictions. It is possible that
part of the difference in R2 in Table 3 is related to
undercatch errors, however, there is not enough
information in these results to draw a firm con-
clusion from only four R2-estimates and four
geographical locations. Nevertheless, there is a
sound physical reason behind the wintertime
SLP pattern and precipitation for most locations
in Norway, as it is well-known that a combi-
nation of advection of moist maritime air and
orographic lifting creates favourable conditions
(Hanssen-Bauer and Førland, 2000).

The evaluation of the combined method sug-
gests that in some cases (Tromsø) it yields dis-
tribution shifts towards higher values, and hence
is capable of making extrapolations, i.e. produc-
ing values outside the range of values in the
calibration sample. Although this solution can
in theory predict changes in extreme values as
a result of a trend, it cannot account for changes
in extremes due to an altered variability in e.g.
the large-scale circulation patterns. Moreover, a
study by Katz and Brown (1992) has suggested
that the frequency of climatic extremes depends
more strongly on changes in the variability rather
than changes in the mean climatic state, and the
results in Fig. 5b suggest that the linear model
projects an increase in the frequency of very
warm temperatures that is disproportional to the
changes in the mean value. Hence, the addition
of a mean trend to the analog method results may
not suffice for studies of future extreme values. A
different solution to improving the downscaling
with analog models has been suggested by
Hanssen-Bauer (private communications) who
proposed to include warmer seasons in the cali-
bration of the model. For instance, the present
analog model for the winter season could extend
the search for nearest point in PC phase space
representing the winter months to also include
spring, summer, and autumn months to account
for a warmer future climate. The limitation of
this approach is, of course, that this approach
would not be applicable for models for the sum-
mer season. This approach will be evaluated in
future studies.

It is important to note that different
RCMs=GCMs tend to give different results on a
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local and regional scale (Benestad, 2002;
R€aais€aanen, 2001a; R€aais€aanen and Palmer, 2001;
R€aais€aanen 2001b), and it is therefore important
not to focus on results from just one RCM=GCM
GCM for making scenarios for the future. The
primarily purpose of this paper has been to docu-
ment differences and similarities between various
downscaling approaches, and the general similar-
ity between the downscaled daily temperatures
from the analog and linear methods suggest that
a high level of confidence can be attributed to the
downscaling models. Since the focus here has
been on options within the analog modelling
(weighting, adjusting, and combining linear and
analog approach) we have not evaluated possible
benefits of the two-step-method consisting in sta-
tistically downscaling RCM results as opposed
to from GCM results directly. No conclusions
should therefore be drawn about the usefulness
of the 2-step-method from this paper.
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