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1. Preface

This paper presents highlights of a work in progress.
For detailed background and to obtain following papers,
please visit http://chebucto.ns.ca/~bjarne/ams2000

2. Introduction

A fuzzy logic based methodology for knowledge
acquisition is used to build a basic, retrieval-based
case-based reasoning (CBR) system: a fuzzy k-nearest
neighbor based prediction system.  The methodology is
used to acquire knowledge about what salient features
of continuous-vector, unique temporal cases indicate
significant similarity between cases.  Such knowledge is
encoded in a similarity-measuring function and thereby
used to retrieve k nearest neighbors (k-nn) from a large
database.  Predictions for the present case are made
from a weighted median of the outcomes of analogous
past cases, the k-nn, the analog ensemble.  Past cases
are weighted according to their degree of similarity to
the present case.

Fuzzy logic imparts to case-based reasoning the
case-discriminating ability of a domain expert.  Fuzzy
methods can represent cases with any combination of
words and numbers and thus enable us to "compute
with words" (Zadeh 1996).  The fuzzy k-nn technique
retrieves similar cases by emulating a domain expert
who understands and interprets similar cases (e.g.,
Keller et al. 1985).  The main contribution of fuzzy logic
to case-based reasoning  is that it enables us to use
common words to directly acquire domain knowledge
about feature salience.  This knowledge enables us to
retrieve a few most similar cases from a large database,
which in turn helps us to avoid adaptation problems.

Such a fuzzy k-nn system can improve the
technique of persistence climatology (PC) (e.g., Martin
1972) by achieving direct, efficient, expert-like
comparison of past and present weather cases.  PC is a
sort of analog forecasting technique that is widely
recognized as a formidable benchmark for short-range
weather prediction.  Until now, PC systems have had
two built-in constraints: they represented cases in terms
of the memberships of their attributes in predefined
categories and they referred to a preselected
combination of attributes (i.e., defined and selected
before receiving the precise and numerous details of
present cases).  However, the fuzzy k-nn system
compares past and present cases directly and precisely
in terms of their numerous salient attributes.  The fuzzy
k-nn method is not tied to specific categories nor is it
constrained to using only a specific limited set of
predictors.  Meteorologists regard such a fuzzy k-nn
forecasting system as "custom climatology on-the-fly."
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Such a system for making airport weather predictions
will let us tap many, large, unused archives of airport
weather observations, ready repositories of temporal
cases.  This will help to make airport weather
predictions more accurate, which will make air travel
safer and make airlines more profitable.

Ensemble forecasting is a method to obtain more
useful results from models: numerous differently
perturbed models are run in parallel and the distribution
of the outputs of the model ensembles is examined
(Stenstrud et al. 1999).  Copying this approach, analog
ensembles can help us to get more useful results out of
analog forecasting.  If the few analogs are similar, if
they are clustered and proceed along similar paths over
time, then confidence in a forecast is high.  If the
analogs are relatively dissimilar and “fan out” quickly
over time, then confidence in a forecast is low.

Accordingly, a fuzzy k-nn based prediction system,
called WIND-1, is proposed.  Its unique component is
an expertly-tuned fuzzy k-nn algorithm with a temporal
dimension.  It has been tested with the problem of
producing 6-hour predictions of cloud ceiling and
visibility at an airport, given a database of over 300,000
consecutive hourly airport weather observations  (36
years of record).  Its prediction accuracy was measured
with standard meteorological statistics and compared to
a benchmark prediction technique, persistence.  In
realistic simulations, WIND-1 was significantly more
accurate (Hansen and Riordan 1998).

3. Review of fuzzy logic in meteorology

Fuzzy logic is an established methodology that is widely
used to model systems in which variables are
continuous, imprecise, or ambiguous.  Fuzzy logic is
used in thousands of applications, in areas such as:
transportation, automobiles, consumer electronics,
robotics, computers, computers, telecommunications,
agriculture, medicine, management, and education
(Munakata and Jani 1994).  The main idea of fuzzy logic
is that items in the real world are better described by
having partial membership in complementary sets than
by having complete membership in exclusive sets.
Zadeh (1965) first defined a fuzzy set as follows: “A
fuzzy set is a class of objects with a continuum of
grades of membership.  Such a set is characterized by
a membership (characteristic) function which assigns to
each object a membership ranging between zero and
one.”  This has the effect of increasing the resolution
and the fidelity of categorization.

Fuzzy logic has increasingly over the past few years
become a mainstream technique in a variety of
environmental domains.  However, fuzzy logic has so
far rarely been used to predict weather.  As a basic
technique, fuzzy logic is used in hundreds of
environmental software systems.  It is represents
linguistically-expressed domain knowledge and
operates on diverse forms of continuous data—such
types of knowledge and data are typical in
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environmental problems.  Environmental domains
where fuzzy logic presently operates effectively include
agriculture, climatology, earthquakes, ecology,
fisheries, geography, geology, hydrology, meteorology,
mining, natural resources, oceanography, petroleum
industry, risk analysis, and waste management (Hansen
et al. 1999).  Two sorts of applications of fuzzy logic in
weather prediction are expert systems and case-based
reasoning systems, as described in the following two
sections.

a.  Fuzzy expert systems for weather prediction

Maner and Joyce (1997) built a weather prediction
system, called WXSYS.  They obtained simple weather
prediction rules from experts and weather almanacs,
and implemented these rules in system using a fuzzy
logic rule base.  For example, one rule they used is:
“Weather will be generally clear when the wind shifts to
a westerly direction.  The greatest change occurs when
the wind shifts from east through south to west.”

According to Maner and Joyce (1997), “there are at
least three reasons why fuzzy logic seems ideally suited
for weather forecasting,” namely:

• The phrases used in conventional forecasts are
inherently and intentionally fuzzy.

• “Fuzzy logic is known to work in this domain.”
• “The weather domain meets the general

conditions under which a fuzzy solution is
thought to be appropriate.”

Fuzzy logic has been used to build expert systems
to predict fog and to predict wind.  Sujitjorn et al. (1994)
and Murtha (1995) separately built systems to predict
fog at an airport.  Hadjimichael et al. (1996) and
Kuciauskas et al. (1998) together built a fuzzy system,
called MEDEX, for forecasting gale force winds in the
Mediterranean.  All of these systems are conceptually
based on the classic fuzzy rule base approach to fuzzy
systems. 1  How they differ is in the particular fuzzy
rules elicited from experts.  For example, the MEDEX
system uses rules of the form “if pressure gradient is
very large…then…”, and so on.

Hansen (1997) built a fuzzy expert system for
critiquing marine forecasts, called SIGMAR.  Like the
above fuzzy expert systems, expert-specified fuzzy sets
are at its core.  Unlike the above fuzzy expert systems,
it does not process a series of fuzzy rules (e.g., if A and
B then C).  Instead it measures similarity using fuzzy
sets: it measures the similarity between a current valid
marine forecast and the actual marine observations
directly by using fuzzy sets, rather than, as is usually
done, indirectly by using categories (e.g., “Observation
in category 1 and forecast in category 2.”).
                                                          
1  The fuzzy rule base approach to expert systems is
explained by Zimmerman (1991).  Kosko (1997) refers
to the rule base as a “fuzzy associative memory” and
describes the process of rule resolution as firing all
rules partially and in parallel and take a balanced
average.  Viot (1993) describes a fuzzy rule based
system balance an inverted pendulum (a benchmark
problem for fuzzy systems) and convincingly
demonstrates how simple the system is by providing
compilable C code for the system on one page.

SIGMAR continuously critiques marine forecasts: it
automatically monitors a stream of real-time of
observations, assesses where and to what degree a
marine forecast is accurate or inaccurate, or tending to
become inaccurate, and reports to forecasters.
SIGMAR helps marine forecasters to quickly identify
any wind reports that contradict the marine forecast.
This helps forecasters to maintain a weather watch and
to respond quickly in situations where marine forecasts
need to be amended.

b.  Fuzzy CBR systems for weather prediction

Actually, fuzzy expert systems and CBR systems for
weather prediction overlap.  Tag et al. (1996), following
the example of Bardossy (1995), used fuzzy logic to
automate the recognition of patterns of upper air wind
flow.  This pattern information was used as predictive
input in a fuzzy expert system (MEDEX, described
above).

Fuzzy logic has been used to emulate human expert
classification of climate (McBratney and Moore 1985)
and climatological circulation patterns (Bardossy et al.
1995).

To the best of our knowledge, our current line of
work is the only work which combines the three topics
of fuzzy logic, CBR and weather prediction in a single
system (Hansen and Riordan 1998).  Given a present
incomplete weather case to predict for, we used a fuzzy
k-nn algorithm to find similar past weather cases in a
huge weather archive to make predictions from.

Granted, the individual three methods are, by
themselves, basic: using fuzzy sets to measure
similarity is a basic application of fuzzy set theory, k-
nearest neighbors is a basic CBR method, and analog
forecasting is a primitive weather prediction technique.
But when these three methods were combined into one
system, with an expert’s knowledge of what features are
salient and how, with the knowledge encoded as fuzzy
sets, and the system was provided with a huge archive
of weather observations, the results were encouraging
(Hansen and Riordan 1998).  The system’s prediction
accuracy was measured with standard meteorological
statistics and compared to a benchmark prediction
technique, persistence.  In realistic simulations, the
system was significantly more accurate.

4. Data

Airport weather observations (METAR’s) are routinely
made at all major airports on the every hour on the
hour.  Our database consists of a flat-file archive of
315,576 consecutive hourly weather observations from
Halifax International Airport.  These observations are
from the 36-year period from 1961 to 1996, inclusive.
Based on the advice of an experienced forecaster, we
represent each hour with 12 selected attributes: 11
continuous attributes and 1 nominal attribute (i.e.,
precipitation) as shown in Figure 1.

The file size is 6 Megabytes.  The file is in a
standard, column-delimited ASCII format, hence no
preprocessing is needed.  Very few values are missing
and most of the reports appear to be reliable (i.e.,
plausible), hence, no additional quality control is applied
to the file prior to its use.
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5. Fuzzy k-nearest neighbor analog forecasting
method

The method consists of three steps: a) Configure fuzzy
sets to measure similarity, b) Traverse case base to find
analogs, and c) make predictions based on a weighted
median of the k-nn—explained as follows.

a.  Configure fuzzy sets to measure similarity

As the expert describes fuzzy relationships between
attributes using fuzzy words, corresponding fuzzy sets
are constructed to emulate expert comparison.  Thus,
expert imparts their sense of discrimination via fuzzy
words into fuzzy sets.  Thus, we acquire knowledge
about how to compare three kinds or attributes:
continuous numbers, absolute numbers (i.e.,
magnitude), and nominal attributes (e.g., showers and
rain).  And we acquire knowledge about how to weight
recency, or in other words, how to forget older
dissimilarities.  This acquired knowledge is represented
below in four functions—µc, µa ,µn, µf—in Figure 2,
Figure 3, Figure 4, and Figure 5.

1)  Continuous-number attributes

For each continuous attribute, xi, the expert
specifies a value of ci which is the threshold for
considering two such attributes to be near each other.
A fuzzy set is constructed accordingly as shown in
Figure 2.

Comparing two homogeneous, continuous attributes
with a fuzzy set, as shown in Figure 2, is a basic
application of fuzzy sets.  Multiple attributes of cases
can be weighed collectively by aggregating the result of
a set of such operations (e.g., taking the “max of the
min”).  Each fuzzy set enables the sim function to match
based on individual attributes.  As sets are added for
multiple attributes, the sim function gains the ability to
match more complicated cases.

Fuzzy sets such as the one shown in Figure 2 are
used to compare the attributes of date of the year, hour
of the day, wind direction, dew point temperature, dry
bulb temperature, and pressure trend.

µ c (x 1  - x 2 )
0.00

0.25

0.50

0.75

1.00

-c 0 c

x 1  - x 2

very

slightly
near

Figure 2.  Fuzzy set for continuous-number attributes.
Similarity-measuring function emulates how expert
evaluates degree to which continuous attributes are
near each other.  Expert specifies value of c
corresponding near such that µ(x1 - x2) ≥ 0.50 ⇔ “x1 is
near x2”.  Tails taper off asymptotically towards 0.0,
such that µ(x) > 0.0, which prevents null results from
searches.

Date of the year and hour of the day are important
temporal attributes because weather strongly correlates
to seasonal and diurnal cycles.  The closer these
attributes of two cases are to each other, the more
analogous the cases are.  For example, two cases are
considered near each other if they are within 30 Julian
days of each other and their offsets from sunrise/sunset
are within one hour of each other.

2)  Absolute-number attributes

If attributes are limited to the zero-or-above range
(e.g., absolute wind speed), then it is their relative
magnitudes that are important for matching.  Therefore,
they are compared using a modified ratio operation,
with special routines to handle for values near zero, as
shown in Figure 3.

The fuzzy decision surface shown in Figure 3 is
used to compare the attribute of wind speed.  Surfaces
similar to the one shown in Figure 3 are used to
compare the attributes of cloud amount(s), cloud ceiling
height, and visibility.

Category Attribute Units
temporal ! date Julian date of year (wraps around)

! hour hours offset from sunrise/sunset
cloud ceiling ! cloud amount(s) tenths of cloud cover (for each layer)
and visibility ! cloud ceiling height height in metres of ≥ 6/10ths cloud cover

! visibility horizontal visibility in metres
wind ! wind direction degrees from true north

! wind speed knots
precipitation ! precipitation type “nil”,  “rain”,  “snow”, etc.

! precipitation intensity “nil”, “light”, “moderate”, “heavy”
spread and ! dew point temperature degrees Celsius
temperature ! dry bulb temperature degrees Celsius
pressure ! pressure trend kiloPascal ⋅ hour -1

Figure 1.  Twelve attributes of an airport weather observation (METAR).



Hansen, B. K., 2000: Analog forecasting of ceiling and visibility using fuzzy sets,
2nd Conference on Artificial Intelligence, American Meteorological Society, 1-7.

0 8 16 24 32
0

8

16

24

32

x 1

x 2

µ a (x 1 , x 2 )

0.75-1

0.5-0.75

0.25-0.5

0-0.25

Figure 3.  Fuzzy decision surface for absolute-number
attributes.  Fuzzy similarity-measuring surface
measures how similar two absolute values are to each
other.  The above surface determines the similarity of
two wind speeds, x1 and x2, where speed is measured
in knots.  Wind speed values above 32 are truncated to
32.

3)  Nominal attributes

To compare nominal attributes, such as precipitation
type, a similarity measuring table (a diagonally
symmetric matrix) is used of the form shown in Figure 4.
Knowledge acquisition can be performed by having the
expert fill in a questionnaire which is formatted as a
table.

The table of fuzzy relationships shown in Figure 4 is
used to compare the attribute of precipitation type.  A
table similar to that shown in Figure 4 is used to
compare the attribute of precipitation intensity.

Nil 1.00
Drizzle 0.02 1.00

Showers 0.03 0.50 1.00
Rain 0.01 0.50 0.75 1.00

… … … … … …
Nil Drizzle Showers Rain …

Figure 4.  Fuzzy relationships between nominal
attributes.  Similarity-measuring table measures how
similar two nominal attributes are to each other.  Actual
table describes relationships between 24 types of
precipitation.

4)  Forget older attributes

The similarity of two cases is determined according
to their newest and their most dissimilar attributes.  The
older attributes are in compared cases—that is, the
farther back in time they are from their respective time-
zeroes—the less weight is accorded to their
dissimilarity.  In effect, this is the same as forgetting
older attributes in comparing cases.  Such a forgetting
function is shown in Figure 5.  After two comparable
attributes of two cases are compared to yield a
similarity value, µ′, the value of  µ′ is moderated using
the forgetting function, such that sim = max {µ′, µf(t)}.

So, with reference to Figure 5, we see that 3-hour-
old attributes can never imply sim < 0.6, whereas time-
zero attributes or auxiliary predictors (with t > 0), can
imply sim ≅  0.0.

The more recent an attribute is, the more important
it is for matching.  Likewise, any auxiliary predictors,
such as NWP, are important for matching.  Each case
has a temporal span of 24 hours composed of three
parts: 12 recent past hours, 1 time-zero hour, and 12
future hours.  preceding respective “time-zeroes”  The
contributions to similarity measurement of cases, from
corresponding hours of cases, are weighted to
maximize the contribution of recent hours and to
maximize the contribution of any available
foreknowledge (e.g., guidance from NWP), as shown in
Figure 5.

µ f (t)

0.00
0.25
0.50
0.75
1.00

-12 0 12

hours offset from time-zero

Figure 5.  Fuzzy weighting for recency of attributes.
The older attributes in compared cases are, the less
their dissimilarity is weighted, hence the function
emulates forgetting of less relevant older attributes.

5)  A worked-out example of similarity
measurement

Three simplified weather cases are shown in Figure
6.  The present case represents the case to predict for.
Analogs 1 and 2 represent two hypothetical analogs
from the weather archive to make predictions from.  For
purposes of illustration, only seven-hour-long cases are
considered and only three weather attributes are
presented: cloud ceiling, wind direction, and
precipitation type; these attributes are, respectively,
absolute, continuous, and nominal, as described above.
Longer cases with more attributes would be handled by
extension of the technique shown.

The three attributes presented in Figure 6 are
sufficient to demonstrate each of the fuzzy similarity-
measuring operations described above—µa, µc, µn, and
µf(t) —as shown in Figure 7 and Figure 8.

The grayed-out values of wind direction and
precipitation for the future parts of the present case in
Figure 7 are prevision obtained from auxiliary
predictors, such as computer models or humans.
Existing methods forecast large-scale phenomena,
such as wind and precipitation, more effectively than
they forecast small-scale phenomena, such as cloud
ceilings at a particular airport.



Hansen, B. K., 2000: Analog forecasting of ceiling and visibility using fuzzy sets,
2nd Conference on Artificial Intelligence, American Meteorological Society, 1-7.

present analog 1 analog 2

time
cloud

ceiling
(dam)

wind
dirn.

(deg.)

pcpn. cloud
ceiling
(dam)

wind
dirn.

(deg.)

pcpn. cloud
ceiling
(dam)

wind
dirn.

(deg.)

pcpn.

t-3 9 200 shwrs 12 190 rain 9 170 drzl
t-2 12 230 nil 15 220 nil 9 210 nil
t-1 15 230 nil 21 220 nil 12 220 nil
t-0 21 210 nil 30 220 nil 15 210 nil
t+1 (30) 320 nil 24 330 nil 21 310 nil
t+2 (24) 320 nil 30 330 nil 24 310 nil
t+3 (999) 330 nil 999 340 nil 750 320 nil

Figure 6.  Present case and two analogs.  In a forecast setting, the grayed-out observations in present case
are not known, however guidance for the values of wind direction and precipitation is commonly available.

time
ceiling wind dirn. pcpn.

present analog 1 µa
1 present analog 1 µc

1 present analog 1 µn
1

t-3 9 12 0.75 200 190 0.88 shwrs rain 0.75
t-2 12 15 0.80 230 220 0.88 nil nil 1.00
t-1 15 21 0.71 230 220 0.88 nil nil 1.00
t-0 21 30 0.70 210 220 0.88 nil nil 1.00
t+1 ? 240 - 320 330 0.88 nil nil 1.00
t+2 ? 300 - 320 330 0.88 nil nil 1.00
t+3 ? 999 - 330 340 0.88 nil nil 1.00

(a)  Comparing analog 1 to present case

time
ceiling wind dirn. pcpn.

present analog 2 µa
2 present analog 2 µc

2 present analog 2 µn
2

t-3 9 9 1.00 200 170 0.38 shwrs drzl 0.50
t-2 12 9 0.75 230 210 0.50 nil nil 1.00
t-1 15 12 0.80 230 220 0.88 nil nil 1.00
t-0 21 15 0.71 210 210 1.00 nil nil 1.00
t+1 ? 21 - 320 310 0.88 nil nil 1.00
t+2 ? 24 - 320 310 0.88 nil nil 1.00
t+3 ? 750 - 330 320 0.88 nil nil 1.00

(b)  Comparing analog 2 to present case.

Figure 7.  Similarity measurement between a present case and two past analogs.  µa measures the similarity
between their absolute values of ceiling height (Figure 3), µc is the similarity between their continuous values of
wind direction (c=20 in Figure 2), and µn is the similarity between their nominal types of precipitation (Figure 4).



Hansen, B. K., 2000: Analog forecasting of ceiling and visibility using fuzzy sets,
2nd Conference on Artificial Intelligence, American Meteorological Society, 1-7.

ceiling wind dirn. pcpn.
t µa

1 µf(t) maxa
1 µc

1 µf(t) maxc
1 µn

1 µf(t) maxn
1

-3 0.75 0.60 0.75 0.88 0.60 0.88 0.75 0.6 0.75
-2 0.80 0.40 0.80 0.88 0.40 0.88 1.00 0.4 1.00
-1 0.71 0.20 0.71 0.88 0.20 0.88 1.00 0.2 1.00
-0 0.70 0.00 0.70 0.88 0.00 0.88 1.00 0.0 1.00
1 0.88 0.00 0.88 1.00 0.0 1.00
2 0.88 0.00 0.88 1.00 0.0 1.00
3 0.88 0.00 0.88 1.00 0.0 1.00

min = 0.70 min = 0.88 min = 0.75

min { maxa
1, maxc

1, maxn
1 } = min { 0.70, 0.88, 0.75 } = 0.70

(a)  For analog 1, the “min of the maxes” equals 0.70, due to a dissimilarity between cloud
ceilings at time t-0.  Assign to analog 1 this value of similarity to the present case.

ceiling wind dirn. pcpn.
t µa

2 µf(t) maxa
2 µc

2 µf(t) maxc
2 µn

2 µf(t) maxn
2

-3 1.00 0.60 1.00 0.38 0.60 0.60 0.50 0.6 0.60
-2 0.75 0.40 0.75 0.50 0.40 0.50 1.00 0.4 1.00
-1 0.80 0.20 0.80 0.88 0.20 0.88 1.00 0.2 1.00
-0 0.71 0.00 0.71 1.00 0.00 1.00 1.00 0.0 1.00
1 0.88 0.00 0.88 1.00 0.0 1.00
2 0.88 0.00 0.88 1.00 0.0 1.00
3 0.88 0.00 0.88 1.00 0.0 1.00

min = 0.71 min = 0.50 min = 0.60

min { maxa
2, maxc

2, maxn
2 } = min { 0.71, 0.50, 0.60 } = 0.50

(b)  For analog 2, the “min of the maxes” equals 0.50, due to a dissimilarity between wind
directions at time t-2.  Assign to analog 2 this value of similarity to the present case.

Figure 8.  Raise old low values of similarity—in effect, “forget” old dissimilarities with µf(t) (Figure 5).
Then determine the minimum of the maximum of all the similarities between past case and present case.

The just described process of similarity
measurement of temporal cases is the most
complicated process in the fuzzy k-nn algorithm for
prediction.  The subsequent two process are relatively
simple and explained briefly as follows.

b.  Traverse case base to find analogs

Traverse the case base measuring the similarity
between past cases and a present case and
simultaneously maintain an ordered linked list of the k
most similar cases.  Make every case-to-case similarity
measuring process only as detailed as necessary.  If
initial attribute-to-attribute tests imply strong dissimilarity
between cases—sufficient to exclude the past case in
question form the k-nn set—then terminate the similarity

measurement process for that past case and proceed to
the next past case.

c.  Make predictions based on a weighted median of
the k-nn

For purposes of illustration, we assume that we
sought only two analogs for the present case, that is,
k = 2.  The weighted median calculation easily extends
to higher values of k.

Figure 8 shows that between analog 1 and the
present case the degree of similarity equals 0.70, and
between analog 2 and the present case the degree of
similarity equals 0.50.  Hence, a prediction for the
present case should consist of such proportional parts
of analog 1 and analog 2, as shown in Figure 9.

time analog 1 analog 2 prediction actual
t+1 (0.7 *   24 + 0.5 *   21) / (.7+.5) = 23 30
t+2 (0.7 *   30 + 0.5 *   24) / (.7+.5) = 28 24
t+3 (0.7 * 999 + 0.5 * 750) / (.7+.5) = 895 999

Figure 9.  Prediction of cloud ceiling based on weighted median of k-nn.  k = 2.
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6. Future work

Our short-term objective is to perform a series of five
experiments to test parts of the system, as follows.

• Vary attribute set.
• Vary k.
• Vary size of case base.
• Vary fuzziness.
• Test system against persistence.
Our long-term objectives are to improve the improve

the system, as follows.
• Port the system to other airports.
• Incorporate real-time observations and recent

NWP guidance.
• Incorporate additional predictive information,

such as projections of radar images of
precipitation and satellite images of cloud.

• Enable the system to learn autonomously.
To find out about future work related to this paper,

and to obtain some of the references, please visit
http://chebucto.ns.ca/~bjarne/ams2000
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