
On Similarity Queries for Time-Series Data:

Constraint Speci�cation and Implementation

Dina Q Goldin ? and Paris C Kanellakis ?

Department of Computer Science, Brown University
PO Box 1910, Providence RI 02912, USA.
Tel: 1-401-863-7647. Fax: 1-401-863-7657.

Email: dgk@cs.brown.edu and pck@cs.brown.edu.

Abstract. Constraints are a natural mechanism for the speci�cation of
similarity queries on time-series data. However, to realize the expres-
sive power of constraint programming in this context, one must provide
the matching implementation technology for e�cient indexing of very
large data sets. In this paper, we formalize the intuitive notions of exact
and approximate similarity between time-series patterns and data. Our
de�nition of similarity extends the distance metric used in [2, 7] with in-
variance under a group of transformations. Our main observation is that
the resulting, more expressive, set of constraint queries can be supported
by a new indexing technique, which preserves all the desirable properties
of the indexing scheme proposed in [2, 7].

1 Introduction

1.1 Approximate Matching of Time-Series Data

Time-series are the principal format of data in many applications, from �nan-
cial to scienti�c. Time-series data are sequences of real numbers representing
measurements at uniformly-spaced temporal instances. The next generation of
database technology, with its emphasis on multimedia, is expected to provide
clean interfaces (i.e., declarative speci�cation languages) to facilitate data min-
ing of time-series. However, any proposal of such linguistic facilities must be
supported by indexing (i.e., be implementable with reasonable I/O e�ciency)
for very large data sets. Examples of recent database research towards this goal
include [2, 7, 18].

A most basic problem in this area is First-Occurrence Subsequence Matching,
de�ned as follows: given a query sequence Q of length n and a much longer data
sequence S of length N , �nd the �rst occurrence of a contiguous subsequence
within S that matches Q exactly.

A wide range of algorithms has been developed for internal (i.e., in-core) ver-
sions of this question [1] for strings over an alphabet or for values over bounded
discrete domains. There are particularly elegant linear-timeO(n+N ) algorithms

? Research supported by ONR Contract N00014-94-1-1153.



(by Knuth-Morris-Pratt and Boyer-Moore) and practical searching utilities for
more general patterns instead of query strings Q (e.g., regular patterns in grep).
The part of this technology that is most related to our paper is the Rabin-Karp
randomized linear-time algorithm [14], which provides an e�cient in-core solu-
tion based on �ngerprint functions. Fingerprints are a form of sequence hashing
that allow constant-time comparisons between hash values and are incrementally
computable.

A variant of the above problem involves �nding all occurrences; this is called
the All-Occurrences Subsequence Matching problem.

The above two problems have variants when the data consists of many se-
quences of the same length as the query. The First(All)-Occurrence(s) Whole-
Sequence Matching problem is: given a query sequence Q of length n and a set
of N=n data sequences, all of the same length n, �nd the �rst (all) of the data
sequences that match Q exactly.

Since the size of the data in commercial applications of time-series data
mining is usually too large to be stored internally, the research in various time-
series matching problems has concentrated on the case when storage is external
(i.e., secondary as opposed to in-core). Here we are interested in:

External solutions to the All-Occurrences Matching problems (either
Subsequence or Whole-Sequence), with two additional characteristics:

{ the match can be approximate;
{ the match is up to similarity.

We de�ne \approximate" in this subsection and \similar" in the next.
Time-series data in continuous (e.g., real-valued) domains is inherently in-

exact, due to the unavoidable imprecision of measuring devices and clocking
strategies. This forces us to work with the approximate version of the various
matching problems.

Given a tolerance � � 0 and a distance metricD between sequences, sequences
S1 and S2 match approximately within tolerance � when D(S1; S2) � �.

The All-Occurrences Approximate Matching problems (either Subsequence or
Whole-Sequence) are de�ned as before, but with \match approximately within
tolerance �" instead of \match exactly".

For external solutions to the All-Occurrence Whole-Sequence Approximate
version, we refer to [2, 18]; for the All-Occurrence Subsequence Approximate
version, we refer to [7].

A further characteristic of time-series data that is used to advantage, is that
they have a skewed energy spectrum, to use the terminology borrowed from Dis-
crete Signal Processing [16]. As a result, most of the technology of information
retrieval in this area is inuenced by signal processing methods.

1.2 Approximately Similar Time-Series Data

The database applications of interest involve queries expressing notions of \user-
perceived similarity". Here are some examples of applications for approximate
time-series matching that illustrate this notion of similarity:



{ �nd months in the last �ve years with sales patterns of minivans like last
month's;

{ �nd other companies whose stock price uctuations resembles Microsoft's;
{ �nd months in which the temperature in Paris showed patterns similar to
this month's pattern.

In many cases, it is more natural to allow the matching of sequences that are
not close to each other in an Euclidean sense. For example, two companies may
have identical stock price uctuations, but one's stock is worth twice as much as
the other at all times. For another example, two sales patterns might be similar,
even if the sales volumes are di�erent. We shall refer to the di�erence between
these sequences as scale. In another example, the temperature on two di�erent
days may start at di�erent values but then go up and down in exactly the same
way. We shall refer to the di�erence between these sequences as shift. A good
time-series data-mining mechanism should be able to �nd similar sequences, as
illustrated by these examples, up to scaling and shifting.

(a) (b)

Fig. 1. Sequence (b) is a similarity transformation of (a).

Combinations of scaling and shifting are shape-preserving transformations,
known as similarity transformations in the mathematical �eld of Transforma-
tional Geometry [15]. We will approach the de�nition of similarity from this well
established geometrical perspective:

Let G be a set of transformations then two sets of points are similar if
there exists a transformation, in G, which maps one to the other.

In geometry, a transformation typically belongs to a group. Combinations
of scale and shift are a�ne transformations. In practice, the user may restrict
the allowable transformations to a set that may not be group, by imposing
constraints on the scaling and shifting factors, or by �xing one or both factors.

Let D be a distance metric between sequences and � � 0 a tolerance. Query
sequence Q is approximately similar within tolerance � to data sequence S when
there exists a similarity transformation T so that D(Q; T (S)) � �. When � is set
to 0, we have exact similarity.



Approximate and exact similarity queries can now be de�ned just like ap-
proximate and exact matching queries were de�ned in the last section.

The All-Occurrences Approximate Similarity problems (either Subsequence or
Whole-Sequence) are de�ned as was Matching, but with \approximately similar
within tolerance �" instead of \match approximately within tolerance �". Anal-
ogous de�nitions apply for All-Occurrences Exact Similarity problems (either
Subsequence or Whole-Sequence).

When T is restricted to be the identity transformation, the various similarity
problems become the matching problems of the last section. In this sense, our
work is a generalization of the work of [7]. This generalization is in the direction
of [8], which discusses translation and distortion transformations but does not
provide the guarantees of [7] and of our indexing scheme.

A general framework for similarity queries is described in [9]. Our work hap-
pens to be (an e�ciently solvable) special case. The [9] framework for similarity-
based queries has three components: a pattern language P , an approximation
language (they refer to it as transformation rule language), and a query language.
In our case, P is the set of allowable transformations on the query sequence Q.
An expression in P speci�es a set of data objects; in our case, it is the set of all
sequences exactly similar to Q. Approximations have a cost, and the distance
between objects is de�ned as the minimal cost of reaching one object from the
other via approximations. In our case, the approximations are the distortions
in the time-series data (i.e., the jiggling of individual points); the cost is the
distance between the original sequence and the distorted one. Note that mem-
bership testing in the [9] framework is at best exponential; thus this framework
is too general for our purposes.

1.3 Contributions and Overview

Our main contribution is: A syntax and semantics for similarity queries, that
account for approximate matching, scaling and shifting, and that have e�cient
indexing support. We show this using a new indexing technique, which preserves
all the desirable properties of the indexing scheme proposed in [2, 7].

In Section 2, we provide a semantics for similarity querying where we use
the similarity distance between Q and S (de�ned in Section 2.2) as the dis-
tance metric. Similarity distance constitutes a good distance metric because it is
non-negative, symmetric, and e�ectively computable; it also obeys the triangle
inequality. This is not true of the \naive" distance metrics that correspond more
closely to the formulation of the problem in the Section 1.2. The semantics of
Section 2.2 serves as the basis for the internal representation of the query, i.e.,
our normal form.

In Section 3, we show that the semantics of Section 2.2 has several desirable
properties, such as updateability and well-behaved trails, which allow us to pro-
vide e�cient implementations for similarity querying, both in the internal and
external query setting. We �rst adapt the criteria put forth in [2, 7] (Section 3.1)
and satisfy them using �ngerprints of the normal form (Section 3.2). We then
argue that �ngerprints are incrementally computable (Section 3.3), can be used



ala Rabin-Karp [14] for internal searching (Section 3.4), and most importantly
external indexing (Section 3.5).

This is the implementation technology that is needed to support the internal
representation of Section 2. Our new indexing technique combines the MBR
structure of [7] with our internal representation. Many spatial data-structures
can be used, for examples varieties of R-trees (see [17] for a comprehensive survey
of the available external data-structures).

In Section 4, we provide a constraint syntax for similarity querying. We show
how various query variations can be expressed and translated into the internal
representation of Section 2. This translation also clari�es the relationship of the
problem as de�ned in Section 1.2 with the semantics of Section 2.2.

The syntax could be embedded in most constraint logic programming lan-
guages [5, 6, 10] or constraint query languages [3, 4, 11, 12]. This completes the
connection between high level speci�cation and implementation.

The importance of combining high-level speci�cation with e�cient implemen-
tation is the common theme of constraint databases (e.g., see [4, 13]) and the
main motivation for this work. In Section 5, we close with some open problems
and future work.

2 The Semantics of Similarity Queries

2.1 Similarity Transformations and Normal Forms

An n-sequence X is a sequence fx1; : : : ; xng of real numbers. Each n-sequence
X has an average �(X) and a deviation �(X):

�(X) = (1=n)
X

1�i�n

xi; �(X) = ((1=n)
X

1�i�n

(xi � �(X))2)1=2:

We shall feel free to drop the arguments to � and �, treating them as constants,
when the context is not ambiguous.

A pair of reals (a; b) de�nes a similarity transformation Ta;b over n-sequences
by mapping each element xi to a � xi + b. We will assume that all similarity
transformations are non-degenerate, i.e., that a 6= 0. In fact, we will further
assume that a > 0; this restriction on a implies that a sequence symmetric to X
w.r.t. the x-axis is not considered similar to it.

De�nition 2.1 We say that X is similar to Y if there exist some (a; b) 2
[R+ �R] such that X = Ta;b(Y ).

This similarity relation is reexive, symmetric, and transitive:

{ Reexivity: for any sequence X,X = T1;0(X) [the identity transformation];
{ Symmetry: if X = Ta;b(Y ) then Y = T1=a;�b=a(X) = T�1a;b (X) [the inverse
of Ta;b];

{ Transitivity: if X = Ta;b(Y ) and Y = Tc;d(Z), then X = Tac;ad+b(Z) =
(Ta;b � Tc;d)(Z) [the non-commutative product of Ta;b and Tc;d].



Therefore, the set of all sequences similar to a given one constitutes an equiva-
lence class, which we call a similarity class; we shall denote the similarity class
of X by X�. The similarity relation partitions all n-sequences into similarity
classes.

To be able to refer to similarity classes, we need a way to compute a unique
representative for each class, given any member in it. Towards that end, we now
de�ne normal forms of sequences.

De�nition 2.2 An n-sequence X is normal if �(X) = 0 and �(X) = 1.

Let X be normal and Y be similar to X, i.e., Y = Ta;b(X) for some (a; b) 2
[R+ �R]. Then, �(Y ) = b and �(Y ) = a:

�(Y ) = (1=n)
P

1�i�n yi = (1=n)
P

1�i�n(axi+ b) = (a=n)�(X)+ b = b;

�2(Y ) = (1=n)
P

1�i�n(yi � �(Y ))2 = (1=n)
P

1�i�n(axi + b � b)2 =

(a2=n)
P

1�i�n(xi � 0)2 = a2 � �2(X) = a2.

Y is normal only if �(Y ) = a = 1 and �(Y ) = b = 0; this is the identity trans-
formation. This means that a similarity class has exactly one normal member;
we will call it the normal form of all the members of the class.

Given any n-sequence X, �(X) denotes the normal form of X�. If � is the
average of X, and � is the deviation of X, we've shown that X = � � �(X) +�.
Therefore, we can compute �(X) from X by the inverse transformation:

�(X) = T�1�;�(X) = T1=�;��=�(X):

In a transformation Ta;b, we call a the scale factor and b the shift factor. If a
is 1, the transformation is a pure shift; if b is 0, it is a pure scaling. The identity
transformation is a pure shift; the inverse of a shift is a shift; and the product of
two shifts is also a shift. This allows us to conclude that the set of all shifts of a
given sequence is an equivalence class. The same is true of the set of all scalings.
The normal form for these classes is de�ned just as for the general case.

2.2 Similarity Distance and Semantics

Given two sequences X and Y , the similarity distance between X and Y is the
distance between the normal forms of their respective similarity classes:

De�nition 2.3

DS(X;Y ) = DE (�(X); �(Y ));

where DE is the Euclidean distance, de�ned as follows:

De�nition 2.4

DE(S1; S2) = (
X
1�i�l

(S1[i]� S2[i])
2)1=2:



Any proper distance metric D for n-sequences can be used instead of DE . Since
we will be using techniques from Discrete Signal Processing (DSP) and the Eu-
clidean distance is a standard distance metric in DSP, we have chosen to use it
here.

Note that the similarity distance between any pair of sequences fromX� and
Y � is the same; this gives us a distance metric for similarity classes:

De�nition 2.5

DS(X
�; Y �) = DS (X;Y ):

A distance metric should be non-negative and symmetric, and it should obey the
triangle inequality. A good distance metric should also be e�ectively computable.
It is easy to see that similarity distance satis�es all these criteria.

Remark: Note that there are de�nitions of distance that correspond
more closely to the naive formulation of the problem. For example,
given Q and S, we could have used the minimum Euclidean distance
between Q and all S0 2 S�(the equivalence class of S); let us denote
this distance by Dm(Q;S�). However, this de�nition is not symmet-
ric: Dm(Q;S�) 6= Dm(S;Q�). Given Q and S, we could have also tried
to choose the minimum Euclidean distance between Q0 and S0 for all
Q0 2 Q� (the equivalence class of S) and S0 2 S� (the equivalence class
of Q). However, by choosing the members of Q� and S� with arbitrarily
small deviations, this distance will always approach 0. The normal forms
provide a distance metric that does not su�er from any of these defects.

By using similarity distance, we are now ready to de�ne a similarity semantics
for the All-Occurrences Subsequence Approximate Similarity problem.

Given a query sequence Q, a time-series S, a tolerance � � 0, and a
similarity relation [which partitions sequences into equivalence classes
with normal forms], �nd all contiguous subsequences S in the time-series
S such that DS (Q;S) � �.

Note that these semantics are slightly di�erent from the problem formulation
in Section 1.2. The di�erences will be clari�ed (and bridged) in Section 4. To
conclude this subsection, we want to consider the All-Occurrences Subsequence
Exact Similarity problem (i.e., when � = 0).

Given a query sequence Q, a time-series S, and a similarity relation
[which partitions sequences into equivalence classes with normal forms],
�nd all contiguous subsequences S in the time-series S such that Q and
S are similar [belong to the same equivalence class].

The exact case can be answered using the normal forms, because Q and S
are in the same equivalence class if and only if �(Q) = �(S). Finally, analogous
de�nitions apply to Whole-Sequence problems.



3 Indexing of Similarity Queries

3.1 Sequence Fingerprints: Criteria and De�nitions

Computing the similarity distance DS between any two n-sequences requires
O(n) operations. An e�cient implementationof similarity querying cannot a�ord
to compute DS every time for each sequence in the data set (for the Whole-
Sequence case), or for each contiguous subsequence in the time-series (for the
Subsequence case).

Following the approach of [14], which has gained wide acceptance, we in-
troduce a �ngerprint function F , together with a �ngerprint distance metric
DF . This �ngerprint mechanism provides fast rejection, �ltering out most of the
non-similar sequences.

A �ngerprint mechanism needs to satisfy the following criteria:

{ Compactness: The comparison of the �ngerprints of two n-sequences can
be done in constant time.

{ Validity: If S is a valid query answer, then the comparison of F (S) and
F (Q) should return TRUE:

DS(X;Y ) � � =) DF (F (X); F (Y )) � �:

{ Accuracy: If the comparison of F (S) and F (Q) returns TRUE, S is highly
likely to be a valid query answer.

{ Updateability: Computing the �ngerprints of all subsequences of an N -
sequence for N much larger than n can be done in O(N ) time, by updating
the �ngerprint value as we move along rather than recomputing it for every
subsequence.

We now de�ne the �ngerprint function F as well as the �ngerprint distance
function DF . These de�nitions are similar to the ones used for Approximate
Matching in [2] and [7].

De�nition 3.1 A �ngerprint F (X) of an n-sequence X = fx1; : : : ; xng is the
tuple

[DFT1(�(X)); : : : ; DFTl(�(X))];

where l is a small constant (such as 3), and DFTm is the m'th coe�cient of the
Discrete Fourier Transform of �(X):

DFTm(s0; : : : ; sn�1) =
1p
n

n�1X
j=0

(sje
�j(2�i)m=n);

where i =
p�1.

Note that DFTm is a complex number:DFTm = am+bmi for some am; bm 2
R. Thus, F is speci�ed by a sequence of 2l real values. Note that we are not
including DFT0 in the �ngerprint, since its coe�cients are both 0 for normal
sequences.



De�nition 3.2 The �ngerprint distance DF between F (X) and F (Y ) is the
Euclidean distance between the real-valued sequences for F (X) and F (Y ).

By taking l to be a small constant our �ngerprint mechanism is compact. In
the subsections below, we establish its validity, accuracy, and updateability.

3.2 Validity and Accuracy of Fingerprinting

To establish the validity of �ngerprinting, we need to show that

DS(X;Y ) � � =) DF (F (X); F (Y )) � �:

We make use of the fact that the DFT is a linear function, i.e.,

DFTm(aX + bY ) = aDFTm(X) + bDFTm(Y )

for all scalars a and b. Also, we rely on Parseval's theorem, well-known in DSP:

X
0�m�n�1

jDFTm(X)j2 =
X

0�i�n�1

jxij2:

And we make use of the fact that the coe�cients of DFT0 for normal sequences
are both 0. First, we show that DS(X;Y ) � DF (F (X); F (Y )):

DS (X;Y ) = DE (�(X); �(Y )) = (
P

0�i�n�1 j�(xi) � �(yi)j2)1=2 =
= (
P

0�m�n�1 jDFTm(�(X) � �(Y ))j2)1=2 �
� (
P

0�m�l jDFTm(�(X)� �(Y ))j2)1=2 = DF (F (X); F (Y )).

It immediately follows that DF (F (X); F (Y )) � � whenever DS(X;Y ) � �.
To establish accuracy, we want to know how likely it is that DS(X;Y ) � �

provided that DF (F (X); F (Y )) � �. The cases when DF (F (X); F (Y )) � � but
DS(X;Y ) � � represent false alarms, and we want to minimize their occurrence.
Therefore, we would like the ratio DF (F (X); F (Y ))=DS(X;Y ) to be close to 1.

The actual ratio strongly depends on the nature of the data sequences. It is
worst in the case of white noise, when

DF (F (X); F (Y ))=DS (X;Y ) = (l + 1)=n:

As we mentioned in Section 1.1, time-series data have a skewed energy spectrum,
which implies that

The amplitude of DFTm decreases rapidly for increasing values of m.

As shown in [2], 2-3 coe�cients are usually su�cient to provide good accuracy.
Therefore, we may assume that the length l of the �ngerprint is � 3. (Note
that, the randomization ala Rabin-Karp [14] makes no assumptions about the
spectrum.)



3.3 Updateability of Fingerprinting

When computing �ngerprints of all subsequences of length n for a much longer
sequence of length N , the e�ciency of the algorithm hinges on a property of the
�ngerprint that we call updateability:

Given the �ngerprint of a subsequence fxk; : : : ; xk+n�1g, it is possible
to compute the �ngerprint for fxk+1; : : : ; xk+ng in constant time.

Let Xk be the �rst subsequence, and Xk+1 be the second subsequence. We show
how to compute the �ngerprint F (Xk+1) from the �ngerprint F (Xk) in constant
time. As inputs to the update step, we assume that we have the values of the
following expressions:
X

k�j�k+n�1

xj;
X

k�j�k+n�1

(xj)
2; �(Xk); �(Xk); DFT1(Xk); : : : ; DFTl(Xk); F (Xk):

We also assume that all constants (such as 1=n) are pre-computed. During the
update step, we obtain the values for the above expressions with k + 1 instead
of k; the computation proceeds as follows:

1. Increment k to k + 1;
2. Look up xk+1, xk+n;
3. Compute

P
k+1�j�k+nxj. This involves one subtraction and one addition:

X
k+1�j�k+n

xj = (
X

k�j�k+n�1

xj)� xk + xk+n;

4. Compute
P

k+1�j�k+n(xj)
2, using two multiplications, one subtraction and

one addition:

X
k+1�j�k+n

x2j = (
X

k�j�k+n�1

x2j )� x2k + x2k+n;

5. Compute �(Xk+1), using one multiplication:

�(Xk+1) = �k+1 = (1=n)
X

k+1�j�k+n

xj;

6. Compute �(Xk+1), using two multiplications, one subtraction and one square
root:

�2(Xk+1) = �2k+1 = (1=n)(
X

k+1�j�k+n

x2j) � �2k+1;

7. Compute DFT1(Xk+1); : : : ; DFTl(Xk+1), using one subtraction, one addi-
tion and two multiplications for each index:

DFTm(Xk+1) =
1p
n

X
0�j�n�1

(xj+k+1e
�j(2�i)m=n) =

=
1p
n

X
1�j�n

(xj+ke
�(j�1)(2�i)m=n) = e(2�i)m=n(DFTm(Xk) +

xn+k � xkp
n

);



8. Compute the �ngerprint of Xk+1, using one division for each index. Here,
we rely on the linearity of DFT 's, and on the fact that DFTm(1) is 0 when
m > 0:

DFTm(�(Xk+1)) = DFTm(Xk+1=�k+1 � �k+1=�k+1) =

= (1=�k+1)DFTm(Xk+1)� (�k+1=�k+1)DFTm(1) = DFTm(Xk+1)=�k+1:

Note that the above algorithm is on-line, suitable in a situation when the
data are streaming past and we can never back over it. In addition, we have
shown that the �ngerprint of [2] for time-series approximate matching (without
similarity) is also updateable.

3.4 Internal Algorithms

In this section, we sketch out the internal implementation of similarity queries,
omitting the details that can be found in the works we reference.

The implementation is based on a uni�ed internal representation of a sim-
ilarity query; its de�nition is given below. We will show in Section 4 how to
translate the constraint-based syntax of a user into to the uni�ed internal repre-
sentation. For the rest of this section, we assume that we have already obtained
this internal representation.

De�nition 3.3 The internal representation of a similarity query consists of:
(query sequence Q, the values f�i; l�; u�; l� ; u�g).

This corresponds to the Section 2.2 semantics of All-Occurrences Subse-
quence Approximate Similarity:

Find all S such that DS(Q;S) � �i, l� � �(S) � u�, l� � �(S) � u�.

The updateability results established in Section 3.3 allow us to answer the
query for the in-core case with an algorithm much like that of [14]. We proceed
through the sequences and the subsequences, comparing DF (F (Q); F (S)) to �i
and checking �(S) and �(S) against the bounds. In the case of a potential match,
we use the user formulation of the problem (Section 4) to determine if we have
a valid query answer, or if it is a false alarm.

When we want to avoid run-time linear scanning of the data, we need to
create an index structure for it. This is the case for any database application of
similarity querying. A naive index structure is a list of tuples of the following
form:

[F (X); �(X); �(X); location of X]:

The algorithm is very similar to the in-core case; we scan the index and look for
potential matches:

Is DF (F (Q); F (S)) � �i, l� � �(S) � u�, and l� � �(S) � u�?

Whenever one is found, we retrieve X and do the �nal determination.



3.5 External Indexing

To speed up index searching, we can instead build an indexing mechanism that
allows spatial access methods for range queries of multidimensional points. The
query point PQ is computed from the internal query representation:

PQ = (F (Q);m�;m�), where m� = (u� + l�)=2, m� = (u� + l�)=2.

The answer to the similarity query is the set of all points (F (X); �(X); �(X))
such that:

F (X) is within � of F (Q), �(X) is within (u� � l�)=2 of m�, and
�(X) is within (u� � l�)=2 of m� .

Though the index structure described above performs well for the whole-
sequence case, it is unsuitable in the subsequence setting. This is due to a very
simple observation: for a real sequence of length m, the there would be m�n+1
indices with 2l reals each. Such space overhead renders indexing less e�cient
than a direct sequential scan of the data [7].

This problem is overcome with the Minimum Bounding Rectangle (MBR)
technique, introduced in [7]. This technique signi�cantly reduces the size of the
indexing structure, though introducing some false alarms in the process. Our
�nal indexing method consists of combining the MBR technique with the spatial
access approach described above.

The MBR technique relies of the continuity of subsequence indices:

{ Continuity: Given two adjacent subsequences, the di�erence between the
corresponding coe�cients of their indices is likely to be small.

We conclude the discussion of indexing by verifying that our indexing possesses
the continuity property. This is a \heuristic" statistical argument, that also
applies to [7] (where continuity was assumed, but not shown).

Denote adjacent sequences by X0 = fx0; : : : ; xn�1g and X1 = fx1; : : : ; xng;
denote the corresponding indices by (�0; �0; F0) and (�1; �1; F1); and Denote the
order of the expected value of an expression by �. Assume that n is reasonably
large, so that 1=n is considered to be a small constant. Proceed by considering
each element of the index separately.

1. The expected value of j�1 � �0j is on the order of �0=n:

j�1 � �0j = jxn � x0j=n � �0=n:

2. The expected value of j�1 � �0j is on the order of �0=n:

j�1 � �0j(�1 + �0) = j�21 � �20j =

=
1

n
j(xn � �1)

2 + (x0 � �0)
2 +

X
1�j�n�1

((xj � �1)
2 � (xj � �0)

2)j =

= j(xn � x0)(xn � �1 + x0 � �0)j=n � (�0=n)(�1 + �0):



3. The expected value of jDFTm(�(X1)) � DFTm(�(X0))j is on the order of
jDFTm(�(X0))j=n+1=

p
n. Here, we use the equations for DFT 's derived in

Section 3.3, as well as the ones derived above:

jDFTm(�(X1))�DFTm(�(X0))j = jDFTm(X1)=�1 �DFTm(�(X0))j =

= je
(2�i)m=n

�1
(�0DFTm(�(X0)) +

xn � x0p
n

)�DFTm(�(X0))j =

= jDFTm(�(X0))(
�0
�1
e(2�i)m=n � 1) +

xn � x0
�1
p
n

e(2�i)m=nj �

� jDFTm(�(X0))((1+1=n)(1�2�m=n)�1)+(1+1=n)(1�2�m=n)=
p
nj �

� jDFTm(�(X0))j=n+O(1=
p
n)

4 Constraint Speci�cation of Similarity Queries

In the previous section, we have shown how to provide an e�cient database
indexing mechanism for queries with similarity semantics. This enables us to
answer the following question:

Given Q, �i, (l�; u�) and (l� ; u�),
�nd all S such that
DS (Q;S) � �; l� � �(S) � u�; l� � �(S) � u�:

This is based on our internal representation of the actual user query, whose
syntax may be very di�erent. In particular, the user querying a database of
sequences should probably not be expected to refer to normal forms, similarity
distance, or even to averages and deviations.

In this section, we provide a syntax for similarity queries, based on con-
straints. Then, we show how to translate from this syntactic formulation to the
internal representation.

It is important to note that the translation is not always bi-directional. There
may be additional false alarms retrieved by the indexing mechanism. These will
be �ltered out via a brute-force comparison prior to returning the query result.
The additional �ltering indicates a potential performance disadvantage of our
approach and is a trade-o� to achieve generality.

4.1 Constraint-Based Syntax of Similarity Queries

For the general similarity query, we propose the following constraint-based syn-
tax, which expresses the queries described in Section 1.2:

{ General Case: Given Q, �, (la; ua), and (lb; ub),
find all [S; a; b] such that

D(Q; aS + b) � �, la � a � ua and lb � b � ub.



We assume that the sequence distance D is the Euclidean distance DE between
sequences. Of course, the user may choose to omit the bounds on a and/or b:

{ Unbounded Case: Given Q and �,
find all [S; a; b] such that D(Q; aS + b) � �:

In all the following queries, bounds either a or b are optional.
The user may want to query for scaling transformations only, or for shift

transformations only:

{ Scaling: Find all [S; a] such that D(Q; aS) � �.
{ Shifting: Find all [S; b] such that D(Q;S + b) � �.

Finally, the user may ask approximate matching queries or exact similarity
queries:

{ Approximate Match: Find all S such that D(Q;S) � �.
{ Exact Similarity: Find all [S; a; b] such that Q = aS + b.

For all these variations on similarity queries, it is possible to e�ciently �nd
the corresponding values for the variables used in the internal query representa-
tion:

f�i; l�; u�; l�; u�g:
We shall show how to do that in the next subsection.

4.2 From Constraint-Based Syntax to Internal Representation

We �rst reduce the cases of scaling, shifting, alternate matching, and exact sim-
ilarity to the general case:

Scaling: force b to have the value 0 by speci�ng an equality constraint b = 0:

D(Q; aS) � �, D(Q; aS + 0) � �, D(Q; aS + b) � � ^ b = 0.

Shifting: force a to have the value 1 by speci�ng an equality constraint a = 1:

D(Q;S + b) � �, D(Q; 1 � S + b) � �.

Approximate Matching: by similar reasoning, set a to 1 and b to 0.
Exact Similarity: set � to 0:

Q = aS + b, D(Q; aS + 0) = 0.

Then, we convert the general case to the internal representation. We need
to compute the values for f�i; l�; u�; l�; u�g, so that S is a valid answer to the
general similarity query only if

DS(Q;S) � �i and l� � �(S) � u� and l� � �(S) � u�.



To bridge the di�erence between Section 1.2 and Section 2.2, we proceed as
follows.

Let Q be the given pattern and S an answer for the general case, such that
there exist a; b with D(Q; aS + b) � �, la � a � ua and lb � b � ub. Let us
denote the minimumdistance between Q and S0, for all S0 2 S�, by Dm(Q;S�),
and �(Q) by �. It can be shown that:

Lemma: D2
m(Q;S

�) = �2(D2
S �D4

S=4), where DS = D(�(Q); �(S)).

If D(Q; aS + b) � � then,

Dm(Q;S
�) � �, D2

m(Q;S
�) � �2 , �2(D2

S �D4
S=4) � �2 ,

, D4
S�4D2

S+4�
2=�2 � 0, (D2

S � 2�2
p
1� �2=�2)_(D2

S � 2+2
p
1� �2=�2):

We know that D2
S � 2, since our similarity transformations do not allow scaling

with a negative factor. Therefore, the square root of the �rst inequality is the
desired expression for �i. Note that �=� must be less than 1; this does not reduce
the expressibility, since the minimal distance D2

m(Q;S
�) is never greater than

�(Q). The above calculation of �i is bi-directional (i�) when there are no bounds
on a; b.

Otherwise, we also need to �nd \good" bounds for �(S) and �(S). We know
that under exact similarity

Q = aS + b,
Q = �(Q) � �(Q) + �(Q),
S = �(S) � �(S) + �(S).

We solve these equations for a and b:

a = �(Q)=�(S),
b = �(Q)� �(S)�(Q)=�(S):

We combine the equation for a with the bounds la � a � ua to obtain the
bounds for �(S), without any loss in accuracy:

la � a � ua , la � �(Q)=�(S) � ua , 1=ua � �(S)=�(Q) � 1=la ,
, �(Q)=ua � �(S) � �(Q)=la:

We combine the equations for b with the bounds lb � b � ub to obtain the
bounds for �(S):

lb � b � ub , lb � �(Q)� �(S)�(Q)=�(S) � ub ,
, �(Q)� ub � �(S)�(Q)=�(S) � �(Q)� lb ,

, �(S)(�(Q) � ub)=�(Q) � �(S) � �(S)(�(Q) � lb)=�(Q):

Since �(S) is not a constant value, we have to eliminate it from the bounds.
We accomplish this goal by substituting the lower and upper bounds for �(S),
obtained earlier, into the above inequalities:

(�(Q)=ua � �(S))^ (�(S)(�(Q)�ub )=�(Q) � �(S)) ) (�(Q)�ub)=ua � �(S);

(�(S) � �(Q)=la) ^ (�(S) � �(S)(�(Q) � lb)=�(Q))) �(S) � (�(Q)� lb)=la:

Combining the resulting inequalities, we obtain:



(�(Q)� ub)=ua � �(S) � (�(Q) � lb)=la.

The last reduction is not bi-directional. Though we have not forced any false
dismissals, we may have generated some false alarms. The inaccuracy introduced
when computing the bounds for �(S) is proportional to ua � la. Therefore, the
expected speed-up from bounding b prior to indexing vs. performing the �ltering
of b's after the indexing is maximized when there is a very tight bound on a. An
ideal candidate is a pure shift query, where a = 1.

We summarize the results of this section in a table, providing the values for
the internal representation in terms of the user-speci�ed external values.

�i

l�

u�

l�

u�

q
2� 2
p
1� �2=�2

�(Q)=ua

�(Q)=la

(�(Q)� ub)=ua

(�(Q)� lb)=la

Fig. 2. Computing the values for the Internal Representation

5 Conclusion and Open Questions

We have proposed a framework for Time-Series Approximate Similarity Queries
that allows the user to pose a wide variety of queries and that preserves desirable
indexing properties of Time-Series Approximate Matching. Posssible extensions
involve more powerful similarity queries and di�erent distance functions; also
indexing of time-series data that is represented using constraints (see [3, 11]).

As with a generalized version of any problem, there is a potential trade-o�
between a gain in expressibility and a decrease in performance. There should be
some slow-down due to the extra keys in the new indexing scheme (as opposed to
[7]) and additional slow-down may come from the false alarms generated by our
�ngerprinting as compared to the specialized cases (without a similarity trans-
formation). We are examining this trade-o� through performance evaluation of
several versions of similarity querying. The �rst version is the most general one
described here; other versions involve tailoring the internal representation and
the corresponding indexing scheme for specialized subsets of similarity queries.
This experimental work in progress.



The existence of a �ngerprint function for internal similarity querying that is
a real hash function but is also distance-preserving and updateable is an inter-
esting open question. Is there a �ngerprint method that gives a provably linear
performance for the Rabin-Karp algorithm [14], either for approximate matching
or for similarity querying? Can it be truly randomized for any adversary?

References

1. A. Aho. Algorithms for Finding Patterns in Strings. Handbook of TCS., J. Van
Leeuwen editor, volume A, chapter 5, Elsevier, 1990.

2. R. Agrawal, C. Faloutsos, A. Swami. E�cient Similarity Search in Sequence
Databases. FODO Conf., Evanston, Ill., Oct. 1993

3. M. Baudinet, M. Niezette, P. Wolper. On the Representation of In�nite Temporal
Data and Queries. Proc. 10th ACM PODS, 280{290, 1991.

4. A. Brodsky, J. Ja�ar, M.J. Maher. Toward Practical Constraint Databases. Proc.
19th VLDB, 322{331, 1993.

5. A. Colmerauer. An Introduction to Prolog III. CACM, 33:7:69{90, 1990.
6. M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Berthier. The

Constraint Logic Programming Language CHIP. Proc. Fifth Generation Computer
Systems, Tokyo Japan, 1988.

7. C. Faloutsos, M. Ranganathan, Y. Manolopoulos. Fast Subsequence Matching in
Time-Series Databases. Proc. ACM SIGMOD Conf., pp. 419{429, May 1994

8. H.V. Jagadish. A Retrieval Technique for Similar Shapes. Proc. ACM SIGMOD

Conf., pp. 208{217, May 1991
9. H. V. Jagadish, A. O. Mendelzon, T. Milo. Similarity-Based Queries. to appear in

Proc. 14th ACM PODS, 1995
10. J. Ja�ar, J.L. Lassez. Constraint Logic Programming. Proc. 14th ACM POPL,

111{119, 1987.
11. F. Kabanza, J-M. Stevenne, P. Wolper. Handling In�nite Temporal Data. Proc.

9th ACM PODS, 392{403, 1990.
12. P. C. Kanellakis, G. M. Kuper, P. Z. Revesz. Constraint Query Languages. Proc.

9th ACM PODS, 299{313, 1990. Full version available as Brown Univ. Tech. Rep.
CS-92-50. To appear in JCSS.

13. P. C. Kanellakis, S. Ramaswamy, D. E. Vengro�, J. S. Vitter. Indexing for Data
Models with Constraints and Classes. Proc. 12th ACM PODS, 233{243, 1993.

14. R. M. Karp and M. O. Rabin. E�cient Randomized Pattern-Matching Algorithms.
IBM J. Res. Develop., 31(2), 1987

15. Modenov and Pakhomenko. Geometric Transformations, Academic Press, 1965
16. A.V. Oppenheim and R.W. Schafer. Digital Signal Processing, Prentice Hall, 1975
17. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

Reading MA, 1990.
18. P. Sheshadri, M. Livny, R. Ramakrishnan. Sequence Query Processing Proc. ACM

SIGMOD Conf., pp. 430{441, May 1994

This article was processed using the LaTEX macro package with LLNCS style


