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In the field of statistical discrimination nearest neighbor methods are a well known, quite simple but
successful nonparametric classification tool. If the number of predictors increases, however, predictive power
normally deteriorates. In general, if some covariates are assumed to be noise variables, variable selection is a
promising approach. The paper's main focus is on the development and evaluation of a nearest neighbor
ensemble with implicit variable selection. In contrast to other nearest neighbor approaches we are not
primarily interested in classification, but in estimating the (posterior) class probabilities. In simulation
studies and for real world data the proposed nearest neighbor ensemble is compared to an extended
forward/backward variable selection procedure for nearest neighbor classifiers, and some alternative well
established classification tools (that offer probability estimates as well). Despite its simple structure, the
proposed method's performance is quite good — especially if relevant covariates can be separated from noise
variables. Another advantage of the presented ensemble is the easy identification of interactions that are
usually hard to detect. So not simply variable selection but rather some kind of feature selection is performed.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The rather old nearest neighbor method [1] is one of the simplest
and most intuitive techniques in the field of statistical discrimination.
Themethod is nonparametric andmemory based, and frequently used
in chemometrics (e.g. by [2,3] or [4]); for an introduction see for
example [5]. A new observation with unknown class label is placed
into the class of the observation from the training set that is closest
to the new observation — with respect to some covariates. Despite
(or because of) its simplicity nearest neighbor predictions are often
accurate. Cover and Hart [6] showed that (for any number of
categories) the probability of error of the (one) nearest neighbor
rule is bounded above by twice the Bayes error rate. For results when
discrimination is based on k nearest neighbors see [7].

Closeness or similarity, respectively distance d of two observations is
derived from a specificmetric in the predictor space. For a given training
set T={(yi, xi); i=1,…,n}, with yi denoting the class membership and
the vector xi=(xi1,…,xip)T representing the predictor values, the nearest
neighbor classification of a new observation (y,x) is ŷ=y[1], with (x[1],
y[1]) denoting the nearest neighbor in the training set, i.e. d(x, x[1])=
min1≤ i≤n(d(x, xi)). A possible distance measure is the so-called
Minkowski distance

dðxi; xrÞ = ∑
p

j=1
jxij−xrj jq

 !1=q

:

e (J. Gertheiss),

l rights reserved.
When the Euclidianmetric is used one has the special case of q=2.
All nearest neighbor methods in the following are based on the
Euclidian metric.

In this paper nearest neighbor approaches are applied in a more
generalway.One aspectof theproposedmethod is feature selection.Our
aim is not only classifying (or estimation) but tofind themost influential
variables and interaction terms. Simple nearest neighborhood estimates
tend to be unstable when noise variables are present. Therefore we aim
at selecting relevant covariates or interactions between them, and
combine the nearest neighborhood predictions based on single or small
groups of predictors. Beyond simple classification, we use nearest
neighbor concepts as nonparametric estimators for posterior class
probabilities — given classes g=1,…,G. If not only the first but the k
nearest neighbors of observation i are used for classifying i, the relative
frequency of predictions in favor of category g among these neighbors
can be seen as an estimate of the probability of category g. These
estimates π̂ig can take values h/k, h {0,…,k}, indicating how many times
g is observed among the k nearest neighbors of observation i. If
neighbors areweightedwith respect to their distance to the observation
of interest, π̂ can inprinciple take all values in [0,1].Weighting neighbors
is for example proposed by [8] and further investigated and implemen-
tedby [9]. Bycontrast, in thenearestneighborensembleproposed in this
article, probability estimates unequal to h/k, h {0,…,k}, do not result
from the weighting of neighbors but from combining and weighting
different single nearest neighbor estimates.

The paper is organized as follows. In the next section the proposed
nearest neighbor ensemble approach is presented. By means of
simulation studies its behavior and performance are extensively
studied in Section 3. Finally in Section 4 the introduced technique is
visualized for some real world data.
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2. Nearest neighbor ensembles

Ensemble methods are a general group of methods. Several
classifiers — or learners — are fitted, votes are counted, and final
classification is given by the most popular class. Nearest neighbor
ensembles have been proposed by some authors. Domeniconi and Yan
[10] investigated ensembles of nearest neighbor classifiers based on
random subsets of predictors, while performing adaptive sampling.
That means variable selection is not completely at random, but
a probability distribution is employed in the sampling mechanism.
The probability distribution is derived from some kind of relevance
measure. Thus, the approach is a two-step procedure, because in a first
step all the features' relevance needs to be determined by an adequate
technique. Yankov et al. [11] dealt with forecasting time series and
proposed ensembles of forecasts from different neighborhoods,
namely k1-NN and k2-NN with small k1 and larger k2. The name
ensemble, however, is misleading, since prediction for a given unit is
finally based on either k1-NN or k2-NN. The question what prediction
is more suitable needs to be answered by an adequate classifier. Our
goal is to perform a variable selection, i.e. selection in the feature
space, using the nearest neighbor methods.

2.1. Basic concept

We will start with the simplest case when the learners in the
ensemble are nearest neighbor estimates based on single variables.
Thus, let π̂ig(j) be the nearest neighbor estimate of probability that
observation i falls in category g, if the distance measure is only based
on predictor xj. The final estimate π̂ig is constructed as an ensemble,
i.e. the weighted average

π̂ig = ∑
p

j=1
cjπ̂igðjÞ; withcj ≥ 0∀j and ∑

j
cj = 1: ð1Þ

We explicitly use weights cj on the variables in order to obtain a
selection of relevant predictors. These weights — or coefficients — are
unknown and need to be determined in some way. They only have to
be positive and sum up to one.

Before presenting our strategy for determining these weights, the
question shall be answered if further flexibility is possible. Further
flexibility would result from weights depending on category g, i.e.

π̂ig = ∑
j
cgjπ̂igðjÞ; with cgj ≥ 0∀g; j and ∑

j
cgj = 1∀g:

However, it can be shown that the restriction c1j=…=cGj=cj
is the only possibility to ensure that π̂ig≥0∀g and Σgπ̂ig=1 for all
possible future estimations {π̂ig(j)} with π̂ig(j)≥0∀g, j and Σgπ̂ig(j)=1∀j.

Since it is not known where a new observation i (that is to be
classified) will be located in the predictor space, it is unknown which
values single estimates π̂ig(j) will have. Hence it must be ensured that
estimates π̂ig sum up to one given any estimate {π̂ig(j)}. The proof of the
statement above is given in the Appendix.

2.2. Determination of weights

As mentioned before, in the ensemble formula (1) the single
nearest neighbor estimates π̂ig(j) are considered as fixed, and weights
cj need to be determined. For that purpose we primarily choose a loss
function— or score— L(y, Π̂), which quantifies howwell the true class
labels y=(y1,…,yn)T are fitted by probability estimates (Π̂)ig= π̂ig,
i=1,…,n, g=1,…,G. As it is seen from the ensemble formula (1), given
all single nearest neighbor estimates {π̂ig(j)}, the matrix Π̂, consisting
of final estimates π̂ig, is a function of c=(c1,…,cp)T. So for given
training data T={(yi, xi); i=1,…,n} (and hence given estimates π̂ig(j))
our strategy is minimizing L(y, Π̂) over all possible c.
2.2.1. Some (im)possible loss functions
Before introducing loss functions, let us represent the categorial

response yi∈{1,…,G} by a G-dimensional vector zi=(zi1,…,ziG)T of the
indicator variables

zig = 1; if yi = g
0; otherwise:

�

With convention “0·∞=0”, a somewhat natural loss function is
the logarithmic score

Lðy; Π̂Þ = ∑
i
∑
g
ziglogð1= π̂igÞ;

which can be derived from the likelihood. For a given p-dimensional
predictor vector xi a single zi ismultinomially distributedwith one draw:

zi∼Multð1;πiÞ;

with the group probabilities depending on xi and being merged into a
vector πi=(πi1,…,πiG)T. So we have P(yi=g|xi)=πi1

zi1·…·πiG
ziG. For a single

observation yi the negative log likelihood is−l(yi, πi)=−l(zi, πi)=Σgzig
log(1/πig). If a sample of n observations is given, we have l(y, Π)=
Σi=1
n Σgzig log(πig),with ydenoting then-dimensional vector of observed

classes. The maximum l(y, Π)=0 is obtained for πig=1, if zig=1, and
zero otherwise. A single r(π̂i)=Σgzig log(1/π̂ig) may be seen as the
Kullback-Leibler-divergence between zi and π̂i, also called “minus log
likelihood error” [12].

However, in spite of the close connection to the maximum
likelihood principle, the logarithmic scoring rule is not really
recommendable, because it is too sensitive with respect to differences
between very small probabilities (cf. [13]). In the present case this
hypersensitivity may be carried to an extreme. If the number of
considered neighbors is only modest and the sample is large, it is quite
likely that there is at least one observation iwith no neighbor from the
same category. Then the estimated probability π̂iyi for the correct class
yi is zero and the logarithmic loss has value ∞. So this loss function is
inapplicable in case of nearest neighbor predictions.

The hypersensitivity can be removed via a second order Taylor
approximation of the logarithmic score, expanded about πig=1, if
zig=1, and πig=0 otherwise. Since

∂Lðy;ΠÞ
∂πig

=
−zig
πig

; if zig = 1;0 otherwise;

and

∂2Lðy;ΠÞ
∂πig∂πjk

=
zig
π2
ig

; if zig = 1; i = j; g = k; 0 otherwise;

we obtain the loss function

Vðy; Π̂Þ = ∑
i
∑
g
zig ð1−π̂igÞ +

1
2
ð1−π̂igÞ2

� �
:

However, by removing the logarithmic score's hypersensitivity V
suffers from a new theoretic disadvantage. By contrast to the logarithmic
loss, V is not “incentive compatible” [13]. Incentive incompatibility means
that the expected lossE(V)=Σy=1

G πyV(y, π̂y) for a newobservation ywith
true class probabilities π1,…,πG is notminimized by π̂g=πg, g=1,…,G. For
a two-class response with g∈{1,2}, for example, E(V) is minimized by
π̂1=0, if π1b1/3; π̂1=3π1−1, if 1/3≤π1≤2/3; π̂1=1, if π1N2/3. An
incentive compatible scoring rule that is not hypersensitive is the pure
quadratic loss (see e.g. [13])

Qðy;ΠÞ = ∑
i
∑
g
ðzig−πigÞ2;
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which was first introduced by [14] and is sometimes also called Brier
score. If the response has more than two categories, it should be kept
in mind that the logarithmic score, or its approximation, only looks at
the estimated probability of the actual class yi, whereas the quadratic
loss Q also takes into account how the estimated probabilities are
distributed on the false classes. For fixed estimated probability of the
true class the loss is higher, if the true class is faced with a single but
strong competitor than in the case when probability mass is equally
distributed over the false classes.

2.2.2. Practical implementation
For practical minimization of the Brier score the procedure is as

follows. For each training observation i we create a matrix Pi of single
estimates

ðPiÞgj = π̂igðjÞ:

Thesematrices aremerged into a bigmatrix P=(P1T|…|PnT)T. The same
is done with dummy vectors zi, i.e. we have z=(z1T,…,znT)T. Now the Brier
score as function of c=(c1,…,cp)T can be written in matrix notation:

QðcÞ = ðz−PcÞT ðz−PcÞ:

Hence a quadratic optimization problem with restrictions cj≥0∀j
and Σjcj=1 arises. So weights cj can be determined using quadratic
programming methods, e.g. the R add-on packages quadprog [15] or
kernlab [16]. An alternative interpretation is in terms of regression: z is
regressed (without intercept) on the estimated probabilities forming P.

2.3. Variable selection and interactions

Variable xj is selected if cj≠0. There are various ways to obtain
predictors with zero weights. When determination of weights is
completed, variable selection can, for example, be done via hard
thresholding, i.e. coefficients less than a certain threshold t, for example
t=0.25·maxj{cj}, are set to zero. A coefficient less than 0.25·maxj{cj}
means that the corresponding predictor does not even have 25% of the
weight of the 'most important’ predictor, resp. estimate. Of course, after
eliminating some coefficients, the remaining weights need to be
rescaled to sum up to one. Alternatively soft thresholding may be
applied.When coefficients— denoted by c̃j— have been determined,we
set cj=(c̃j−t)+ (and rescale); s+ is the positive part of s, i.e. s+=s, if
sN0, and s+=0 otherwise. The concept of hard and soft thresholding is
for example found in [17]. The threshold t can be seen as a tuning
parameter, and should be data dependently chosen. A common
procedure for tuning parameter determination is K-fold cross-valida-
tion, which is also used in the following. For an introduction to K-fold
cross-validation, see for example [18].

If thresholding is used, variables (resp. single estimates) are
selected after initial determination of weights. Since coefficients
fulfilling Σjcj=1 are anyway obtained by scaling, restrictions may be
primarily disregarded when determining weights. If restrictions are
replaced by Σj|c ̃j|≤s, a lasso type problem [19] arises. That means, a L1-
penalty is placed on the cj̃ and the penalized criterion

QPð c̃Þ = ðz−P c̃ÞT ðz−P c̃ Þ + λ∑
j
j c̃j j

is minimized (see e.g. [18]). Lasso typical selection characteristics cause
c̃j=0 for some j. With rescaling and cj= c̃j

+ a sensible ensemble results. If
lasso estimation is done with additional restriction c̃j≥0, the positive
lasso [20] is obtained. Nevertheless we prefer estimation without these
additional constrains, since computation of the original lasso solution is
easier. In addition, variable selection is intended andnegative coefficients
indicate poor predictive capability of the corresponding term.

Finally — and very importantly — the matrix of predictions P can be
augmented by including the interactions of predictors. That means
adding all predictions π̂ig(jl), resp. π̂ig(jlm) based on two or even three
predictors j, l andm. So the (initial) ensemble may consist of muchmore
than p terms. Obviously this is feasible for small scale problems only,

because including interactions, P has p + p
2

� �
+ … columns. However,

if variable selection is applied,many termswill be excluded, and the final
ensemble will contain only a modest number of estimates.

3. Simulation studies

To investigate its behavior the presented nearest neighbor ensemble
is studied in simulation studies taken from the literature. Particularly
when prediction performance is evaluated, proposed approaches
should be compared to some alternative procedures, in order to judge
the observed performance. Sowe first introduce our referencemethods.

3.1. Reference methods

Two important features of the proposed nearest neighbor en-
semble are its selection property and the possible identification of
interactions. So the ensemble should be compared to another nearest
neighbor approach with suchlike features.

3.1.1. Nearest neighbor forward/backward variable selection
The procedure is very simple. We just employ a slightly extended

forward variable selection approach based on leaving-one-out (LOO)
cross-validation. LOO cross-validation means that the ith observation is
set aside and predicted using the rest of the data as learning set. This
procedure is iterated over all i=1,…,n observations, and the prediction
error is calculated (in our case the Brier score). For an introduction to
cross-validation procedures in general, see for example [18].

For categorial outcomes, p (potential) predictors and a given
(small) S the algorithm used in this paper is as follows.

Nearest neighbor forward variable selection
Step 1: Select up to S predictors from the p predictors for the nearest

neighbor classification by LOO cross-validation and minimiz-
ing the Brier score.

Step 2: From the remaining predictors select another set of 1 to S
predictors by LOO cross-validation and add these predictors to
the already chosen one(s).

Step 3: If there is no improvement in prediction accuracy after Step 2,
just take the predictor set from Step 1; else repeat Step 2 until
there is no improvement in prediction accuracy anymore.

The tuning parameter S can be seen as the number of simple
forward selection steps that are checked in one iteration. Furthermore
S can be interpreted as the highest interaction that should be detected.
The motivation is that the (marginal) discriminative capability of a
certain predictor may be lower or completely absent, if other variables
are disregarded. Hence relevant predictors may not be selected by
simple forward selection procedures. An illustrating example is given
in the next section.

Furthermore the given algorithmmay be seen as a slightly modified
version of a GPTA(l,r) [21] procedure, i.e. go forward l stages by adding l
predictors and go backward r stages by deleting r predictors and repeat
this process. For small scale problems this approach gives quite good
results (cf. [21]). Above all, however, the extended forward selection is
able to detect interactions as pointed out before. Sowe chose it as a kind
of reference procedure for nearest neighbor based variable selection.
Wherever forward selection is considered, however, backward selection
may be seen as an alternative.

Nearest neighbor backward variable selection
Step 1: Perform nearest neighbor classification based on the entire set

of p predictors.



Fig. 2. Boxplots of weights in the nearest neighbor ensemble given the easy classification
problem and 30 realizations of training data, each term's average weight is marked by the
solid line.
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Step 2: By LOO cross-validation select a set of maximum S predictors
to be excluded from the reference data for nearest neighbor
classification.

Step 3: If there is no improvement in prediction accuracy after Step 2,
just take the original predictor set from Step 1; else exclude
further sets of 1 to S predictors until there is no improvement
in prediction accuracy anymore.

In analogy to the previous paragraph the tuning parameter S can
be seen as the number of simple backward selection steps that are
checked in one iteration. In the used implementation backward as
well as forward variable selection aim at minimizing the (cross-
validated) Brier score on a given training set.

3.1.4. Some alternative classification tools
The methods introduced above are compared to the weighted 5

nearest neighbors as proposed in [9], Rpackagekknn)— anapproach that
can alsobe found in [8], a commentaryon the famous [1]. Additionallywe
will report the performance of some other well established classification
tools; namely linear discriminant analysis (LDA), CART [22] and Random
Forests [23]. For estimationwe use R packages MASS [24], rpart [25] and
random forest [26], see also [27] for further information.

For estimating ensemble weights the corresponding optimization
problem (with restrictions) is solved using the interior point
optimizer from the R add-on package kernlab [16]. Single estimates
forming the ensemble are standard 3 nearest neighbor estimates.
Variable selection is done via hard thresholding with threshold t
chosen via 3-fold cross-validation.

3.2. Two classification problems

We look at two simulated problems from [18]. There are 10
independent features xj, each uniformly distributed on [0,1]. The two
class 0/1 coded response y is defined as follows:

• as an “easy” problem:

y = Iðx1 N 0:5Þ; and

• as a “difficult” problem:

y = Iðsignð∏
3

j=1
ðxj−0:5ÞÞN 0Þ:

Given the easy problem, dark-gray boxplots in Fig.1 summarize the
results in terms of the quadratic loss (Brier score) for 3 nearest
neighbors with forward, resp. backward variable selection (S=4) and
the developed nearest neighbor ensemble classification technique
over 30 realizations of training (m=200) and test (n=1000) data.
Fig. 1. Boxplots of quadratic loss (dark-gray) and number of misclassified observations
(light-colored) over 30 simulations for 3 nearest neighbors with forward/backward
variable selection (S=4), 3 nearest neighbors ensemble, weighted 5 nearest neighbors,
LDA, CART and Random Forests (RF), given the easy classification problem.
Due to the disadvantage of not being incentive compatible the approx-
imate logarithmic loss is not appropriate for evaluating the performance
of the consideredmethods. The logarithmic score itself is not applicable
either, because with just one test observation falling in a category with
estimated probability (close to) zero it tends to infinity.

To make variable selection more complicated in the nearest
neighbor ensemble, not only predictions based on single predictors
are considered but also interaction up to order 3, i.e. predictions using
sets of maximum 3 predictors. Since ensemble weights are deter-
mined via minimizing the Brier score, the quadratic loss may be seen
as a prejudiced measure of prediction accuracy. Hence, as a more
neutral quantity, we additionally give the number of misclassified test
observations (light-colored), if observations are classified as belong-
ing to the category with highest posterior probability. All considered
methods with variable selection properties perform well. By contrast,
particularly ordinary nearest neighbor approaches without variable
selection get into difficulties caused by noise variables.

In Fig. 2 weights of terms in the nearest neighbor ensemble are
shown bymeans of (degenerated) boxplots. The background indicates
estimates based on a single predictor only, estimates using two
predictors, and triple interactions respectively. As requested, the
nearest neighbor estimate using x1 only has the far highest weight
in the ensemble. In a few iterations however, also less relevant pre-
dictions got some weight.

In Fig. 3 we show theweights of the terms in the ensemblewhen the
difficult classification problem is analyzed. Variable selection is almost
perfect. Themost important term no. 56 is the prediction based on x1, x2
and x3. So the good performance (see Fig. 4) is not very surprising.

An extended forward selection procedure with S≥3 can be expected
to select the relevant independent variables. But due to the complicated
interaction of x1, x2 and x3, the forward variable selection with S=1
would not be successful. We chose S=4 again. Also greedy algorithms
like CART and the methods based on the latter like Random Forests
are not able to identify the right variables. LDA as well is completely
inappropriate, and as before, nearest neighbormethodswithout variable
Fig. 3. Boxplots of weights in the nearest neighbor ensemble given the difficult
classification problem and 30 realizations of training data, each term's average weight is
marked by the solid line.



Fig. 4. Boxplots of quadratic loss (dark-gray) and number of misclassified observations
(light-colored) for 3 nearest neighbors with forward/backward variable selection (S=4), 3
nearest neighbors ensemble, weighted 5 nearest neighbors, LDA, CARTand Random Forests
(RF), given the difficult classification problem and 30 realizations of training and test set.
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selection suffer from the presence of noise variables. In case of backward
selection a large S seems to ensure that enoughpredictors are excluded to
outperform nearest neighbor techniques based on the entire set of —
partly noise — variables. As seen from Fig. 3, when using the ensemble
classification the termbased on x1, x2 and x3 has the far highestweight; in
many simulation runs it is even the only prediction that is taken into
account. So in the difficult classification problem, nearest neighbor
ensemble classification performs as well as forward or backward
selection.

4. More examples

Some further simulation scenarios are taken from [28]. Each training
set consists of m=200 observations, but our test set size is n=1000.
Each class has the same number of observations. Exceptions from that
Fig. 5. Boxplots of quadratic loss (dark-gray) and number of misclassified observations (ligh
neighbor ensembles, weighted 5 nearest neighbors, LDA, CART and Random Forests (RF); c
rules are indicated. In detail, the following classification problems are
investigated, cf. [28]:

1. 2 Dimensional Gaussian: two Gaussian classes in two dimensions
(x1, x2) are separated by 2 units in x1. The predictors have variance
1 and 2, and correlation 0.75.

2. 2 Dimensional Gaussian with 14 noise: as before, but additionally 14
noise variables having independent standard Gaussian distribu-
tions are given.

3. Unstructured: in this example, data with extremely disconnected
class structure is simulated. There are 4 classes, each with 3
spherical bivariate normal subclasses, having standard deviation
0.25. The means of the resulting 12 subclasses are chosen at
random (without replacement) from {1,…,5}×{1,…,5}. Each train-
ing sample has 20, each test set 100 observations per subclass.

4. Unstructured with 8 noise: as above, but augmented with 8
independent standard normal predictors.

5. 4 Dimensional spheres with 6 noise: 10 predictors and 2 classes are
given. The last 6 predictors are noise variables, with standard
Gaussian distributions, independent of each other and the class label.
The first 4 predictors in class 1 are independent standard normal, but
conditioned on the radius being greater than 3, whereas the first 4
predictors in class 2 are independent standard normal without
restrictions. The first class almost completely surrounds the second
class in the 4 dimensional subspace of the first 4 predictors.

6. 10 Dimensional spheres: the situation is similar to the previous
example. All 10 predictors in class 1 are independent standard
normal, but now conditioned on the squared radius being between
22.4 and 40, while the predictors in class 2 are again independent
standard normal without restrictions. Now there are no pure noise
variables. The second class is almost completely surrounded by the
first class in the full 10 dimensional feature space.
t-colored) for 3 nearest neighbors with forward/backward variable selection, 3 nearest
lassification problems 1 to 4.
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7. Constant class probabilities: a 4 class problem is given with class
probabilities (0.1, 0.2, 0.2, 0.5), but independent of the predictors. The
latter are independent standard normal in 6 dimensions. Here the
observed class frequenciesmay—of course—vary fromone realization
to another and are far away from being uniformly distributed.

8. Friedman's example: an example like this can be originally found in
[29]. There are 2 classes in 10 dimensions. In class 1 the predictors
are independent standard normal, in class 2 independent normal
with mean and variance proportional to

ffiffi
j

p
and 1 =

ffiffi
j

p
respectively,

j=1,…,10. That means, all predictors are important, but those with
higher index j are more so.

We compare the same classification methods as before, i.e. the
proposed nearest neighbor ensemble, nearest neighbor based forward,
resp. backward variable selection procedures, weighted 5 nearest
neighbors, LDA, CART, and Random Forests. S=4 is chosen (if possible)
for forward as well as backward selection. In general the highest term
in the nearest neighbor ensemble refers to an interaction of order 3
(if possible). To save some computational time in case of scenario 2 we
only choose S=3 and do not consider triple interactions.

Figs. 5 and 6 show thequadratic loss and the number ofmisclassified
observations from the test set over 30 simulations. Except the first and
the last scenario the nearest neighbor ensemble is among the best
performing methods. Its performance is particularly high if some noise
variables are given. The application of 3-fold cross-validation for the
determination of threshold t seems to give good results.

5. Evaluation of real world data

When classification tools are visualized and compared this should
not be done by simulations only, but also based on real world data sets.
For that purpose we use the famous machine learning benchmark glass
data set and data from the analysis of Italian olive oils. Before employing
Fig. 6. Boxplots of quadratic loss (dark-gray) and number of misclassified observations (ligh
neighbor ensembles, weighted 5 nearest neighbors, LDA, CART and Random Forests (RF); c
our nearest neighbor ensemble (and forward/backward selection)
variables are scaled using pooled — or within-class — variances based
on the training data. Thus, predictors with one-dimensional discrimi-
native power implicitly obtain somehigherweight compared to (widely
used) standardizing by overall variances (for details, see [30]). By the R
package kknn the latter is done by default.

5.1. Glass data

The data can be obtained, for example, from the R add-on package
mlbench [31]: 214 observations are given containing examples of the
chemical analysis of 6 different types of glass. The problem is to
forecast the type of glass on the basis of the chemical analysis. The
latter is given in form of 9 metric predictors: (1) refractive index, plus
content of (2) sodium, (3) magnesium, (4) aluminum, (5) silicon, (6)
potassium, (7) calcium, (8) barium and (9) iron, each measured in
weight percent in the corresponding oxide. The possible types of glass
are: (I) building windows (float processed), (II) building windows
(non-float-processed), (III) vehicle windows, (IV) containers, (V)
tableware, (VI) headlamps. The data have also been considered by
[23], for example. It has originally been taken from the UCI Repository
of Machine Learning Databases [32] at http://www.ics.uci.edu/
~mlearn/MLRepository.html. Such kind of study was motivated by
criminological investigation; because at the scene of the crime, the
glass left can be used as evidence, if it is correctly identified.

For choosing the adequate threshold value we employ 3-fold cross-
validation (Fig. 7, top) and the quadratic loss. If all observations are used
for training our nearest neighbor ensemble with hard thresholding and
(cross-validation score minimizing) t=0.2maxj{cj}, six terms are se-
lected. The computed weights are seen in Fig. 7 (bottom). All selected
terms correspond to triple interactions, but predictors number (8) and
(9) are never included. That means barium and iron are not used for
classification and may be excluded from discriminant analysis.
t-colored) for 3 nearest neighbors with forward/backward variable selection, 3 nearest
lassification problems 5 to 8.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


Fig. 7. 3-fold (quadratic) cross-validation score of the nearest neighbor ensemble for different threshold values (top), and composition of the ensemble trained on the whole glass
data set and using threshold t=0.2maxj{cj} (bottom), terms no. 46–129 correspond to triple interactions.
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For evaluating the performance of the investigated classification
tools (randomly chosen) 20% of the data are set aside. On the
remaining data the methods are trained. The methods are those
already compared in the simulation studies above: Nearest neighbor
with forward and backward variable selection, nearest neighbor
ensembles, weighted 5 nearest neighbors without variable selection,
LDA, CART and Random Forests. We have S=3, and the highest
interaction in the nearest neighbor ensemble is set equal to S. The
(hard) threshold t is chosen via 3-fold cross-validation. Not explicitly
mentioned tuning parameters have default values. Fig. 8 shows the
quadratic loss and number of misclassified observations on the test set
over 50 random splits of the data at hand.

If theproposednearestneighborensemble is basedon theBrier score
it is competitive to Random Forests, which have been shown to perform
very well on this data set (see [23]). Furthermore the ensemble is
superior to the (weighted) standard nearest neighbor approach.Maybe,
because there are some noise variables without discriminative power.
For the better performance of the ensemble, however, this is unlikely
Fig. 8. Boxplots of quadratic loss (dark-gray) and number of misclassified observations
(light-colored) for 3 nearest neighbors with forward/backward variable selection, 3
nearest neighbor ensembles, weighted 5 nearest neighbors, LDA, CART and Random
Forests (RF), given the glass data and 50 random splits into training and test data.
the only reason, since backward or forward selection does not improve
nearest neighbor prediction.

5.2. Olives data

The data are from [4]. The task is recognizing the geographical origin
of Italian olives oils from their fatty acid composition. All in all the
different oils are from nine regions, i.e. classes: Calabria, Sicily, Umbria,
Coast-Sardinia, Inland-Sardinia, North-Apulia, South-Apulia, East-Liguria,
West-Liguria. Only eight predictors (i.e. fatty acids) are given; so in the
nearest neighbor ensemble even estimates based on four covariates can
be allowed.

Since nowmore data points (572) than in the previous example are
available, (randomly selected) 40% of the data are used as test set. The
sameclassification tools as before are trained on the remainingdata, and
serve for discriminant analysis of the test data. As before, this procedure
is repeated 50 times. The results in terms of the Brier score (dark-gray)
and number of misclassified test observations are shown in Fig. 9. The
Fig. 9. Boxplots of quadratic loss (dark-gray) and number of misclassified observations
(light-colored) for 3 nearest neighbors with forward/backward variable selection, 3
nearest neighbor ensembles, weighted 5 nearest neighbors, LDA, CART and Random
Forests (RF), given the olives data and 50 random splits into training and test data.



Fig. 10. 3-fold (quadratic) cross-validation score of the nearest neighbor ensemble for different threshold values (top), and composition of the ensemble trained on the whole olives
data set and using threshold t=0.1maxj{cj} (bottom), terms no. 93–162 correspond to subsets of four predictors.
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overall winner is the (weighted) standard nearest neighbor method
taking into account all predictors at hand. Apparently all predictors have
some predictive power. So no improvement can be expected, if some
kind of variable selection is applied. Indeed, when the nearest neighbor
ensemble is cross-validated and trained on the whole data set (see
Fig. 10), a low threshold value is chosen, and only terms of order 4 are
selected — covering all 8 predictors.

6. Summary and discussion

We propose a nonparametric probability estimation by an ensem-
ble— i.e. weighted average— of nearest neighbor estimates. Each single
estimate is based on a single or a very small subset of predictors. In
contrast tomanyother ensemble approaches no randomness is included
in the proposed method, e.g. by randomly selecting predictor sets.
Instead, all possible predictor combinations up to a previously chosen
maximum number of predictors are taken as candidates, and weights
are explicitly determined via minimization of a loss function preferably
the Brier score. By enforcingmany zero weights the final ensemble only
consists of a modest number of terms. As a result our ensemble is not
a black box (by contrast to many other ensemble methods), but it is
directly comprehensible howestimation is carried out. Covariateswhich
are not contained in the selected predictor sets do not serve for classi-
fication, or estimation of posterior probabilities. That means variable
selection is explicitly done.

The proposed ensemble approach shows good performance for
small scale problems, particularly if pure noise variables can be sepa-
rated from relevant covariates. Easy identification of interactions is
another advantage of the presented method. If the largest set of
covariates is adequately chosen, even interactions that are usually hard
to detect should be identified. So even if classification shall be done by
another method, the ensemble may be used for variable selection.

Direct application of the proposed technique to high dimensional
problems with interactions, however, is not recommended. If the num-
ber of potential predictors is high, interactions cannot be taken into
account (because the number becomes too high). But given the micro-
arrays in genetics for example, the presented ensemble might be use-
ful as a nonparametric gene preselection tool. Genes may be ranked
according to their weight in the ensemble, and further analysis can be
based on the “best genes” only.

Furthermore, ensemble methodology may be applied for auto-
matic choice of the most appropriate metrics, or semi-metrics (along
the lines of [33]); or the right neighborhood(s). For that purpose
terms in the ensemble should be the nearest neighbor estimates based
on different (semi-)metrics or different neighborhoods.

Finally, application to regression problems is possible as well. The
concept of minimizing loss functions can be directly adopted, since the
quadratic loss is the somewhat natural choice in regression problems.
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Appendix A

Proposition 1. Given the following ensemble formula for computing the
probability that observation i falls in category g:

π̂ig = ∑
j
cgjπ̂igðjÞ; with cgj ≥ 0∀g; j and ∑

j
cgj = 1∀g;

restriction c1j=…=cGj=cj is the only possibility to ensure that
π̂ig≥0∀g and Σgπ̂ig=1 for all possible future estimations {π̂ig(j)} with
π̂ig(j)≥0∀g, j and Σgπ̂ig(j)=1∀j.

Proof. We first show that the given restriction has the desired effect.
Since π̂ig(j)≥0∀g, j, trivially follows Σjcjπ̂ig(j)≥0; furthermore

∑
g
∑
j
cjπ̂igðjÞ = ∑

j
cj∑

g
π̂igðjÞ = ∑

j
cj = 1:
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In the next stepwe assume that cgj vary over categories g for at least
one j, i.e. coefficients cgj can be ordered in terms of c[1]j≤…≤c[G]j with
at least one ≤ being a b. Now we create groups Jr={j|crj=maxgcgj},
r=1,…,G. If maxg cgj is not unique for j, arbitrarily choosemaximum cgj
to have disjoint Jr but covering all j.

Since Σjcgj=1∀g, there must be at least two j with coefficients
differing over categories andmaxg cgj in different categories. Hence there
are at least two nonempty sets Jr1 and Jr2. Let the nonempty sets be
denoted by Jr1,…,Jr1. If now π̂irt(j)=1∀j∈Jrt (which is not completely unlikely
in case of nearest neighbor predictions), due to the b above, it follows:

∑
g
π̂ig = ∑

g
∑
j
cgjπ̂igðjÞ = ∑

j∈Jr1

cr1 j + … + ∑
j∈Jrl

crl j N 1:

□
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