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Nearest Neighbor Methods
Introduction

I One of the simplest and most intuitive techniques for statistical
discrimination (Fix & Hodges, 1951).

I Nonparametric and memory based.

Given data (yi , xi ) with categorial response yi ∈ {1, . . . ,G} and (metric)
p-dim. predictor xi :

I Place a new observation with unknown class label into the class of
the observation from the training set that is closest to the new
observation - with respect to covariates.

I Closeness, resp. distance d of two observations is derived from a
specific metric in the predictor space.

I Given the Euclidian metric ⇒ d(xi , xr ) =
√∑p

j=1 |xij − xrj |2.



Nearest Neighbor Methods
Class probability estimates

I Use not only the first but the k nearest neighbors.
I The relative frequency of predictions in favor of category g among

these neighbors can be seen as an estimate of the probability of
category g .

I Estimates π̂ig can take values h/k, h ∈ {0, ..., k}.
I If neighbors are weighted with respect to their distance to the

observation of interest, π̂ can in principle take all values in [0, 1].



Nearest Neighbor Ensembles
Basic Concept

Final estimation by an ensemble of single predictors:

I Use the ensemble formula for computing the probability that
observation i falls in category g :

π̂ig =

p∑
j=1

cj π̂ig(j), with cj ≥ 0 ∀j and
∑

j

cj = 1.

I With k nearest neighbor estimates π̂ig(j) based on predictor j only.
I Weights - or coefficients - c1, . . . , cp need to be determined.



Nearest Neighbor Ensembles
More Flexibility?

I Why not

π̂ig =
∑

j

cgj π̂ig(j), with cgj ≥ 0 ∀g , j and
∑

j

cgj = 1 ∀g ?

I It can be shown: Restriction c1j = . . . = cGj = cj is the only
possibility to ensure that

1. π̂ig ≥ 0 ∀g and
2.
P

g π̂ig = 1

for all possible future estimations {π̂ig(j)} with
1. π̂ig(j) ≥ 0 ∀g , j and
2.
P

g π̂ig(j) = 1 ∀j .



Determination of Weights
Principles

I Given all {π̂ig(j)}, matrix Π̂ with (Π̂)ig = π̂ig depends on
c = (c1, . . . , cp)

T .
I Given the training data with predictors x1, . . . , xn and true class

labels y = (y1, . . . , yn)
T , a previously chosen loss function - or score

- L(y , Π̂) is minimized over all possible c .

Note: The categorial response yi is alternatively represented by a vector
zi = (zi1, . . . , ziG )T of dummy variables

zig =

{
1, if yi = g
0, otherwise



Determination of Weights
Possible loss functions

Log Score
L(y , Π̂) =

∑
i

∑
g

zig log(1/π̂ig )

+ likelihood based
− Hypersensitive ⇒ Inapplicable for nearest neighbor estimates.

Approximate Log Score

L(y , Π̂) =
∑

i

∑
g

zig

(
(1− π̂ig ) +

1
2
(1− π̂ig )2

)

+ Hypersensitivity removed
− Not "incentive compatible" (Selten, 1998), i.e. expected loss

E (L) =
∑G

y=1 πyL(y , π̂y ) not minimized by π̂g = πg .



Determination of Weights
Possible loss functions

Quadratic Loss / Brier Score

L(y , Π̂) =
∑

i

∑
g

(zig − π̂ig )2

(introduced by Brier, 1950)
+ Not hypersensitive
+ Incentive compatible (see e.g. Selten, 1998)
+ Also takes into account how the estimated probabilities are

distributed over the false classes.



Determination of Weights
Practical implementation

1. For each observation i create a matrix Pi of predictions:

(Pi )gj = π̂ig(j).

2. Create a vector z = (zT
1 , . . . , zT

n )T and a matrix
P = (PT

1 | . . . |PT
n )T .

3. Now the Brier Score as function of c can be written in matrix
notation:

L(c) = (z − Pc)T (z − Pc).

4. Given restrictions cj ≥ 0 ∀j and
∑

j cj = 1, weights cj can be
determined using quadratic programming methods; e.g. using the
R add-on package quadprog.

Given the approximate log score the weights can be determined in a
similar way.



Variable Selection

Variable Selection means setting cj = 0 for some j .

Thresholding:
I Hard: cj = 0, if cj < t; cj = cj , otherwise; e.g. t = 0.25maxj{cj}.
I Soft: cj = (cj − t)+.

(followed by rescaling)

Lasso based approximate solutions:
I If restrictions are replaced by

∑
j |cj | ≤ s, a lasso type problem

(Tibshirani, 1996) arises.
I Lasso typical selection characteristics cause cj = 0 for some j .

(followed by rescaling and cj = c+
j )



Including Interactions

Matrix P may be augmented by including interactions of predictors.
I Adding all predictions π̂ig(jl), resp. π̂ig(jlm) based on two or even

three predictors.
I Feasible for small scale problems only; P has p +

(p
2

)
+ . . . columns.



Simulation Studies I
Two classification problems

There are 10 independent features xj , each uniformly distributed on [0, 1].
The two class 0/1 coded response y is defined as follows (cf. Hastie et
al., 2001):

I as an "easy" problem: y = I (x1 > 0.5), and
I as a "difficult" problem: y = I (sign(

∏3
j=1(xj − 0.5)) > 0).



Simulation Studies I
Reference methods

Nearest neighbor methods:
I (3) Nearest neighbor based extended forward / backward variable

selection.
With tuning parameter S as the number of simple forward /
backward selection steps that are checked in each iteration.

I Weighted (5) nearest neighbor prediction; R add-on package kknn.

Some alternative classification tools:
I Linear discriminant analysis (LDA); R add-on package MASS.
I CART (Breiman et al., 1984) and Random Forests (Breiman,

2001); R add-on packages rpart, randomForest.



Simulation Studies I
The easy problem

Prediction performance on the test set in terms of the Brier Score and
No. of Missclassified Observations:
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Simulation Studies I
The easy problem

Variable selection/weighting by nearest neighbor based (extended)
forward/backward selection (left) or nearest neighbor ensembles (right):
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Simulation Studies I
The difficult problem

Prediction performance on the test set in terms of the Brier Score and
No. of Missclassified Observations:
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Simulation Studies I
The difficult problem

Variable selection/weighting by nearest neighbor based (extended)
forward/backward selection (left) or nearest neighbor ensembles (right):
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Simulation Studies II
cf. Hastie & Tibshirani (1996)

1. 2 Dimensional Gaussian: Two Gaussian classes in two dimensions.
2. 2 Dimensional Gaussian with 14 Noise: Additionally 14

independent standard normal noise variables.
3. Unstructured: 4 classes, each with 3 spherical bivariate normal

subclasses; means are chosen at random.
4. Unstructured with 8 Noise: Augmented with 8 independent

standard normal predictors.
5. 4 Dimensional Spheres with 6 Noise: First 4 predictors in class 1

independent standard normal, conditioned on radius > 3; class 2
without restrictions.

6. 10 Dimensional Spheres: All 10 predictors in class 1 conditioned
on 22.4 < radius2 < 40.

7. Constant Class Probabilities: Class probabilities (0.1,0.2,0.2,0.5)
are independent of the predictors.

8. Friedman’s example: Predictors in class 1 independent standard
normal, in class 2 independent normal with mean and variance
proportional to

√
j and 1/

√
j respectively, j = 1, . . . , 10.



Simulation Studies II
Scenario 1 - 4
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(1) 2 normals
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(2) 2 normals with noise

0
20

0
40

0
60

0
80

0

lo
ss

● ● ● ● ●

0 0

0

3NN−FS

0

0

3NN−BS

0

0

3NNE−LS

0

0

3NNE−QS

0

0

w5NN

0

0

LDA

0

0

CART

0

0

RF

(3) unstructured
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(4) unstructured with noise



Simulation Studies II
Scenario 5 - 8
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(5) 4D sphere in 10 dimensions
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(6) 10D sphere in 10 dimensions
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(7) constant class probabilities
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(8) Friedman's example



Real World Data
Glass data, R package mlbench

Forecast the type of glass (6 classes) on the basis of the chemical
analysis given in form of 9 metric predictors.

I Result 3NNE-QS / all data
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Real World Data
Glass data, R package mlbench

Forecast the type of glass (6 classes) on the basis of the chemical
analysis given in form of 9 metric predictors.

I Performance / 50 random splits
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Summary
Nearest neighbor ensembles

I Nonparametric probability estimation by an ensemble, i.e. weighted
average of nearest neighbor estimates.

I Each estimate is based on a single or a very small subset of
predictors.

I No black box (by contrast to many other ensemble methods).
I Good performance for small scale problems, particularly if pure

noise variables can be separated from relevant covariates.
I Direct application to high dimensional problems with interactions is

not recommended.
I Given microarrays possibly useful as nonparametric gene

preselection tool.
I May be employed for automatic choice of the most appropriate

metrics or the right neighborhood.
I Application to regression problems is possible as well.
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