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Nearest Neighbor Methods

Introduction

» One of the simplest and most intuitive techniques for statistical
discrimination (Fix & Hodges, 1951).

» Nonparametric and memory based.

Given data (y;, x;) with categorial response y; € {1,..., G} and (metric)
p-dim. predictor x;:

» Place a new observation with unknown class label into the class of
the observation from the training set that is closest to the new
observation - with respect to covariates.

» Closeness, resp. distance d of two observations is derived from a
specific metric in the predictor space.

» Given the Euclidian metric = d(x;, x,) =



Nearest Neighbor Methods

Class probability estimates

» Use not only the first but the k nearest neighbors.

» The relative frequency of predictions in favor of category g among
these neighbors can be seen as an estimate of the probability of
category g.

> Estimates 7, can take values h/k, h € {0,..., k}.

» If neighbors are weighted with respect to their distance to the
observation of interest, # can in principle take all values in [0, 1].



Nearest Neighbor Ensembles

Basic Concept

Final estimation by an ensemble of single predictors:

» Use the ensemble formula for computing the probability that
observation / falls in category g:

p
ﬁig:zcjﬁig(j)v with CJZOVJ and ZCJ:]'
Jj=1 R

» With k nearest neighbor estimates 7, (;) based on predictor j only.
> Weights - or coefficients - ¢y, ..., ¢, need to be determined.



Nearest Neighbor Ensembles

More Flexibility?

» Why not
Rig = chjfr,-gg), with ¢gj > 0 Vg, j and chj =1vg?
J j
> It can be shown: Restriction ¢1j = ... = cgj = ¢j is the only

possibility to ensure that
1. #t;g > 0Vg and
2. Y, fg=1
for all possible future estimations {7z ()} with
1. 7ig) = 0Vg,j and
2. Y gy = 1V



Determination of Weights

Principles

> Given all {7g(;)}, matrix M1 with (f1);; = 7z depends on

c=(ct,..-,c)7.
» Given the training data with predictors x, ..., x, and true class
labels y = (y1,...,ya) ", a previously chosen loss function - or score

- L(y, 1) is minimized over all possible c.

Note: The categorial response y; is alternatively represented by a vector
zi=(z1,...,2ig)" of dummy variables

%8 =) 0, otherwise



Determination of Weights

Possible loss functions

Log Score

1

Ly, ﬁ) = Z zig log(1/%g)

+ likelihood based
— Hypersensitive = Inapplicable for nearest neighbor estimates.

Approximate Log Score
. R 1 N
L) = 0% 7 (0= 7+ 50 7))
i g

-+ Hypersensitivity removed

— Not "incentive compatible" (Selten, 1998), i.e. expected loss
E(L) =3y mL(y, %) not minimized by g = ;.



Determination of Weights

Possible loss functions

Quadratic Loss / Brier Score

(introduced by Brier, 1950)
-+ Not hypersensitive
+ Incentive compatible (see e.g. Selten, 1998)

+ Also takes into account how the estimated probabilities are
distributed over the false classes.



Determination of Weights

Practical implementation

1. For each observation i create a matrix P; of predictions:

(Pi)aj = Tig(j)-
2. Create a vector z = (2 ,...,z7)7 and a matrix

P=(P|...|IP]HT.
3. Now the Brier Score as function of ¢ can be written in matrix

notation:
L(c) = (z— Pc)"(z — Pc).

4. Given restrictions ¢; > 0 Vj and ZJ. ¢j = 1, weights ¢; can be
determined using quadratic programming methods; e.g. using the
R add-on package quadprog.

Given the approximate log score the weights can be determined in a
similar way.



Variable Selection

Variable Selection means setting ¢; = 0 for some j.

Thresholding:
» Hard: ¢; =0, if ¢; < t; ¢ = ¢j, otherwise; e.g. t = 0.25 max;{¢;}.
» Soft: ¢; = (¢ —t)".

(followed by rescaling)

Lasso based approximate solutions:

> If restrictions are replaced by Zj |cj| < s, a lasso type problem
(Tibshirani, 1996) arises.

> Lasso typical selection characteristics cause ¢; = 0 for some .

(followed by rescaling and ¢; = ¢;")



Including Interactions

Matrix P may be augmented by including interactions of predictors.

» Adding all predictions 7)), resp. #jg(jim) based on two or even
three predictors.

» Feasible for small scale problems only; P has p + (‘2’) + ... columns.



Simulation Studies |

Two classification problems

There are 10 independent features x;, each uniformly distributed on [0, 1].
The two class 0/1 coded response y is defined as follows (cf. Hastie et
al., 2001):

» as an "easy” problem: y = I(x; > 0.5), and
» as a "difficult” problem: y = I(sign(H?zl(xj —0.5)) > 0).



Simulation Studies |

Reference methods

Nearest neighbor methods:

> (3) Nearest neighbor based extended forward / backward variable
selection.

With tuning parameter S as the number of simple forward /
backward selection steps that are checked in each iteration.

» Weighted (5) nearest neighbor prediction; R add-on package kknn.

Some alternative classification tools:
» Linear discriminant analysis (LDA); R add-on package MASS.

» CART (Breiman et al., 1984) and Random Forests (Breiman,
2001); R add-on packages rpart, randomForest.



Simulation Studies |
The easy problem

Prediction performance on the test set in terms of the Brier Score and
No. of Missclassified Observations:
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Simulation Studies |
The easy problem

Variable selection/weighting by nearest neighbor based (extended)
forward /backward selection (left) or nearest neighbor ensembles (right):

(1) approx. Log Score used
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Simulation Studies |
The difficult problem

Prediction performance on the test set in terms of the Brier Score and
No. of Missclassified Observations:
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Simulation Studies |
The difficult problem

Variable selection/weighting by nearest neighbor based (extended)
forward /backward selection (left) or nearest neighbor ensembles (right):

(1) approx. Log Score used
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Simulation Studies I
cf. Hastie & Tibshirani (1996)

1. 2 Dimensional Gaussian: Two Gaussian classes in two dimensions.

2. 2 Dimensional Gaussian with 14 Noise: Additionally 14
independent standard normal noise variables.

3. Unstructured: 4 classes, each with 3 spherical bivariate normal
subclasses; means are chosen at random.

4. Unstructured with 8 Noise: Augmented with 8 independent
standard normal predictors.

5. 4 Dimensional Spheres with 6 Noise: First 4 predictors in class 1
independent standard normal, conditioned on radius > 3; class 2
without restrictions.

6. 10 Dimensional Spheres: All 10 predictors in class 1 conditioned
on 22.4 < radius® < 40.

7. Constant Class Probabilities: Class probabilities (0.1,0.2,0.2,0.5)
are independent of the predictors.

8. Friedman’s example: Predictors in class 1 independent standard
normal, in class 2 independent normal with mean and variance
proportional to /j and 1/+/j respectively, j =1,...,10.



Simulation Studies Il

Scenario 1 - 4
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Simulation Studies Il

Scenario 5 - 8

& 8

§ 8

- 3NN-FS 3NN-BS 3NNE-LS 3NNE-QS  WSNN LDA CART RF B 3NN-FS  3NN-BS 3NNE-LS 3NNE-QS  WSNN LDA CART RF
(5) 4D sphere in 10 dimensions. (6) 10D sphere in 10 dimensions
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Real World Data

Glass data, R package mlbench

Forecast the type of glass (6 classes) on the basis of the chemical
analysis given in form of 9 metric predictors.

» Result 3NNE-QS / all data
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Real World Data

Glass data, R package mlbench

Forecast the type of glass (6 classes) on the basis of the chemical
analysis given in form of 9 metric predictors.

» Performance / 50 random splits
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Summary

Nearest neighbor ensembles

» Nonparametric probability estimation by an ensemble, i.e. weighted
average of nearest neighbor estimates.

» Each estimate is based on a single or a very small subset of
predictors.

» No black box (by contrast to many other ensemble methods).

» Good performance for small scale problems, particularly if pure
noise variables can be separated from relevant covariates.

» Direct application to high dimensional problems with interactions is
not recommended.

» Given microarrays possibly useful as nonparametric gene
preselection tool.

» May be employed for automatic choice of the most appropriate
metrics or the right neighborhood.

» Application to regression problems is possible as well.
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