Variable Selection and Weighting by Nearest Neighbor Ensembles

Jan Gertheiss
(joint work with Gerhard Tutz)
Department of Statistics
University of Munich

WNI 2008

Nearest Neighbor Methods

- One of the simplest and most intuitive techniques for statistical discrimination (Fix \& Hodges, 1951).
- Nonparametric and memory based.

Given data $\left(y_{i}, x_{i}\right)$ with categorial response $y_{i} \in\{1, \ldots, G\}$ and (metric) p-dim. predictor x_{i} :

- Place a new observation with unknown class label into the class of the observation from the training set that is closest to the new observation - with respect to covariates.
- Closeness, resp. distance d of two observations is derived from a specific metric in the predictor space.
- Given the Euclidian metric $\Rightarrow d\left(x_{i}, x_{r}\right)=\sqrt{\sum_{j=1}^{p}\left|x_{i j}-x_{r j}\right|^{2}}$.

Nearest Neighbor Methods
 Class probability estimates

- Use not only the first but the \boldsymbol{k} nearest neighbors.
- The relative frequency of predictions in favor of category g among these neighbors can be seen as an estimate of the probability of category g.
- Estimates $\hat{\pi}_{i g}$ can take values $h / k, h \in\{0, \ldots, k\}$.
- If neighbors are weighted with respect to their distance to the observation of interest, $\hat{\pi}$ can in principle take all values in $[0,1]$.

Nearest Neighbor Ensembles

Basic Concept

Final estimation by an ensemble of single predictors:

- Use the ensemble formula for computing the probability that observation i falls in category g :

$$
\hat{\pi}_{i g}=\sum_{j=1}^{p} c_{j} \hat{\pi}_{i g(j)}, \text { with } c_{j} \geq 0 \forall j \text { and } \sum_{j} c_{j}=1 .
$$

- With k nearest neighbor estimates $\hat{\pi}_{i g(j)}$ based on predictor \boldsymbol{j} only.
- Weights - or coefficients - c_{1}, \ldots, c_{p} need to be determined.

Nearest Neighbor Ensembles

More Flexibility?

- Why not

$$
\hat{\pi}_{i g}=\sum_{j} c_{g j} \hat{\pi}_{i g(j)}, \text { with } c_{g j} \geq 0 \forall g, j \text { and } \sum_{j} c_{g j}=1 \forall g ?
$$

- It can be shown: Restriction $\boldsymbol{c}_{\mathbf{1} j}=\ldots=\boldsymbol{c}_{\boldsymbol{G} j}=\boldsymbol{c}_{\boldsymbol{j}}$ is the only possibility to ensure that

1. $\hat{\pi}_{i g} \geq 0 \forall g$ and
2. $\sum_{g} \hat{\pi}_{i g}=1$
for all possible future estimations $\left\{\hat{\pi}_{i g(j)}\right\}$ with
3. $\hat{\pi}_{i g(j)} \geq 0 \forall g, j$ and
4. $\sum_{g} \hat{\pi}_{i g(j)}=1 \forall j$.

Determination of Weights
 Principles

- Given all $\left\{\hat{\pi}_{i g(j)}\right\}$, matrix $\hat{\Pi}$ with $(\hat{\Pi})_{i g}=\hat{\pi}_{i g}$ depends on $c=\left(c_{1}, \ldots, c_{p}\right)^{T}$.
- Given the training data with predictors x_{1}, \ldots, x_{n} and true class labels $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$, a previously chosen loss function - or score - $L(y, \hat{\Pi})$ is minimized over all possible c.

Note: The categorial response y_{i} is alternatively represented by a vector $z_{i}=\left(z_{i 1}, \ldots, z_{i G}\right)^{T}$ of dummy variables

$$
z_{i g}= \begin{cases}1, & \text { if } y_{i}=g \\ 0, & \text { otherwise }\end{cases}
$$

Determination of Weights

Possible loss functions

Log Score

$$
L(y, \hat{\Pi})=\sum_{i} \sum_{g} z_{i g} \log \left(1 / \hat{\pi}_{i g}\right)
$$

+ likelihood based
- Hypersensitive \Rightarrow Inapplicable for nearest neighbor estimates.

Approximate Log Score

$$
L(y, \hat{\Pi})=\sum_{i} \sum_{g} z_{i g}\left(\left(1-\hat{\pi}_{i g}\right)+\frac{1}{2}\left(1-\hat{\pi}_{i g}\right)^{2}\right)
$$

+ Hypersensitivity removed
- Not "incentive compatible" (Selten, 1998), i.e. expected loss $E(L)=\sum_{y=1}^{G} \pi_{y} L\left(y, \hat{\pi}_{y}\right)$ not minimized by $\hat{\pi}_{g}=\pi_{g}$.

Determination of Weights
 Possible loss functions

Quadratic Loss / Brier Score

$$
L(y, \hat{\Pi})=\sum_{i} \sum_{g}\left(z_{i g}-\hat{\pi}_{i g}\right)^{2}
$$

(introduced by Brier, 1950)

+ Not hypersensitive
+ Incentive compatible (see e.g. Selten, 1998)
+ Also takes into account how the estimated probabilities are distributed over the false classes.

Determination of Weights

Practical implementation

1. For each observation i create a matrix P_{i} of predictions:

$$
\left(P_{i}\right)_{g j}=\hat{\pi}_{i g(j)} .
$$

2. Create a vector $z=\left(z_{1}^{T}, \ldots, z_{n}^{T}\right)^{T}$ and a matrix $P=\left(P_{1}^{T}|\ldots| P_{n}^{T}\right)^{T}$.
3. Now the Brier Score as function of c can be written in matrix notation:

$$
L(c)=(z-P c)^{T}(z-P c) .
$$

4. Given restrictions $c_{j} \geq 0 \forall j$ and $\sum_{j} c_{j}=1$, weights c_{j} can be determined using quadratic programming methods; e.g. using the R add-on package quadprog.

Given the approximate log score the weights can be determined in a similar way.

Variable Selection

Variable Selection means setting $\boldsymbol{c}_{\boldsymbol{j}}=\mathbf{0}$ for some j.
Thresholding:

- Hard: $c_{j}=0$, if $c_{j}<t ; c_{j}=c_{j}$, otherwise; e.g. $t=0.25 \max _{j}\left\{c_{j}\right\}$.
- Soft: $c_{j}=\left(c_{j}-t\right)^{+}$.
(followed by rescaling)
Lasso based approximate solutions:
- If restrictions are replaced by $\sum_{j}\left|c_{j}\right| \leq s$, a lasso type problem (Tibshirani, 1996) arises.
- Lasso typical selection characteristics cause $c_{j}=0$ for some j.
(followed by rescaling and $c_{j}=c_{j}^{+}$)

Including Interactions

Matrix P may be augmented by including interactions of predictors.

- Adding all predictions $\hat{\pi}_{i g(j l)}$, resp. $\hat{\pi}_{i g(j / m)}$ based on two or even three predictors.
- Feasible for small scale problems only; P has $p+\binom{p}{2}+\ldots$ columns.

Simulation Studies I

Two classification problems

There are 10 independent features x_{j}, each uniformly distributed on $[0,1]$. The two class $0 / 1$ coded response y is defined as follows (cf. Hastie et al., 2001):

- as an "easy" problem: $y=I\left(x_{1}>0.5\right)$, and
- as a "difficult" problem: $y=I\left(\operatorname{sign}\left(\prod_{j=1}^{3}\left(x_{j}-0.5\right)\right)>0\right)$.

Simulation Studies I
 Reference methods

Nearest neighbor methods:

- (3) Nearest neighbor based extended forward / backward variable selection.

With tuning parameter S as the number of simple forward / backward selection steps that are checked in each iteration.

- Weighted (5) nearest neighbor prediction; R add-on package kknn.

Some alternative classification tools:

- Linear discriminant analysis (LDA); R add-on package MASS.
- CART (Breiman et al., 1984) and Random Forests (Breiman, 2001); R add-on packages rpart, randomForest.

Simulation Studies I

The easy problem
Prediction performance on the test set in terms of the Brier Score and No. of Missclassified Observations:

Simulation Studies I

The easy problem
Variable selection/weighting by nearest neighbor based (extended) forward/backward selection (left) or nearest neighbor ensembles (right):

(1) approx. Log Score used

(2) Quadratic Score used

Simulation Studies I

The difficult problem
Prediction performance on the test set in terms of the Brier Score and No. of Missclassified Observations:

Simulation Studies I

The difficult problem
Variable selection/weighting by nearest neighbor based (extended) forward/backward selection (left) or nearest neighbor ensembles (right):
(1) approx. Log Score used

(2) Quadratic Score used

Simulation Studies II

cf. Hastie \& Tibshirani (1996)

1. 2 Dimensional Gaussian: Two Gaussian classes in two dimensions.
2. $\mathbf{2}$ Dimensional Gaussian with $\mathbf{1 4}$ Noise: Additionally 14 independent standard normal noise variables.
3. Unstructured: 4 classes, each with 3 spherical bivariate normal subclasses; means are chosen at random.
4. Unstructured with 8 Noise: Augmented with 8 independent standard normal predictors.
5. 4 Dimensional Spheres with 6 Noise: First 4 predictors in class 1 independent standard normal, conditioned on radius >3; class 2 without restrictions.
6. 10 Dimensional Spheres: All 10 predictors in class 1 conditioned on $22.4<$ radius $^{2}<40$.
7. Constant Class Probabilities: Class probabilities $(0.1,0.2,0.2,0.5)$ are independent of the predictors.
8. Friedman's example: Predictors in class 1 independent standard normal, in class 2 independent normal with mean and variance proportional to \sqrt{j} and $1 / \sqrt{j}$ respectively, $j=1, \ldots, 10$.

Simulation Studies II

Scenario 1-4

(3) unstructured

Simulation Studies II

Scenario 5-8

Real World Data

Glass data, R package mlbench
Forecast the type of glass (6 classes) on the basis of the chemical analysis given in form of 9 metric predictors.

- Result 3NNE-QS / all data

Real World Data

Glass data, R package mlbench
Forecast the type of glass (6 classes) on the basis of the chemical analysis given in form of 9 metric predictors.

- Performance / 50 random splits

Summary
 Nearest neighbor ensembles

- Nonparametric probability estimation by an ensemble, i.e. weighted average of nearest neighbor estimates.
- Each estimate is based on a single or a very small subset of predictors.
- No black box (by contrast to many other ensemble methods).
- Good performance for small scale problems, particularly if pure noise variables can be separated from relevant covariates.
- Direct application to high dimensional problems with interactions is not recommended.
- Given microarrays possibly useful as nonparametric gene preselection tool.
- May be employed for automatic choice of the most appropriate metrics or the right neighborhood.
- Application to regression problems is possible as well.

References

BREIMAN，L．（2001）：Random Forests，Machine Learning 45，5－32

BREIMAN，L．et al．（1984）：Classification and Regression Trees，Monterey，CA：Wadsworth．
BRIER，G．W．（1950）：Verification of forcasts expressed in terms of probability，Monthly Weather Review 78，1－3．

FIX，E．and J．L．HODGES（1951）：Discriminatory analysis－nonparametric discrimination：consistency properties，US air force school of aviation medicine，Randolph Field Texas．

GERTHEISS，J．and TUTZ，G．（2008）：Feature Selection and Weighting by Nearest Neighbor Ensembles， University of Munich，Department of Statistics：Technical Report，No．33．

HASTIE，T．and R．TIBSHIRANI（1996）：Discriminant adaptive nearest neighbor classification，IEEE Transactions on Pattern Analysis and Machine Intelligence 18，607－616．

HASTIE，T．et al．（2001）：The Elements of Statistical Learning，New York：Springer．

R Development Core Team（2007）：R：A Language and Environment for Statistical Computing，Vienna：R Foundation for Statistical Computing．

SELTEN，R．（1998）：Axiomatic characterization of the quadratic scoring rule，Experimental Economics 1， 43－62．

