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[1] Statistical downscaling provides a technique for deriving local-scale information of
precipitation and temperature from numerical weather prediction model output. The
K-nearest neighbor (K-nn) is a new analog-type approach that is used in this paper to
downscale the National Centers for Environmental Prediction 1998 medium-range
forecast model output. The K-nn algorithm queries days similar to a given feature vector in
this archive and using empirical orthogonal function analysis identifies a subset of days
(K) similar to the feature day. These K days are then weighted using a bisquare weight
function and randomly sampled to generate ensembles. A set of 15 medium-range forecast
runs was used, and seven ensemble members were generated from each run. The ensemble
of 105 members was then used to select the local-scale precipitation and temperature
values in four diverse basins across the contiguous United States. These downscaled
precipitation and temperature estimates were subsequently analyzed to test the
performance of this downscaling approach. The downscaled ensembles were evaluated in
terms of bias, the ranked probability skill score as a measure of forecast skill, spatial
covariability between stations, temporal persistence, consistency between variables, and
conditional bias and to develop spread-skill relationships. Though this approach does not
explicitly model the space-time variability of the weather fields at each individual station,
the above statistics were extremely well captured. The K-nn method was also compared
with a multiple-linear-regression-based downscaling model.
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1. Introduction

[2] Statistical downscaling provides a way to utilize
output of climate models for local-scale applications.
Typical grid size for global-scale simulations are of the
order of 100–200 km, and the raw global-scale model
output is of limited use when information is required at
local scales. The objective of downscaling is to overcome
this scale mismatch and to use the skill in atmospheric
forecasts at local scales.
[3] In short, statistical downscaling develops relation-

ships between large-scale atmospheric circulation variables
and local climate information (e.g., precipitation and tem-
perature observations at individual stations). Using these
observed relationships, forecasts of atmospheric variables
can be translated into forecasts of local climate variables.
Several methods of varying complexity have been used in
performing statistical downscaling. Zorita and von Storch
[1998] have classified existing statistical methods into three
categories: (1) linear methods (e.g., canonical correlation
analysis), (2) classification methods (e.g., weather genera-
tors and regression tree), and (3) deterministic nonlinear

methods (e.g., neural networks). They also propose an
analog method and compare the results with a method
chosen from each of the above three categories to recon-
struct average December–February (DJF) precipitation over
the Iberian Peninsula for the period 1901–1989.
[4] Widmann et al. [2003] applied three different statistical

downscaling methods that used simulated precipitation fields
from the National Centers for Environmental Prediction-
National Center for Atmospheric Research (NCEP-NCAR)
reanalysis [Kalnay et al., 1996] as the predictor. These
methods are (1) local rescaling of the simulated precipitation,
(2) downscaling using singular value decomposition (SVD),
and (3) local rescaling with a dynamical correction. The three
methods were applied to reconstruct historical (1958–1994)
wintertime precipitation over Oregon and Washington and
concluded that local rescaling with dynamical correction and
SVD-based downscaling yielded comparable skills over the
Pacific Northwest region. Salathé [2003] forced a hydrologic
model of the Yakima River in central Washington with three
downscaled precipitation fields to compare the effectiveness
of the downscaling methods. One of these methods was an
analog method that used a 1000-hPa geopotential height
field from the NCEP-NCAR reanalysis as a predictor.
Salathé [2003] showed that downscaling by local scaling of
simulated large-scale precipitation from the NCEP-NCAR
model was quite successful in streamflow simulations in the
Yakima basin.
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[5] In this paper we present a downscaling methodology
based on the K-nearest neighbor (K-nn) algorithm. The
K-nn algorithm is described for use in a stochastic weather
generator by Lall and Sharma [1996], Rajagopalan and
Lall [1999], Buishand and Brandsma [2001], and Yates et
al. [2003]. The fundamental idea of the K-nn algorithm is to
search for analogs of a feature vector (vector of variables for
which analogs are sought) based on similarity criteria in the
observed time series. In the weather generator model, the
day immediately following the analog day is taken as
the next day in the generated sequence, and the process is
repeated. In the method presented here, local-scale station
information is used for analog days selected on the basis of
global-scale climate model output.
[6] Though transfer-function-based models (e.g., multiple

linear regression, or MLR) are widely in use [Antolik,
2000], the K-nn based approach developed here has several
advantages. First, this method is data-driven and makes no
assumptions of the underlying marginal and joint probabil-
ity distributions of variables. For example, to downscale
precipitation using MLR, we need a two-step process [e.g.,
Clark et al., 2004]. We need to account for the intermittent
property of precipitation (typically modeled using a logistic
regression), and then transform to normal space to satisfy
the inherent normality criteria needed in least squares
regression to model precipitation amounts. Second, K-nn
based downscaling will be shown to intrinsically preserve
the spatial covariability and consistency of the downscaled
climate fields. Third, ensemble medium-range forecast
(MRF) runs can be readily utilized in the downscaling
process, and there is no need to use the ensemble mean
of MRF predictors, as is normally used in regression
models. Finally, the ensemble spread information from
MRF runs can be utilized to develop spread-skill relation-
ships, which is not possible in a MLR model [e.g., Clark et
al., 2004].

[7] The K-nn downscaling methodology was tested on
four example river basins distributed over the continental
United States, covering both snowmelt- and rainfall-
dominated hydrologic regimes. These four basins are
(1) the Animas River in southwestern Colorado, (2) the
east fork of the Carson River on the California/Nevada
border, (3) the Cle Elum River in central Washington, and
(4) the Alapaha River in southern Georgia (Figure 1).
[8] Section 2 provides a description of the data used in

the analysis. Section 3 describes the K-nn methodology
developed for statistical downscaling. Section 4 present a
discussion of the results from the four example river basins.
Section 5 is a summary of the techniques and results.

2. Data Description

2.1. The CDC Forecast Archive

[9] The NOAA-CIRES Climate Diagnostics Center
(CDC) has generated a ‘‘reforecast’’ data set (1978 to
present) using a fixed version (circa 1998) of the NCEP
operational medium-range forecast (MRF) model [Hamill et
al., 2004]. This is a spectral model and has a horizontal
resolution of approximately 200 km, with 28 vertical layers
(T62/L28). The archive consists of one control run plus 14
ensemble members, a total of 15 members. The control run is
based on the global analysis from the NCEP-NCAR reanal-
ysis project [Kalnay et al., 1996]. Initial perturbations for
ensemble members are generated from the control run with
the ‘‘breeding method’’ [Toth and Kalnay, 1993]. Each
ensemble member consists of a 14-day forecast starting
every day since 1 January 1978, and presently the model
continues to be run in real time. The model outputs are saved
at 0000 UT and 1200 UT. The 20-year archive data from
1 January 1979 to 31 December 1998 was used in this study.
[10] We used seven output variables [Clark and Hay,

2004] from each of the ensemble members in our analysis.

Figure 1. Location and topography of the study basins.
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The model output variables used are (1) the accumulated
precipitation for a 12-hour period (e.g., 0000–1200 UT) at
the surface, (2) mean sea level pressure, (3) total column
precipitable water, (4) relative humidity at 700 hPa, (5) 2-m
air temperature, (6) 10-m zonal wind speed, and (7) 10-m
meridional wind speed.

2.2. Station Data

[11] This study employs daily precipitation, and maxi-
mum and minimum temperature data from the National
Weather Service (NWS) manual cooperative (COOP) net-
work of climate observing stations across the contiguous
United States. These data were extracted from the National
Climatic Data Center (NCDC) Summary of the Day
(TD3200) data set [Eischeid et al., 2000]. Quality control
performed by NCDC includes the procedures described
by Reek et al. [1992] that flag questionable data based
on checks for (1) absurdly extreme values, (2) internal
consistency among variables (e.g., maximum temperature
less than minimum temperature), (3) constant temperature
(e.g., 5 or more days with the same temperature are suspect),
(4) excessive diurnal temperature range, (5) invalid relation-
ships between precipitation, snowfall, and snow depth, and
(6) unusual spikes in temperature time series. Records at
most of these stations start in 1948 and continue through
1998.
[12] The four example basins (the Animas River, Colo-

rado, referred to in the figures as anmas; the East Carson
River, California and Nevada, carsn; the Cle Elum River,
Washington, celum; and the Alapaha River, Georgia, alapa)
were selected based on their geographical distribution and
streamflow characteristics. The Animas, East Carson, and
Cle Elum are snowmelt-dominated, and the Alapaha is a
rainfall-dominated basin. We select the ‘‘best stations’’ in
the COOP network that are located within a 100-km search
radius of the center of these four basins: 15 stations in the
Animas, 16 stations in the Carson, 18 stations in the Cle
Elum, and 10 stations in the Alapaha (Table 1). These ‘‘best
stations’’ are defined as those with less than 10% missing or
questionable data over the analysis period, 1979–1998.

3. Methodology

[13] The steps in downscaling the atmospheric variables
to basin-scale precipitation and temperature using the K-nn
algorithm are outlined in this section. The CDC NCEP-
MRF forecast archive was retrieved and formatted to form a
data matrix consisting of 7305 rows (corresponding to the
number of days from 1 January 1979 to 31 December 1998)
and 14 columns (corresponding to the number of lead times)
for each of the seven variables (see section 2.1). Days
similar to each of the 7305 � 14 days in the archive
were identified using the K-nn algorithm. A description of
the K-nn algorithm follows.

3.1. K-nn Algorithm

[14] Each of the 15 ensemble members of the MRF
archive for each basin was examined individually. The steps
of the K-nn algorithm for a given MRF ensemble member
and basin are as follows:
[15] 1. Compile a feature vector of MRF model output for

a given day and forecast lead time. The feature vector (F
!

f )
consists of values for all the climate variables of the day (the
feature day, f ) for which we are trying to find the K-nearest

Table 1. Stations Used in the Four Study Basins

Number Latitude, deg Longitude, deg Station ID

Animas (Colorado), 37.50�N, 107.50�W
1 38.40 107.52 CO1609.COOP
2 37.23 108.05 CO3016.COOP
3 37.77 107.13 CO3951.COOP
4 38.03 107.32 CO4734.COOP
5 37.20 108.49 CO5531.COOP
6 38.13 108.29 CO6012.COOP
7 38.02 107.67 CO6203.COOP
8 37.24 107.02 CO6258.COOP
9 37.71 108.04 CO7017.COOP
10 37.73 107.27 CO7050.COOP
11 37.95 107.87 CO8204.COOP
12 37.38 107.58 CO8582.COOP
13 36.83 108.00 NM0692.COOP
14 36.94 107.00 NM2608.COOP
15 36.82 107.62 NM6061.COOP

Alapaha (Georgia), 31.35�N, 83.22�W
1 31.58 84.17 GA0140.COOP
2 31.53 82.52 GA0211.COOP
3 31.18 84.20 GA1500.COOP
4 31.97 83.78 GA2266.COOP
5 31.52 82.85 GA2783.COOP
6 32.20 83.21 GA2966.COOP
7 31.72 83.25 GA3386.COOP
8 31.03 82.80 GA4429.COOP
9 31.17 83.75 GA6087.COOP
10 31.48 83.53 GA8703.COOP

Cle Elum (Washington), 47.37�N, 121.05�W
1 47.77 121.48 WA0456.COOP
2 47.17 122.00 WA0945.COOP
3 47.42 121.73 WA1233.COOP
4 47.84 120.04 WA1350.COOP
5 47.18 120.92 WA1504.COOP
6 47.00 120.52 WA2505.COOP
7 47.38 121.97 WA4486.COOP
8 47.13 122.27 WA5224.COOP
9 47.85 121.98 WA5525.COOP
10 47.15 121.93 WA5704.COOP
11 47.30 121.85 WA6295.COOP
12 47.18 119.87 WA6880.COOP
13 47.45 122.30 WA7473.COOP
14 47.54 121.84 WA7773.COOP
15 47.87 121.72 WA8034.COOP
16 47.43 120.31 WA9074.COOP
17 47.40 120.21 WA9082.COOP
18 46.57 120.54 WA9465.COOP

Carson (California-Nevada), 38.55�N, 119.80�W
1 39.38 120.10 CA0931.COOP
2 38.25 119.23 CA1072.COOP
3 38.28 120.32 CA1277.COOP
4 38.25 120.86 CA1428.COOP
5 37.97 119.92 CA1697.COOP
6 39.32 120.23 CA2467.COOP
7 39.17 120.13 CA8758.COOP
8 38.45 120.50 CA8928.COOP
9 39.33 120.18 CA9043.COOP
10 38.70 120.03 CA9105.COOP
11 37.76 119.59 CA9855.COOP
12 39.15 119.77 NV1485.COOP
13 39.08 119.95 NV3205.COOP
14 39.00 119.75 NV5191.COOP
15 39.08 119.12 NV8822.COOP
16 39.00 119.17 NV9229.COOP
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neighbors. Since two model outputs, 0000 and 1200 UT,
were available for each of the seven variables, the feature
vector F

!
f was assumed to consist of 14 variables.

Ff
�! ¼ v11 v12 . . . v17 v21 v22 . . . v27

� �
ð1aÞ

or

Ff
�! ¼ x1 x2 . . . x14½ �; ð1bÞ

where vi
j is the value of the climate variable i (i = 1,. . ., 7;

the seven climate variables, see section 2.1) at time j ( j = 1,
2; 0000 and 1200 UT) for the feature day f. Explicitly, x1 =
v1
1; x2 = v2

1, and so on.
[16] 2. Set a window of chosen width centered on the

feature day f. We used a 14-day window (7 days lagged and
7 days lead) [Yates et al., 2003] starting with the first day of
the archive (1 January 1979). The subset of data for a given
variable now consists of all days over the 20-year period
(1979–1998) but excluding day f within this 14-day win-
dow. Missing data, if any, also need to be accounted for, and
let nt be the total number of days with available data within
the temporal window centered on the feature day f. So for
the 14 variables (refer to step 1), the data matrix was
reformatted to have nt rows and 14 columns. The structure
of this data matrix ([A]nt�14

f ) is

A½ �fnt�14¼

a1;1 a1;2 . . . a1;14

a2;1 a2;2 . . . a2;14

. . . . . . . . . . . .

ant;1 ant;2 . . . ant;14

2
666666664

3
777777775
; ð2Þ

where ai,j is the value of the climate variable for time index i
(i = 1,. . ., nt) and for variable j ( j = 1, . . ., 14).
[17] 3. Standardize matrix [A]nt�14

f . The standardized
matrix [S]nt�14

f is expressed as

S½ �fnt�14¼ s1 s2 . . . s14
� �

ð3aÞ

sj ¼
1

sj
aj � mj


 �
ð3bÞ

aj ¼ a1;j a2;j . . . ant;j
� �T ð3cÞ

mj ¼ E aj

h i
ð3dÞ

sj ¼ E aj

n o2
� �

� mj
n o2

� �1=2

; ð3eÞ

where the underbars represent vectors; sj represents the
vector of standardized values of vector aj for variable j. The
variable counter j loops from 1 through 14 (the total number
of variables); mj and sj are the mean and standard deviation,

respectively, of variable j estimated from vector aj; E[ ] is
the expected value; and superscript T represents the vector-
matrix transpose operator.
[18] 4. Perform empirical orthogonal function (EOF)

decomposition or principal component analysis (PCA) of
matrix [S]nt�14

f . We first estimate the correlation/covariance
matrix [C]14�14

f , which is given by

C½ �f14�14¼
1

nt � 1ð Þ S½ �T S½ �; ð4Þ

where [S]T is the transpose of matrix [S] (the superscript f
has been dropped for clarity; see equation (3a)). A singular
value decomposition of [C]14�14

f [Press et al., 1992] yields

C½ �f14�14¼ U½ � W½ � V½ �T ; ð5Þ

where [U] and [V] are the orthogonal matrices (order,
14 � 14), and [W] is a diagonal matrix of the same order
whose elements are the eigenvalues (lj, j = 1, . . ., 14 such
that l1 > l2 > . . . > l14; corresponding to the 14 variables).
Since [C]14�14

f is symmetric, [U] = [V]. Each column of [U]
(or [V]) represents the eigenvectors corresponding to a given
eigenvalue lj. Let uj be the eigenvector corresponding to
eigenvalue lj. So

U½ �14�14¼ u1 u2 . . . u14
� �

: ð6Þ

The principal components (PCs) are then derived as

P½ �fnt�14¼ S½ �fnt�14 U½ �14�14 ð7aÞ

or

P½ �fnt�14¼ p1 p2 . . . p14

h i
ð7bÞ

and,

pj ¼

p1;j

p2;j

..

.

pnt;j

2
666666664

3
777777775

ð7cÞ

where [P]nt�14
f is the principal component matrix for

feature day f and column vector pj is the jth principal
component ( j = 1,. . ., 14) of length nt. The principal
components that explained more than 1 percent of the total
variance (total variance is given by the trace of matrix [W],
i.e., tr[W]) for feature day f were retained. Let nret be the
number of PCs retained, and nret < 14. Typically five PCs
were retained.
[19] 5. Using summary statistics (mean and standard

deviation, equations (3d) and (3e), respectively) from
step 3, and eigenvectors from step 4, project the feature
vector F

!
f in step 1 on to eigenspace. Let the projected

feature vector be ~F 0
f , which is given by

~F 0
f ¼

x1 � m1ð Þ
s1

x2 � m2ð Þ
s2

. . .
x14 � m14ð Þ

s14

� �
1�14

U½ �14�14 ð8aÞ
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or

~F 0
f ¼ x01 x02 . . . x014

� �
; ð8bÞ

where xj
0 are the elements of the projected feature vector ~F 0

f .
[20] 6. For each time element i (i = 1,. . ., nt), compute the

weighted Euclidian distance between the projected feature
vector (equation (8b)) and the PCs (equation (7b)). The
distance computation is carried out using only the nret
components. Let di be the distance metric corresponding
to day i, which is calculated as

di ¼
Xnret
j¼1

lj

tr W½ � x0j � pij


 �2

" #1=2

: ð9Þ

The ratio lj/tr[W] is the weight and corresponds to the
fraction of variance explained by PC pj. This gives a set of nt
distances as possible neighbors of feature day f.
[21] 7. Sort the distances di in ascending order (d(i)), and

retain only the first K neighbors. The choice of K is based
on the prescriptive choice of the square root of all possible
candidates (i.e., K =

ffiffiffiffi
nt

p
) [Rajagopalan and Lall, 1999;

Yates et al., 2003]. From the asymptotic arguments of
Fukunaga [1990], K should be chosen so as to be propor-
tional to nt4/(d+4), where d is the dimension of the vector
(i.e., in our case, number of PCs retained, nret) for which
the nearest-neighbor density is to be estimated, with the
constant of proportionality dependent on the underlying
density. One can also use objective criteria such as gener-
alized cross validation (GCV) as proposed by Rajagopalan
and Lall [1999] or Lall and Sharma [1996]. For the sample
sizes under consideration here, the choice of K =

ffiffiffiffi
nt

p
was

found to give consistent results for the simulated statistics.
With a 14-day window, 20 years of data, and no missing
data for days in the temporal window, the maximum number
of nearest neighbors in our case was

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14þ 1ð Þ � 20½ � � 1

p
=

17 (rounded to nearest integer).
[22] 8. Assign weight wi (0 < wi < 1) to each of the K

neighbors using the bisquare weight function [Huber, 2003]
based on distance d(i).

wi ¼
1�

d ið Þ

d Kð Þ

� �2
" #2

XK
i¼1

1�
d ið Þ

d Kð Þ

� �2
" #2

; ð10Þ

where d(K) is the distance (sorted) of neighbor K.
[23] 9. Select a neighbor from the K neighbors as an

analog for feature day f. A uniform random number [Press
et al., 1992], u � U[0, 1], is first generated, and if u  w1,
then the day corresponding to distance d(1) is selected. If u �
wK, then the day corresponding to d(K) is selected. For w1 <
u < wK, the day corresponding to d(i) is selected for which
u is closer to wi.
[24] 10. Repeat step 9 seven times to generate seven

ensemble members.
[25] 11. Repeat steps 1–10 for each of the days (7305)

corresponding to a forecast lead time (14 lead times), a total
of (7305 � 14) feature days in the archive.

[26] 12. Repeat steps 1–11 fifteen times corresponding to
the 15 MRF runs.
[27] 13. Repeat steps 1–12 four times for the four study

basins.
[28] Thus the final output for each of the four basins

consisted of analog dates (pointers to physical dates were
stored) corresponding to each day in the MRF archive (size,
7305), each forecast lead time (size, 14), and an ensemble of
105 ensemble members (seven realizations from each of the
15 MRF model runs). Note that the downscaling was carried
out for the center point of each of the four basins.
[29] The premise of this approach is that the atmospheric

model captures the large-scale circulation patterns, which
are assumed to be related to the synoptic-scale processes
that generate the local weather. Since neighbors are sought
only in the PC space of the atmospheric model, the choice
of the downscaling location is not influenced by any basin
feature (e.g., topography, precipitation shadow, etc.). Our
choice of the downscaling location (i.e., centers of basins)
was guided primarily by the intended application to hydro-
logic modeling by River Forecast Centers. Forecasting of
precipitation and temperature fields at individual stations
adjoining the basins is described in the next section.

3.2. Forecasting Precipitation and Temperature
Fields at Individual Stations

[30] A 100-km search radius was used from the center of
each basin to pick up the closest stations (see Table 1). The
dates derived using the K-nn algorithm for a given basin
were used to select from the daily-observed precipitation
and temperature values for each of the adjoining stations of
that basin. This then constitutes the downscaled precipita-
tion and temperature for each of the stations used in this
study. Several statistics were then calculated to analyze
these downscaled precipitation and temperature fields, and
these are presented in the next section.

4. Results and Discussions

[31] The statistics used to analyze and verify the down-
scaled precipitation and temperature forecasts are (1) sea-
sonal cycles of precipitation amount and temperature (results
are shown only for maximum temperature), (2) bias, (3) spa-
tial correlations, (4) forecast skill, (5) forecast reliability,
(6) rank histograms, and (7) spread-skill relationships.

4.1. Seasonal Cycles of Precipitation Amount and
Temperature

[32] We first analyzed the variation of the annual cycle of
precipitation and temperature for the four study basins. In
Figures 2 and 3 the annual cycles (derived from observa-
tions for the period 1979–1998) of precipitation and tem-
perature, respectively, for selected COOP stations in the
basins along with the ensemble spread (as box plots) for
each month are presented. The COOP stations used were
CO1609, GA0140, WA0456, and CA0931 for the Animas,
Alapaha, Cle Elum, and East Carson, respectively (see
Table 1 for locations). The box plots for each month were
estimated from the 105 ensemble members and are shown
for the forecast lead time of 5 days. The boxes in these plots
(e.g., Figure 2) indicate the interquartile range of the
simulations, and the whiskers show the 5th and 95th
percentile of the simulations, while the open circles indicate
values outside this range. The horizontal lines within the
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box indicate the median value, and the solid lines join
values of the statistic from the observed data. Typically, if
the statistics of the observed data fall within the box, it
indicates that the simulations adequately reproduced the
statistics of the historical data.
[33] In case of precipitation (Figure 2), there is a wide

regional variation in the amounts and timing of the maximum
precipitation occurrences among the basins. The Alapaha, for
example, has a precipitation peak in summer, but the Cle
Elum is the driest during the summer season (June–July–
August). Also, it is well known that in the western United
States, in particular during wintertime, the hydroclimate
variables have a coherent spatial pattern [e.g., Rajagopalan
and Lall, 1998]. The atmospheric models generally represent
these synoptic scales quite well, andwe see better simulations
of precipitation amount in the snow-dominated Animas, Cle
Elum, and East Carson basins (Figures 2a, 2c, and 2d,
respectively) over the rainfall-dominated Alapaha basin
(Figure 2b). The K-nn downscaling model in all cases largely
captures the seasonal variation of precipitation. Given that
the K-nn algorithm was not explicitly designed to preserve
monthly statistics, the seasonal cycle is fairly well captured.
For maximum temperature (Figure 3), the downscaled values
in all cases were able to capture the historical observations.
Unlike precipitation, the ensemble spread (interquartile range

in the box plots) was minimal in case of temperature. Similar
results were noted for other forecast lead times.

4.2. Bias

[34] Bias is defined as the deviation of the expected value
of a given variable from its true value. We estimated the
median absolute bias (MABl) for each forecast lead time (l)
and month as the following:

Ol ¼
1

ndays

Xndays
i¼1

Ol
i ð11aÞ

Ye
l ¼ 1

ndays

Xndays
i¼1

Y l
i

� �e ð11bÞ

MABl ¼ Median Ol � Ye
l

�� ��; e ¼ 1; . . . ; n
� �

; ð11cÞ

where, ndays is the total number of days in the time series
for a given month (e.g., ndays = 620 for January from
20 years of data and with no missing values); Ol is the
expected value of the observed variable (precipitation or
temperature) for lead time l (i.e., climatological mean); and
Oi
l is the observation for day i and lead time l. Similarly, Ye

l

is the expected value of the downscaled variable for lead

Figure 2. Box plots of total monthly precipitation from the 105 ensemble members for selected stations
in the four study basins: (a) CO1609, (b) GA0140, (c) WA0456, and (d) CA0931. Results are shown for
lead time 5 days. The solid line and marks are the same statistics derived from the historical data for the
period 1979–1998.
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time l and ensemble member e, and (Yi
l)e is the downscaled

variable value for day i, lead time l, and ensemble member
e. We then calculate the absolute bias for a given ensemble
member and use the n (equal to 105) ensemble members to
calculate the median absolute bias (MABl) for lead time l
(equation (11c)). For precipitation, the absolute bias was
expressed as a percentage of Ol. In other words, the absolute
difference term within the square brackets of equation (11c)
was expressed as Ol � Ye

l

�� ��� 100=Ol.
[35] Figure 4 shows the bias for precipitation for each of

the four basins for the month of January. Once again, these
biases are median absolute biases and are expressed as a
percentage of the mean climatology. The box plots corre-
spond to the spread from the number of closest stations
(shown in parenthesis) in a given basin. The median bias
(estimated from the closest stations for a given basin) for all
the basins is within 20%. In some cases, stations have biases
greater than 20%. Of the four basins, the biases are largest
for the Animas. This is probably because the Animas is the
driest of all the four basins with an average January
precipitation of about 1.28 mm. The temperature biases
(not shown) were quite small and typically were within
0.5�C.

4.3. Spatial Correlations

[36] Spatial autocorrelations are used to check how well
the K-nn algorithm performs in preserving the spatial
autocorrelation. The Pearson correlation (hereinafter re-

ferred to as correlation) between two example stations,
say, 1 and 2, was estimated as follows:
[37] Let Ye

1l and Ye
2l be the vector of downscaled values

for a given variable (e.g., precipitation) for lead time l from
ensemble member e. That is,

Ye
1l ¼ Ye

1l

� �
1
Ye
1l

� �
2
. . . Ye

1l

� �
ndays

h iT
ð12aÞ

Ye
2l ¼ Ye

2l

� �
1
Ye
2l

� �
2
. . . Ye

2l

� �
ndays

h iT
; ð12bÞ

where (Y1l
e )i and (Y2l

e )i are the downscaled variable values for
lead time l, ensemble member e, and day i for stations 1 and
2, respectively; and i = 1,. . ., ndays. Next we calculate the
correlation (rl

e) for a given ensemble member (e) and lead
time (l) using the vectors Ye

1l and Ye
2l. That is,

rel ¼
E Ye

1l Y
e
2l

h i
� E Ye

1l

h i
E Ye

2l

h i
s1s2

; ð13Þ

where, E[ ] is the expected value and s1 and s2 are the
standard deviations of Ye

1l and Ye
2l , respectively.

[38] Figure 5 shows the correlation box plots (for a given
l using the 105 ensemble members of rl

e) over 14-day
forecast lead time between two example stations in the
Animas basin (CO4734 and CO1609), and Figure 6

Figure 3. Same as Figure 2 but for temperature.
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presents similar results for two stations in the Alapaha basin
(GA0140 and GA2266) for winter and summer precipitation
and temperature. Since we pick the weather data for all the
stations simultaneously on the selected neighbor (i.e., day,
step 9), the K-nn method intrinsically preserves (1) the
spatial correlation structure of the variables (precipitation
and temperature) and (2) the correlation between the vari-
ables at each station.
[39] For precipitation, in the case of the Animas basin,

which overall is a dry basin, the observed spatial correlation
is about 0.2 for both January and July. These observed
spatial correlations are quite small. Since the Animas basin
has significant topographical variations (see Figure 1),
elevation differences and measurement errors in precipita-
tion can contribute to low observed spatial correlation
values. In the case of Alapaha, which is relatively flat,
and wetter, we see a high degree of spatial correlation
(about 0.7) between the example stations in January.
In July, the spatial correlation diminishes because the
precipitation is largely generated by convection, which is
generally difficult to capture by the atmospheric models.
[40] For temperature (see Figures 5 and 6), the box plots

of downscaled values adequately bracket the observed

spatial correlation. The temperature correlations among
the stations are very similar for winter and summer in both
the basins, and the biases are quite small in all cases. As
mentioned above, the cross correlations (i.e., correlations
between variables at each station) are also intrinsically
preserved by this downscaling method.

4.4. Forecast Skill

[41] The probabilistic skill of the downscaled precipita-
tion and temperature forecasts was assessed using the
ranked probability skill score (RPSS) [Wilks, 1995]. The
RPSS is based on the ranked probability score (RPS)
computed for each downscaled forecast and observation
pair:

RPS ¼
XJ
m¼1

Ym � Omð Þ2; ð14Þ

where Ym is the cumulative probability of the forecast for
category m and Om is the cumulative probability of the
observation for category m. This is implemented as follows.
First, the observed time series is used to distinguish 10(J)
possible categories for forecasts of precipitation and

Figure 4. Box plots of median absolute bias (in percentage) for January precipitation for the 14-day
forecast lead times in case of the four basins. The box plots are plotted using the number of stations
shown in parenthesis following the basin names.
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temperature (i.e., the minimum value to the 10th percentile,
the 10th percentile to the 20th percentile, . . . , the 90th
percentile to the maximum value). These categories are
determined separately for each month, variable, and stations
in the basin. Next, for each forecast-observation pair, the
number of ensemble members forecast in each category is
determined (out of 105 ensemble members), and their
cumulative probabilities are computed. Similarly, the
appropriate category for the observation is identified and
the observation’s cumulative probabilities are computed
(i.e., all categories less than the observation’s position are
assigned zero and all categories equal to and greater than the
observation’s position are assigned 1). Now the RPS is
computed as the squared difference between the observed
and forecast cumulative probabilities, and the squared
differences are summed over all categories (equation (14)).
[42] The RPSS is then computed as

RPSS ¼ 1� RPS

RPSc lim
; ð15Þ

where RPS is the mean ranked probability score for all
forecast-observation pairs and RPSc lim is the mean ranked
probability score for climatological forecast.

[43] For temperature, RPSc lim is computed using an equal
probability in each of the m categories defined in
equation (14) (i.e., 1/J); for precipitation, the probability
for the first category (zero precipitation) is taken as the
observed probability of no precipitation, and the probability
for all other categories is taken as 1/(J � 1) (see
equation (14)). An RPSS of 0.0 indicates no difference in
skill over the reference climatological forecast (RPSc lim),
and an RPSS of 1.0 indicates a perfect forecast. Negative
RPSS implies that the model performs worse than clima-
tology. Here RPSS was estimated separately for each
forecast lead time, for each month, and for each station in
the basin. The median RPSS was then calculated from the
station RPSS values for each of the basins.
[44] Figures 7 and 8 show plots of median RPSS for

precipitation and temperature, respectively. These plots
show the months along the abscissa and forecast lead times
along the ordinate, with darker shading representing regions
of higher skill. For precipitation (Figure 7), in all the basins
higher skills are obtained during the fall and winter months,
and extend for only short forecast lead times (e.g., up to
3 days in the case of Cle Elum). Wintertime skill scores are
around 0.4 for all of the basins. This means that the K-nn
downscaled forecasts are superior 40% of the time over the

Figure 5. Box plots of spatial autocorrelation from the 105 ensemble members between stations
CO1609 and CO4734 in the Animas basin for the 14-day forecast lead times. Precipitation correlations
are in the left column for (top) January and (bottom) July, and temperature correlations are in the right
column for (top) January and (bottom) July. The dotted horizontal line is the observed spatial correlation
between these two stations derived from the historical data for the period 1979–1998.
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reference climatological forecasts. In summer, the skills
drops down considerably even at short forecast lead times.
For Cle Elum, however, we see higher skills even during the
summertime. This is because the basin is the driest during
the summer months (see Figure 2), and higher skill arises
from consistent dry forecasts from the downscaling model.
[45] For temperature (Figure 8) the skills are higher than

that of precipitation, with a maximum for all the basins to be
around 0.5. Higher skills are generally observed during all
the seasons and are valuable up to lead times of 5 days.
Also, for both temperature and precipitation, the results
overall are very consistent, showing skills diminishing with
an increase in forecast lead times.
[46] Since the RPSS is only a single number, it is a useful

measure for ranking competing forecasts, but it does not
illuminate the underlying basis for the forecast errors. For
example [Hamill, 1997], are the forecasts too specific, or
biased? Are 25% of the forecasts on average below the 25th
percentile of forecast distribution? Thus we need additional
forecast verification measures to address such issues. The
reliability diagram [Wilks, 1995] is a frequently used tool in
probabilistic forecast verification and is discussed in the
next section.

4.5. Forecast Reliability

[47] The fundamental interest in forecast verification is to
analyze the joint probability distribution of forecasts and
observations [Wilks, 1995]. Let yi denote discrete forecasts
that can take one of the any I values y1, y2,. . ., yI; and let oj

be the corresponding observations (discrete), which can
have any of the J values o1, o2,. . ., oJ. Then the joint
probability mass function p(yi, oj) of the forecasts and
observations is given by

p yi; oj
� �

¼ P yi \ oj
� �

; i ¼ 1; . . . ; I ; j ¼ 1; . . . ; J : ð16Þ

Using the multiplication rule of probability [e.g., Ang and
Tang, 1975, p. 43], equation (16) can be factored as

p yi; oj
� �

¼ p oj j yi
� �

p yið Þ; ð17Þ

where p(ojjyi) is the conditional probability, implying how
often each possible event (out of J outcomes) occurred on
those occasions when the single forecast yi was issued; and
p(yi) is the unconditional (marginal) distribution that
specifies the relative frequencies of use of each of the
forecast values yi.
[48] The reliability diagram graphically represents the

performance of probability forecasts of dichotomous
events and depicts the conditional probability that an event
occurred (say, o1), given the different probabilistic forecasts
(yi); that is, the observed relative frequency, p(o1jyi), as
a function of the forecast probability p(yi). This was
implemented as follows.
[49] First, the ensemble output (105 ensemble members)

for a given basin is converted into probabilistic forecasts
(i.e., the probability a specific event occurs). In this case, the

Figure 6. Same as Figure 5 but for stations GA0140 and GA2266.
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‘‘event’’ is that the day is forecasted to lie in the upper
tercile of the distribution, and the probability is simply
calculated as all ensemble members in the upper tercile
divided by the total number of ensemble members. The
upper tercile was chosen to focus attention on events such
as heavy precipitation and high temperatures that can cause
significant changes to streamflow. Next, the observed data
are converted to a binary time series: A day is assigned
‘‘one’’ if the data lies in the upper tercile and ‘‘zero’’ if the
data does not. The above steps produce a set of probabilistic
forecast–observation pairs for each variable, station, month,
and forecast lead time. Finally, the forecasted probabilities
are classified into I categories (i.e., probabilities between
0.0 and 0.1, between 0.1 and 0.2, . . ., between 0.9 and 1.0, a
total of 10 categories), and for each category both the
average forecasted probability and the average of the
observed binary data are calculated. It should also be noted
that the number of categories used affects the forecast
resolution (i.e., the ability to distinguish subsample forecast
periods with different relative frequencies of the event).
These averaged observed relative frequency and forecast

probability values were then plotted to form the basic
reliability diagram.
[50] Reliability diagrams for January precipitation and

maximum temperature in the four study basins at 5-day
forecast lead time are shown in Figures 9 and 10, respec-
tively. For precipitation, if there were fewer than one third
of days with precipitation, a value of zero was used for the
probabilities in the reliability diagrams. The 1:1 diagonal in
these figures represent the perfect reliability line, and the
inset histogram shows the frequency of use of each of the
forecasts, p(yi). Also, to construct the reliability diagrams
for each basin as a whole, the forecast-observation pairs
were lumped together from all stations in that basin (see
Table 1). Results show that overall, the forecasted proba-
bilities match the observed relative frequencies remarkably
well for both precipitation and temperature. In case of
precipitation (Figure 9), for example, in the case of the
Alapaha basin, we see some tendency of higher observed
relative frequency at lower forecasted probabilities and the
opposite at higher forecasted probabilities. In other words,
when a low probability of the event is forecasted, the actual

Figure 7. Median RPSS for precipitation in the four basins: (a) Animas, (b) Alapaha, (c) Cle Elum, and
(d) East Carson. The months (January–December) are the horizontal axis, and lead times are in the
vertical axis.
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occurrence of the event is more common, and vice versa.
Also note that the sample size at high forecast probabilities
is often very small, except in case of the Cle Elum. This
basin in the Pacific Northwest receives considerable pre-
cipitation in January, and we have enough subsamples in
each of the forecasted probabilities (see inset histogram in
Figure 9c), i.e., we have excellent resolution and reliability
in our downscaled forecasts.
[51] For the case of maximum temperature (Figure 10), in

general we have sharper forecasts (high resolution) at the
price of some reduced reliability, in particular for the Cle
Elum and East Carson, where we can see more frequent
occurrences of the event when the forecast probability was
slightly lower. Reliability diagrams similar to the above were
also plotted for the month of July (not shown). Overall results
were similar to January, but for precipitation in the East
Carson, practically all the forecasted probabilities (frequency
of usage) were within the lowest category (0.0–0.1) and
imply the presence of rare events. Though these forecasts
were reliable, they exhibit minimal resolution.
[52] Once again, the results are overall quite impressive

and demonstrate that the proposed K-nn algorithm can be
used to generate reliable forecasts with negligible condi-

tional bias. The reliability of the forecasts was further
evaluated using rank histograms.

4.6. Rank Histograms

[53] Rank histograms were used to evaluate the reliability
of ensemble forecasts and to diagnose errors in their mean
and spread. Rank histograms for a given month and forecast
lead time were constructed by repeatedly tallying the ranks
of the observed precipitation and temperature values relative
to values from the 105 member ensemble. The process to
obtain the rank histogram for precipitation is slightly
different from that of temperature because of the presence
of a large number of zero-precipitation days in the observed
and ensemble precipitation time series. For temperature the
rank histogram was implemented as follows:
[54] Let for a given forecast day (say, j), and forecast lead

time (say, l), let X = (x(1),. . ., x(n)) be the sorted n-member
ensemble (recall n = 105 in this study) and let V be the
observed temperature. Then the rank of V, which can have
(n + 1) possible values relative to the sorted ensemble, is
obtained. Let this rank be denoted by rj

l. If, say, there were
20 years of data, then for January (assuming no missing
observations), there would be 620 (31days � 20 years) time

Figure 8. Same as Figure 7 but for temperature.
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elements in this time series for a given forecast lead time.
By tallying the ranks of the observed through this time
series we can obtain a vector of ranks for the selected month
(m) and lead time (Rm

l ),

Rl
m ¼ rl1; r

l
2; . . . ; r

l
N

� �T
; ð18Þ

where N is the length of the time series (or sample size, e.g.,
620). The elements of Rm

l are then binned into the (n + 1)
possible categories for constructing the rank histogram. So
the rank histogram constitutes the rank of the observed and
the probability of the rank to fall in any one of the (n + 1)
categories.
[55] In case of precipitation when there are zero precip-

itation days in the observed and ensemble time series, a
modified rule for rank assignment was implemented [Hamill
and Colucci, 1998]. If, say, there are M members tied with
the verification (i.e., M ensemble members with zero
precipitation), a total of (M + 1) uniform random deviates

[Press et al., 1992] are generated, corresponding to the M
members, and one for the observed zero precipitation. Then
the rank of the deviate corresponding to the observed in the
pool of (M + 1) deviates is determined. The rank histogram
is then constructed in a manner similar to the one described
for temperature.
[56] To interpret the rank histograms, it is assumed that

the observations and the ensemble members are samples
from the same probability distribution. In that case, count-
ing the rank of the observation over several independent
samples, an approximately uniform distribution should
result across the possible ranks, i.e.,

E P x i�1ð Þ � V < x ið Þ
� �� �

¼ 1

nþ 1
; ð19Þ

where, E[ ] denotes the expected value and P is the
probability. Hamill [2001] describes the interpretation of
rank histograms and provides these guidelines. When the
ensemble members are from a distribution with lack of

Figure 9. Basin reliability diagram for January precipitation in the four basins: (a) Animas, (b) Alapaha,
(c) Cle Elum, and (d) East Carson, at 5-day forecast lead time. Inset histograms indicate frequency of use
of the forecasts.
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variability, a U-shaped rank histogram results. An excess of
variability in the ensemble members, on the other hand,
overpopulates the middle ranks, and ensemble bias (positive
or negative) excessively populates the (left or right) extreme
ranks.
[57] Figures 11 and 12 show the basin rank histograms for

precipitation and maximum temperature, respectively. Basin
rank histograms were constructed by pooling in ranks from
all stations for a given basin. The basin rank histograms are
shown for January at 5-day lead time. For precipitation
(Figure 11), the rank histograms are relatively flat, demon-
strating that the K-nn method produces realistic ensemble
spread. The noise in the rank histograms simply reflects
the noisy character of the precipitation time series. For
temperature (Figure 12), the basin rank histograms are
largely uniform in the middle ranks, except at the extremities
where we observe some bias. We see that on average, nearly
2% of the time the observed temperature can be lower
(greater) than the lowest (highest) ensemble member.
[58] In general, from all the cases (including summer)

we see from the precipitation rank histograms that the

ensembles are relatively flat, and for temperature there is
only a small fraction of cases (�2%) when the observed
falls outside the ensemble range. We also constructed rank
histograms for each of the individual stations used in the
study (see Table 1) and overall found no unusual behavior
in the structure of the rank histograms. The next question
then is, Can we use the ensemble spread information to
predict forecast skill? This topic is discussed in the next
section.

4.7. Spread-Skill Relationships

[59] Ensemble forecasts provide an estimate of the fore-
cast probability distribution. If the spread of this distribution
varies from forecast to forecast, then the spread in the
distribution may be related to the forecast skill [Kalnay
and Dalcher, 1987; Whitaker and Loughe, 1998]. To
analyze the spread-skill relationship, we first need to select
appropriate measures to define the ensemble spread and
ensemble skill. We used three measures of ensemble spread:
(1) standard deviation of the ensembles, (2) interquartile
range, and (3) the 95th minus the 5th quantiles. As skill

Figure 10. Same as Figure 9 but for temperature.
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measures we used (1) RPSS and (2) the absolute error of the
ensemble mean (absolute difference between the observed
and the ensemble mean). The utility of ensemble spread as a
predictor of ensemble skill has traditionally been measured
in terms of linear correlation, although Whitaker and
Loughe [1998] suggest an analysis of the joint spread-skill
probability distribution.
[60] Contingency table of spread (ensemble standard

deviation) and skill (RPSS) for 5-day forecasts of January
precipitation for example station WA0456.COOP is given in
Table 2. Here we considered all days for which the observed
precipitation was greater than 0.01 inch (0.3 mm). The
entries Table 2 are the joint probability of obtaining
the spread and skill values in the indicated quintiles. The
columns are spread quintiles, and the rows are skill quin-

tiles. If there were no correlation between spread and skill,
all entries in the table would be equal to 0.2. On the other
hand, if there were a perfect linear relationship between
spread and skill (correlation equal to one), all the diagonal
elements would be one and the off-diagonals would be zero.
Many of the entries in Table 2 are not very different from
0.2, except at the corners. For example, if the spread is
in the lowest quintile, there is about 2.5 times higher
probability of the skill to be in the lowest, rather than the
highest quintile. This observation was consistent among all
stations in the study.
[61] To summarize the contingency table for all stations

in a basin, we constructed box plots showing the variation
of the joint spread-skill probability for all spread and
skill quintiles. Results are shown for January precipitation

Figure 11. Rank histogram for January precipitation at 5-day forecast lead time with 105 members for
the four basins.
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at 5-day forecast lead time for the Animas and Alapaha
basins in Figures 13 and 14, respectively. In each of these
figures we show three cases: (1) considering all days (left
column); (2) days with precipitation within 0 mm and
0.3 mm, including the zero precipitation days (middle
column); and (3) days with precipitation greater than
0.3 mm (right column). For each spread quintile, box plots
are plotted showing the variation of the joint probability of
spread-skill in all stations of the basin with the skill
quintiles as the abscissa. The dashed horizontal line corre-
sponds to a joint probability value of 0.2 when there is no
spread-skill correlation.
[62] In both Figures 13 and 14 we see that when all days

are considered, and also in the case where precipitation is
within 0.3 mm (with zero precipitation days included), the
spread-skill relationship is negatively correlated. That is, for

Figure 12. Same as Figure 11 but for temperature.

Table 2. Contingency Table of Spread (Ensemble Standard

Deviation) and Skill (RPSS) for 5-Day Forecasts of January

Precipitation for Station WA0456.COOP When the Observed

Precipitation is Greater Than 0.3 mma

0–20% 20–40% 40–60% 60–80% 80–100%

0–20% 0.47 0.14 0.14 0.22 0.03
20–40% 0.09 0.33 0.29 0.18 0.11
40–60% 0.14 0.24 0.20 0.26 0.16
60–80% 0.11 0.19 0.27 0.20 0.23
80–100% 0.19 0.10 0.10 0.14 0.47

aThe entries are the joint probability of obtaining the spread and skill
values in the indicated quintiles. The columns are spread quintiles, and the
rows are skill quintiles.
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Figure 13
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lower spread, there is a higher probability of greater skill.
Here a large number of ensemble members with zero
precipitation contribute to both a lower ensemble spread
and higher skill for small precipitation amounts. Conversely,
a small number of ensemble members with zero precipitation
contribute to higher ensemble spread and lower skill for
small precipitation amounts. Unfortunately, these results
do not allow us to construct any meaningful spread-skill
relationships in order to place time-variant confidence limits
on precipitation forecasts.
[63] Similar box plots for maximum temperature (here

data from all days were used) are shown in Figure 15 for the
Animas (left column) and Alapaha (right column) basins. In
all cases we see that the boxes are close to the dashed
horizontal line (i.e., joint probability value of 0.2), which
implies that there is no spread-skill correlation. Similar
results for both precipitation and temperature were observed
for July.
[64] All the results presented here used standard deviation

and RPSS as the spread and skill measures, respectively.
Analysis was also carried out using the other spread and
skill measures, and the results were found to be robust, that
is, the underlying spread-skill relationships do not change
with the choice of different measures. Also, though no clear
spread-skill relationships were apparent here, the K-nn
method is theoretically capable of extracting the spread-
skill relationship if it exists in the atmospheric model.

5. Summary and Conclusions

[65] A method for statistical downscaling using the K-nn
algorithm in eigenspace was developed. A 20-year (1979–
1998; 7305 days) data archive consisting of model outputs
from the NCEP 1998 version of the operational medium-
range forecast model from NOAA/CDC was used in this
study. A total of 15 MRF runs (one control run plus 14
ensemble members) were available for analysis. Seven
MRF model output variables going out to lead time of
14 days was used in the downscaling algorithm. Analogs to
(7305 � 14) feature days using a 14-day temporal window
were subsequently identified. All data were projected onto
eigen space, and distance between a feature day and all
candidate days were calculated using a weighted Euclidian
norm. The weighting used considered the fractional vari-
ance explained by a given principal component. The dis-
tances were then sorted in ascending order, and weights
were assigned to each using the bisquare weight function.
On the basis of weights, and repeatedly generated uniform
random numbers a set of seven ensemble members were
created from each MRF run.
[66] Results were assessed over four river basins distrib-

uted across the contiguous United States. These were
Animas (southwestern Colorado); Alapaha (southern
Georgia); Cle Elum (central Washington); and east fork of

the Carson (California-Nevada border). The K-nn downscal-
ing algorithm was repeated for the 15 MRF runs and for the
four basins. Since from each MRF run seven ensemble
members were generated, the 15 MRF runs yielded a total
of 105 ensemble members for each basin. To obtain local
estimates of precipitation and temperature, closest COOP
stations (within a 100 km search radius) from the center of
the basins were selected, and observed data corresponding
to the downscaled dates were used to obtain these
estimates. The precipitation and temperature estimates
from these 105 ensemble members over 20 years and
14-day forecast lead times were used to evaluate the K-nn
downscaling methodology.
[67] The statistics included seasonal cycles, bias, spatial

correlations, and a suite of forecast verification statistics.
The K-nn downscaling model in all cases largely captured
the seasonal variation of precipitation and temperature.
Precipitation biases were generally within 20%, but in many
cases (mostly for the climatologically drier Animas basin at
longer lead-times) exceeded 20%. This is consistent with
the noisy character of precipitation time series. Temperature
biases were small and within 0.5�C. Since we used data for
all stations on a given day, the K-nn method intrinsically
preserves the spatial autocorrelation structure and the
consistency between variables. Furthermore, since this
method relies solely on the atmospheric model output and
does not incorporate any joint relationship between the
atmospheric and surface variables, it does not fully preserve
the lag-one correlation statistics (not shown). However,
postprocessing using an ensemble reordering type method
[Clark et al., 2004] can be used to recover this serial
correlation. Also, methods based on nonhomogeneous
hidden Markov models (NHMM) [e.g., Hughes and
Guttorp, 1994; Hughes et al., 1999] to downscale synoptic
atmospheric patterns to local scale precipitation have been
shown to preserve temporal correlation but fail to preserve
spatial correlation.
[68] Next we evaluated the skill, reliability, and time-

variant spread-skill relationships in the downscaled forecast
ensembles. The rank probability skill score (RPSS) was
used to verify the forecast skills. For precipitation, the skills
generally were higher in winter than in summer and valid at
only short forecast lead times (2–3 days). Temperature
RPSS scores were around 0.5, and valuable skill was
present even up to lead times of 5 days in all seasons.
Forecast reliability or conditional bias were evaluated using
reliability diagrams, and we found that the observed relative
frequencies of the event (days being in the upper tercile)
matched well with forecasted probabilities, and there was
very little conditional bias in the forecasts.
[69] Rank histograms showed that although precipitation

ensembles are to an extent noisy, the ensemble spread is
nevertheless meaningful. For temperature, the observed fell
outside the ensemble range in about 2% cases. Next, we

Figure 13. Box plots of joint spread-skill probability for skill quintiles at given spread quintiles. The vertical axis is the
joint probability of spread (ensemble standard deviation) and skill (RPSS), and the horizontal axis shows the skill quintiles.
Results are shown for January precipitation at 5-day forecast lead time for the Animas basin. The box plots are constructed
using data from all the stations in the basin. Three cases are shown: (left) using data from all days; (middle) using data for
days when the observed precipitation is between 0 and 0.3 mm (both values inclusive); and (right) when the observed
precipitation is greater than 0.3 mm. The dashed horizontal line in each plot corresponds to joint probability value of
0.2 when there is no spread-skill relationship. See color version of this figure in the HTML.
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Figure 14. Same as Figure 13 but for the Alapaha basin. See color version of this figure in the HTML.
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Figure 15
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analyzed possible spread-skill relationships. We did not find
a meaningful relationship to forecast precipitation forecast
skills. For temperature, results clearly showed that there is
no relationship between the ensemble spread and skill.
[70] Though regression-based approaches are widely used

to extract local-scale information from forecast models [e.g.,
Antolik, 2000], these methods are not data-driven, they need

variable transformations, they do not intrinsically preserve
space-time autocorrelations and cross correlations of the
downscaled variables, and they cannot be utilized to inves-
tigate spread-skill relationships. We did a comparison,
however, to test the skill (RPSS) of the K-nn approach with
a multiple linear regression (MLR) based downscaling
method (see Clark and Hay [2004] and Clark et al.

Figure 15. Box plots of joint spread-skill probability for skill quintiles at given spread quintiles. The vertical axis is the
joint probability of spread (ensemble standard deviation) and skill (RPSS), and the horizontal axis shows the skill quintiles.
Results are shown for January maximum temperature at 5-day forecast lead-time for the (left) Animas and (right) Alapaha
basins. The box plots are constructed using data from all the stations in the basins. The dashed horizontal line in each plot
corresponds to joint probability value of 0.2 when there is no spread-skill relationship. See color version of this figure in the
HTML.

Figure 16. Box plots comparing skills (RPSS) in precipitation forecasts in the four study basins
obtained from downscaling using K-nn (open), and MLR (shaded): (a) January precipitation for 1-day
lead time; (b) January precipitation for 5-day lead time; (c) July precipitation for 1-day lead time; and
(d) July precipitation for 5-day lead time.
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[2004] for descriptions of the MLR method). Results of
this comparison are summarized in box plots shown in
Figures 16 and 17 for precipitation and temperature,
respectively. Given that the K-nn algorithm does not use
the joint relationship between forecast model output and
station data, the results are extremely impressive. The skill
obtained from the K-nn method is competitive with the skill
obtained using MLR. The MLR utilizes the joint relation-
ship between surface and atmospheric variables and needs
postprocessing to reconstruct the space-time variability
between the ensembles (typically the downscaling is done
for each station individually). The PCs in the K-nn method
also provide a consistent spatial representation, whereas the
variables in case of MLR typically change from one station
to the other.
[71] The marginally higher skills that are seen in case of

MLR are also because the 15-member ensemble mean from
the MRFs are used as predictors. Furthermore, the sum of

squared errors between observed and downscaled values at
each station is explicitly minimized in developing the MLR
models. Finally, the K-nn method is computationally effi-
cient and can be readily implemented. One shortcoming of
K-nn type algorithms is that values not seen in the historical
record are not reproduced. This could be a potential
problem if the historical archive is short. Rajagopalan and
Lall [1998] describe a modified resampling strategy with
perturbations of the historical data to overcome this limita-
tion. The results described here, however, demonstrate the
strength of this algorithm and provide a viable alternative in
providing skillful and reliable downscaled forecasts to other
downscaling methods.

[72] Acknowledgments. This research was supported by the NOAA
GEWEX Americas Prediction Program (GAPP) and the NOAA Regional
Integrated Science and Assessment (RISA) Program under awards
NA16GP1587 and NA17RJ1229. Thanks are due two anonymous
reviewers for their comments, which improved the manuscript.

Figure 17. Same as Figure 16, but for temperature.
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