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Abstract

Recent empirical work has shown that combining predic-
tors can lead to significant reduction in generalization error.
The individual predictors (weak learners) can be very sim-
ple, such as two terminal-node trees; it is the aggregating
scheme that gives them the power of increasing prediction
accuracy. Unfortunately, many combining methods do not
improve nearest neighbor (NN) classifiers at all. This is
because NN methods are very robust with respect to varia-
tions of a data set. In contrast, they are sensitive to input
features. We exploit the instability of NN classifiers with re-
spect to different choices of features to generate an effective
and diverse set of NN classifiers with possibly uncorrelated
errors. Interestingly, the approach takes advantage of the
high dimensionality of the data. The experimental results
show that our technique offers significant performance im-
provements with respect to competitive methods.

1. Introduction

An ensemble of classifiers succeeds in improving the ac-
curacy of the whole when the component classifiers are both
diverse and accurate. Diversity is required to ensure that the
classifiers make uncorrelated errors. If each classifier makes
the same error, the voting carries that error into the decision
of the ensemble, thereby gaining no improvement. In addi-
tion, accuracy is required to avoid poor classifiers to obtain
the majority of votes. These requirements have been quan-
tified. Under simple voting and error independency condi-
tions, if all classifiers have the same probability of error, and
such probability is less than 50%, then the error of the en-
semble decreases monotonically with an increasing number
of classifiers [13, 2].

One way to generate an ensemble with the required
properties is to train the classifiers on different sets of
data, obtained by sampling from the original training set
[5, 15, 11, 10]. Breiman’s bagging [5] and Freund and
Schapire’s boosting [11] are well known examples of suc-

cessful iterative methods for improving the predictive power
of classifier learning systems. Bagging uses sampling with
replacement. It generates multiple classifiers by producing
replicated samples of the data. To classify an instance a vote
for each class

�
is recorded by every classifier that chooses

it, and the class with the most votes is chosen by the aggre-
gating scheme. Boosting uses adaptive sampling. It uses
all instances at each repetition, but maintains a weight for
each instance in the training set that reflects its importance
as a function of the errors made by previously generated hy-
potheses. As for bagging, boosting combines the multiple
classifiers by voting, but unlike bagging boosting assigns
different voting strengths to component classifiers on the
basis of their accuracy.

Experimental evidence [17] proved that both bagging
and boosting are quite effective in reducing generalization
error, with boosting providing in general higher improve-
ments. Dramatic error reductions have been observed with
decision trees such as CART and C4.5 [5, 17, 11]. This be-
havior can be explained in terms of the bias-variance com-
ponents of the generalization error [6]. The variance com-
ponent measures the scatter in the predictions obtained from
using different training sets, each one drawn from the same
distribution. The effect of combination is to reduce the vari-
ance, that is what both bagging and boosting achieve. In
addition, boosting does something more. By concentrating
the attention of the weak learner on the harder examples, it
challenges the weak learner algorithm to perform well on
these harder parts of the sample space, thereby reducing the
bias of the learning algorithm.

It turns out that sampling the training set is not effective
with NN classifiers [5]. To gain some insights as to why
this is the case, let us analyse the conditions under which the
bagging procedure is effective. As observed above, bagging
reduces the variance component of the generalization error.
When the weak learner is unstable with respect to variations
in the training set, perturbing the training data can cause sig-
nificant variability in the resulting predictor. Thus, bagging
the ensemble improves accuracy in this case. Suppose the
weak learner is the NN classifier. It has been shown that



the probability that any given training point is included in
a data set bootstrapped by bagging is approximately 63.2%
[5]. It follows that the nearest neighbor will be the same in
63.2% of the nearest neighbor classifiers. Thus, errors are
highly correlated, and bagging becomes ineffective.

The fact that NN methods are very robust with respect
to variations of the data set makes ensemble methods in-
effective. In contrast, NN methods are sensitive to input
features. In this paper we exploit such instability of NN
classifiers with respect to different choices of features, to
generate an effective and diverse set of NN classifiers with
possibly uncorrelated errors.

2. Ensemble of Nearest Neighbors in Weight-
Driven Subspaces

As discussed above, kNN methods are very robust with
respect to variations of the data set. The stability of nearest
neighbor classifiers to variations in the training set makes
ensemble methods obtained by bootstrapping the data inef-
fective. In contrast, kNN techniques are sensitive to features
(i.e., intolerant to irrelevant features), and to the chosen dis-
tance function [12, 14, 9, 8]. As such, in order to achieve
diversity and accuracy with nearest neighbor classifiers, we
ought to sample the feature space, to which the kNN method
is highly sensitive. The idea is then to exploit the instability
of NN classifiers with respect to different choices of fea-
tures to generate a diverse set of NN classifiers with (possi-
bly) uncorrelated errors.

In [3], the outputs of multiple nearest neighbor classi-
fiers, each having access only to a random subset of fea-
tures, are combined using simple voting. It is shown that
random feature selection can increase the diversity with-
out increasing the error rates. This fact results in accuracy
improvements on a variety of data sets. However, as also
pointed out in [3], the technique has some major drawbacks
that cause the degradation in performance observed in some
cases. While the random selection of features is likely to in-
crease diversity among the classifiers, it gives no guarantee
that the selected features carry the necessary discriminant
information. If they don’t, poor classifiers will be gener-
ated, and the voting will increase the generalization error.

To reduce the risk of discarding discriminant informa-
tion, while preserving a reasonable degree of diversity,
we propose to perform adaptive sampling over the feature
space. In particular, in order to keep the bias of individ-
ual classifiers low, we use feature relevance to guide the
sampling mechanism. This process has the potential of pro-
ducing accurate classifiers in disagreement with each other.
While it is expected that the level of diversity obtained by
this adaptive mechanism may be lower than the diversity
given by random sampling, the higher accuracy of the in-
dividual classifiers should allow the ensemble to improve

performance. It is interesting to observe that, since the
method uses subsets of features, it will be effective for prob-
lems with a large number of dimensions, which is often
the case for many applications. Although it defies com-
mon sense, sampling in feature space takes advantage of
the high dimensionality of the data. The experimental re-
sults we present support this conjecture.

In this work we use the ADAMENN algorithm to
estimate feature relevance, and therefore the corresponding
weight vector [9], at any given test point. Other techniques
can be considered as well [12, 14, 8]. ADAMENN
performs a Chi-squared distance analysis to compute
a flexible metric for producing neighborhoods that are
highly adaptive to query locations. The weights credited to
features by ADAMENN are real values between 0 and 1,
and their sum equals 1. Therefore, they define a probability
distribution over the feature space that can be employed
in our adaptive sampling mechanism. In addition, the
exponential weighting scheme employed in ADAMENN
avoids zero weight values. As such, for each test point and
each classifier of the ensemble, any given feature has a non
zero probability to be selected. This property guarantees a
certain level of diversity among the classifiers. The general
formulation of our approach is as follows:
Input: Number-Of-Classifiers ( ����� ), Number-Of-
Features ( ����� ), � , test point 	�
 ;
Compute the weight vector � 
 reflecting feature relevance
at 	 
 (e.g., using the ADAMENN algorithm);

 For 1 to ����� :

1. Sample ����� features with or without replace-
ment, according to the probability distribution
given by the weight vector � 
 ;

2. Use selected features (SelF) only (and their
weights) to compute the � closest neighbors,
according to the weighted Euclidean distance:��� 	�
���������� �����! #"%$'&)(*
 � �,+ 
 ��-/.!� �10 ;

3. Classify test point using kNN rule;

 Apply the voting scheme in use among the ����� clas-
sifiers.

Output: Decision of the ensemble.
The algorithm has three input parameters: The Number-
Of-Classifiers to combine, the Number-Of-features to be
selected, and the size � of the neighborhoods. The val-
ues of these parameters can be determined based on cross-
validation accuracy estimated on the training set for the
whole ensemble. When sampling with replacement is used,
if a feature is selected more than once, say 2 times, its
weight is multiplied by a factor 2 for distance computation.



3. Voting Methods

The classifiers can be combined using a simple major-
ity voting. We also investigate an alternative mechanism to
combine the classifiers. Instead of computing the most fre-
quent class label within the neighborhood of the test point,
we keep all estimated class posterior probabilities. That is,
for each classifier, all class labels of the � nearest neighbors
are recorded. After ����� iterations, the test point is as-
signed to the class that has the most frequent occurrency.
This voting scheme selects the class with the largest ex-
pected posterior probability in the ensemble. As such, it
takes into account not only the “winner” of each classifier,
but also the margin of the win. The class with the largest
overall margin will be selected by the ensemble.

In addition, we consider the Borda Count method [7]. It
is a positional-scoring technique: each candidate class gets
0 points for each last place vote received, 1 point for each
next-to-last point vote, and so on up to � -�� points for
each first place vote (where � is the number of classes). The
candidate class with the largest point total wins the election.
When � ��� , the Borda Count method reduces to a simple
majority voting technique.

4. Experimental Results

We have conducted experiments to compare the accuracy
and diversity of Random and Weight-Driven feature sub-
space methods. Both sampling with and without replace-
ment have been used. The three voting schemes described
above (Simple, Counting, and Borda) were used to compute
the decision of the ensemble ( ����� ������� classifiers). Ta-
bles 1-2 show the best error rates and standard deviations
obtained on five data sets [4]. We also report the best er-
ror rate of ADAMENN and kNN using Euclidean distance.
The characteristics of each data set (number of dimensions,
number of data ( � ), and number of classes ( � )) are given
in parenthesis. Leave-one-out cross-validation was used to
generate training and test data in each classifier. We have
tested values of � between 1 and 13; for ����� we con-
sidered values from 1 (or higher, for data with a larger di-
mensionality) to the total number of dimensions. For each
combination of parameter values, the experiment was re-
peated 10 times, and the average error rate was computed.
The results show that our Weight-driven approach offers
significant accuracy improvements (over both ADAMENN
and the Random approach) for the three data sets with a
larger number of dimensions (spectf-test, lung, sonar). For
liver and ionosphere the Random and Weight approaches
give similar performances. This result provides evidence
that bootstrapping features using an “intelligent” distance
metric (Weight-Driven method) takes advantage of the high
dimensionality of the data. Thus, it provides an effective

Table 1. Average error rates.
liver ionosphere spectf-test

( �	��
 - � -  ) (6-345-2) (34-351-2) (44-267-2)
kNN 32.5 13.7 23.6

ADAMENN 30.7 7.1 19.1
Random (Simple) 29.4 (0.5) 5.8 (0.2) 20.2 (0.4)

Random (Counting) 28.6 (0.5) 5.7 (0.2) 19.9 (0.4)
Weight (Simple) 29.3 (0.5) 6.3 (0.2) 17.6 (0.4)

Weight (Counting) 29.9 (0.5) 6.3 (0.2) 17.7 (0.4)

method to dodge the curse-of-dimensionality phenomenon.
Figure 1 plots the error rate as a function of the number
of selected features (NoF) for spectf-test, lung, and sonar.
For the Weight-driven technique and lung data the largest
value of NoF is 50, because four features received very
small weights which were approximated to zero (thus, never
selected). In some cases the Counting voting method im-
proves performance (with respect to Simple). The Borda
technique gives the best result for both Random and Weight-
driven algorithms. In most cases, sampling without replace-
ment outperformed sampling with replacement.
Measure of Diversity and Accuracy. To measure both the
accuracy and the diversity of the classifiers, we make use
of the Kappa statistic, � [16]. In particular, a Kappa-Error
diagram [16] allows us to visualize the diversity and the ac-
curacy of an ensemble of classifiers. A Kappa-Error dia-
gram is a scatterplot where each point corresponds to a pair
of classifiers. The

+
coordinate is the value of � for the

two classifiers. Smaller � values indicate a larger diversity:
� ��� when the agreement of the two classifiers equals that
expected by chance, and � � � when the two classifiers
agree on every example. The . coordinate is the average
error rate of the two classifiers. For lack of space we report
only the Kappa-Error diagram for the spectf-test data (Fig-
ure 2). Both methods show large diversity in this case. In
addition, the “intelligent” metric employed by the Weight-
driven technique allows to reduce bias, and thus achieve a
better error rate.

5. Conclusions

We have introduced a mechanism to generate an effective
and diverse ensemble of NN classifiers. In our future work
we will investigate techniques to locally customize the num-
ber of selected features, and further increase the diversity of
classifiers.
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Table 2. Average error rates.
lung sonar
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Weight (Borda) 30.9 (0.5) -
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Figure 1. Error rate as a function of the num-
ber of selected features for Random and
Weight-driven methods. (Top): spectf-test;
(Middle): lung; (Bottom): sonar.
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