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1. INTRODUCTION

A wide range of stochastic models is in use to simu-
late synthetic daily time series of precipitation. Some
models are also able to simulate daily precipitation
simultaneously with other weather variables. A limited
number of techniques is available to generate weather
variables simultaneously at multiple locations, which is
of particular interest for hydrological applications. For
assessments of the effects of anthropogenic climate
change, there has been considerable interest in condi-
tioning stochastic daily precipitation models on the
large-scale atmospheric circulation. Quite often a
classification of observed pressure fields into weather
classes has been used for this purpose. The parameters

of the precipitation model are then determined for
each weather class separately (e.g. Bárdossy & Plate
1992, Wilson et al. 1992, Schubert 1994, Corte-Real et
al. 1999, Fowler et al. 2000, Qian et al. 2002, Stehlik &
Bárdossy 2002). An alternative is to resample from the
observed precipitation in the appropriate weather
class (e.g. Hughes et al. 1993, Conway et al. 1996,
Palutikof et al. 2002). A somewhat different approach
is to describe daily precipitation by non-homogeneous
hidden Markov models (e.g. Charles et al. 1999, Bel-
lone et al. 2000). The parameters of such a stochastic
precipitation model also depend on a discrete set of
weather states, but these states are unobserved (hid-
den). The sequence of weather states is modelled as a
first-order Markov chain of which the transition proba-
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bilities are determined by atmospheric predictor vari-
ables. Wilby et al. (1998) used regression techniques to
link wet-dry transition probabilities and the means of a
suite of weather variables to atmospheric circulation
characteristics.

Zorita et al. (1995) and Zorita & von Storch (1999)
used the analog method for the conditional simula-
tion of multi-site daily precipitation. The word analog
refers to the historical day that is closest to the target
day in terms of atmospheric circulation characteris-
tics. In this method the analog is sampled rather than
days in a specific weather class. An advantage of
resampling methods is that no conceptual extensions
are required to generate multivariate and/or multi-
site daily sequences. Neither do they require
assumptions about the underlying distributions and
the spatial correlations. The analog method can be
seen as a special case of nearest-neighbour resamp-
ling. The earliest applications of nearest-neighbour
resampling to weather data were on multivariate sin-
gle-site simulation, without conditioning on the
atmospheric circulation (Young 1994, Rajagopalan &
Lall 1999). Using nearest-neighbour resampling,
Brandsma & Buishand (1998) compared uncondi-
tional simulations of daily temperature and precipi-
tation with several simulations conditional on the
atmospheric circulation. For the conditional simu-
lations, it was found that the autocorrelation coef-
ficients and extreme-value distributions of precipita-
tion were better reproduced if, apart from circulation
characteristics of the target day, the simulated pre-
cipitation and temperature of the previous day were
also taken into account. A multi-site extension of
unconditional nearest-neighbour simulation of daily
precipitation and temperature was presented in Buis-
hand & Brandsma (2001).

The present paper compares a stochastic version of
the analog method with more general nearest-neigh-
bour resampling techniques for conditional multi-site
simulation of daily precipitation and temperature in
the German part of the Rhine basin. This area was cho-
sen with a specific application to rainfall-runoff model-
ling in mind. Since in the downstream area of the river
Rhine the largest discharges occur in winter, the repro-
duction of precipitation statistics is studied for the
winter half-year (October–March). Temperature is
generated because rainfall-runoff models often use
temperature to determine evapotranspiration, snow
accumulation and snow melt.

The methodology and the data are presented in Sec-
tion 2. Section 3 gives a description of the resampling
models used and compares statistical properties of sim-
ulated data with those of observed data. In Section 4,
finally, the results are summarized and conclusions are
drawn.

2. METHODOLOGY

2.1. Nearest-neighbour resampling

Nearest-neighbour resampling was originally pro-
posed by Young (1994) to simulate daily minimum and
maximum temperatures and precipitation. Indepen-
dently, Lall & Sharma (1996) discussed a nearest-
neighbour bootstrap to generate hydrological time
series. Buishand & Brandsma (2001) presented an
application to daily precipitation and 5 other weather
variables. Basically the same method was used by
Buishand & Brandsma (2001) for multi-site generation
of daily precipitation and temperature. 

In the nearest-neighbour method weather variables
such as precipitation and temperature are sampled
simultaneously with replacement from the historical
data. To incorporate autocorrelation, resampling is
conditioned on the days in the historical record that
have similar characteristics as those of the previously
simulated day. One of these nearest neighbours is
randomly selected and the observed values for the
day subsequent to that nearest neighbour are adopted
as the simulated values for the next Day t. A feature
vector (or state vector) Dt is used to find the nearest
neighbours in the historical record. Dt was based on
the standardized weather variables generated for Day
t – 1 in Rajagopalan & Lall (1999) and on summary
statistics of precipitation and temperature in Buishand
& Brandsma (2001). Summary statistics are particu-
larly necessary for multi-site simulations in order to
avoid problems with the high-dimensional data space.
As in earlier papers the k nearest neighbours of Dt

were selected in terms of a weighted Euclidean dis-
tance. For 2 q-dimensional vectors, Dt and Du, the
latter is defined as:

(1)

where vtj and vuj are the jth components of Dt and Du

respectively and wj scaling weights. 
A discrete probability distribution or kernel is

required to select 1 of the k nearest neighbours. Lall &
Sharma (1996) recommended a kernel that gives
higher weight to the closer neighbours. For this
decreasing kernel the probability, pj, that the jth clos-
est neighbour is resampled is given by:

(2)

This probability kernel was also adopted in earlier
applications of nearest-neighbour resampling for the
Rhine basin (Buishand & Brandsma 2001).

  

p
j

i

j kj

i

k
= =

=
∑
1

1

1

1

, ,...,

   
δ D Dt u j tj uj

j

q

w v v,( ) = −( )



=

∑ 2

1

1
2

122



Beersma & Buishand: Multi-site simulation of precipitation and temperature

For the simulation of weather variables conditional on
the atmospheric circulation (or CNNR: conditional near-
est-neighbour resampling) the procedure is slightly
different. In that type of simulation, one searches for
days in the historical record that have atmospheric
circulation characteristics similar to those of the condi-
tioning day. Again 1 of these nearest neighbours is
randomly selected and the observed values of that near-
est neighbour are adopted as the simulated values for
the conditioning Day t. The feature vector Dt  should
therefore at least consist of circulation characteristics of
the conditioning Day t. In addition, simulated weather
variables and/or circulation characteristics of Day t–1
and earlier days could be included in the feature vector. 

Apart from creating a feature vector, the number k of
nearest neighbours and the weights wj have to be
specified. The choice of k depends on the type of prob-
ability kernel {pj}, the number, n, of daily values from
which the nearest neighbours are selected, and the di-
mension, q, of the feature vector. Lall & Sharma (1996)
recommended for the decreasing kernel (Eq. 2) k = n1/2

provided that 1 ≤ q ≤ 6 and n ≥ 100. Young (1994) rec-
ommended k = 3 using a uniform kernel, while q was 3
and n ≈ 1200. A sensitivity analysis in Buishand &
Brandsma (2001), with the decreasing kernel and sim-
ilar values for n and q as in our application, gave best
results for k = 2 and k = 5. In this study the decreasing
kernel with k = 5 was adopted. To obtain an equal con-
tribution of all feature vector elements to the Euclidean
distance, the weights wj should be inversely propor-
tional to the variance of the feature vector elements.
This is usually a good starting point, and Brandsma &
Buishand (2001) showed that variation of the weights
generally has little effect on the statistical properties of
the simulated data. In Wójcik & Buishand (2003) an
alternative approach was introduced that avoids spec-
ification of the weights by using the Mahalanobis
distance instead of the Euclidean distance.

2.2. The analog method

The analog method (e.g. Zorita et al. 1995, Zorita &
von Storch 1999) is basically a special case of CNNR. In
nearest-neighbour resampling, 1 of the k nearest
neighbours is randomly selected from the historical
record, whereas in the analog method, the closest one
is always selected. The analog method is therefore
identical to CNNR with k = 1. 

Zorita et al. (1995) and Zorita & von Storch (1999)
based the search for analog days on characteristics of a
single conditioning day or a sequence of conditioning
days. In those papers the conditioning characteristics
referred to the atmospheric circulation only. Since in
the analog method no randomness is involved, this

method is in essence deterministic. There is thus only 1
realisation of the simulated time series for each condi-
tioning time series. Consequently, for simulation con-
ditional on the historical time series of circulation
indices, the conditioning day itself must be excluded,
because otherwise the historical time series of weather
data would be generated.

In this paper the 5 best analog days were extracted
from the historical record, and 1 of these analogs was
randomly selected using the decreasing kernel (Eq. 2)
with k = 5. This stochastic version is better comparable
with the CNNR models than the originally determinis-
tic analog method.

2.3. Data

As in Buishand & Brandsma (2001) daily precipita-
tion and temperature data from 25 German stations in
the Rhine basin for 1961–1995 were used (see Fig. 1). 
For the 22 stations that lie below 500 m, the mean annual
precipitation ranges from 542 mm (Geisenheim) to
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944 mm (Freiburg) and the mean annual temperature
lies between 8.2°C (Coburg) and 10.9°C (Freiburg). The
3 remaining stations, at an altitude of about 800 m, have
relatively lower mean annual temperatures and higher
mean annual precipitation, the latter due to orographic
enhancement. The lowest mean annual temperature
(5.0°C) is observed for Kahler Asten, and the largest
mean annual precipitation (1691 mm) for Freudenstadt.

For the same 35 yr period, 3 daily indices of the at-
mospheric circulation were used: (1) strength of the
westerly flow, W; (2) strength of the southerly flow, S;
and (3) relative vorticity, Z. As in Jones et al. (1993) these
circulation indices were derived from daily mean sea
level pressure data from the UK Meteorological Office
on a 5° latitude by 10° longitude grid, except that the grid
was centered at the Rhine basin instead of the British
Isles. In a number of studies the same circulation indices
were used to obtain an objective version of the Lamb
classification (e.g. Jenkinson & Collinson 1977, Jones et
al. 1993, Goodess & Palutikof 1998, Linderson 2001).

2.4. Standardization procedure

To reduce the seasonal variation in the feature vector
elements, precipitation, temperature and circulation
indices were standardized. The daily temperatures
and circulation indices were standardized by subtract-
ing an estimate, md, of the mean and dividing by an
estimate, sd, of the standard deviation for the calendar
day d of interest:

(3)

where xt and x̃t are the original and standardized vari-
ables for Day t, respectively, and J is the total number
of years in the record. The estimates md and sd were
obtained by smoothing the sample mean and standard
deviation of the successive calendar days in a similar
way as in Brandsma & Buishand (1998) and Wójcik &
Buishand (2003).

Daily precipitation was standardized by dividing by
a smooth estimate, md,wet, of the mean wet-day precip-
itation amount:

(4)

with wet days defined as days with 0.1 mm precipita-
tion or more.

To facilitate the reproduction of seasonally varying
weather characteristics the search for nearest neigh-
bours was restricted to days within a moving window,
centered on the calendar day of interest. The width of
this window was 61 d, as in Brandsma & Buishand (1998)
and Buishand & Brandsma (2001). Thus for the 35 yr

historical record the nearest neighbours are selected
from n = 2135 d. At the end of the resampling procedure
the simulated standardized variables are re-transformed
to their original scale using the inverse of Eqs. (3) & (4). 

2.5. Summary statistics

For the 25 stations in Fig. 1 precipitation, P, and tem-
perature, T, observations were available for each day.
Parsimony of feature vector elements requires that the
P and T fields are described by a small number of sum-
mary statistics, like the 3 circulation indices were used
to characterize the mean sea level-pressure field (i.e.
the atmospheric circulation). Otherwise, considerable
differences between the k nearest neighbours may
occur because of the large dimension of Dt. Computer
time also increases with the dimension of Dt.

Two important summary statistics are the arithmetic
means of the standardized values of the P and T fields:

(5)

(6)

where P̃i andT̃i are the standardized P and T values, re-
spectively, for the ith station. Because of the relatively
large spatial variation of the P field, there is some need
for a more complete summary of this field than just P̃.
An additional statistic to summarize the P field is the
fraction, F, of stations with precipitation above some
threshold, as suggested in Buishand & Brandsma
(2001). Here F was used with a threshold of 0.1 mm.
The statistic F helps to distinguish between large-scale
and convective precipitation. Buishand & Brandsma
(2001) also considered 2 alternatives to the P̃ and F
combination: a vector consisting of the daily averages
of the standardized values over 5 different sub-regions,
and a vector consisting of the 5 leading principal com-
ponents obtained from the sample covariance matrix of
the  P̃i. With respect to the reproduction of the standard
deviation and the autocorrelation coefficients of both
precipitation and temperature, these 2 alternatives did
not give better results than the simulations with the
combination of P̃ and F (Buishand & Brandsma 2001).

3. MODEL IDENTIFICATION AND SIMULATION
RESULTS

3.1. Models used

Six resampling models were considered. Three ana-
log-type models were distinguished: a first-order, a
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third-order and a fifth-order model. In the first-order
analog model (analog 1) the circulation indices of the
conditioning day (Day t) were used to find the analog
days. In the third- and fifth-order analog models (ana-
log 3 and analog 5) the search for analog days was
based on the circulation indices of respectively 3 and 5
consecutive conditioning days (Days t – 2, t – 1, t and
t – 4, ..., t respectively). In the higher-order analog
models thus also a part of the evolution of the atmos-
pheric circulation is taken into account. Zorita et al.
(1995) refer to the fifth-order model as a ‘5-Day-seg-
ment’ model. The remaining 3 resampling models are
CNNR models. The first of these models (CNNR 1) con-
tains the circulation indices of Day t and simulated pre-
cipitation and temperature characteristics of Day t – 1
as feature vector elements. The second model (CNNR
2C) additionally contains the circulation indices of Day
t – 1, yielding a second-order model in terms of the
atmospheric circulation. Model CNNR 2F, finally, uses
in addition to CNNR 1 the fraction F of stations with
precipitation of Day t – 2 to determine the nearest
neighbours, resulting in a second-order model in terms
of precipitation. Fig. 2 schematically presents the fea-
ture vectors of these 6 models. 

For a fair comparison of both types of models, a sto-
chastic version of the analog method was used (see Sec-
tion 2.2). Further, the selection of the conditioning day
was excluded in the CNNR models as in the analog
models. Allowing the selection of the conditioning day
is considered to generate ‘artificial skill’ (Zorita et al.
1995). Consequently, the only difference between the
analog models and the CNNR models examined here is
the composition of the feature vector (see Fig. 2).

The weights wj in Eq. (1) are in the CNNR models
approximately equal to the reciprocal of the variance
of the feature vector elements. The weights for  P̃,
F and T̃  were rounded to 2, 5 and 1 respectively, and
for Z̃, W̃ and S̃ the weights are 1 as a result of the
standardization. For the analog models all weights
equal 1 since the feature vector elements involve only
standardized circulation indices. 

In Section 3.2, 2 types of conditional simulations are in-
vestigated: simulations conditional on the 1961–1995
time series of circulation indices and simulations condi-
tional on simulated time series of circulation indices. The
simulated time series of circulation indices were ob-
tained with an unconditional nearest-neighbour resam-
pling model. A description of that model is given in Ap-
pendix 1. Time series of simulated circulation indices are
needed to generate longer time series of P and T than
the historical time series of circulation indices (see Sec-
tion 3.3). In the simulations conditional on simulated time
series of circulation indices the conditioning day itself
was not excluded, since no artificial skill can be inherited
from a simulated time series of circulation indices. 

3.2. Model results

With all 6 models, two 980 yr simulations were per-
formed, a simulation consisting of 28 runs of 35 yr con-
ditional on the same 35 yr record of circulation indices,
and a single 980 yr simulation run conditional on 980 yr
of simulated circulation indices. For comparisons with
the historical data, the latter was split into 28 indepen-
dent 35 yr records. Given the application of rainfall-
runoff modelling for the river Rhine, the presented sta-
tistics refer to the winter half-year (October–March).
Second-order moments (such as standard deviations
and autocorrelation coefficients) were first calculated
for each calendar month separately as in Buishand &
Brandsma (2001) and then averaged over the 6 calen-
dar months, the 25 stations and the 28 periods of 35 yr
in order to reduce the influence of the seasonal cycle in
the mean on these statistics. 

3.2.1. Mean and second-order moments

Table 1 gives an overview of the reproduction of the
means, the standard deviations of the monthly and
daily values, sM and sD respectively, and the lag-1 and
lag-2 autocorrelation coefficients of the daily values,
r (1) and r (2) respectively. 

The first part of the table refers to simulations condi-
tional on historical circulation indices, and the second
part to simulations conditional on simulated circulation
indices. The table also gives the historical estimates
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Fig. 2. Elements of the feature vector (solid boxes) for condi-
tional simulations of new variables (dashed boxes): (a) analog 1;
(b) analog 3; (c) analog 5; (d) CNNR 1; (e) CNNR 2C; (f) CNNR
2F. The vector C contains the 3 circulation indices Z, W and S;
asterisk indicates that the corresponding variable was simulated

in a previous time step; tilde refers to a standardized value
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and their standard errors. The standard errors of the au-
tocorrelation coefficients were obtained with the jack-
knife method of Buishand & Beersma (1993). The stan-
dard errors of the standard deviations of the daily and
the monthly values were calculated in a similar way,
following Buishand & Beersma (1996) and Beersma &
Buishand (1999) respectively. Differences larger than
twice the standard error of the historical data are re-
ferred to as statistically significant (this corresponds
approximately to a 2-sided test at the 5% level). 

For the 3 analog models the average winter precipi-
tation is underestimated due to the selection effects
discussed in Section 3.2.2. The underestimation in-
creases with the order of the model and becomes sig-
nificant for the simulation with the analog-3 model
based on historical circulation indices and for both sim-
ulations with the analog-5 model. The largest underes-
timation is 12.1%, whereas for the CNNR models the
differences in monthly mean precipitation are not
more than 6.1%. The standard deviations sM and sD are
generally underestimated. The underestimation of the
monthly standard deviations for precipitation and tem-
perature in the analog models is about twice as large
as in the CNNR models. In the analog models the
underestimation of the daily standard deviation for
precipitation is also somewhat larger. But for tempera-
ture, the underestimation of the daily standard devia-
tions is at least 2 times smaller in the analog models.
The biases in the lag-1 and lag-2 autocorrelation coef-

ficients for precipitation and temperature are in the
analog models about 3 times as large as in the CNNR
models. But even for the simulations with the latter
models the autocorrelation coefficients are signifi-
cantly underestimated. The bias in the autocorrelation
coefficients is the main cause for the underestimation
of the standard deviations of the monthly values. 

For the CNNR models the biases are generally some-
what larger for the simulations based on simulated cir-
culation indices than for those based on historical
indices. For the statistics in Table 1, the best perform-
ing analog model on the whole is analog 3. Its perfor-
mance is, however, still below that of the weakest
CNNR model (CNNR 2C). 

Time series of the area-average winter precipitation
totals and the area-average winter temperatures for
the simulations conditional on the historical circulation
indices are compared with the observed 1961–1995
winter area-average precipitation and temperature in
Figs. 3 & 4 respectively. For each simulation the
coloured symbols represent the averages of the 28 runs
in each winter. For the simulations with the CNNR-1
and analog-1 models, the whiskers represent the range
of the 28 runs. The skill score S in the figures is defined
as:

(7)

where the yj are the historical winter precipitation
totals or temperature averages, –y is the overall histori-
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Table 1. Differences in means and second-order moments between the 980 yr simulations and the historical data for the winter
(October–March), averaged over the 25 stations and the 28 (35 yr) runs. For the mean precipitation (monthly totals), the mean
temperature and the mean lag-l and lag-2 autocorrelation coefficients, r (l) and r(2), the absolute differences are given, and for
the mean standard deviations of monthly and daily values (sM and sD) the percentage differences are given. Bottom lines: average
historical (1961–1995) estimates and their standard error, SE. Mean and standard deviations are in mm for precipitation and in °C
for temperature. SE are in mm for mean precipitation, in °C for mean temperature, in % for standard deviations and dimension-

less for the autocorrelation coefficients. Values in bold refer to statistically significant differences

Model Mean sM sD r(1) r(2)
P T P T P T P T P T

Historical circulation indices (1961–1995)
CNNR 1 1.0 0.27 –5.6 –19.9 –0.1 –6.8 –0.047 –0.096 –0.028 –0.069
CNNR 2C –5.3 0.31 –8.8 –24.6 –4.6 –7.8 –0.048 –0.123 –0.026 –0.120
CNNR 2F 0.2 0.29 –2.1 –22.0 0.0 –7.5 –0.042 –0.104 –0.012 –0.087
Analog 1 –1.7 0.02 –15.4 –42.4 –0.9 –1.4 –0.181 –0.493 –0.078 –0.397
Analog 3 –7.9 0.20 –14.8 –34.4 –5.4 –2.5 –0.156 –0.352 –0.057 –0.288
Analog 5 –12.1 0.21 –18.5 –28.5 –9.4 –2.2 –0.161 –0.326 –0.063 –0.248

Simulated circulation indices
CNNR 1 –0.8 0.26 –8.7 –23.5 –1.2 –7.3 –0.049 –0.099 –0.027 –0.077
CNNR 2C –6.1 0.24 –13.6 –27.6 –5.0 –7.2 –0.054 –0.118 –0.030 –0.118
CNNR 2F –1.8 0.28 –7.6 –26.5 –2.0 –7.8 –0.048 –0.108 –0.016 –0.096
Analog 1 –2.9 0.04 –18.6 –42.2 –2.1 –1.3 –0.168 –0.453 –0.073 –0.364
Analog 3 –6.8 0.16 –17.7 –36.2 –4.4 –1.7 –0.147 –0.336 –0.062 –0.282
Analog 5 –9.3 0.20 –20.2 –33.9 –6.1 –1.9 –0.152 –0.325 –0.067 –0.256

Historical 65.0 3.54 35.9 2.2 4.2 4.2 0.287 0.825 0.148 0.639
SE 3.8 0.17 4.8 6.2 2.6 2.5 0.009 0.007 0.010 0.015
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cal average andthe  ̂yj are the simulated values for each
winter, averaged over the 28 runs. Note that S = 1 for a
perfect predictor, and S = 0 if –y is taken as predictor. 

The temporal variation of the area-average winter
precipitation is well described by the CNNR and ana-
log-1 models, with S ranging between 0.60 and 0.66.
The higher-order analog models exhibit less skill due
to the significant underestimation of the mean precipi-
tation amounts (see Table 1). This underestimation is
also visible in Fig. 3. For most winters the whiskers of
the simulated precipitation amounts are considerably
wider for the CNNR models than for the analog mod-
els, as shown for the CNNR-1 and analog-1 models.
The difference in whisker width between the CNNR
and analog models is even larger for the area-average
winter temperature (Fig. 4). The larger width of the
whiskers in the CNNR models is likely due to a larger
variation in the potential analogs (see Section 3.2.2). 

The simulations overestimate the average tempera-
ture of the coldest winters (1963 and during the mid-
1980s) and underestimate the temperature of the
warm winters (around 1990). This conditional bias is
weakest for the analog-5 model. As a result, this
model has the highest skill score (S = 0.71). So for the
analog models, the highest order is favourable for the
predictive skill of the winter temperature, while the
lowest order is favourable for the predictive skill of

the winter precipitation due to the large underestima-
tion of the mean precipitation in the higher-order
models. 

3.2.2. Selection effects

As a result of random sampling with replacement,
some historical days will appear more frequently in a
simulation run than other days. In the standard boot-
strap such differences are purely random. Nearest-
neighbour resampling may, however, also lead to a
systematic underselection of certain days and an over-
selection of other days (Young 1994). This explains for
instance why the mean and the daily standard devia-
tion sD of the historical data are not necessarily repro-
duced in the simulations. 

The selection effects of the simulations in this paper
are studied in the same way as in Buishand &
Brandsma (2001). Let Kt be the number of times that
Day t (t = 1, ..., 365J ) appears in a simulation run of
J* yr. In the case of random sampling, Kt has a binomial
distribution which can be can be approximated by a
Poisson distribution with parameter ν = J*/J:

(8)

Note that the distribution of Kt does not depend on
the use of a moving window. For nearest-neighbour
resampling the number of historical days that is drawn
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Fig. 3. Observed and simulated area-average winter precipi-
tation totals. (a) CNNR models; (b) analog models. Black line:
historical values; coloured symbols: simulated values aver-
aged over 28 runs; red whiskers: range of values in 28 runs
(CNNR-1 and analog-1 models only). Values in parentheses

are skill scores (see text)

Fig. 4. Observed and simulated area-average winter tempera-
tures. Details as in Fig. 3

a
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r times can be compared with the number expected
from the Poisson distribution with parameter ν. The
latter equals 365J × Pr(Kt = r). 

In Table 2 the frequency distributions of r for the
980 yr simulations are compared with the frequencies
for the Poisson distribution with ν = 28. The frequency
distributions are wider than the theoretical frequency
distribution for random sampling as a result of selection
effects. In the CNNR models the selection effect is
slightly larger for the simulations based on historical
circulation indices than for those based on simulated in-
dices. Of the CNNR models, CNNR 2C (second order in
the atmospheric circulation) has the largest selection
effect. In the analog models the selection effect in-
creases considerably with the order of the model. Thus,
the more information of the evolution of the atmos-
pheric circulation is used, the larger the selection ef-
fects tend to grow. Further, the differences in the selec-
tion effects between the simulations based on the
historical circulation indices and those based on simu-
lated indices are much larger than in the CNNR mod-
els. This is mainly due to the relatively large selection
effect in the analog simulations conditional on historical
circulation indices. Recall that in that case each simula-
tion consists of 28 runs based on the same 35 yr. In the
analog models the nearest neighbours (or analogs) are
determined by the circulation characteristics of the his-
torical record only. A particular conditioning day there-
fore has in each of the 28 runs the same nearest neigh-
bourhood, i.e. the same potential analogs. In the CNNR
models the nearest neighbourhood of a particular con-
ditioning day varies among the 28 runs, since the pre-
cipitation and temperature characteristics of the previ-

ously simulated day determine the potential analogs as
well. This larger variation in potential analogs is proba-
bly responsible for the smaller selection effect. 

Surprisingly, large differences in the selection effects
do not necessarily lead to large differences in the stan-
dard deviations and autocorrelation coefficients. In par-
ticular for the analog-1 model the selection effect for the
simulation based on historical indices is much larger
than for the simulation based on simulated indices, but
the differences between the second-order moments
(Table 1) are relatively small. In the simulations with the
largest selection effects, however, the average monthly
precipitation amount is significantly underestimated, in-
dicating an underselection of days with large rainfall and
an overselection of relatively dry days. 

3.2.3. Temporal dependence of spatial patterns

A resampling technique automatically preserves the
spatial patterns of the daily precipitation and tempera-
ture fields, but it does not necessarily reproduce the
dependence between the patterns of successive days.
Two measures of the temporal dependence between
the spatial patterns were considered: the pattern cor-
relation of 2 days that are l days apart (for precipita-
tion, days with no rainfall were excluded), and the
length of the difference vector of 2 days that are l days
apart. The pattern correlation correlates the spatial
fields relative to their respective spatial means (cen-
tered statistic). The reproduction of the pattern corre-
lation and the difference vector of the precipitation
and the temperature fields is presented in Table 3. 
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Table 2. Number of historical days drawn r times in 980 yr simulations compared with the number expected for the standard
bootstrap. The largest number of times that a historical day is drawn is given in the last column

Model                                                                                                         r
0 1–10 11–20 21–30 31–40 41–50 >50 rmax

Historical circulation indices (1961–1995)
CNNR 1 44 1096 2995 3857 2683 1220 880 152
CNNR 2C 155 1814 2830 2913 2301 1443 1319 131
CNNR 2F 37 1128 2949 3795 2671 1324 871 131
Analog 1 107 903 2787 3820 3004 1511 643 92
Analog 3 716 1993 2576 2413 1922 1378 1777 133
Analog 5 1078 2330 2498 2041 1528 1187 2113 179

Simulated circulation indices
CNNR 1 13 1021 2999 4002 2636 1270 834 144
CNNR 2C 17 1432 3127 3272 2429 1394 1104 120
CNNR 2F 12 1135 2952 3809 2698 1314 855 127
Analog 1 0 224 2187 5620 3792 843 109 65
Analog 3 6 1335 3162 3254 2464 1520 1034 94
Analog 5 20 2305 3256 2523 1771 1218 1682 154

Bootstrap 0 1 928 7890 3797 158 1 –
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There is always an underestimation of the pattern cor-
relation. The biases in the lag-1 precipitation pattern cor-
relation are similar in both types of models. For temper-
ature the biases are somewhat larger, in particular for
the analog models. The biases in the lag-2 pattern cor-
relation coefficients are about half of those in the lag-1
coefficients. The simulations based on simulated circu-
lation indices have similar biases (not shown). 

Most lagged difference vectors are overestimated.
Overall, the overestimation is worse for temperature
than for precipitation, and worse for the analog models
than for the CNNR models. This overestimation is
mainly due to the underestimation of the autocorrela-
tion coefficients (Table 1). The underestimation of the
latter also contributes to the underestimation of the pat-
tern correlation. However, unlike the difference vector,

the pattern correlation also depends on lagged cross-
correlations between the daily temperatures (or daily
precipitation) at different locations. From a first-order
approximation of the expected value of the pattern cor-
relation, it can be shown that the effect of the underes-
timation of the autocorrelation is partly compensated
by biases in the lagged cross-correlations. As a result
the pattern correlation looks less sensitive to biases in
the temporal dependence than the difference vector. 

3.2.4. Dry spell counts and dry spell lengths

Table 4 presents the relative biases of the average
number of dry days (P = 0 mm); the average number of
dry spells (i.e. series of consecutive dry days); the aver-

age dry spell length, DSL; the longest
dry spell in a 35 yr period, DSLmax 35;
and the bias of the lag-1 wet-dry auto-
correlation coefficient, rwd(1). These
statistics were again calculated for the
winter half-year (October-March). The
number of dry days is nearly correct in
the CNNR and first-order analog mod-
els, but the third- and fifth-order analog
models overestimate this by 4 to 6%.
This overestimation partly explains the
underestimation of the mean precipita-
tion (see Table 1) and is due to the pre-
viously discussed selection effects. In
both types of models the number of dry
spells is overestimated: in the CNNR
models somewhat more than 10%, and
in the analog models more than 30%.
As a result the average spell length is
underestimated: in the CNNR models
slightly more than 10%, and in the ana-
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Table 3. Differences in the lag-1 and lag-2 pattern correlations, rp(1) and rp(2) respectively, and the lengths of the lag-1 and lag-2
difference vectors, d(1) and d(2), between the 980 yr simulations and the historical data for the winter (October–March), aver-
aged over the 28 (35 yr) runs. Absolute differences are given for rp(1) and rp(2), and percentage differences for d(1) and d(2).
Bottom line: average historical (1961–1995) estimates. rp(1) and rp(2) are dimensionless, and d(1) and d(2) are given in mm for 

precipitation and in °C for temperature

Model rp(1) rp(2)                                         d(1) d(2)
P T P T P T P T

Historical circulation indices (1961–1995)
CNNR 1 –0.089 –0.128 –0.044 –0.065 6.2 18.4 3.2 3.4
CNNR 2C –0.083 –0.121 –0.041 –0.070 0.5 22.0 –2.3 8.1
CNNR 2F –0.087 –0.122 –0.040 –0.060 5.2 19.3 1.2 4.7
Analog 1 –0.100 –0.167 –0.040 –0.087 16.0 90.1 5.6 42.2
Analog 3 –0.089 –0.141 –0.039 –0.082 7.6 66.6 –1.2 30.6
Analog 5 –0.088 –0.145 –0.040 –0.082 3.7 61.9 –4.9 26.9

Historical 0.271 0.774 0.196 0.672 86.3 53.0 98.3 75.2

Table 4. Differences in the number of dry days, the number of dry spells, the av-
erage dry spell length, DSL, the maximum dry spell length in 35 yr, DSLmax 35,
and the lag-1 wet–dry autocorrelation coefficient, rwd(1), between the 980 yr
simulations and the historical data in winter (October–March). Absolute differ-
ences are given for rwd(1), and relative differences (%) for the other statistics.
Absolute and relative differences are averaged over the 25 stations and the 28
runs of 35 yr. Bottom line: historical (1961–1995) estimates; counts are per 

winter, lengths are in days and rwd(1) is dimensionless

Model No. of No. of DSL DSLmax 35 rwd(1)
dry days dry spells

Historical circulation indices (1961–1995)
CNNR 1 –1.6 13.3 –13.1 –8.8 –0.082
CNNR 2C 1.1 12.5 –10.1 –4.7 –0.074
CNNR 2F –1.0 13.2 –12.4 –5.3 –0.081
Analog 1 1.1 38.1 –26.8 –28.1 –0.227
Analog 3 3.8 33.7 –22.3 –16.0 –0.198
Analog 5 5.8 35.4 –21.8 –15.6 –0.208

Historical 83.8 26.6 3.1 24.4 0.411
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log models slightly more than 20%. Apart from the
analog-1 model, the relative underestimation of
DSLmax 35 is considerably smaller than that of the
average dry spell length. 

Like the lag-1 autocorrelation coefficient of the daily
precipitation amounts in Table 1, the lag-1 wet-dry
autocorrelation coefficient is significantly underesti-
mated in all simulations (the jackknife SE of the lag-1
wet-dry autocorrelation for the historical data is 0.010).
The underestimation of both rwd(1) and DSL can be
understood from the relation (Buishand 1978):

(9)

where WSL is the average wet spell length. If, as in
Table 4, the number of dry spells is overestimated,
then the number of wet spells is also overestimated
(since by definition a wet spell follows a dry spell and
vice versa). As a result both DSL and WSL are under-
estimated and consequently rwd(1) is underestimated. 

In terms of spell counts and spell lengths there is
very little difference between the simulations based on
historical circulation indices and those on simulated
circulation indices (not shown). 

3.3. Long-duration simulations

Monte Carlo techniques enable us to produce syn-
thetic time series of precipitation and temperature that
are much longer than the observed records. Using
such long-duration simulations as input into a rainfall-
runoff model offers the opportunity to get more reli-
able estimates of the probabilities of extreme river
discharges. 

The 980 yr simulations conditional on simulated cir-
culation indices that were split into 28 independent
35 yr records earlier are now used as single long-dura-
tion simulations. The distribution of the extreme 10 d
area-average precipitation amounts in these simula-
tions is examined in this section. An interval of 10 d
was chosen because flooding of the river Rhine is often
caused by large rainfall in winter over periods of about
10 d. An analysis of the January 1995 Rhine flood in
Germany (Fink et al. 1996) demonstrated that in parts
of the basin the monthly totals were more than 3 times
as large as the climatological averages and that about
70 to 80% of these high monthly totals fell within a
period of only 10 d. 

The largest 10 d area-average precipitation amounts
(average of all 25 stations) in each winter (October-
March) were extracted from the 980 yr simulations and
the 35 yr historical data. Fig. 5 presents Gumbel plots
of these winter maxima (the horizontal scale in these
plots is such that the ordered maxima follow a straight
line in the case of a Gumbel distribution). 

The Gumbel plots show that much larger 10 d area-
average amounts (up to 35%) are simulated than the
historical (1961–1995) maximum. Such unprecedented
rainfall events can be very useful for hydrological
design. Fig. 5 further shows that all models underesti-
mate the 10 d area-average precipitation amounts for
return periods between 5 and 20 yr. The underestima-
tion is largest for the analog models and the CNNR-2C
model. The analog models systematically underesti-
mate the 10 d area-average precipitation amounts for
all return periods, indicating that these models are not
very suitable for applications where the extreme multi-
day precipitation amounts are of interest. 

4. SUMMARY AND CONCLUSIONS

Multi-site simulation of daily precipitation and tem-
perature conditional on the atmospheric circulation
has been studied for 25 stations in the German part of
the Rhine basin using CNNR and a stochastic version
of the analog method. To fully explore the differences
between the CNNR and the analog models, the simu-
lations were divided into simulations conditional on
historical time series of circulation indices and simula-
tions conditional on simulated time series of circulation
indices. A second resampling model was used to gen-
erate long-duration time series of circulation indices. 

All conditional simulation models have a tendency to
underestimate the standard deviations and autocorre-
lation coefficients of daily precipitation and tempera-
ture and the standard deviations of the monthly pre-
cipitation totals and the monthly mean temperatures.

  rwd DSL WSL1 1 1 1( ) = − −
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Fig. 5. Gumbel plots of the 10 d winter precipitation maxima
for 980 yr simulations conditional on simulated circulation in-
dices and for the historical 1961-1995 data. Tr represents the

return period in years.
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In general, the underestimation is larger for the analog
models than for the CNNR models, with the exception
of the underestimation of the standard deviation of the
daily temperatures, which is much smaller in the ana-
log models. The number of days that is never or almost
never selected is relatively large for the analog models
conditional on historical circulation indices. The mean
precipitation amounts are significantly underestimated
in the simulations with the largest selection effects. All
simulations conditional on the historical circulation
indices underestimate the average temperature in the
warmest winters and overestimate the average tem-
perature in cold winters. The reproduction of the tem-
poral dependence of the spatial patterns of precipita-
tion and temperature by both types of models turned
out favourably for the CNNR models, although the dif-
ferences were not as large as for the univariate auto-
correlations. The biases in the dry spell counts and the
dry spell lengths are for the analog models often more
than twice as large as for the CNNR models. The
CNNR models also reproduced the extreme-value dis-
tribution of the 10 d area-average winter precipitation
amounts better than the analog models. Despite an
underestimation of the quantiles of this distribution,
the highest 10 d area-averages were in most 980 yr
simulations much larger than the highest observed
10 d area-average.

Since, the observed weather of historical days is
resampled, the dependence between daily precipita-
tion at different sites and the dependence between
daily precipitation and temperature is automatically
preserved. These dependencies often have a compli-
cated structure, which may not be adequately
described by parametric models. For many hydrologi-
cal applications the spatial dependency is of crucial
importance. This makes multivariate resampling mod-
els particularly suitable for hydrological purposes. The
comparison between the analog models and the CNNR
models, however, demonstrates that besides the circu-
lation characteristics of the target day, also the precip-
itation and temperature characteristics of the previ-
ously simulated day should be taken into account. 

A few potential limitations of the methodology can
also be identified. The method is rather data intensive
and, resampling of multivariate data may become
problematic if data are missing (which is quite com-
mon in observational records). The method does not
produce new daily precipitation and temperature
fields but merely reshuffles the historical days to form
realistic new sequences of those fields. As a result
daily rainfall amounts cannot be larger than those
observed. Similarly, daily temperatures for a particu-
lar location cannot be lower or higher than the
observed minimum or maximum value for that loca-
tion. The latter limitation may seriously bias the

results of CNNR in climate change applications. To
overcome this limitation, Lall & Sharma (1996) sug-
gested evaluating the means of the required variables
first from the selected nearest neighbours and then to
perturb these values by a residual using nearest-
neighbour resampling. For conditional simulation on
atmospheric predictors this strategy may need exten-
sion to allow for predictor values outside their range
in the historical data. 

It should further be noted that several studies of cli-
mate change simulations with General Circulation
Models (GCMs) have revealed that changes in precip-
itation usually cannot be explained by changes in the
atmospheric circulation alone. Consequently it
becomes recognized that the simulation of precipita-
tion should also be conditioned on (large-scale) predic-
tors directly related to the atmospheric moisture and
the temperature (for an overview, see Giorgi et al.
2001). For similar reasons the simulation of tempera-
ture should include predictors like the large-scale
(2 m) temperature, geopotential height or the thickness
of an atmospheric layer (e.g. Huth et al. 2001, Benestad
2002).
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Appendix 1. Simulation of daily circulation indices

A typical feature of air pressure is that the day-to-day
variability is relatively small during periods of high pres-
sure and generally large during periods of low pressure.
Such state- dependent behaviour cannot be reproduced by
classical autoregressive (AR) processes. Al-Awadhi & Jol-
life (1998) therefore studied the use of threshold autore-
gressive (TAR) models to describe time series of surface
pressure in the UK. Zwiers & von Storch (1990) applied this
class of models to time series of the Southern Oscillation
index. It seems reasonable to suspect that the statistical
properties of the circulation indices (which are based on air
pressure maps) are also state dependent. In contrast to the
univariate applications of the TAR models mentioned

above usually more than one index is needed to character-
ize the atmospheric circulation. Lall & Sharma (1996)
showed that nearest-neighbour resampling is able to
reproduce the nonlinear behaviour of a TAR model.
Because the extension of nearest-neighbour resampling to
the multivariate situation is straightforward, this method
was used to simulate time series of the daily circulation
indices Z, W and S. 

Three unconditional nearest-neighbour simulation mod-
els for generating Z, W and S were examined. The differ-
ent feature vectors Dt are schematically shown in Fig. A1.
In the first-order model (CIRC 1) the feature vector con-
tains the 3 standardized circulation indices on Day t – 1
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Appendix 1 (continued)

with equal weights wi. The feature vector of the second-
order model (CIRC 2) contains standardized circulation
indices for Days t – 1 and t – 2. The weights for Z̃t–1, W̃t–1,

S̃t–1,  Z̃t–2,  W̃t–2 and S̃t–2 are 1, 2, 1, 1, 0 and 1 respectively.
The weight for   W̃t–2 was set to zero because the autocorre-
lation structure of the W index closely
resembles that of a first-order AR process.
Finally, there is a third-order model (CIRC
3) for which  Z̃t–3 and   S̃t–3 are included in
the feature vector both with unit weight
(and the weight for W̃t–1 was set to 3). All
models made again use of the decreasing
kernel in Eq. (2) with k = 5, and the search
for nearest neighbours was restricted to
days within a 91 d moving window, cen-
tered on the calendar day of interest.

With the 3 models, 980 yr simulations
were performed by resampling from the
historical circulation indices of the 35 yr
period 1961–1995. Table A1 presents the
differences between the lag-1 and lag-3
autocorrelation coefficients of the simu-
lated circulation indices and those of the
historical record. The historical estimates
and their jacknife standard errors (Buis-
hand & Beersma 1993) are also given. 

In the first-order model, the lag-3 auto-
correlation coefficients of the Z and S
indices are significantly underestimated.
The other autocorrelation coefficients dif-
fer only slightly from the historical ones.
For the second-order model there are no
significant differences. The third-order
model is no improvement compared to the
second-order model because the lag-1
autocorrelation coefficients of Z and S are
significantly underestimated.

Additionally, the reproduction of the
average run length of 6 typical circulation

types was examined. Days were classified as cyclonic,
strong westerly and southerly if the standardized values of
respectively Z, W and S were larger than 1.0, and as anti-
cyclonic, easterly and northerly if  Z̃,  W̃ and  S̃ were smaller
than 1.0. Table A2 presents the percentage differences
between the average run lengths of the simulated indices
and those of the historical indices. 

The first-order model somewhat underestimates the
average run lengths. The underestimation of the run
lengths in the second-order model is worse but significant
only for northerly flows. The third-order model signifi-
cantly underestimates the average run lengths for the
cyclonic and anticyclonic flows as well as for the southerly
and northerly flows. In the historical record the average
run length for easterly flows is about 25% larger than for
strong westerly flows. All models are able to reproduce this
asymmetry between the average duration of strong west-
erly and easterly flows.

In conclusion, the third-order model (CIRC 3) performs
worse both in terms of lag-1 autocorrelation coefficients
and average run lengths of circulation types. The second-
order model performs better with respect to reproduction
of the autocorrelation coefficients and the first-order model
reproduces the run length statistics somewhat better. For
the simulations conditional on simulated circulation
indices in Sections 3.2 and 3.3, the second-order model
(CIRC 2) was used to generate 980 yr of daily circulation
indices.

Table A1. Differences between the lag-1 and lag-3 autocorrelation coefficients of
daily circulation indices in 980 yr simulations and the historical data. Bottom lines:
historical (1961–1995) estimates of r(1) and r(3) with their standard errors, SE. Z, W
and S denote the relative vorticity, the west component and the south component of
the flow respectively. Values in bold refer to statistically significant differences

Model r (1) r (3)
Z W S Z W S

CIRC 1 –0.008 –0.008 –0.008 –0.091 0.008 –0.086
CIRC 2 –0.018 –0.008 –0.021 –0.014 0.017 –0.013
CIRC 3 –0.033 –0.010 –0.036 –0.015 0.011 –0.022

Historical 0.498 0.755 0.521 0.182 0.393 0.190
SE 0.012 0.006 0.011 0.010 0.012 0.011

Fig. A1. Elements of the feature vector (solid boxes) for uncon-
ditional simulation of circulation indices Z, W, S (dashed
boxes): (a) CIRC 1; (b) CIRC 2 and (c) CIRC 3. Asterisk indi-
cates that the circulation index was simulated in a previous

time step; tilde refers to a standardized value
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Table A2. Relative differences (%) between average run lengths of 6 typical circu-
lation types in the 980 yr simulations and the historical data. Bottom lines: histori-
cal (1961–1995) estimates of the average run lengths (d) with their relative stan-

dard errors, SE (%). Values in bold refer to statistically significant differences

Model Cyclonic Strong Southerly Anti- Easterly Northerly
westerly cyclonic

CIRC 1 –1.20 –1.00 –0.65 –0.39 –2.17 –1.35
CIRC 2 –2.77 –2.17 –2.62 –2.47 –2.00 –4.53
CIRC 3 –5.26 –4.25 –4.00 –4.71 –3.50 –6.87

Historical 1.74 2.14 1.69 1.62 2.70 1.81
SE (%) 1.97 2.32 1.83 1.74 2.86 2.10


