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Abstract
Quantifying the response of any given system beyond their current condition to weather alone or together with other factors requires
predicting realizations of future weather conditions. The predicted weather data should not only be sufficiently accurate, but also their
time scale should be in accordance to the decision support system in which the studied system is being applied. Inclusion of predicted
weather data with, for example, a crop process-based simulation model could provide valuable and timely information for evaluation of var-
ious management techniques to avoid potential losses or increase crop production and income. Weather analogue as a nonparametric ap-
proach is easy and accurate to use to achieve this goal. In this study a weather analogue modeling tool is presented for predicting daily
weather data realizations that are based on a modification of the k-nearest neighbor approach. Our intent was to develop a tool to predict
a realization of real-time daily weather data by introducing two different methodologies for the k-nearest neighbor approach. In the first
approach (k-mean), weather prediction for day tþ 1 was assumed as the average of all days found as the k best match days for the target
day. In the second approach we assumed that only a fraction of the observed data (target year) was available (e.g. 90, 120, and 150 days) and
that the realization for the remainder of the year is of interest. Based on this approach, the model should recognize the most similar pattern
to the available data of the target year among the same sequence of historical data. Daily weather data of the selected year as the best match
would be considered for the remainder of the target year. Both approaches were compared with observed data from 16 locations in the USA,
Europe, Africa, and Asia, representing different climatic regions. Employing the first approach (k-mean), the k-NN model was quite prom-
ising and was able to recognize the pattern of the target year among the historical observed weather data for solar radiation, maximum and
minimum temperature. However, the k-mean approach only reproduced the observed pattern of precipitation successfully when there was not
a high variability in the pattern of precipitation occurrences. Using the second approach, as expected, a larger share of observed data in the
target year beyond 90 days greatly improved the accuracy of prediction. However, after using 150 days both bias measures, e.g., MSD and
MASE, slightly increased due to a change of the best match year. The results from this study showed that this weather analogue program
could be a valuable tool for realization of any weather dependent function. There is also scope for incorporation of this tool with application
of agricultural, ecological, and hydrological process-based simulation models.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Climate forecasting; Weather data generator; Weather software; Climate variability; Real-time weather realization
Software availability

Name of product: Weather Analogue
Developed by: Mohammad Bannayan and Gerrit

Hoogenboom
* Corresponding author. Tel.: þ1 770 229 3436; fax: þ1 770 228 7218.

E-mail address: bannayan@uga.edu (M. Bannayan).

1364-8152/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.envsoft.2007.09.011
Contact address: Department of Biological and Agricultural
Engineering, University of Georgia, Griffin, GA
30223, USA. Tel.: þ1 770 229 3436; fax: þ1 770
228 7218. bannayan@uga.edu

Available since: 2007
Programming language: Delphi 2006
Hardware requirement: Personal Computer with Windows XP

or equivalent
Program size: 500 kbytes
Availability: gerrit@uga.edu

mailto:bannayan@uga.edu
mailto:gerrit@uga.edu
mailto:bannayan@uga.edu
http://www.elsevier.com/locate/envsoft


704 M. Bannayan, G. Hoogenboom / Environmental Modelling & Software 23 (2008) 703e713
1. Introduction

Agriculture is one of the most weather dependent human
activities (Oram, 1989). Farmers usually use a conservative
approach for cultivation due to the unknown weather they
might face. Vulnerability of agriculture to weather variability
makes weather an important component of the agricultural
production system. Agricultural businesses are responsive to
weather fluctuations mainly due to the impacts of weather
on production and associated management interventions.
The availability of weather realizations with an adequate ac-
curacy for the unrecorded future is an essential component
of crop production forecasts (Bannayan et al., 2003). Incorpo-
rating the predicted weather data with an agricultural, ecolog-
ical, and hydrological process-based simulation model is
considered an added value to the prediction of weather data
(Hoogenboom, 2000; Jones et al., 2000). However, there is
usually a mismatch between the spatial and temporal scale
of the output of dynamic climate models (Goel and Dash,
2007) and the required input for process-based simulation
models. A means of predicting future weather data is required,
either as standalone or as part of a decision support system,
for improved and timely management of farming systems to
reduce the risk of production loss and thus increase the gross
margins and net returns (Tsuji et al., 1998).

Weather data generators have been developed and em-
ployed for generating the required daily weather data for
model applications (Geng et al., 1986; Jones and Thornton,
2000; Yates et al., 2003; Kilsby et al., 2007). These generators
can be broadly classified into two categories as parametric and
nonparametric approaches. Weather generators based on para-
metric statistical techniques typically use precipitation as the
driving variable (Richardson, 1981; Nicks and Harp, 1980).
In such models, precipitation occurrence and amount are gen-
erated independently and other variables are then generated
based on the stochastically generated precipitation. A major
drawback of these weather generators is that persistent events,
such as drought or prolonged rainfall, are not well simulated
(Hartkamp et al., 2003; Sharif and Burn, 2005). This aspect
was addressed in models presented by Rackso et al. (1991)
and Semenov et al. (1998), but their models are still site spe-
cific and require the specification of the model parameters
(Soltani and Hoogenboom, 2003; Sharif and Burn, 2005).
Nonparametric resampling procedures form an alternative
approach to predict daily weather data. An interesting feature
of nonparametric approaches is that no assumption has to be
made about the underlying distributions of each of the
variables and of the dependencies between those variables
(Brandsma and Konnen, 2006). Among nonparametric ap-
proaches the k-nearest neighbor (k-NN) approach has shown
to be promising and has been applied in various prediction
studies, including remote sensing (Chi and Bruzzone, 2005),
traffic forecasting (Davis and Nihan, 1991), molecular biology
(Wu et al., 2005), soil science (Nemes et al., 2006), forest sci-
ence (LeMay and Hailemariam, 2005), and hydrology (Todini,
2000). In this approach, k refers to the number of nearest
neighbors on which the selection is based and NN abbreviates
nearest neighbors. The k-NN method is based on recognizing
a similar pattern of target file within the historical observed
weather data which could be used as prediction of the target
year. The target year is the initial seed of data which, together
with the historical data, are required as input files for running
the model. This method relies on the assumption that the ac-
tual weather data observed during the target year could be
a replication of weather recorded in the past. Nonparametric
methods based on k-NN bootstrap methods (Young, 1994;
Rajagopalan and Lall, 1999; Buishand and Brandsma, 2001)
can improve upon the parametric models. Buishand and
Brandsma (2001) extended this approach to predict weather
data across multi-locations. The k-NN algorithm typically
selects a specified number of days similar to the pattern of
weather variables of the day of interest. One of these selected
days is randomly resampled as prediction of the weather for
the next day.

Various predictions with dynamic agricultural, ecological,
and hydrological models require sufficient lead time forecasts
of weather variables to enable informed management deci-
sions. By providing, in advance, information early enough, it
might be possible to adjust critical agricultural, ecological,
and hydrological decisions which would result in significant
improvement in efficiency of agro-environmental management
and food security. Previously it has been shown (Bannayan
and Hoogenboom, in press) that the k-NN approach is able
to reproduce a similar pattern of the observed weather data
featured as the target year from historical weather data. The
study also determined the minimum number of historical years
required for obtaining a similar accuracy when the full data-
base of historical data was used. This study introduces
a new tool for predicting daily weather data realizations based
on the modified k-NN approach. The overall goal was to deter-
mine if the new approaches are able to predict the future ‘‘un-
recorded’’ data even if only a partial number of days of
observed data exists for the target year.
2. Materials and methods

The k-NN approach is rooted in pattern recognition in which a target ob-

ject with a defined vector of features could be used to find a similar pattern

among the objects space (e.g. historical years of observed weather data).

The k-NN procedure determines the similarity between different patterns ac-

cording to one or more selected criteria. Yakowitz (1987) and Karlsson and

Yakowitz (1987) constructed a robust theoretical base for this method. The

original algorithm has been explained in detail by Brandsma and Buishand

(1998), Rajagopalan and Lall (1999), and Gangopadhyay and Rajagopalan

(2005). The prediction flowchart for the default approach for a 1-day predic-

tion and the tool interface are shown in Figs. 1 and 2, respectively. For n suc-

cessive number of days to be predicted, the processes shown in the flowchart

(Fig. 1) should be run for n times.

The feature vector of the target year, as the available latest year of ob-

served weather data for each of our study sites (Table 1), consisted of observed

data for solar radiation, precipitation, and maximum and minimum tempera-

ture. The pattern of observed data for each day (t) of each site is compared

to the pattern of the same variables for the same day in each year of the his-

torical weather data. The comparison process computes the Euclidean distance

between the target pattern (each day) and each historical pattern (same day as

target day). For each set of historical data, the Euclidean distance computation

is needed to determine the k-nearest neighbor of the target data. Then,
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Fig. 1. Sequence of steps for the k-NN approach.
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a probability weight is assigned to each distance with the smallest weight to

the largest Euclidean distance order.

dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"Xd

j¼1

Wj

�
Vij �Vmj

�2

#vuut ð1Þ

where dj is the Euclidean distance, Vj is the jth component of either of vectors

(feature, i, and historical, m), d is the number of weather variables and Wj are

weights. The weight function of the k neighbors is calculated as:
Wj ¼
1=jPk
j¼1 1=j

; j ¼ 1;.; k ð2Þ

The final selection from k patterns (including all four weather variables) as

prediction for the next day (day tþ 1) is based on a unique random number

sampling procedure. Therefore, based on a generated uniform random number

U (0, 1) one of the k neighbors is selected as the predicted data for day tþ 1.

We introduced two new approaches into the original k-NN algorithm. The

first approach considers the average of the k days (k-mean) as representative of

weather data of tþ 1 instead of resampling 1 day out of k days by probability

weighting. In other words, if the target day (t) is March 1 and k is defined as



Fig. 2. Interface of the k-NN software tool.
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seven, k days includes the period from February 21 to March 7. In this ap-

proach, we used the average of all these days as prediction of the weather

data for day tþ 1. The model was run employing this approach and the

weather data of the last observed year (Table 1) from the set of historical years

were used as the target year.

The second approach is based on the idea that we have recorded weather

data for part of the year and the weather data for the remainder of the year have

not been observed and recorded yet. In this approach, the model is able to find

the best match for the remainder of the year from observed historical data
Table 1

Physiographic features, length of the historical database, target year, historical ann

study sites (latitude: Lat, longitude: Long, and elevation: Elev)

Country State/province/town Station Lat (N) Long (W) E

USA Alabama Baldwin 30�880 �87�780 8

Burkina Faso Bale Boromo 11�730 �2�920 26

USA Alabama Covington 31�300 �86�520 7

USA California Davis 38�530 �121�780 1

Burkina Faso Mouhoun Dedougou 12�460 �3�480 29

USA Alabama Limestone 34�680 �86�880 18

Iran Khorasan Mashhad 36�150 59�280 98

USA Michigan Michigan 42�400 �85� 380 27

USA Georgia Midville 32�880 �82�220 8

USA Florida Monroe 25�000 �80�520

USA Florida Nassau 30�670 �81�470

USA Georgia Plains 32�050 �84�370 15

USA Florida Sumter 28�670 �82�080 2

USA Alabama Tallapoosa 32�820 �85�650 20

USA Georgia Tifton 31�450 �83�480 11

UK Harpenden Rothamsted 52�500 �5�000 10

Tmax: maximum temperature, Tmin: minimum temperature.
based on a similar pattern with recorded weather data of the target year. For

example, when the target year consists of only 90 observed days (starting

on January 1) the model calculates dj values between the target year and

each historical year separately for the first 90 days of the year. Afterwards,

all calculated values for dj for all historical years are sorted in ascending order.

The historical year with the lowest dj will be selected as the best match. At this

stage, the output file contains 365þ 1 days of weather data, consisting of the

first 90 days from the target year and the remainder from the best match year.

Obviously, as we proceed through the target year (more than 90 days), the
ual average of radiation, and temperature and total annual precipitation of the

lev (m) Radiation

(MJ m�2)

Tmax

(�C)

Tmin

(�C)

Precipitation

(mm)

Database

period

Target

year

3 16.3 25.3 13.6 1696.7 1913e2004 2004

4 20.9 34.9 21.2 912.1 1945e1999 1999

6 16.1 23.0 10.0 1269.0 1912e2004 2004

8 17.6 23.6 7.7 442.1 1909e2002 2002

9 22.6 35.2 21.9 810.9 1945e1999 1999

3 15.2 22.3 9.2 1362.5 1950e2002 2002

5 * 22.4 8.2 255.5 1962e2004 2004

7 14.5 15.0 3.7 951.4 1929e2002 2002

5 10.1 24.3 11.3 1150.0 1957e2004 2004

2 18.9 29.1 18.2 1361.2 1936e2003 2003

4 16.7 25.2 15.5 1296.9 1910e2003 2003

2 16.3 24.2 11.3 1246.0 1956e2004 2004

3 17.2 28.2 15.0 1301.0 1918e2002 2002

7 15.9 14.4 1.3 1227.8 1910e2004 2004

6 16.5 25.1 12.7 1200.1 1911e2004 2004

0 9.7 13.4 5.7 701.6 1959e1999 1999
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share of observed data in the output file will be higher. However, for each time

update of the observed daily data, the model should be run again.
2.1. Comparison of observed vs. predicted data
The Mean Square Difference (MSD) was used to compare the observed

and predicted data. The calculation of MSD is based on using n sets of pre-

dicted (x) and observed ( y) values, which are compared as the measure of

the difference between the two. The MSD was calculated as:

MSD¼
Xn

i¼1

ðxi � yiÞ2

n
ð3Þ

However, as MSD is sensitive to outliers (Armstrong, 2001), Mean Abso-

lute Scaled Error (MASE) (Hyndman and Koehler, 2006) may eliminate such

a problem due to its independency of the scale of the data. It was, therefore,

also employed in the accuracy calculation. MASE was calculated as:
qt ¼
et

1
n�1

Pn
i¼2jYi � Yi�1j

ð4Þ

and MASE¼mean (jqtj).
Where Yi and Yi � 1 denote the observation at time i and i� 1, et denotes

the difference between the observed and the predicted data at time t, and qt

is the scaled error. MASE is the absolute value of mean of qt.
2.2. Study site
This study employed daily weather data from 16 sites, from the USA,

Europe, Africa, and Asia (Table 1). Latitude, longitude, elevation, target

year, and the length of historical observed weather data for each site are pre-

sented in Table 1. Monthly rainfall patterns were different from one site to

another. The historical average minimum temperature was as low as 3 �C for

Michigan and as high as 22 �C for Dedougou, Burkina Faso. The highest

historical average maximum temperature (40 �C) was recorded for Boromo,

Burkina Faso, while the lowest (13.4 �C) was obtained for Davis, CA, USA.
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The historical average daily solar radiation also ranged from about

14.5 MJ m�2 d�1 in Michigan, USA to 22.6 MJ m�2 d�1 in Dedougou,

Burkina Faso.
3. Results and discussion
3.1. Approach I
Applying the k-mean modification of k-NN approach
showed that the model was able to reproduce similar values
and patterns of solar radiation, minimum and maximum tem-
perature, but underestimated the precipitation for most of our
study sites (Fig. 3). Observed solar radiation within the target
year of each site ranged from 2.5 to 26.7 MJ d�1 and was accu-
rately predicted by the k-mean approach as 2.4e26.8 MJ d�1.
Similar to solar radiation, this approach was able to follow
the pattern of both observed minimum and maximum temper-
ature across all sites. The range of values for observed mini-
mum and maximum temperature were �4.2 to 26.2 �C and
5.7e39.9 �C, respectively. The predicted range for minimum
temperature was �5.5 to 26.1 �C and for maximum tempera-
ture was 3.6e39.8 �C. This indicated the capability of the
tool to monitor the observed pattern of weather data of the tar-
get year, find the k best match days for each day of the target
year, using the k-mean approach, and to predict the realization
of weather data for the current year. Employing the k-mean ap-
proach, the tool was able to find a similar pattern for the low
precipitation values across all sites, but underestimated the
high values for precipitation.

The Mean Square Difference (MSD) for each weather vari-
able for all sites is shown in Table 2. Precipitation had the
highest values for MSD compared to the other weather vari-
ables. The two highest values for precipitation were obtained
for Covington and Plains, while the two lowest values were
obtained for Davis and Rothamsted (Table 2). A further
Table 2

Mean Square Difference (MSD) of the predicted vs. observed values for solar radia

approach

Country State/province/town Station MSD

Solar radiation (MJ m�2) M

USA Alabama Baldwin 0.7 1.

Burkina Faso Bale Boromo 2.9 0.

USA Alabama Covington 0.7 0.

USA California Davis 0.3 0.

Burkina Faso Mouhoun Dedougou 5.8 0.

USA Alabama Limestone 0.9 2.

Iran Khorasan Mashhad * 2.

USA Michigan Michigan 1.3 4.

USA Georgia Midville 0.7 1.

USA Florida Monroe 0.3 0.

USA Florida Nassau 0.6 1.

USA Georgia Plains 1.0 1.

USA Florida Sumter 0.7 1.

USA Alabama Tallapoosa 0.5 1.

USA Georgia Tifton 0.6 0.

UK Harpenden Rothamsted 2.5 1.

*Not available.
analysis of the precipitation patterns of these four sites showed
that for Covington and Plains, the outliers for the amount of
precipitation, e.g., close to 200 mm for Covington and
140 mm for Plains, occurred in both the target year and the
historical data. In contrast for Davis and Rothamsted the pre-
cipitation values were smoother and lower and there were no
outlier data such as a heavy precipitation occurrence for any
given day. These results suggest that applying the k-mean ap-
proach, the model was able to follow the pattern of solar radi-
ation, maximum and minimum temperature quite well. This
method also showed promising results when very high values
for precipitation, e.g., more than 100 mm, did not occur for
a given site. However, if a site had a history of very heavy
and intensive precipitation on any given day, then due to the
nature of the average function, the k-mean approach was not
able to follow the exact pattern of observed precipitation.
3.2. Approach II
Our results across all sites (Figs. 4 and 5) showed that the
model was able to find the most similar target year pattern
among the historical observed data when only a fraction
of weather data of a year was available. All weather vari-
ables, including extreme values of precipitation occurrence,
were reasonably reproduced. Table 3 shows a good perfor-
mance of the model to capture both the annual mean and
variation of observed data when the target year contained
120 days of observed weather data. The highest correlation
coefficient (0.97) between the observed and predicted annual
mean was obtained for minimum temperature while the
lowest correlation coefficient (0.62) was obtained for
precipitation.

The highest MSD was obtained for precipitation and the
lowest was obtained for solar radiation (Figs. 4 and 5). It
was our expectation that a higher number of contributed
tion, precipitation, and maximum and minimum temperature using the k-mean

aximum temperature (�C) Minimum temperature (�C) Precipitation (mm)

4 1.03 33.6

7 0.86 19.4

8 2.00 65.3

9 1.6 2.1

7 0.6 3.2

6 1.6 9.6

9 3.2 3.2

4 3.2 1.4

4 1.6 17.7

2 0.7 6.9

1 0.6 6.6

1 1.2 44.2

1 0.5 10.9

4 1.5 19.2

9 0.7 3.5

8 1.6 1.3
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Fig. 4. Mean monthly observed and predicted solar radiation and precipitation across all study sites when the target year contained 90, 120, and 150 observed days.
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days as observations in the target year would reduce the statis-
tical mismatch of predicted data vs. the target year. As the
number of observed weather days increased from 90 to 120
days, the MSD values of prediction decreased for all weather
variables. However, MSD values were slightly higher for
minimum temperature, solar radiation, and precipitation using
150 vs. 120 days of observed data. This could be due to finding
a different best matching year when using a different amount
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of observed weather data in the target year. However, the
correlation between predicted and observed data increased
by increasing the share of observed data in the target year.
A comparison of observed and predicted data for the months
of July and December across all study sites when the target
year contained 120 days of observed data is shown in Fig. 6.
These two months were chosen to represent different summer
and winter weather conditions in a year for all sites. Although
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the prediction of solar radiation and maximum and minimum
temperature was reasonably matched with the observed data,
precipitation was slightly overestimated especially for July
when compared to December. However, across all sites the
MASE, except for minimum temperature, was lower in De-
cember when compared to July. The overestimation of precip-
itation in July was for the sites where the variation of predicted
annual precipitation (e.g. standard deviation) was lower com-
pared to the target year for the same site. Further analysis of
data showed those sites with higher MSD values for precipita-
tion contained heavy daily precipitation for a certain day,
including Boromo with 119.1 mm on day of year 113, Baldwin
with 228 mm on day of year 250, and Covington with
189.5 mm on day of year 140. Our results showed that those
sites with lower MSD values do not contain any daily precip-
itation that was higher than 40 mm in both the target year and
the historical data.

The comparison of the k-mean approach with the full
observed data in the feature vector of the target year with the
second approach that contained only part of observed weather
data is encouraging for further work. The k-mean approach
showed promising for sites where there is no high variation
in observed data and can provide a promising estimate of future
weather realizations for these types of sites. The k-mean ap-
proach could be considered a potential approach for estimating
missing weather data as well. However, when only part of the
observed data is available, prediction of unrecorded weather
data requires the second approach. Further work is needed to
improve the performance of the second approach employed
in the original k-NN algorithm. Applying different weight fac-
tors for different weather variables or using a larger time scale
than daily data should be considered for further analysis, espe-
cially for precipitation.
4. Conclusion

In this paper, we describe the development of a tool that pre-
dicts daily weather data realizations consisting of solar radia-
tion, maximum and minimum temperature, and precipitation
using a modified k-nearest neighbor methodology. The tool
was evaluated across 16 sites in the USA, Europe, Africa,
and Asia. Employing the k-mean approach for k-NN was prom-
ising for the prediction of the weather variables that were in-
cluded in this study, even for precipitation when there was no
heavy precipitation for any given day. Using the second ap-
proach, the comparison of observed and predicted data showed
that it was possible to predict the unrecorded daily weather data
with reasonable accuracy. This program can be used as a stand-
alone tool or can be incorporated into any decision support sys-
tem for various applications that require realizations of future
daily weather data. In addition to observed weather data for
the target year, the tool requires observed historical weather
data, both in daily format. Obviously, a larger number of histor-
ical years of weather data would benefit the accuracy of the
model simulation by providing a better chance to find the
best matching year.
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