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re-sampling technique
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ABSTRACT: Weather is one of the primary driving variables that prominently impacts agricultural production and
associated disciplines, such as resource management. Lack of daily weather data for many locations along with many
prognosis requirements for weather for various applications has resulted in continuous efforts to determine the best possible
approach for weather sequence prediction. The goal of this study was to verify the k-nearest neighbours (k-NN) approach
for the prediction of daily weather sequences. This method can be employed on the assumption that the weather during
the target year is analogous to the weather recorded in the past. We used the nearest-neighbour re-sampling method for the
simultaneous prediction of daily radiation, maximum and minimum temperature, and precipitation for multiple locations.
A vector of weather variables, including precipitation, radiation, maximum and minimum temperature, on day (t + 1) is
re-sampled from historical data by conditioning on the vector of the same variables for the preceding day (t). Observed
historical weather data for ten different sites located in Georgia were used for evaluation. The selected sites represent
different climatic conditions and the number of daily records varied from 46 to 97 years. The predicted daily and monthly
data were compared with both the observed daily and monthly average historical weather data and the target year of
2005 for all ten study sites. The statistical analysis included summary statistics, mean square difference (MSD) and its
components, and the Kolmogorov-Smirnov (KS) test. The results showed that the k-NN approach was able to reproduce
a similar pattern of the target year 2005 from the observed historical weather data. For all weather variables, both the
lower and upper quartiles (Q1 and Q3) showed a very good agreement with the data of the observed target year. The
cumulative distribution functions (CDFs) for the observed and predicted data were not significantly (P > 0.05) different
across all sites for precipitation, except for the minimum temperature of seven study sites, radiation for five study sites,
and maximum temperature for one study site. Our investigation to determine the minimum number of historical observed
weather data required for obtaining reliable prediction revealed that 25 years of data were sufficient to find similar patterns
compared to when all available weather data were used across all sites. It can be concluded from this study that the k-NN
approach on the basis of pattern recognition can be considered as a reliable method to predict daily weather sequences
based on historical weather data. Copyright  2007 Royal Meteorological Society
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1. Introduction

Process-based agricultural, ecological, and hydrological
simulation models require weather information as input
data for their operation. High quality weather data are
quite crucial for the accurate simulation of the under-
lying crop, soil, and atmospheric processes. The critical
agro-meteorological variables associated with crop pro-
duction are precipitation, air temperature, and solar radi-
ation (Hoogenboom, 2000a). For many agricultural loca-
tions, weather data are either not recorded or only a few
parameters are available (Hoogenboom, 2000b). Signifi-
cant advances in data collection and storage has enabled
easier extraction of information from large databases. The
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recent availability of long-term historical data in digital
format has provided an opportunity to develop mathemat-
ical models that can estimate weather data for locations
that have only a small fraction of records. However, even
when observed weather data are available, for prognostic
applications one needs a set of estimated or generated
weather data for the future (Bannayan et al., 2003).

In the absence of observed data, researchers use data
from nearby meteorological stations; derive data from
other observed weather variables, e.g. solar radiation
from air temperature or other variables (Garcia y Garcia
and Hoogenboom, 2005); or obtain data with stochastic
weather generators (Richardson, 1981; Hutchinson, 1987;
Thornton et al., 1997; Stockle et al., 2001; Jarvis et al.,
2002). However, access to high quality weather databases
required for precise prediction of agricultural production
is still limited (Hansen, 2005). Therefore, further research
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is needed to identify scientific methodologies that can be
used to increase the quality of weather data prediction.
This may include developing new models, improving
weather data generators, using historical weather data,
and exploring weather analogue models. The develop-
ment and evaluation of weather generators have been
studied extensively (Meinke et al., 1995; Semenov and
Barrow, 1997; Soltani et al., 2000; Hartkamp et al., 2003;
Kuchar, 2003). Many studies have also been conducted in
which generated daily weather data from weather genera-
tors were applied to run the eco-physiological crop mod-
els for locations where long-term historical data were not
available (Azam-Ali et al., 2001; Bannayan et al., 2003).
Weather generators that are based on parametric statisti-
cal techniques typically use precipitation as the driving
variable (Nicks and Harp, 1980; Richardson, 1981; Geng
et al., 1986). In these models, the occurrence and amount
of precipitation are generated independently. The other
variables are then generated based on the stochastically
generated precipitation. A major drawback of this type of
models is that persistent events, such as drought or pro-
longed rainfall, are not well simulated (Hartkamp et al.,
2003; Sharif and Burn, 2005).

Non-parametric re-sampling procedures are an alter-
native to generating daily weather data. The k-nearest
neighbours (k-NN) is an analogous approach (Lall and
Sharma, 1996; Rajagopalan and Lall, 1999). This method
has its origin as a non-parametric statistical pattern recog-
nition procedure to distinguish between different patterns
according to a selection criterion. Yakowitz (1987) and
Karlsson and Yakowitz (1987) constructed a robust theo-
retical base for the k-NN method. It has been employed
in various studies, especially in hydrology (Galeati, 1990;
Kember and Flower, 1993; Todini, 2000). The k-NN
approach has also been successfully applied in other
disciplines, including remote sensing (Chi and Bruz-
zone, 2005), traffic forecasting (Davis and Nihan, 1991),
molecular biology (Wu et al., 2005), soil science (Jagtap
et al., 2004; Nemes et al., 2006), and forestry (LeMay
and Hailemariam, 2005). The scientific theory has been
explained in detail by Brandsma and Buishand (1998),
Rajagopalan and Lall (1999), and Gangopadhyay et al.
(2005).

In our implementation of the k-NN approach, the
similarity between the test instances, namely, the target
year and the training instances, e.g. the historical weather
data, determines k top-ranking nearest instances and
the algorithm finds the most similar category where k

refers to the number of nearest neighbours on which the
selection is based. The k-NN method is based on the
assumption that the most similar instance should belong
to the same class (k neighbours) as the best match in the
training instances. To determine the difference between
two instances, Salzberg et al. (1991) proposed several
distance metrics of which the Euclidean distance metric
is the most common. The algorithm is based on the idea
that the smaller distance between two instances indicates
a higher similarity between them.

Non-parametric methods based on the k-NN boot-
strap methods (Young, 1994; Rajagopalan and Lall,
1999; Buishand and Brandsma, 2001) can improve upon
the parametric models. Rajagopalan and Lall (1999),
using the k-NN approach, found that six simulated daily
weather variables showed a higher accuracy in compari-
son with the parametric method (Richardson, 1981). The
non-parametric approach has also been used to predict
weather data for flood forecasting (Toth et al., 2000). An
interesting feature of this approach is that no assump-
tion has to be made about the underlying distributions of
each of the variables and of the dependencies between
those variables (Brandsma and Konnen, 2006). It can
also be easily modified to be conditioned upon El Niño-
Southern Oscillation (ENSO) or other ocean–atmosphere
phenomena. However, it is rather important to verify such
approaches by predicting daily weather data across multi-
sites with different climatic conditions.

The primary objective of this study was to evaluate
the accuracy of the k-NN approach by using daily
weather data of one specific year as the target year,
e.g. the test instance and historical daily weather data
of multiple sites in Georgia as space instances. The
second objective was to determine how many years of
historical weather data (space instances) are required
as the minimum number to obtain a similar accuracy
compared to using the entire available historical data set
of a given site.

2. Methodology

2.1. k-NN method

We implemented the k-NN procedure using the following
steps:

(1) A feature vector consisting of observed weather data
for the target year including solar radiation, precipi-
tation, and maximum and minimum temperature was
constructed.

(2) All days within a moving window of width w centred
on day t , i.e. the day which is based on observed
data and for which we want to predict the next
day, were selected as potential candidates for day
t + 1. For example, a 15-day temporal window for 1
March requires the data of 22 February to 8 March,
excluding the data for day t from the historical years.
Similar to the studies of Yates et al. (2003) and
Gangopadhyay et al. (2005), a 15-day window, i.e.
7 days’ lag and 7 days’ lead (k = 7), was used in
this study. The use of the moving-window approach
is to represent smooth variations across seasonal
boundaries (Sharma and Lall, 1999). Therefore, for n

days as moving window and t days of a year with j

weather variables, a data matrix was developed that
had n × t rows and j columns. It is important to note
that j can vary, and depends on how many weather
variables one wants to use at the same time. In our
implementation j was set to 4 and included solar
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radiation, precipitation, and maximum and minimum
temperature. The structure of the data matrix is:

[A]f nt×4 =



a1,1 . . . a1,4

a2,1 . . . a2,4

. . .

ant . . . ant,1


 (1)

where ai,j is the value of the weather variable for the
time index i (i = 1, . . . , nt) and for weather variable
j (j = 1, . . . , 4).
(3) For the variables to be dimensionless and to reduce

the seasonal variation, the data were converted
to standardized variables (Brandsma and Buishand,
1998). This is also because variables with higher
magnitudes disproportionately influence the neigh-
bour selection (Yates et al., 2003). In this study, for
each year of the historical weather years, the daily
data for each variable was subtracted from its annual
mean (md) and divided by the annual standard devi-
ation (sd):

x̃t = (xt − md)/sd (2)

where xt and x̃t are the original and standardized vari-
ables, respectively, for day t .
(4) The Euclidean distance, dj was computed between

the feature vector of the current day’s weather and
the vector of observed data for each of the 15 days
of the individual historical years.

dj =

√√√√√



d∑
j=1

Wj(Vij − Vmj )2


 (3)

where dj , refers to the Euclidean distances; Vij and Vmj

are the j th components of each of vectors (feature and
historical); d is the number of weather variables; and
Wj are scaling weights (1/Sj) where Sj is the standard
deviation of observed data. The k-NN approach selects
from Euclidean distances and assigns probability weights
to a subset of k distances with the smallest to the largest
Euclidean distance to the feature vector. The Euclidean
distances, dj , were sorted in ascending order and the
initial k-NN were retained. The ultimate objective was
to select k years that were the most similar to the target
year for all predicted days.
(5) The weights of the k neighbours were based on

their rank distance to the value of the target weight
function that is calculated as:

Pj = 1/j

k∑
j=1

1/j

, j = 1, . . . , k (4)

where j is the rank of the hindcast years in ascending
order. The weight function assigns weights to each of
the k-NN. The neighbour with the shortest distance was
assigned the highest weight, whereas the neighbour with
longest distance was assigned the smallest weight. Then

a uniform random number U (0, 1) was generated and
if u ≥ P1 then the day corresponding to distance d1

was selected. If u ≤ Pk then the day corresponding to
distance dk was selected. For P1 < u < Pk , the day t

corresponding to dj was selected for which u was closer
to Pj . However, in this study the best match was always
the year with the shortest distance.
(6) After processing, the data were re-transformed from

the standardized value to their original scale using the
mean and standard deviation of the observed data of
the same selected year.

To determine the minimum number of required histor-
ical observed data, which was the final objective of this
study, the model was run using only 5, 10, 15, 20, 25, 30,
35, and 40 years of recent observed data (before 2005) as
the only available historical weather data for each study
site. The model was enabled to output the rank of his-
torical years from the best (match) to the worst (match)
pattern compared to the target year. Therefore, for each
set of historical years, it was possible to compare the rank
of the predicted year with the most similar year (best
match) obtained previously when all available historical
years were used. Using the above set of historical years
when the predicted year was the same as the best match
obtained when all available historical years were avail-
able, we were able to determine the minimum number of
years required to obtain a reasonable accuracy.

2.2. Study sites

For evaluation of the k-NN approach, we used daily
weather data from ten representative sites located in
Georgia, USA. These sites included Attapulgus and
Camilla in southwest Georgia; Blairsville in the moun-
tainous area; Rome in the northwest; Savannah in the
coastal area; and Alma, Griffin, Midville, Plains, and
Watkinsville in the central region of the state (Table I).

The difference between the highest amount of annual
total rainfall, i.e. Blairsville, and the lowest amount, i.e.
Midville, was approximately 200 mm. Rome, Griffin, and
Savannah had a somewhat similar annual total rainfall
at 1270 mm although these locations ranged from the
northwest to the southeast of Georgia. Attapulgus, in the
deep south, and Blairsville, the most northern station, also
had somewhat similar total annual rainfall at 1422 mm.
However, the monthly rainfall patterns were different
from one site to another. The highest amount of total
monthly rainfall was recorded for Savannah in August at
172 mm, whereas the lowest was recorded in April for
Alma at 79 mm.

The average monthly minimum temperature was above
0 °C for all sites, except for Blairsville in January,
February, and December, and for Rome in January where
it dropped below 0 °C. The average monthly minimum
temperature was highest in July, around 20 °C for all
sites, except for Blairsville, where it was about 15 °C.
The average monthly maximum temperature for January
ranged from around 10 °C for Blairsville, Rome, and
Watkinsville to around 17 °C for Alma and Attapulgus.
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Table I. Latitude (Lat), longitude (Long), elevation (Elev), and annual average of weather variables for the ten selected sites in
Georgia, USA.

Station Lat
(N)

Long
(W)

Elev
(m)

Average
minimum

temperature
(°C)

Average
maximum

temperature
(°C)

Total
precipitation

(mm)

Annual
number
of wet
days

Database
period

Predicted
best match

year for 2005

Alma 31°32′ 82°31′ 63 12.8 25.3 1200 108 1948–2003 1993
Attapulgus 30°45′ 84°30′ 72 13.3 25.7 1447 111 1909–2003 1981
Blairsville 34°50′ 83°56′ 587 5.8 19.9 1405 122 1931–2003 1936
Camilla 31°28′ 84°29′ 50 12.9 26.0 1322 91 1938–2003 1981
Griffin 33°15′ 84°17′ 287 10.4 22.3 1282 117 1906–2003 1924
Midville 32°52′ 82°14′ 79 11.3 24.3 1150 92 1957–2003 1985
Plains 32°02′ 84°23′ 161 11.3 24.2 1246 107 1956–2003 1993
Rome 34°20′ 85°08′ 187 9.3 22.5 1392 119 1907–2003 1931
Savannah 32°00′ 81°17′ 8 13.0 24.8 1255 111 1950–2003 1994
Watkinsville 33°52′ 83°28′ 245 10.5 22.3 1246 112 1944-2003 1981

The average monthly maximum temperature for July
ranged from 30 to 34 °C for all sites. The average monthly
solar radiation also ranged from about 8 MJ m−2 d−1 in
December for Blairsville to 23 MJ m−2 d−1 in May for
Alma and Attapulgus.

2.3. Comparison of predicted and observed data

We compared the predictions with the observed data
using the statistical evaluation methodology proposed by
Kobayashi and Salam (2000). In this approach, n sets of
predicted (x) and observed (y) values are compared on
the basis of the mean squared deviation (MSD) as the
measure of the difference between the two:

MSD =
n∑

i=1

(xi − yi)
2/n (5)

MSD has three additive components:squared bias (SB),
squared difference between standard deviations (SDSD),
and lack of correlation weighted by the standard devia-
tions (LCS):

MSD = SB + SDSD + LCS (6)

And each component is defined as:

SB = (x − y)2 (7)

SDSD = (SDs − SDm)2 (8)

LCS = 2SDsSDm(1 − r) (9)

where x and y are the means of predicted (x) and
observed (y) values, respectively, SDs and SDm are the
standard deviations of x and y, respectively, and r is
the correlation coefficient between x and y. The MSD
term indicates the overall deviation of the model pre-
diction from observation: a high MSD indicates a large
gap between the prediction and observation. The compo-
nents of MSD represent different aspects of the overall

deviation with SB representing the bias of the simula-
tion, SDSD the difference in the variation of predicted
and observed values, and LCS providing information on
how the temporal pattern of variation in observations was
predicted. The square root of MSD is referred to as root
mean square difference (RMSD), which has the same
dimension as the original variables: x and y. RMSD was
divided by the mean of the observations, i.e. y, to give
relative RMSD, which is denoted as RMSDr and used
for the comparison of RMSD among different weather
variables. Similar to Rajagopalan and Lall (1999), the
mean, standard deviation, skew, RMSD, and coefficient
of variation (CV) were also used to evaluate the perfor-
mance of predicted data in comparison to the target year.
In addition, the daily observed and predicted data sets for
each location were compared using cumulative distribu-
tion functions (CDFs). The Kolmogorov-Smirnov (KS)
two-sample, two-sided test (known as Smirnov test) was
used to compare the CDFs of the observed data for 2005
and predicted daily data. The KS test detects the largest
difference that exists between two distribution functions
based on a statistic, called the D statistic. This statistic
is a measure of the discrepancy between the empirical
distribution and the hypothesized distribution:

D = Maxy |Fn(y) − F(Y )| (10)

where Fn(y) is the empirical CDF and F (Y) is the
hypothesized CDF. However, in this study both cumu-
lative distributions are not known and are considered as
empirical functions. The D statistic is the maximum dif-
ference between the two distribution functions. If D is
sufficiently large, then the null hypothesis (identical dis-
tribution) can be rejected. The smaller the D statistic, the
smaller the difference between the two distributions at a
given probability level (P value). The statistical analy-
ses were performed using SAS Analyst (SAS Institute,
2001).
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3. Results and discussion

3.1. Multi-site verification of k-NN approach

Precipitation is a crucial component for model evaluation
because of its high spatial and temporal variability. The
predicted data were able to follow the pattern of the
observed total precipitation for all sites (Figure 1). The
differences in variation of predicted and observed data
(SB) were the main cause for the higher MSD for
precipitation compared to other variables, although this
variation was within a reasonable range (Table II).

Both the predicted and the observed data showed the
highest amount of precipitation, averaged over the period
of study, for Rome, and the lowest amount of precipita-
tion for Attapulgus. The k-NN approach reproduced the
number of wet days for both the monthly and the entire
study period reasonably well (Figure 3). The annual total
number of predicted and observed wet days differed by
9 days across all sites. The model slightly underestimated
the number of wet days, but the t-test indicated that
they were not significantly different (P > 0.05) across
the study sites. The highest number of an observed total
of wet days in 1 month was found for Blairsville and
similar results were obtained from the k-NN approach
predictions (Table III). The lowest number of a monthly
total of wet days was obtained for Midville for both the
predicted and observed data. The lowest number of a
monthly total of wet days occurred in September, which
was also reproduced by the model. This indicated the
capability of the model to monitor the observed pattern
for the number of wet days of the target year and recog-
nize a similar pattern from the historical data.

These results are very encouraging. However, it should
be mentioned that the impact of the error in the number of
wet day predictions varies as a function of the application
level. For example, the impact of an error of 5 wet
days is different for agricultural production compared
to the required resolution for aircraft, for instance, and
thus should be judged based on the final application
of forecasts. One of the real advantages of the k-NN
approach is that any bias in prediction of the occurrence
of the number of wet days does not affect the prediction
of the other weather variables. For example, a very slight
overestimation of solar radiation of four out of ten study
sites has no association with the number of wet days
prediction. In the non-parametric methodologies, such as
the k-NN approach, the proper simulation of wet days is
not as crucial as for the parametric approach (Geng et al.,
1986). In the non-parametric approach, the maximum
and minimum temperature and solar radiation are not
conditioned on the occurrence of wet and dry days. The
solar radiation predicted by the k-NN model was very
similar to the observed solar radiation as indicated by the
various statistics (Table II). The values for SD, skew, CV,
and lower and upper quartile of predicted data were close
to the target year when compared to the daily average
of the historical weather data. There was no significant
difference (P > 0.05) for both accumulated radiation per
month and total accumulated radiation across all sites

(Figure 2). The model was able to successfully recognize
the pattern of observed radiation of the target year among
the historical data. All calculated RMSD values for solar
radiation were less than 10% of the mean observation.

Similar to precipitation, the model was able to follow
the pattern of both observed minimum and maximum
temperature across all sites. Averaged across the study
period, the observed data showed the highest maximum
temperature for Camilla and the lowest minimum tem-
perature for Blairsville. The k-NN approach was able to
reproduce the same rankings of the sites (Figure 2). The
minimum temperature had a slightly higher MSD com-
pared to the maximum temperature. However, the MSD
of both variables was less than 10% of the mean observed
values of the study period. Of particular importance for
agricultural applications are temperature extremes, such
as freeze events and the number of days with a maxi-
mum temperature greater than a certain threshold value
(Schoof et al., 2005). The k-NN approach for the predic-
tion of the number of days when minimum temperature is
at or below freezing point (0 °C) and maximum tempera-
ture was greater than 35 °C across all sites was similar to
the extremes of the target year (Figure 2). The t-test did
not show any significant differences (P > 0.01) between
the predicted and observed number of freeze events per
month or for the entire study period. There was a sub-
stantial variation in the number of total freeze events for
each site, ranging from more than 19 events at Blairsville
to no events at Attapulgus for 2005 for the entire study
period. The predicted data showed the highest number of
freezing events at 17 for Blairsville and 1 event for Alma
and Midville for the study period. The difference between
model predictions and observations of the mean number
of freeze events during the study period across all sites
was less than 1 day. Similar results were obtained for
the number of days when the maximum temperature was
higher than 35 °C. The difference between model predic-
tions and observations of the mean number of maximum
temperature events higher than 35 °C during the study
period across all sites was also less than 1 day.

Using observed weather data of 2005 as the target
year, the k-NN approach was able to successfully find
the best match for the pattern of the target year from his-
torical years for each site. The linear correlation between
observed and predicted mean total radiation, maximum
and minimum temperature, and precipitation for all sites
are shown in Figure 3 by a 1 : 1 line. The MSD for all
weather variables ranged from 0.30 °C for maximum tem-
perature to 1.51 mm for precipitation across all study
sites. A comparison of the statistics for both predicted
and observed data for 2005 for each weather variable
is shown in Table II. The target year data characterized
the highest (17.1 mm) MSD for precipitation and lowest
(4.9 °C) MSD for maximum temperature. This indicates
that the k-NN approach is able to find a similar variation
for the target year data based on the historical data. Both
the observed and predicted data showed a positive skew-
ness for precipitation and negative skewness for the other
variables (Table II). A similar direction and magnitude
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Figure 1. A comparison of the monthly total precipitation for the average of the historical years, predicted data, and the target year (2005) across
all sites.

of skewness between observed and predicted data indi-
cated the reliability of the k-NN approach on tracking
the asymmetry characteristics of the observed weather
variables. Similar CV values for both the predicted and
observed data further supported the acceptable prediction
of variability of weather data based on the k-NN approach
(Table II). The k-NN model also performed well in repro-
ducing the lower (Q1) and upper (Q3) quartiles for the
weather variables for all sites with respect to the observed
values of the target year (Table II).

The CDFs for daily precipitation, solar radiation, and
maximum and minimum temperature were analysed for
both the predicted and observed data (Figure 4). The
predicted data generally matched the observed data well
using the KS test. The D value ranged from 0.07 to 0.15
for radiation, 0.05 to 0.27 for maximum temperature, 0.06
to 0.21 for minimum temperature, and 0.03 to 0.10 for
precipitation. The statistical analysis showed that for all
sites, the CDFs of predicted and observed precipitation
were not significantly different (P > 0.05). However, the
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Figure 2. A comparison of monthly and annual predicted and observed (2005) number of wet days, total accumulated solar radiation, number of
freezing events, and the number of days when the maximum temperature was above 35 °C across all sites.

difference was significant for a minimum temperature for
seven out of ten sites, for maximum temperature for one
out of ten sites, and for radiation for five out of ten sites.

Providing a complete set of weather variables is
important for crop model applications, which require
a fairly accurate combination of weather data input in

order to provide accurate simulations of crop growth,
development, and yield. An advantage of the k-NN
approach to some other techniques is that extra weather
variables can easily be included in the feature vector.
While the k-NN approach was designed to reproduce
daily or short-term statistics, the statistics of higher time
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Figure 3. A comparison of predicted and observed (2005) (a) daily solar radiation, (b) total precipitation, (c) daily maximum, and (d) daily
minimum temperature averaged over the entire study period.

Table III. Comparison of the predicted (Prd) and observed (Obs) number (#) of wet days per month for all study sites.

Wet Days (#)

Site March April May June July August September

Prd Obs Prd Obs Prd Obs Prd Obs Prd Obs Prd Obs Prd Obs

Alma 12 15 10 10 8 10 18 18 12 9 12 14 3 5
Attapulgus 13 11 8 8 9 10 14 14 18 13 13 17 3 5
Blairsville 15 14 13 16 10 10 15 21 16 23 9 14 2 5
Camilla 13 11 5 10 7 10 13 16 11 13 13 17 1 4
Griffin 8 12 9 10 11 7 8 14 7 16 9 16 6 3
Midville 8 11 7 12 7 4 16 18 14 12 11 14 1 1
Plains 10 11 11 9 5 6 18 17 16 18 14 23 2 4
Rome 8 15 8 15 9 9 6 15 28 17 9 10 4 6
Savannah 12 11 8 12 9 11 16 20 17 8 16 16 2 8
Watkinsville 11 14 8 10 10 8 16 21 17 17 13 15 2 0

scale, mainly at the monthly time scale, appeared to be
reproduced effectively as well.

3.2. Minimum required number of historical weather
years

A major limitation of the k-NN approach is that it cannot
reproduce values that are not part of the historical data

base. The accuracy of the k-NN approach, therefore,
partially relies on the availability of long-term historical
weather data. Our study indicated that the k-NN approach
reproduced the observed weather data reasonably well
across all study sites. In our approach, the number
of historical weather years ranged from 46 years data
(minimum) for Midville to 97 years data (maximum)
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Figure 4. A comparison of predicted and observed (2005) cumulative distribution of (a) solar radiation, (b) precipitation, (c) minimum
temperature, and (d) maximum temperature across all study sites.

for Griffin. Our study to determine the smallest number
of observed historical data showed that by using only
5 years of historical data, e.g. 1998–2003, the most
similar year was the year which ranked lower from
the best match obtained when all available historical

years were used. Using either 10 or 20 years of data
(1993–2003, 1983–2003), the k-NN approach found that
the most similar year ranked from first to third for the
best match compared to when all available data were
used. However, using 25 years of historical data, e.g.
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1978–2003, the k-NN approach found the same best
match (except for three out of ten sites) as when the
model used all available historical weather data. Using
ten different sites in this study, our results showed that
k-NN approach was able to find the best matching year
with smaller number of observed historical weather data
(25 years) compared to when all available data (Table I)
were used. However, we believe that a higher accuracy
might be possible when the databases contain as many
years of data as possible, but with a minimum of 25 years.

4. Summary and conclusion

In this study the prediction of four different weather vari-
ables using the nearest neighbour re-sampling approach
was compared with observed weather data for 2005 as the
target year for ten different sites in Georgia, USA. The
k-NN method predicted the weather sequences for these
multiple sites successfully and it was able to reproduce
the temporal and spatial statistics of the target year. The
lowest MSD values were obtained for maximum tem-
perature and the highest MSD values were obtained for
precipitation. A good agreement between the lower and
upper quartile of the predicted and observed data of tar-
get year was obtained for precipitation. This indicated
the potential capability of the k-NN approach to capture
the daily variability of the weather data sequences. The
sensitivity analysis to determine the minimum number of
observed historical years showed that 25 years of data
were sufficient to obtain a similar best match compared
to when we used all available years of historical weather
data. Further work for improvement of these realizations
includes employing longer records than daily data, adding
more climate indicator variables, and/or finding similari-
ties using a two-step approach, such as precipitation first
and the other variables at a second step. Refinement of
the model also requires verification for different climatic
zones across the world. It would also be an advantage
to evaluate the model outputs by linking the predicted
weather data to ecological, hydrological, agricultural, and
economic models.
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