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Abstract 1

2

Often there is a need to consider spatial weighting in methods for finding spatial patterns in 3

climate data. In this paper we focus on techniques that maximize variance, such as Empirical 4

Orthogonal Functions (EOFs). We introduce a weighting matrix into a generalized framework 5

for dealing with spatial weighting. One basic principal in the design of the weighting matrix is 6

that the resulting spatial patterns are independent of the grid used to represent the data. A 7

weighting matrix can also be used for other purposes, such as to compensate for the neglect of 8

unrepresented sub-grid scale variance or, in the form of a prewhitening filter, to maximize the 9

signal-to-noise ratio of EOFs. Our methodology is applicable to other types of climate pattern 10

analysis, such as extended EOF analysis and Maximum Covariance Analysis. The increasing 11

availability of large datasets of 3-dimensional gridded variables (e.g., reanalysis products and 12

model output) raises special issues for data reduction methods such as EOFs. Fast, memory-13

efficient methods are required in order to extract leading EOFs from such large data sets. This 14

study proposes one such approach based on a simple iteration of successive projections of the 15

data onto time series and spatial maps. We also demonstrate that spatial weighting can be 16

combined with the iterative methods. Throughout the paper, we use multivariate statistics 17

notation that can be implemented as simple matrix commands in high-level computing18

languages.19

20



Baldwin et al. Page 3 of 36 6/16/2008

1. Introduction1

2

The analysis of spatial patterns in geophysical data is performed with a wide variety of 3

techniques, including methods based on Empirical Orthogonal Functions (EOFs; e.g., von Storch 4

and Zwiers, 1999; Jolliffe, 2002; Bretherton, 2003; Hannachi et al., 2006; Hannachi et al., 2007; 5

van den Dool, 2007), Empirical Normal Modes (Brunet, 1994; Brunet and Vautard, 1996), 6

methods that find coupled patterns between data sets (e.g., Maximum Covariance Analysis, 7

Canonical Correlation Analysis, Combined Principal Component Analysis; see von Storch and 8

Zwiers, 1999), methods that find similar patterns, such as cluster analysis (e.g., Cheng and 9

Wallace, 1993; Wallace et al., 1993a) and self-organized maps (Hewitson and Crane, 2002; 10

Reusch et al., 2007). With any of these methods, the use of spatial weighting may be an11

important issue for several reasons. 12

13

One reason to use spatial weighting is that spatial patterns should be invariant to how one 14

chooses the grid locations, since one is aiming to find properties of the continuous spatial field. 15

e.g., “intrinsic EOFs” (North et al. 1982; Stephenson, 1997). Spatial weighting can be used to 16

compensate for unequal distribution of grid points. Weighting may be desirable for other 17

purposes, such as to emphasize (or mask) certain spatial regions, to account for variations in 18

error covariances, to calculate patterns with more than one variable measured across the spatial 19

domain (e.g., extended EOF analysis), or to equalize the variance at every grid point (e.g., EOFs 20

based on the correlation matrix instead of the covariance matrix). Weighting may also be used to 21

compensate for small-scale variance that is not represented by the gridded data matrix. It may 22

also necessary to apply weighting to find EOFs of quantities such as zonally-averaged angular 23
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momentum, derived from the zonal-mean zonal wind field (e.g., Baldwin and Tung, 1994). 1

Weighting may also take the form of a prewhitening filter (Allen and Smith, 1997; Venzke et al., 2

1999; Chang et al., 2000) in which the data matrix is premultiplied by a filter (weighting matrix) 3

that is determined by the noise covariance matrix. 4

5

In this paper we adopt a general approach to spatial weighting of geophysical fields. We use 6

EOF analysis as an example to introduce a generalized weighting matrix. We show that it is 7

possible to include the weighting matrix in the EOF calculation, without premultiplying the data 8

by the square roots of the weights, as was done by North et al. (1982). Our results are applicable 9

to a wide variety of similar techniques—in general any techniques that partition variance.10

11

It is often desirable to perform EOF analysis on large, possibly 3-D, spatio-temporal data sets 12

(e.g., Hawkins and Sutton, 2007). Standard EOF techniques can become impractical for large 13

data matrices. Efficient techniques such as the power method can be used to find the leading 14

EOFs (Golub and van Loan, 1983; Jolliffe, 2002 for a review; van den Dool, 2007), but typically15

involve the explicit calculation of the whole covariance matrix, which can make even these 16

techniques impractical. It becomes necessary to have EOF methods that can rapidly find the 17

leading EOFs for such data sets, while allowing for arbitrary spatial weighting.18

19

This paper addresses these issues by a) proposing a simple iterative scheme suitable for finding 20

EOFs in large data sets, and b) mathematically formulating the EOF problem for arbitrary 21

weighting schemes. The iterative method is applicable to any of the EOF-based techniques and 22
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uses the data matrix directly. We demonstrate that the convergence properties of the iterative 1

method are the same as those of the power method (Golub and van Loan, 1983). 2

3

The outline of the paper is as follows. Section 2 introduces the nomenclature and fundamentals 4

of EOFs in standard matrix notation. Section 3 discusses spatial weighting in EOF analysis; In 5

Section 3a we introduce a weighting matrix, and in Section 3b we discuss how to deal with sub-6

gridscale variance. Section 3c presents a derivation of a generalized weighting metric, which can 7

be easily transformed away by a change of variables involving multiplying the data by the square 8

root of the weighting metric. Section 4a discusses in general how to “project” data onto time 9

series and spatial patterns. We then show, in Section 4b, how an iterative projection method can 10

be combined with spatial weighting to efficiently calculate the leading EOF. In section 5 we 11

provide examples of including weighting matrices in EOF analysis.12

13

2. Nomenclature and approach to EOF analysis14

15

We begin by considering a field, such as pressure or temperature, that is a continuous function of 16

space and time. We assume that the continuous field is approximated by sampling at regular time 17

intervals onto some spatial grid, which may or may not be regular. The data are organized in an 18

(n × p) matrix, 1 2[ , , , ]T
nX x x x= K , containing n observations of a variable tx defined at p19

spatial points. The p spatial points could be embedded in one, two or three spatial dimensions. 20

The n observations could be of the same field made at different times, or n observations of 21

different images (e.g. images of human faces – Craw and Cameron, 1992). For the purposes of 22
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this paper we will assume, without loss of generality, that we are dealing with p spatial 1

observations at n regularly spaced times. 2

3

We also assume the variables in X (the time series, or columns) are anomalies that have been 4

obtained by centering the original variables by removing the respective time means at each 5

location. The means of each time series (i.e., the columns of X) are therefore identically zero. 6

Because the variables are centered, the ( )p p× sample covariance matrix is given by the matrix 7

product S = 1
n−1 XT X . Here it is conventional to use n-1 (instead of n) when the covariance is8

computed from a sample. The total variance is the sum of the variances at each of the grid points 9

(the diagonal elements of S ) and so is given by the trace of S, Tr(S). 10

11

EOF analysis decomposes a data matrix into a series of data-based orthogonal functions, which 12

are defined so that a minimal number of EOFs are needed to reconstruct the variation within the 13

original data matrix. EOF analysis can be understood in terms of spatial patterns (EOFs) and 14

their associated time series (often called Principal Components). The data matrix can be written 15

as a sum of the products of the EOFs 1 2{ , , }e e K and their associated time series 1 2{ , , }y y K :16

17

X = yi
i=1

r

∑ ei
T (2.1)

18

where r is the rank of X, which is never greater than the minimum of n and p. The EOFs 19

1 2{ , , }e e K are chosen so as to be orthonormal ( 1T
i je e = for i j= and 0 otherwise) and 20

successively maximize the variance in the corresponding time series 1 2{ , , }y y K . e1
T Se1 is 21
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maximal and each successive EOF component accounts for the greatest possible fraction of the 1

remaining variance. The EOF time series can be shown to be uncorrelated with one another, but 2

this does not necessarily mean that they are independent. For example, a pair of EOFs may 3

describe a propagating pattern in a data matrix (e.g., the quasi-biennial oscillation, as shown by 4

Wallace et al., 1993b). 5

6

3. Spatial weighting in EOF analysis7

8

One common reason to weight in EOF analysis is to compensate for grid spacing in the data 9

matrix, for example to compensate for converging meridians on a latitude-longitude grid. But 10

there are several other reasons to consider weights in EOF analysis. It may be necessary to create 11

a metric of some integral quantity of interest, such as forming angular momentum from zonal 12

wind data or weighting atmospheric data in the vertical by inverse pressure or by height. It may 13

be desirable to apply different weights to each variable when several variables are included in the 14

analysis. In some cases one may wish to emphasize or de-emphasize certain geographic regions 15

or data levels. Weighting may be used to correct for spatially inhomogeneous data variances or 16

error covariances. EOF analysis is often done using correlations rather than covariances, which 17

corresponds to weighting anomalies by the reciprocal of their respective standard deviations. 18

19

As discussed in North et al. (1982), there is typically a finite number of sometimes irregularly 20

spaced grid points in a domain. We wish to find what North et al. termed the “intrinsic EOFs,” 21

which are independent of the data grid. The concept of intrinsic patterns, independent of the grid, 22
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can be applied more broadly to any type of climate pattern analysis. To do this we must find an 1

appropriate weighting that is invariant to the choice of grid spacing.2

3

We will use EOF analysis as an example, but the resulting weighting methods are broadly 4

applicable to all variants of EOF methods [e.g., Empirical Orthogonal Teleconnections (van den 5

Dool et al., 2000)]. This weighting method is also applicable to Maximum Covariance Analysis 6

(MCA) because MCA with identical input fields finds the EOFs. For any of these methods, the 7

weighting technique must produce the same patterns and time series as would result from 8

regridding the data onto an equal area grid.9

10

Despite all these reasons, the subject of how to weight EOFs has received little formal attention 11

in the published scientific literature. This section will attempt to address this deficit by showing 12

how EOF analysis can be generalized to include arbitrary weighting metrics. 13

14

3a.  Weighting metric15

16

The generalization of the EOF problem to continuous (Karhunen-Loève) functions was discussed 17

by North et al. (1982). They reasoned that EOFs derived from an approximation to the 18

continuous field, on a finite set of grid points, should approximate those based on the continuous 19

functions, and should therefore be independent of the particular grid chosen. Our approach is 20

similar in that we begin by considering a continuous anomaly field. 21

22



Baldwin et al. Page 9 of 36 6/16/2008

It is important to note that EOF methods partition the total variance of the data matrix, which is a 1

sum of squared anomalies from the mean. For the purpose of introducing a weighting matrix, it 2

is sufficient to consider a continuous anomaly field, x, at a single time, such as sea-level pressure 3

over the Northern Hemisphere. The area integral of 2x would correspond to a summation of 4

squared grid point values. If x is approximated on a series of p grid points, then the area integral 5

of the squared continuous anomaly field 2x can be approximated by the quadratic sum of 6

anomaly values at the grid points i . If the grid is uniform, and therefore weighting is not needed, 7

x 2

A
∫ da ≈ xi

2

i=1

p

∑ = xT x (3.1)

To accommodate the most general types of weighting, we introduce the ( )p p× weighting 8

matrix W. 9

x 2

A
∫ da ≈ xi

j=1

p

∑
i=1

p

∑ Wij x j = xTWx
(3.2)

We define the weighting matrix in a general way so that it can be used to area weight the 10

summation, or to weight or filter EOFs in other circumstances (described below). It is a 11

generalization of the area weighting concept discussed in North et al. (1982), who defined a p-12

vector of weights proportional to the grid box area. 13

14

W can always be written symmetrically ij jiW W= without any loss of generality. Since the 15

integral of a squared quantity is non-negative, it is desirable that 0Tx Wx ≥ and so the weighting 16

matrix W then defines a metric 2|| || T
Wx x Wx= in the p-dimensional space of grid point variables 17

(Strang, 2003). 18

19



Baldwin et al. Page 10 of 36 6/16/2008

It is common practice to assume that the area integral can be approximated by the simple sum of 1

squared anomalies at each grid point—in other words, the mid-point rule for numerical 2

integration. In the simplest case of uniform grid spacing, W is the identity matrix, with elements 3

Wij =δij where δij =1 only if i=j and is 0 otherwise. For non-uniform grid spacing, it is common 4

to modify this by assuming a diagonal weighting matrix with ij i ijW aδ= where ia is the area 5

associated with the i’th grid point. This corresponds to the equal-area weighting discussed by 6

North et al. (1982).7

8

Defining W as a ( )p p× matrix allows for the inclusion of off-diagonal elements. W has the 9

same dimensions as the covariance matrix, and so allows for the weighting to vary not just by 10

grid position, but to vary across the covariance matrix. In some cases more accurate estimates of 11

the area integral can be obtained by using sophisticated numerical integration together with 12

careful spatial smoothing that takes account of the spatial correlations in 2x (Kagan et al., 1997). 13

The result of such approaches can still be written in the form Tx Wx , where the effect of 14

smoothing and spatial interpolation is to induce off-diagonal elements in W . The effects of 15

spatially varying errors in 2x can also be taken into account by including the inverse of an error 16

covariance matrix in W , as is done in optimal interpolation and kriging (Kagan et al., 1997). 17

18

It is important to note that any metric W can always be transformed away to Euclidean (uniform 19

weighting) by pre-transforming the grid point variables to new grid point variables20

1/ 2'x x W x→ = (3.3)
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For diagonal metrics, such as the area-weighting metric, 1/ 2W is simply the square root of the 1

diagonal elements of W . For non-diagonal metrics, 1/ 2W can be calculated by using numerical 2

methods such as the Cholesky decomposition or the Denman-Beavers iterative method (Higham, 3

2008).4

5

The generalized norm can then be written as a Euclidean norm in the new variables:6

1/ 2 1/ 2( ) ( ) ' 'T T Tx Wx W x W x x x= = (3.4)

This is the reason for pre-multiplying anomalies by the square root of the grid-box area, as 7

suggested by North et al. (1982). Alternatively, one can find transformations of grid point 8

variables that can remove the metric, for example, by interpolating x to a grid with equal areas 9

(or volumes). 10

11

Although the metric W was introduced in order to compensate for unequal grid spacing, the 12

concept can be used in a variety of ways to weight or filter data in EOF analysis. One example is 13

to prewhiten the data in signal-to-noise maximizing EOF analysis (Allen and Smith, 1997; 14

Venzke et al., 1999; Chang et al., 2000). In this case the data matrix is pre-multiplied by a filter 15

(in place of 1/ 2W ) that is completely determined by the noise covariance matrix. If, for example, 16

the analysis was on a non-uniform grid, the filter matrix and 1/ 2W could be combined by 17

multiplying the data matrix by both, and then performing the EOF analysis. 18

19

Another use of the weighting metric is to emphasize (or de-emphasize) regions of the data 20

matrix. This may be desirable due to signal-to-noise ratio, to produce uniform variance across the 21
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grid, or simply to eliminate (mask) a region from the analysis. In all these cases, once W is 1

defined, it is used in the same way in the EOF analysis.2

3

3b. Choice of metric to account for sub-grid scale variation4

5

A continuous squared anomaly field, x 2, can be approximated on grid points, but doing so acts 6

as a spatial smoother. This reduction in variance may be small if the decorrelation distance is 7

large, but the reduction can be significant if the field has large small-scale variance. The size of 8

the grid spacing therefore affects the total variance as well as the EOFs. This suggests that EOFs 9

should be calculated on the highest grid resolution available, if one wishes to include the effects 10

of small-scale variance. There may be instances in which it may be desirable to calculate EOFs 11

of large-scale variability [in analogy with EOFs of “low-frequency variability,” as in Thompson 12

and Wallace (1998)]. For many data sets the decorrelation distance may be highly variable over 13

different regions of the grid. If EOFs are calculated on a variable grid (e.g., a latitude-longitude 14

grid) that there are two reasons that weighting may be necessary: firstly to compensate for the 15

grid box area, and secondly to compensate for unrepresented variance at a scales smaller than the 16

grid.17

18

Compensation for unrepresented variance can be subtle, in that the coarseness of the grid affects 19

how much of the variance of the continuous field can be represented by the grid. Some of the 20

variance of the continuous field is not represented by the grid point values. In effect, there is 21

variation of the continuous field within each grid box, so that the squares of the data values are 22

underrepresented if the data vary within a grid box. 23
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1

A continuous anomaly field, x, could vary within a grid box due to the presence of spatial trends 2

across grid points and sub-grid scale random variations in x 2 within grid boxes. However, we 3

can only estimate the area integral of 2x using grid point values ix that are considered to be area-4

averages of the field across the grid box. By Reynolds averaging (Monin and Yaglom, 1971), it 5

can be seen that the area integral of 2x across a grid box exceeds the area-weighting commonly 6

used in climate studies. If we integrate 2x over a single grid box,7

8

x 2da = xi
2

A
∫ ai + (x − xi

A
∫ )2 da (3.12)

9

The first term on the right of (3.12) represents the area weighting discussed in Section 3a. The 10

second term represents variance at scales smaller than the grid box. If the grid is fine enough, so 11

that the gridded values account for nearly all the variance, then the second term is small and area 12

weighting, ai , would be a good approximation. If the grid is too coarse, then the first term does 13

not adequately account for the total variance of the field. 14

15

To illustrate this effect, we consider a single Northern Hemisphere grid of ERA-40 geopotential 16

(Uppala et al., 2005) at 1000 hPa for 1 January 2001. The original resolution is a 1.125º latitude-17

longitude grid. Figure 1 examines the ratio of xi
2

i
∑ ai at lower grid resolutions to xi

2

i
∑ ai using 18

the original 1.125º grid. We use two methods for calculating reduced-resolution grid values: 1) 19

interpolation and 2) spatial averages over each grid box. Interpolated values (solid black curve) 20

in Figure 1 illustrate that as the grid resolution is decreased, the mean grid variance is decreased 21
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to ~95% at 5-6º and ~90% at 10º. Grid box averaging (gray curve) tends to reduce local minima 1

and maxima in the grid (compared to interpolation) so the falloff is somewhat steeper. Figure 1 2

illustrates that ~10-20% of the ERA-40 1000-hPa geopotential variance is at grid resolutions 3

smaller than 10º. 4

5

In principle, the most extreme case of small-scale variance would be a random anomaly field 6

with variance 2σ and no spatial correlation between grid points. The area integral would be equal 7

to 2
iaσ but would have a squared grid-box average that scales as 2 2 /i ix aσ= (the variance of a 8

mean). In this special case, it would be possible to compensate for the sub-gridscale variance by 9

increasing the weighting factor to ai
2 rather than ai (Folland, 1988). Thus, the correct weighting 10

factor for any field would lie between ai and ai
2 , but for most data fields (e.g., the geopotential 11

used in Figure 1), the factor would be close to ai .12

13

To further illustrate this effect, consider a uniformly gridded data matrix in which the xi are 14

uncorrelated with each other and have unit variance. If half of the grid is resampled with grid 15

boxes twice as large, each new grid point value would represent the average of two original 16

values ( ai =2). The variance of the average of two such uncorrelated times series is reduced from 17

1 to 0.5. Thus, a weighting factor of 2 would be necessary to compensate for the grid box area, 18

and another factor of 2 would be needed to compensate for the reduced variance in the resampled 19

half of the grid, giving ai
2=4 as the correct weighting, as found by Folland (1988).20

21

Defining a weighting matrix that compensates for unrepresented variance within grid boxes is 22

possible, at least in principle, and would depend on the decorrelation scale and power spectrum 23
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of the data at length scales smaller than the grid boxes. For grid spacing smaller than the 1

decorrelation scale of the field (e.g. sea-level pressure on a grid much smaller than the synoptic 2

scale), the correct metric would be ij i ijW aδ= (area weighting), whereas for grid boxes 3

containing less coherent variations then the limit of 2
iij ijW a δ= (weighting by the square of the 4

grid box area) could be approached. The correct choice of metric would ensure that the results of5

the EOF analysis would not be overly dependent on the specific choice of grid. 6

7

3c. Generalized EOF analysis8

9

The time-average of the numerical approximation to the area-integral can be written in terms of 10

the sample covariance as follows:11

x 2∫∫ da = x 2∫∫ da ≈
1

1 ( )
n

T
t t

t
x Wx Tr WS

n =

=∑ (3.11)

which defines the generalized total variance. The EOF problem becomes one of finding spatial 12

patterns that maximize T
i ie WSe subject to the constraint 1T

i je We = for i j= and 0 otherwise. By 13

transforming to 1/ 2'i ie W e= , it can be seen that the EOF solutions are the eigenvectors of the 14

generalized eigenvector equation i i iSWe eλ= . 15

16

Several different approaches can be used to find the generalized EOFs:17

18

1. Solve the generalized eigenvector equation ( i i iSWe eλ= ) directly (e.g. using generalized 19

solvers such as the eig function in MATLAB);20
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2. Transform out the metric by pre-transforming the original variables, find unweighted 1

EOFs, and then back transform the resulting EOFs. Pre-transforming maps the data 2

matrix to 1/ 2X XW′ = and the covariance matrix to 1/ 2 1/ 2' ( )TS W SW= . It is necessary to 3

perform the inverse transformation 1/ 2 'e W e−= to obtain the generalized EOFs from the 4

EOFs of the transformed variables; 5

3. Use iterative projection methods that include W explicitly (Section 4). 6

7

4. Projection Methods for Finding EOFs8

9

4a. Projections and EOFs10

11

For any n-vector time series of centered anomalies, y , an associated p-vector spatial pattern, e , 12

can be obtained by “projecting the data onto the time series,” as follows:13

14

e = X T y
yT y

(4.1)

15

where yT y = (n −1)sy
2 and sy is the sample standard deviation of the time series. For example, X16

could be monthly-mean Northern Hemisphere sea level pressure data, and y could be an index of 17

the North Atlantic Oscillation (NAO). (4.1) gives the spatial pattern of the NAO. Note that when 18

y = xi , the time series at grid point i, then e j = s ji /sii is the covariance map at grid point i.19

20
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Similarly, a time series y can be obtained from a spatial pattern e by “projecting the data onto1

the spatial pattern.”2

3

y = Xe
eTe

(4.2)

4

The metric W does not affect the projection equation 4.1 for obtaining a spatial pattern from a 5

time series, but equation 4.2 for obtaining an EOF time series from an EOF requires weighting of 6

both X and e by W 1/ 2. 7

y = XWe
eTWe

(4.3)

8

For example, a daily NAO index can be obtained from the NAO spatial pattern and daily sea-9

level pressure anomalies (e.g., Baldwin et al., 2003) using (4.3). Compensating for a latitude-10

longitude grid would require the diagonal elements of W to be cosθ . Note that if the data matrix 11

is pre-transformed by multiplying by W 1/ 2, the resulting EOFs will also be transformed. To 12

obtain the EOFs for the original data matrix, either use (4.1) or divide by W 1/ 2. 13

14

Normalization between the spatial patterns and time series is arbitrary, as long as the product 15

yeT is preserved. If the spatial patterns are treated as dimensionless weights, then 1
Tr(W ) e1

TWe1 =1. 16

If the EOF time series have unit variance, then ( 1
n−1 yT y =1). If the EOFs are normalized to have 17

unit normalization, then 1
( p−1)Tr(W ) e1

TWe1 =1.18

19

4b. A simple iterative projection method for calculating EOFs20



Baldwin et al. Page 18 of 36 6/16/2008

1

Several numerical matrix algebra techniques, such as eigenvector analysis and singular value 2

decomposition (SVD) can be used to obtain all the EOFs simultaneously (Jolliffe, 2002). For 3

large data grids, these methods can rapidly become computationally impractical. Although the 4

space and time dimensions in the data matrix can be swapped (von Storch And Zwiers, 1999) 5

even calculating the covariance matrix can be problematic. One alternative is to use SVD 6

directly on the data matrix, rather than the covariance matrix, but the SVD method is still 7

computationally expensive for large data matrices.8

9

Rather than calculating all the EOFs, the first few EOFs and EOF time series can be calculated 10

using iterative techniques (e.g., Holmström, 1963; Clint and Jennings,1970; Jongman et al., 11

1995; Legendre and Legendre, 1998). One such technique, called the “power method” (Jolliffe, 12

2002), begins with an initial estimate of the leading EOF, with the only requirement being that 13

the initial estimate has at least some projection onto the leading EOF. The estimated EOF is 14

repeatedly multiplied by the covariance matrix X T X and normalized during each iteration.15

16

ek+1 =
X T Xek

X T Xek
(4.4)

17

The successive estimates converge to the leading EOF as long as the initial estimate has at least 18

minimal projection onto the leading EOF (Golub and van Loan, 1983, p209). The rate of 19

convergence depends on the ratio of the two leading eigenvectors. Thus, an arbitrary initial guess 20

at the EOF is sufficient in practice to initialize the procedure. The EOF time series is never used 21

explicitly, but it would be obtained using (4.2). Once convergence is achieved, the projection of 22
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the leading EOF ( yeT ) is subtracted from X, and the procedure is repeated to find the desired1

number of EOFs.2

3

Here we describe another iterative method of finding the leading EOF that involves successive 4

application of (4.1) and (4.3). We will show that this method is an extension of the power 5

method. The main advantages are that this iterative procedure does not require the calculation of 6

the covariance matrix, XXT , and it accounts for the weighting matrix, W. This method performs 7

the multiplication by XXT in two steps, and so retains the convergence properties of the power 8

method. The method consists of a simple iterative procedure using the projections (4.1) and 9

(4.3), which alternate between the EOF and its time series. By successively multiplying by X and 10

X T , we calculate both the EOF and its time series (which was implicit in the power method). 11

Another method involving iteration between a spatial pattern and a time series was proposed by 12

Clint and Jennings (1970). Van den Dool et al. (2000) used a similar approach, without 13

weighting, to find the leading EOF beginning from the leading Empirical Orthogonal 14

Teleconnection (EOT) pattern. Iteration between a time series and spatial pattern to calculate the 15

leading EOF was discovered independently by G. Hegerl (personal communication, 2008).16

17

The method begins with an initial random guess time series whose only requirement is that (as 18

with the power method) it must have a nonzero projection onto the leading EOF time series. Let 19

yk denote the k-th iteration of the first EOF time series. The data matrix is then projected onto 20

this time series to obtain a spatial pattern, followed by projecting the data matrix onto this spatial 21

pattern to get a new time series. The process is then iterated until the squared error between 22
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successive time series falls below a preset tolerance, which can be small but must be greater than 1

the machine precision.2

ek+1 =
XT yk

(yk )T yk
(4.5)

yk+1 =
XWek+1

ek+1
T Wek+1

(4.6)

3

Iteration continues until convergence, defined by yk+1 − yk
2
< ε , where ε is a preset tolerance.4

The denominators in (4.5) and (4.6) are normalization factors. Substituting (4.6) into (4.5) 5

demonstrates that this method is equivalent to the power method. Once convergence is achieved, 6

the EOF multiplied by its time series is subtracted from the data matrix, X = X − yeT , as with the 7

power method, and the process is repeated to find the next EOF. There is no advantage in 8

transposing the data matrix (switching time and space). After convergence the EOF and its time 9

series can be renormalized in any way that preserves the product yeT . 10

11

The algorithm finds one EOF at a time, so it is appropriate to use when only a small number of 12

EOFs are desired. If the eigenvalues of the leading modes are not well separated then 13

convergence will be slow (Golub and van Loan, 1983, P209). Since this iterative approach does 14

not explicitly compute the covariance matrix, it can therefore be used when X is a very large 15

matrix. The algorithm does not require significant memory beyond that needed for the data 16

matrix, and the algorithm would work even if the data matrix exceeds computer memory. For 17

example, we have used as a data matrix of 50 years of daily Northern Hemisphere ERA-40 18

geopotential (dimensions 18,262 by 25,920). The calculation of the leading EOFs was routine 19

using the iterative algorithm. 20
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1

5. Example2

3

The purpose of this section is to illustrate how to create a weighting matrix, and how different 4

choices for a weighting matrix affect the resulting EOF. It should be emphasized that resulting 5

EOFs may or may not represent physical modes (e.g., Brunet and Vautard, 1996; Ambaum et al., 6

2001; Jolliffe, 2003). The strict orthogonality condition on EOFs is at the same time its strength7

and its weakness. For example, the North Atlantic Oscillation may be a more physical mode than 8

the similar EOF of the Northern Annular Mode (Ambaum et al., 2001). We consider the leading 9

EOF of Northern Hemisphere monthly mean zonal mean zonal wind from 1000 to 54 hPa. The 10

data are ECMWF ERA-40 reanalysis (Uppala et al., 2005) from 1958 to 2001 on a 1.125° grid in 11

latitude and unequally spaced pressure levels. The dimensions are n=528 months and with 81 12

latitudes and 15 pressure levels, p=1215. To remove the annual cycle and the long-term trend, we 13

subtracted the average value for each calendar month and then regressed out the long-term linear 14

trend at each grid point. Figure 2 illustrates the variance x 2 of the resulting anomalies. The 15

variance is largest in the stratosphere, both near the equator, where the quasi-biennial oscillation 16

dominates (Baldwin et al., 2001), and at high latitudes where month-to-month wintertime 17

changes in zonal wind are large. 18

19

This small data set allows us to illustrate how to create three different weighting matrices that 20

varies in both latitude and pressure. We choose W to be a diagonal matrix (one weighting value 21

per grid point), so the diagonal elements of W map to the grid points in the latitude-height plane. 22

To weight in both latitude and pressure, we specify both a latitudinal weighting function, and a 23
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vertical weighting function. W is then formed by multiplying these functions. Latitudinal 1

weighting of cosθ compensates for the converging meridians at higher latitudes. In the vertical, 2

we choose two different weightings. The first is proportional to the difference in pressure (or 3

mass) between the bottom and top of the layer represented by each level. In the first case, 4

Wij = cosθiΔpiδij . The second case is proportional to the difference in log-pressure 5

(approximately physical height):Wij = (cosθiΔpiδij ) pi . These weightings are illustrated in Figure 6

3a and 3b. As a third example, we weight the zonal mean wind to form a quantity proportional to 7

axial relative angular momentum, by pressure weighting in the vertical and cos2θ weighting in 8

latitude (Figure 3c). The global axial relative angular momentum is given by (von Storch, 2000)9

10

Mr =
πr3

4
(u cos2θ)dpdθ

0

Ps

∫
−π / 2

π / 2

∫ (5.1)

11

where r is Earth’s radius and Ps is surface pressure. Relative angular momentum is therefore 12

proportional to u cos2θ and Wij = cos2θiΔpiδij . This weighting is illustrated in Figure 3c.13

14

The magnitude of W does not affect the EOFs. W can be multiplied by an arbitrary scaling value 15

without affecting the EOFs. The leading EOFs, corresponding to the weightings in Figure 3, are 16

shown in Figure 4. The EOFs were obtained by iterative projections and include W explicitly in 17

the projection used to find the time series (equations 4.5 and 4.6). The same result could have 18

been obtained by premultiplying by W 1/ 2. However, premultiplication by W 1/ 2 would be 19

problematic if any of the grid point weights were zero, since the result would then be dividing by 20

W 1/ 2. The use of equation 4.5 is more robust, and can be used if some of the grid point weights 21
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are zero. The log-pressure weighted EOF (Figure 4a) captures the QBO, while the pressure 1

weighted EOF is dominated by a north-south dipole. The angular momentum EOF (Figure 4c) 2

captures both features. Although the domain shown in Figure 4 is that used for the EOF 3

calculation, equation 4.1 could be used to extend the plots in height or latitude, or to project a 4

different data set onto the EOF time series.5

6

5. Summary7

8

We have developed a generalized technique for including spatial weighting in EOF-type 9

analyses. EOFs, calculated on a set of (possibly irregular) spatial grid points, should not depend 10

on the grid resolution of spacing. To achieve this goal, we introduce a generalized spatial 11

weighting metric into EOF analysis and show how to then find the resulting generalized EOFs. If 12

p is the spatial dimension of the data matrix, then the weighting matrix, W, is dimensioned p× p . 13

Its application is simple and straightforward, involving either 1) pretransforming the data by 14

multiplying byW 1/ 2, or carrying W through the EOF calculation.15

16

Although the weighting matrix is developed in order to compensate for an irregular grid, its 17

potential application is much broader. There is a variety of other reasons to spatially weight EOF 18

analysis, including the neglect of unrepresented sub-grid scale variance, masking or emphasizing 19

certain regions, compensating for error covariances, etc. In some cases, the weighting matrix can 20

play the role of a filter. For any of these weighting/filtering strategies, the application to EOF 21

analysis is the same. 22

23
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The weighting techniques are applicable to all variants of EOF analysis such as extended EOFs, 1

and Maximum Covariance Analysis. All these techniques partition the total variance of the data 2

matrix into discrete modes. 3

4

The weighting techniques are developed for gridded data that are equally spaced in time, but the 5

same methodology could be applied to the time domain if the observation times are irregular. 6

The results would be nearly identical to interpolating to a grid that is evenly spaced in time. 7

8

Fast, memory-efficient methods are required in order to extract EOFs from large data sets. Often, 9

only the first few EOFs are needed, and with a large dataset it can be computationally more 10

efficient to directly calculate the first few EOFs, rather than use a standard method that finds all 11

the EOFs at once. This study describes one such approach based on a simple iteration of 12

successive projections of the data onto time series and spatial maps. The method is initialized 13

with a random first guess of the EOF time series, and consists of alternately projecting the data 14

matrix onto successive estimates of the EOF and its time series. The technique is a variant of the 15

power method, which has well-defined convergence properties.16

17

The iterative technique works directly from the data matrix (not the covariance matrix), and is 18

suitable for very large data matrices because the covariance matrix is never directly calculated. 19

The technique projects the data onto successive estimates of the EOF spatial pattern and EOF 20

time series. A weighting matrix can be carried through the calculation so that the data are not 21

pre-transformed by multiplying by the square root of appropriate weighting matrices. A 22
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subroutine in IDL that implements this method is available from the authors or at 1

www/nwra.com/baldwin.2

3

We argue that the original spatial resolution of the data should be retained when performing any 4

analysis of patterns in geophysical data. Computational issues may lead researchers to degrade 5

the resolution of the data (e.g., by retaining only every other grid point) to make the calculation 6

tractable (Wallace et al., 1992; Wallace, 2006). The degraded resolution reduces the total 7

variance of the field. Since the total variance of the field is reduced, the percent of the variance 8

associated with each EOF can change, resulting in patterns that differ from those that would have 9

been calculated from the full data grid. This could also change the order of the EOFs. Degrading 10

the resolution could therefore affect the determination of whether or not empirically determined 11

EOFs are separate (North et al., 1982; Quadrelli et al., 2005).12
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List of Figure Captions1

2

Figure 1. Fractional change in Northern Hemisphere average variance of 1000-hPa geopotential 3

on 1 January 2001. The full grid resolution is 1.125º. The black curve shows the total variance at 4

coarser grid resolutions obtained by bi-linear interpolation. The gray curve is obtained by 5

averaging over grid boxes. 6

7

Figure 2. Variance of monthly-mean, ERA-40 Northern Hemisphere deseasoned, detrended 8

zonal-mean zonal wind, 1958-2001. The contour intervals are 1, 2.5, 5, 10, 20, 40, 80 m2s−2. The 9

highest level is 54.6 hPa (one of the ERA-40 assimilation model levels). The data levels 10

correspond to the ticks on the right axis.11

12

Figure 3. Weighting functions corresponding to vertical log-pressure weighting (a), and vertical 13

pressure weighting (b). The latitudinal scaling is by cosθ in (a) and (b). (c) corresponds to 14

angular momentum weighting, with latitudinal scaling by cos2θ . In all panels the values have 15

been scaled by an arbitrary scaling factor for plotting. The ticks on the right side of the diagrams 16

show the data levels.17

18

Figure 4. Leading EOFs zonal-mean zonal wind with the weighting functions in Figure 2. The 19

data matrix was first multiplied by the square root of the weighting functions. The resulting 20

EOFs were then divided by the square root of the weighting function.21

22

23
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on 1 January 2001. The full grid resolution is 1.125º. The black curve shows the total variance at 3

coarser grid resolutions obtained by bi-linear interpolation. The gray curve is obtained by 4
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Figure 2. Variance of monthly-mean, ERA-40 Northern Hemisphere deseasoned, detrended 8

zonal-mean zonal wind, 1958-2001. The contour intervals are 1, 2.5, 5, 10, 20, 40, 80 m2s−2. The 9

highest level is 54.6 hPa (one of the ERA-40 assimilation model levels). The data levels 10

correspond to the ticks on the right axis.11
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1

2

3

4

Figure 3. Weighting functions corresponding to vertical log-pressure weighting (a), and vertical 5

pressure weighting (b). The latitudinal scaling is by cosθ in (a) and (b). (c) corresponds to 6

angular momentum weighting, with latitudinal scaling by cos2θ . In all panels the values have 7
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been scaled by an arbitrary scaling factor for plotting. The ticks on the right side of the diagrams 1

show the data levels.2

3
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1

2

3

Figure 4. Leading EOFs zonal-mean zonal wind with the weighting functions in Figure 2. The 4

EOFs were obtained using (4.5) and (4.6).5


