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Preamble
The work described here is the only line of research that
combines case-based reasoning and fuzzy set theory in a
weather prediction application. This paper summarizes a
master of computer science thesis of the same name (Hansen
2000), available at www.cs.dal.ca/~bjarne/thesis.

Abstract

A fuzzy logic based methodology for knowledge
acquisition is developed and used for retrieval of temporal
cases in a case-based reasoning (CBR) system. The
methodology is used to acquire knowledge about what
salient features of continuous-vector, unique temporal cases
indicate significant similarity between cases. Such
knowledge is encoded in a similarity-measuring function
and thereby used to retrieve k nearest neighbors (k-nn)
from a large database. Predictions for the present case are
made from a weighted median of the outcomes of
analogous past cases (i.e., the k-nn, or the analog
ensemble). Past cases are weighted according to their
degree of similarity to the present case.
   Accordingly, a fuzzy k-nn based prediction system, called
WIND-1, is proposed, implemented, and tested. Its unique
component is an expertly-tuned fuzzy k-nn algorithm with a
temporal dimension. It is tested with the problem of
producing 6-hour predictions of cloud ceiling and visibility
at an airport, given a database of over 300,000 consecutive
hourly airport weather observations (36 years of record). Its
prediction accuracy is measured with standard
meteorological statistics and compared to a benchmark
prediction technique, persistence climatology (PC). In
realistic simulations, WIND-1 is significantly more
accurate. It takes about one minute for WIND-1 to produce
a forecast.

Introduction

CBR and fuzzy set theory each have their own unique well-
demonstrated strengths. So when both methods are
combined in one system, the system stands the chance of
inheriting the strengths of both methods. A recent increase

in the number of such hybrid systems attests to the
effectiveness of combining CBR and fuzzy set theory (Pal
et al. 2000).
   CBR is recommended to developers who are challenged
to reduce the knowledge acquisition task, avoid repeating
mistakes made in the past, reason in domains that have not
been fully understood or modeled, learn over time, reason
with incomplete or imprecise data and concepts, provide a
means of explanation, and reflect human reasoning (Main
et al. 2000), and these are some of the challenges faced by
developers of weather forecasting systems (Christopherson
1998).
   Fuzzy logic imparts to CBR the perceptiveness and case-
discriminating ability of a domain expert. The fuzzy k-nn
technique retrieves similar cases by emulating a domain
expert who understands and interprets similar cases. The
main contribution of fuzzy logic to CBR is that it enables
us to use common words to directly acquire domain
knowledge about feature salience. This knowledge enables
us to retrieve a few most similar cases from a large
temporal database, which in turn helps us to avoid the
problems of case adaptation and case authoring.
   A fuzzy k-nn weather prediction system can improve the
technique of persistence climatology (PC) by achieving
direct, efficient, expert-like comparison of past and present
weather cases. PC is an analog forecasting technique that is
widely recognized as a formidable benchmark for short-
range weather prediction. Previous PC systems have had
two built-in constraints: they represented cases in terms of
the memberships of their attributes in predefined categories
and they referred to a preselected combination of attributes
(i.e., cases defined and selected before receiving the
precise and numerous details of present cases). The
proposed fuzzy k-nn system compares past and present
cases directly and precisely in terms of their numerous
salient attributes. The fuzzy k-nn method is not tied to
specific categories, nor is it constrained to using only a
specific limited set of predictors. Such a system for making
airport weather predictions will let us tap many, large,
unused archives of airport weather observations, ready
repositories of temporal cases. This will help to make
airport weather predictions more accurate, which will make
air travel safer and make airlines more profitable.



Weather Prediction
Weather prediction presents special challenges for CBR.
Weather is continuous, data-intensive, multidimensional,
dynamic and chaotic. These properties make weather
prediction a formidable proving ground for any CBR
prediction system that depends on searching for similar
sequences.
   Fundamentally, there are only two methods to predict
weather: the empirical approach and the dynamical
approach (Lorenz 1969). The empirical approach is based
upon the occurrence of analogs (similar weather situations)
and is often referred to by meteorologists as "analog
forecasting." The empirical approach is useful for
predicting local-scale weather if recorded cases are
plentiful (e.g., cloud ceiling height and visibility in a few
square kilometres around an airport). The dynamical
approach is based upon equations and forward simulations
of the atmosphere, and is often referred to as "computer
modeling." Because of computer model grid coarseness,
the dynamical approach, used by itself, is only useful for
modeling large-scale weather phenomena (e.g., general
wind direction over a few thousand square kilometers). In
practice, most weather prediction systems use a
combination of empirical and dynamical techniques.

Airport Weather Prediction Problem
An airport weather prediction is a concise statement of the
expected meteorological conditions at an airport during a
specified period (U.S. National Weather Service Aviation
Weather Center, 1999). An airport weather prediction is, in
meteorology, commonly referred to as TAF, short for
Terminal Aerodrome Forecast. When pilots describe
weather or weather-related delays at a destination airport,
they are reading TAFs.
   TAFs are made by expert forecasters. These experts have
general knowledge about how large scale weather systems
behave and specific knowledge about how local scale
weather phenomena behave idiosyncratically at specific
airports. Experts bridge the gap between simple PC and
computer-model-assisted statistical forecasting on the local
scale (Battan 1984).
   The three types of forecasts most commonly made by
forecasters are TAFs, public forecasts and marine forecasts.
Of these, TAFs are the most precise and thus the most
challenging type of forecast to make, both in terms of
measurable weather conditions and in terms of timing.
Forecasts of the height of low cloud ceiling height are
expected to be accurate to within 100 feet. Forecasts of the
horizontal visibility on the ground, when there is dense
obstruction to visibility, such as fog or snow, are expected
to be accurate to within 400 metres. Forecasts of the time
of change from one flying category to another are expected
to be accurate to within one hour. In comparison, public
and marine forecasts can be much less precise. For
example, in public forecasts, it may be sufficient to predict
"variable cloudiness this morning," and in marine forecasts,

it may be sufficient to predict "fog patches forming this
afternoon."
   The quality of TAFs is determined by the accuracy of the
forecast weather elements and the timeliness of issue. The
Meteorological Service of Canada measures TAF quality in
four ways: with three ceiling and visibility accuracy
statistics and with a speed-of-amendment statistic (Stanski
et al. 1999). The commonest cause for amendments is
unforecast ceiling or visibility (Stanski 1999). Timeliness
refers to the time between TAF issue and the decision
deadline of the intended user, or in other words, the amount
of time the TAF can be used to affect critical decisions
about flight scheduling.
   When ceiling and visibility at a busy airport are low, in
order to maximize safety, the rate of planes landing is
reduced. When ceiling and visibility at a destination airport
are forecast to be low at a flight's scheduled arrival time, its
departure may be delayed in order to minimize traffic
congestion and related costs. An examination of the causes
and effects of flight delays at the three main airports
serving New York City concluded that a correctly forecast
timing of a ceiling and visibility event (i.e., a significant
change) could be expected to result in a savings of
approximately $480,000 per event at La Guardia Airport
(Allan et al. 2001). Based on a related study, the U.S.
National Weather Service estimated that a 30 minute lead-
time for identifying cloud ceiling or visibility events could
reduce the number of weather-related delays by 20 to 35
percent and that this could save between $500 million to
$875 million annually (Valdez 2000).
   A goal of our research is to enable an improvement in the
quality of TAFs in terms of accuracy and timeliness.

System

The weather prediction system (WIND-1) consists of two
main parts, a large database of weather observations and a
fuzzy k-nn algorithm, described as follows.

Large Database of Airport Weather Observations
The database is an archive of 315,576 consecutive hourly
airport weather observations made at Halifax International
Airport (CYHZ, located at 44°53'N 63°30'W) during the
36-year period from 1961 to 1996.
   We acquire knowledge about how to recognize similar
weather cases by interviewing a domain expert, a weather
forecasting expert who is experienced at forecasting for
CYHZ and is thus presumably more able than anyone else
to, firstly, identify the attributes to be used to indicate
similarity between cases and, secondly, describe degrees of
similarity between such attributes. Twelve similarity-
indicating attributes are identified: date, hour, cloud
amount(s), cloud ceiling height, visibility, wind direction,
wind speed, precipitation type, precipitation intensity, dew
point temperature, dry bulb temperature, and pressure
trend. All of these attributes are continuous except for
precipitation, which is nominal (e.g., rain, snow, etc.).



Fuzzy k-nn Algorithm
The fuzzy k-nn algorithm measures the similarity between
temporal cases, past and present intervals of weather
observations. The algorithm is tuned by interviewing an
experienced forecaster who describes various attribute-
difference thresholds that are to be used to signify various
degrees of similarity (i.e., very near, near, slightly near).
   We design a similarity-measuring function, sim, that is
used to find k-nn for a present weather case and rank them
according to their degree of similarity to the present
weather. Given two cases, each identified by unique time
indexes t1 and t2, sim returns a real number proportional
to the degree of similarity of the two cases such that:
0.0 < sim(t1, t2) ≤ 1.0
   Because all weather cases are unique and because the
value of sim is calculated to double precision, sim can
identify exactly k nearest neighbors. There are no null
search results and no ties.
   The three steps to construct and use the algorithm are:
1. Configure similarity-measuring function.
2. Traverse case base to find k-nn.
3. Make prediction based on weighted median of k-nn.
Step 1 is performed only once and Steps 2 and 3 are
performed every time a weather prediction is made. Step 1
is performed by interviewing a domain expert, and is thus
the critical knowledge acquisition step in system design.
For each continuous attribute, xi, the expert specifies
thresholds for considering two such attributes to be very
near, near, and slightly near each other (Figure 1).
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Figure 1.  Fuzzy set for comparing continuous attribute.
For each continuous attribute, xi, the expert specifies values
of ci1, ci2, and ci3 that are thresholds for considering two
such attributes to be very near, near, and slightly near each
other, respectively. To measure the similarity of two cases,
all their intercomparable attributes are compared using a
combination of attribute-specific µ functions across the
whole time intervals of each case (Hansen 2000).

Experiments

Each experiment consists of a forecasting scenario. Five
sets of experiments are conducted. In each set of
experiments we systematically change the fixed parameters
of WIND-1 and measure the resultant effects on forecast

accuracy. The fixed parameters (independent variables)
are: the attribute set, the number of analogs used to make
forecasts, the size of the case base, and the fuzzy
membership functions. The output (dependent variables)
are, for each individual forecast, forecast values of cloud
ceiling and visibility, and, for each set of experiments, a
summary of the accuracy of all the forecasts made.
   In each set of experiments, 1000 hours are chosen at
random from the 1996 weather archive and are each used
as an hour to produce a forecast for. So, in each set of
experiments, 1000 simulated forecasts are produced. For
purposes of comparison, the same 1000 randomly-chosen
hours are used in each set of experiments. This is a control
so that the effect of varying other input can be tested.
   In each individual experiment, a case is taken from the
1996 data and is used as a present case. It is input to
WIND-1. During the forecast process, the outcome of the
present case is hidden from WIND-1. WIND-1 produces a
forecast for the present case based on the outcomes of the
k-nn in the case base, the k most analogous past cases for
the present case. After the forecast process, the accuracy of
the forecast is verified by comparing the forecast with the
then unhidden outcome of the present case using standard
meteorological quality control statistics (Stanski et al.
1999).

Results and Interpretation
The first set of experiments varies the attribute set and
shows that prediction accuracy increases as the number of
attributes used for comparison increases.
   The second set of experiments varies k, the number of
nearest neighbors that are used as the basis of predictions
(k = 1, 2, 4, 8, ... , 256) and finds that maximum accuracy is
achieved with k = 16. This suggests that WIND-1 is
effective at identifying and ranking nearest neighbors, or,
in meteorological terms, it finds the best analog ensemble.
   The third sets of experiments varies the size of the case
base and shows that prediction accuracy increases as the
size of the case base increases.
   The fourth and fifth sets of experiments pit WIND-1
using non-fuzzy sets against PC, and WIND-1 using fuzzy
sets against PC, respectively. The non-fuzzy based
prediction method is only slightly more accurate than PC,
and fuzzy k-nn based prediction method is significantly
more accurate than PC. The only variation between the two
methods is the nature of the membership functions used to
compare attributes of cases. The fuzzy k-nn method uses
fuzzy membership functions that span certain ranges
around the case being forecast for, whereas the non-fuzzy
method uses 0-1-0 functions centered across the same
ranges (and thus implements the benchmark PC forecasting
method). This suggests that, compared to the accuracy of
PC, the significantly higher accuracy of fuzzy k-nn based
forecasts is attributable to the use of fuzzy sets to measure
similarity as opposed to using crisp sets. To the best of our
knowledge, all previous meteorological analog forecasting
systems have used only crisp sets to measure similarity
between weather cases.

very near

      near

            slightly near



Conclusions

Based on our literature review, experiments, and the results
presented in our thesis, we conclude that querying a large
database of weather observations for past weather cases
similar to a present case using a fuzzy k-nearest neighbors
algorithm that is designed and tuned with the help of a
weather forecasting expert can increase the accuracy of
predictions of cloud ceiling and visibility at an airport.
   Of significance to CBR: We have shown how fuzzy logic
can impart to CBR the perceptiveness and case-
discriminating ability of a domain expert. The fuzzy k-nn
technique described in this thesis retrieves similar cases by
emulating a domain expert who understands and interprets
similar cases. The main contribution of fuzzy logic to CBR
is that it enables us to use common words to directly
acquire domain knowledge about feature salience. This
knowledge enables us to retrieve a few most similar cases
from a large temporal database, which in turn helps us to
avoid the problems of case adaptation and case authoring.
   The fuzzy k-nn algorithm, even though it is of
approximate Order(n) complexity, makes superior
predictions with practical speed—with less than one minute
of computation. This speed is achieved by strategically
ordering the steps in a case-to-case similarity-measuring
test and by stopping any test as soon as a step reveals that a
case is dissimilar enough to be ruled out of the k-nn set
without the need for further tests. For example, suppose we
have a database of n past temporal cases. And suppose each
case is described by m attributes and is p time units long,
thus each case is described by m·p attributes. To measure
the similarity of every past case, we would need to perform
n·m·p individual tests. However, we are only interested in
finding the k most similar cases, and most cases can be
ruled out of contention with a single test. So, the number of
tests we need to perform is much closer to the order of n
than it is to the order of n·m·p.
   Of significance to meteorology and the aviation industry:
Such a fuzzy k-nn weather prediction system can improve
the technique of persistence climatology (PC) by achieving
direct, efficient, expert-like comparison of past and present
weather cases. PC is a sort of analog forecasting technique
that is widely recognized as a formidable benchmark for
short-range weather prediction. Previous PC systems have
had two built-in constraints: they represented cases in terms
of the memberships of their attributes in predefined
categories and they referred to a preselected combination
of attributes (i.e., defined and selected before receiving the
precise and numerous details of present cases). The
proposed fuzzy k-nn system compares past and present
cases directly and precisely in terms of their numerous
salient attributes. The fuzzy k-nn method is not tied to
specific categories nor is it constrained to using only a
specific limited set of predictors. Such a system for making
airport weather predictions will let us tap many, large,
unused archives of airport weather observations, ready
repositories of temporal cases. This will help to make

airport weather predictions more accurate, which will make
air travel safer and make airlines more profitable.
   We plan to pursue this research and improve WIND-1
by: testing its prediction accuracy at other airports;
enabling it to learn autonomously; and incorporating
additional predictive information, such as user-provided
hints, projections of weather radar images of precipitation,
projections of satellite images of cloud, and guidance from
large-scale computer models of the atmosphere.
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