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ABSTRACT

A method is introduced for reducing forecast errors in an extended-range to one-month forecast based on

an ensemble Kalman filter (EnKF). The prediction skill in such a forecast is typically affected not only by

the accuracy of initial conditions but also by the model imperfections. Hence, to improve the forecast in

imperfect models, the framework of EnKF is modified by using a state augmentation method. The method

includes an adaptive parameter estimation that optimizes mismatched model parameters and a model ensemble

initialized with the perturbed model parameter. The main features are the combined ensemble forecast of the

initial condition and the parameter, and the assimilation for time-varying parameters with a theoretical basis.

First, the method is validated in the imperfect Lorenz ’96 model constructed by parameterizing the small-

scale variable of the perfect model. The results indicate a reduction in the ensemble-mean forecast error and

the optimization of the ensemble spread. It is found that the time-dependent parameter estimation con-

tributes to reduce the forecast error with a lead time shorter than one week, whereas the model ensemble is

effective for improving a forecast with a longer lead time. Moreover, the parameter assimilation is useful when

model imperfections have a longer time scale than the forecast lead time, and the model ensemble appears to be

relevant in any time scale. Preliminary results using a low-resolution atmospheric general circulation model that

implements this method support some of the above findings.

1. Introduction

It is widely known that forecast errors in numerical

weather prediction arise from the chaotic nature of the

atmosphere, in which small initial errors necessarily grow

in the deterministic chaotic system and eventually re-

sult in the failure of the forecast for a longer lead time

(Lorenz 1963). To overcome this problem, a probabilis-

tic approach has been introduced into the forecasts

on weekly and one-month time scales; that is, a single

forecast is replaced by an ensemble forecast initiated

from a set of initial perturbations added to the analysis

field. The conventional ensemble forecast (called the

initial condition ensemble throughout this paper) plays

a significant role for more than a decade in the opera-

tional forecast.

The theory of initial error growth is based on a per-

fect model scenario that assumes no error in prediction

models. In reality, however, atmospheric general cir-

culation models (AGCMs) can never be perfect. They

inevitably contain various errors arising from the dis-

cretization of fluid elements, parameterizations for un-

resolved subgrid-scale phenomena, and approximations

in governing equations. To reduce the forecast error caused

by these model imperfections, two main approaches can

be used: improving the atmospheric model and intro-

ducing the model ensemble technique. First, the funda-

mental improvement of the model itself, which involves

improving the parameterization schemes, narrowing

the grid intervals, and using more accurate governing

equations, is very important; therefore, continuous im-

provements must be made to the model. Indirect im-

provements to the model using the parameter estimation
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and by correcting the model bias have been attempted in

many previous studies (Dee and da Silva 1998; Baek

et al. 2006; Zupanski and Zupanski 2006). For example,

Annan et al. (2005) applied a method based on the en-

semble Kalman filter (EnKF; Evensen 1994) to estimate

the optimal model parameters in the AGCM. However,

few studies have estimated the time-varying parameters

(Gillijns and De Moor 2007; Kondrashov et al. 2008).

For example, Kondrashov et al. (2008) estimated the time-

varying parameters of the intermediate coupled model

by using an extended Kalman filter (EKF). They sug-

gested in an experiment using actual sea surface tem-

perature observations, that the parameters may switch

between values that are associated with two distinct modes

of the El Niño–Southern Oscillation (ENSO), namely the

delayed oscillator and the westward-propagating modes.

This supports the importance of estimating an adequate

time-varying parameter.

The model ensemble technique can potentially have

an effect similar to that of the initial condition ensemble.

Different methods can be used for the model ensemble:

an ensemble using different models, an ensemble using

different parameterizations (physics ensemble), and a pa-

rameter ensemble using different parameters. Fujita et al.

(2007) conducted experiments using an AGCM and in-

dicated that the forecast obtained by using a combination

of initial condition and physics ensembles was superior to

that obtained by using only the initial condition ensem-

ble. Rodwell and Palmer (2007) demonstrated the ef-

fectiveness of the parameter ensemble determined using

a weight based on the initial tendency of state variables.

However, unlike the initial condition ensemble, the model

ensemble does not always work well. This is due to the

different features among initial condition errors and model

errors—that is, whether or not errors arise at only the

initial time, and whether or not errors exist in the same

phase space as the model variables. Because of these

differences, the model ensemble approach is theoretically

difficult to implement. In addition, it is essential that the

cost effectiveness of reducing the forecast error by in-

troducing the model ensemble in addition to the initial

ensemble is superior to that by introducing only the initial

ensemble.

In this study, we introduce a method for reducing

forecast errors in an extended-range to one-month fore-

cast based on EnKF with the state augmentation method.

The state augmentation method, in which the parameter

is regarded as a part of the state variable, is often used

to estimate unknown model parameters (Cohn 1997;

Annan and Hargreaves 2004; Zupanski and Zupanski

2006; Kondrashov et al. 2008; Fertig et al. 2009). Our

modifications from the conventional method include the

separation of EnKF for the state variable and that for

the parameter, and the averaging process of state vari-

ables sampled in each EnKF. The main features of our

method are that a combined ensemble forecast is per-

formed with respect to the initial condition and parameter,

and that the time-varying parameters for the parame-

ter ensemble are objectively determined. In comparison

with other model ensembles, the parameter ensemble has

advantages—its introduction is feasible, and the difference

among ensemble members is caused only by the different

parameters. Previous studies focused on the ability of the

state-augmented EnKF to estimate parameters as well as

to assimilate state variables, whereas there are quite

few studies that examined the effectiveness of the state-

augmented EnKF in the extended-range to one-month

forecast. Therefore, we focus not only on the accuracy of

analysis but also on the forecast scores.

In the next section, we describe the theoretical frame-

work of our method. In section 3, we describe the model

and the experimental setup. In section 4, using a low-

order atmospheric model, we investigate the effectiveness

of our method. In section 5, we present a brief description

of results obtained using a low-resolution AGCM that

implements our method. In section 6, we present the

summary and discussion.

2. Methodology

a. Conventional EnKF

In this subsection, we briefly describe the conventional

EnKF on which our method is based: the serial ensemble

square root filter (serial EnSRF) proposed by Whitaker

and Hamill (2002). The time propagation from t 2 Dt to

t of the state variable x (i.e., the ensemble forecast) is

defined as

x f
n(t) 5 M[xa

n(t � Dt)], (1)

where M is the (nonlinear) model operator and xn
f and

xn
a(n 5 1, . . . , N) represent the forecast and analysis of

x at the nth member, respectively. Hereafter, we ignore

the time t for convenience, except in the formulas of the

ensemble forecast. By arranging the ensemble pertur-

bation columnwise, we obtain the perturbation matrix

for the forecast, Ef:

E f 5
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p (x f

1 � x f , . . . , x f
N � x f ), (2)

where the ensemble mean x f is given by

x f 5
1

N
�
N

n51
x f

n . (3)
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At the bth observation point, the analysis for the state

variable is defined as

xa 5 x f 1 K
b
[y

b
� (Hx f )

b
], (4)

where yb is the b component of the observation y, and H

is the matrix mapping the state variable to the obser-

vation point, which is assumed to be linear. A Kalman

gain matrix Kb is given by

K
b

5 E f (HE f )T
b [j(HE f )

b
j2 1 R

b,b
]�1, (5)

where Rb,b is the (b, b) component of the covariance

matrix of observation error R. Note that R is diagonal

because of the assumption of independent observations

introduced in Whitaker and Hamill (2002). The pertur-

bation matrix for the analysis, Ea, is given as follows:

Ea 5 E f � aK
b
(HE f )

b
, (6)

a 5 1 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

b,b

j(HE f )
b
j2 1 R

b,b

vuut
2
4

3
5
�1

. (7)

In serial EnSRF, steps (4) to (7) are serially repeated

for each observation. Finally, the analysis ensemble xn
a

for the next forecast is given as

(xa
1, . . . , xa

N) 5 (xa, . . . , xa) 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

Ea, (8)

and then step (8) loops back to (1) with an increment

of Dt.

b. State augmentation method

As mentioned in the introduction, our method is based

on EnKF with the state augmentation method. The con-

ventional method is briefly described in this subsection.

This method estimates unknown model parameters by

regarding the model parameter p as a part of the state

variable x. Hence, the augmented state variable x* is

defined as

x* 5
x

p

� �
. (9)

The ensemble forecast for the state variable is modi-

fied as

x f
n(t) 5 M

n
[xa

n(t � Dt)], (10)

where Mn is the model operator with the analysis of

the model parameter at the nth member, pn
a(t 2 Dt).

In previous studies (Zupanski and Zupanski 2006; Baek

et al. 2006), the forecast for the parameter Pn
f is com-

monly given as

p f
n(t) 5 pa

n(t � Dt). (11)

Other equations are given by introducing the aug-

mented state variable for the analysis and forecast (xn*
f

and xn*
a) to (2)–(8). Note that the observation and the

covariance matrix of the observation error are not used

for the parameter because the parameter is not directly

assimilated but instead is estimated by using the obser-

vation of the state variable.

c. Our method (pEnKF)

1) OUTLINE

We aim at performing both the model parameter esti-

mation and the parameter ensemble forecast, as men-

tioned in the introduction. For this purpose, we construct

a modified state-augmented EnKF, called pEnKF for

convenience. The scheme and its difference from the

conventional method reviewed in section 2b are de-

scribed in this subsection. In short, the pEnKF consists

of two EnKFs—one for the state variable, which is used

to assimilate the state variable and generate the initial

condition ensemble, and one for the parameter, which is

used to estimate the parameter and generate the param-

eter ensemble. Figure 1 shows a schematic diagram of

pEnKF.

2) ENKF FOR THE STATE VARIABLE

This EnKF is the same as the conventional EnKF

described in section 2a except for the ensemble forecast

and the definition of the state variables (xn
a and xn

f ). First,

the ensemble forecast (1) is modified as

x f
n,m(t) 5 M

m
[xa

n,m(t � Dt)], (12)

where Mm is the model operator, with the model param-

eter pm
a determined by the after mentioned EnKF for the

parameter. The variables x f
n,m and xa

n,m (n 5 1, . . . , N;

m 5 1, . . . , M) represent the forecast and analysis of x at

the nth initial condition member and the mth parameter

member, respectively. Second, xn
f in (2) is replaced by

x̂ f
n 5

1

M
�
M

m51
x f

n,m. (13)

Equations (2)–(8) in which xn
f is replaced with x̂ f

n result

in the analysis ensemble, x̂a
n. Then the analysis ensemble

for the next forecast, xa
n,m, is simply given as xa

n,m 5 x̂a
n;

that is, individual members differ among initial condition

members but are the same among parameter members.

Note that the ensemble forecasts can spread on multiple

attractors unlike the conventional EnKF because of dif-

ferent Mm for each m, and (13) means the average over

different attractors; this is discussed in section 6.
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3) ENKF FOR THE PARAMETER

This EnKF is performed every K cycles (the time

window is defined as t [ KDt) of the EnKF for the state

variable (lower part of Fig. 1). The ensemble forecasts

that have previously been calculated by EnKF for the

state variable are used. This EnKF is also based on the

augmented EnKF described in section 2b. Hence, we

describe differences from the conventional augmented

EnKF.

First, the augmented state variable for the forecast in

section 2b, x
n
*f , is replaced by

x̌
m
*f 5

1

K
�
K�1

k50

1

N
�
N

n51
x f

n,m(t � kDt)

2
4

3
5

p f
m

8>><
>>:

9>>=
>>;. (14)

The ensemble mean in (14) is used to reduce the fore-

cast error due to inaccurate initial conditions and the time

average is used to reduce or remove the high-frequency

variability of the state variable. Note that n and N in sec-

tion 2b are replaced by m and M because the initial con-

dition member is replaced by the parameter member.

Second, the observation and covariance matrix of the

observation error are modified as

y̌
b

5
1

K
�
K�1

k50
y

b
(t � kDt), (15)

Rˇ
b,b

5
1

K
R

b,b
. (16)

This modification accompanies the time averaging

of the state variable; here, (16) is defined under the as-

sumption that Rb,b behaves like a temporally Gaussian

noise.

Third, the parameter is estimated by the parameter

part of (8) replaced by the augmented state variables:

(pa
1, . . . , pa

M) 5 (pa, . . . , pa) 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M � 1
p

E
p
*a, (17)

where E
p
*a represents the parameter part of the aug-

mented perturbation matrix for the analysis, E*a. Note

that in this EnKF the analysis and perturbation of the

state variable are not stored because they are not used in

the next cycle.

We summarize the procedure of pEnKF. In EnKF for

the state variable (upper part of Fig. 1), the time evo-

lution Mm of the analysis state variable xa
n,m yields the

forecast x f
n,m, and then the forecast averaged over the

parameter ensemble x̂ f
n is assimilated to the observation

y to obtain the analysis for the next forecast. This cycle

of analysis and forecast is repeated as shown in Fig. 1.

By contrast, in EnKF for the parameter (lower part of

Fig. 1), which is performed every K cycles of EnKF for

the state variable, the parameter is estimated by using

the forecast averaged over the initial condition ensem-

ble x̌
m
* f and observation of state variables y̌. The mth

parameter associated with Mm is then dynamically up-

dated by using the estimated parameter pa
m (upward

arrow in Fig. 1). The essential difference of pEnKF

from the conventional augmented EnKF in section 2b is

the two-level nested EnKF, which necessarily requires

the averaging process in (13) and (14). In other words,

the assimilation processes for the state variable and for

the parameter are only partially coupled in pEnKF. The

ensemble size with respect to the initial perturbation of

the state is reduced in pEnKF if the total ensemble size

is prescribed; however, this shortcoming is overcome by

advantages arising from the two-level nesting, as dem-

onstrated in section 4c.

FIG. 1. A schematic diagram describing the procedure of pEnKF (K 5 3). For the notation, see text.
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4) COVARIANCE INFLATION AND LOCALIZATION

We use a method called multiplicative covariance in-

flation, in which the perturbation matrix is multiplied

by a factor to stably operate EnKF (Anderson and

Anderson 1999). Hence, we multiply the perturbation

matrix for state variables by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 c

x

p
, and the

perturbation matrix for parameters by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 cp

p
. The

Kalman gain matrix for the state variable is localized by

a fifth-order piecewise rational function of Gaspari and

Cohn (1999). This function is tuned by the localization

length scale lc as in Hamill et al. (2001) (e.g., if the dis-

tance between the state variable and observation is more

than l
c

3 2
ffiffiffiffiffiffiffiffiffi
10/3
p

, the function is set to 0). The compo-

nent between the state variable and the parameter of the

Kalman gain matrix is simply multiplied by a constant

factor Lp that adjusts the increment of the parameter to

some extent.

3. Model

a. Lorenz ’96 model

To demonstrate that pEnKF is effective for improving

the forecast, we use the two-level Lorenz ’96 model

(Lorenz 1996, hereafter L96); this model has been

widely used for validating data assimilation and forecast

schemes. In the present test, the original model is re-

garded as a perfect model without model errors, whereas

a modified model is also used as an imperfect model with

model errors. The original L96 model consists of the slow

large-scale variables xi (i 5 1, . . . , I) and the fast small-

scale variables yi,j (i 5 1, . . . , I; j 5 1, . . . , J):

dx
i

dt
5 x

i�1
(x

i11
� x

i�2
)� x

i
1 F � hc

b
�

J

j51
y

i, j
, (18)

dy
i, j

dt
5 cby

i, j11
( y

i, j�1
� y

i, j12
)� cy

i, j
1

hc

b
x

i
, (19)

where h, c, and b are scaling parameters and F is a

forcing. This model has terms that mimic advection,

damping, forcing, and multiscale coupling. In addition,

both xi and yi,j require a cyclic boundary (i.e., xi2I 5 xi,

xi1I 5 xi, and yi1I,j 5 yi,j, yi,j2J 5 yi21,j). Therefore, we

may consider this model to be a prototype of an atmo-

spheric model having an extremely simple structure.

The imperfect L96 model is constructed as follows. On

the rhs of (18), the last term containing yi,j is approxi-

mated by the linear regression of xi (Smith 2000; Orrell

2003; Roulston and Smith 2003):

�hc

b
�

J

j51
y

i, j
’ a 1 bx

i
. (20)

The negative correlation visible in the scatterplot

of the lhs of (20) against xi supports the validity of the

above approximation (not shown). The substitution of

(20) into (18) yields a single equation:

dx
i

dt
5 x

i�1
(x

i11
� x

i�2
)� x

i
1 F 1 a 1 bx

i
. (21)

This approach implies the parameterization of y with

respect to x, which is analogous to the parameterization

encountered with realistic models such as AGCM; in

other words, x is a resolvable variable, whereas y is an

unresolved subgrid-scale variable.

The experimental setup for the L96 model is described.

The number of variables is I 5 8 and J 5 4, for which the

perfect and imperfect models have 40 and 8 dimensions,

respectively. We set F 5 10 and h 5 1, which are kept

constant, as in other studies (Smith 2000; Orrell 2003).

The parameters c and b are time dependent in this study:

c 5 b 5 2.5 sin
2pt

T
p

 !
1 7.5, (22)

where Tp is the period of c and b. For constant param-

eters such as c 5 b 5 7.5, the lhs of (20) behaves like

white noise, and thus the model imperfections do not

have a preferred time scale. This is not favorable for the

purpose of this study. On the other hand, using (22), the

lhs of (20) has an explicit time scale characterized by Tp.

Therefore, we can control the model imperfection such

that it has a time scale that is either shorter or longer

than that of the extended-range to one-month forecast.

To relate the time scale in the real atmosphere, hence-

forth we multiply the nondimensional time unit of the

above models by a factor of 5. This is because on the basis

of the evaluation of the doubling time of the forecast

error, one time unit in the L96 model is known to cor-

respond to roughly 5 days in a global weather forecast

model. This definition was given with the forcing F 5 8 by

Lorenz and Emanuel (1998). Using the same definition

with F 5 10 in this study causes a more difficult situation

for assimilation and forecast because of a faster error

growth. This difference, however, does not seriously af-

fect our conclusions. Here, we set Tp 5 90 days in (22)

unless otherwise stated so that the autocorrelation time of

the sinusoidal function in (22) is 17 days—that is, the time

scale akin to the extended-range to one-month forecast.

We also confirm that the solutions behave chaotically

with the above conditions. The models are integrated for

30 years using a fourth-order Runge–Kutta scheme using

a time step of 0.025 days for x and 0.0025 days for y; the

latter is contained only in the perfect model.
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The 30-year-long ‘‘true’’ states, denoted as xtrue
i , are

obtained by the single time integration of the perfect

model. Using them, ‘‘observations’’ are then generated

by adding a Gaussian random noise with a variance of

0.4 for x and 0.04 for y (only in the perfect model). The

diagonal element of the covariance matrix of the ob-

servation error is Rb,b 5 (0.4)2 for x and Rb,b 5 (0.04)2

for y. These values are approximately 10% of the stan-

dard deviation of the natural variability, which is 4.1 for

x and 0.37 for y. Observations are assimilated at all the

ith points, and in a time interval of 6 h. For each ex-

periment, the covariance inflation factor cx is tuned

to minimize the analysis error; we find that this tuning

leads to a nearly minimal forecast error. The localization

length scale is lc 5 1.8. In contrast, the covariance in-

flation factor for the parameter cp is tuned such that it

results in the best estimation for the parameter. The

localization factor for the parameter is Lp 5 1.0 (i.e.,

nonlocalization) because this value leads to good esti-

mation for the parameter.

b. Forecast scores

We use the score given by averaging the root-mean-

square of the ensemble-mean forecast error over all in-

tegration time T. This score is simply called RMSE:

RMSE 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ðT

t51

1

I
�

I

i51
[x

i
(t)� xtrue

i (t)]2 dt

vuut
, (23)

where x represents the ensemble mean. In addition, the

improvement rate of a target RMSE Rt against a refer-

ence RMSE Rr is defined by

l 5
R

r
� R

t

R
r

3 100(%). (24)

We also use the ensemble spread averaged over the

number of variables and all integration time T. This

score is simply called spread:

spread 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ðT

t51

1

I
�

I

i51

1

N
�
N

n51
[x

(n)
i (t)� x

i
(t)]

2

8<
:

9=
; dt

vuuut ,

(25)

where x
(n)
i is the forecast at the ith point and nth mem-

ber. The ratio of the spread to the RMSE indicates the

validity of a probability density distribution (Ziehmann

2000):

g 5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 1 1

N � 1

r
spread

RMSE
. (26)

4. Application to the L96 model

a. Initial condition ensemble with conventional EnKF

Using the L96 model, we investigate the forecast skill

roughly corresponding to the extended-range to one-

month forecast, which implies a forecast within a lead

time of six time units (530 days), as described in section

3. Before introducing pEnKF, the prediction skill of the

conventional ensemble forecast is examined by apply-

ing the conventional EnKF to the imperfect model. The

model parameters are estimated by statistical linear

regression—that is, by fitting the lhs of (20) to x during

the period of t days around time t (i.e., from t 2 t/2 to t 1

t/2). The interval of t is the time window described in

section 2c. The above parameters denoted as â(t, t) and

b̂(t, t), are thus time dependent. Note that â and b̂ can

be obtained only when true states are known. It is evident

that a sufficiently large t leads to the climatology of the

parameter. In fact, we estimate the climatological constant

parameters âc and b̂c with tc 5 30 years [i.e., â(t, tc) 5 âc

and b̂(t, t
c
) 5 b̂

c
]. The climatological parameters can be

a good choice for improving the forecast when we con-

sider only constant parameters. This is because they sat-

isfy the condition for minimizing a short-term forecast

error (Orrell 2003). For convenience, the experiments

using the imperfect model with the parameters (â, b̂) and

(âc, b̂c) are referred to as IS1 and IC,2 respectively. Sim-

ilarly, the experiment using the perfect model is denoted

IP.3 Table 1 summarizes the experiments.

Figure 2 shows the relationship between the lead time

and the two scores of RMSE and l in (23) and (24) using

an ensemble size of 40. The reference RMSE Rr is fixed

at the RMSE in IC (N 5 40) afterward. The predict-

ability limit when the RMSE exceeds the RMSE in the

climatological forecast is approximately 21 days in IP

and approximately 15 days in IC. The improvement rate

l in IP is approximately 30% for a lead time of up to

5 days, following which it gradually decreases (Fig. 2b).

This improvement will come from two facts: the analysis

of the state variables assimilated by EnKF is more ac-

curate in the perfect model scenario, and the model

having no model errors works to forecast more accurate

trajectory.

Figure 3a shows l in IS, which represents the rate of

error reduction by using the statistically estimated set of

parameters, â(t, t) and b̂(t, t). It is found that the RMSE

is reduced for any lead time in a time window shorter

than 30 days; in addition, the improvement is greater as

1 IS: Initial condition ensemble with statistically estimated pa-

rameters.
2 IC: Initial condition ensemble with climatological parameters.
3 IP: Initial condition ensemble in perfect model.
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the time window becomes shorter. This suggests that the

small number of samples and the high-frequency vari-

ability of the variable x have an insignificant effect on

the degradation of the improvement rate. Moreover, the

large l at the analysis time (solid curve) indicates that

the use of â(t, t) and b̂(t, t) is especially effective for the

reduction of the analysis error. To understand which

parameter dominates in improving the forecast in IS,

we carry out two additional experiments in which either

b̂ or â is replaced with the climatology (i.e., b̂c or âc;

Figs. 3b and 3c, respectively). Using â and b̂
c
, l is nearly

zero (see Fig. 3b), whereas the set of â
c

and b̂ results

in a score that is nearly identical to that shown in Fig. 3a

(see Fig. 3c); therefore, b is shown to be the parameter

that affects the forecast score. This is explained by the

fact that â has a spectrum that is well approximated by

white noise, but b̂ has a spectral peak corresponding to

Tp in (22) (not shown). The above results provide the

baseline of the imperfect L96 model and they are used to

compare the results using pEnKF in the next subsection.

b. Initial condition and model ensembles with pEnKF

By using pEnKF, we perform the combined ensemble

forecast of the initial condition and the parameter. Fol-

lowing the results obtained in the previous subsection,

a is fixed at âc, and b is assimilated/perturbed with

pEnKF. The ensemble forecast obtained using the im-

perfect model with the above setting is referred to as

IMA4 (cf. Table 1). To verify the accuracy of the esti-

mated parameter, we first compare the parameters es-

timated in IMA and in statistical linear regression; the

latter is denoted as b̂�(t, 1), which is similar to b̂(t, 1) in

the previous subsection but with the time window during

the period from t 2 1 to zero (i.e., past information is

used as the time window of pEnKF). We recall that b̂�

cannot be obtained unless the equations of the perfect

model are known; thus, b̂� is only used to verify pEnKF.

The experiment with the parameters âc and b̂� is re-

ferred to as IS2 (see Table 1). The parameter b(t, 1)

varies with a period similar to that of b̂�(t, 1), which is

approximately 90 days (Fig. 4). The correlation co-

efficient between the two becomes 0.68. Consequently,

pEnKF succeeds in the estimation of b.

Before investigating the time-averaged forecast scores,

we demonstrate a typical case indicating the impact of

pEnKF. Figure 5 shows the forecast and the true time

series of x1. In IC (Fig. 5a), at a lead time shorter than

5 days, all ensemble members (thin solid curves) follow

the true trajectory (broken curve); at a lead time longer

than 15 days, the ensemble mean (thick solid curve) comes

close to the climatology because the individual member

fully spreads. Significant differences between IC and IMA

are found at a lead time of 8–12 days. Almost all of the

ensemble members in IC fail to follow the true trajectory.

In contrast, in IMA (Fig. 5b), some members can follow

the true orbit, and thus the ensemble mean is closer to the

true trajectory that turns to the negative value. Similar

results are found in the forecast scores of the instantaneous

RMSE and spread using all variables. In Fig. 5c, at a lead

time of 8–12 days, the RMSE in IMA is smaller than that in

IC; moreover, the spread in IMA is larger than that in IC,

on account of which the ratio of the spread to the RMSE is

close to unity.

Next, we investigate the time-averaged forecast scores.

Figure 6a shows l in IC (N 5 40) and IMA (N 5 10, M 5

4); the total ensemble size in both experiments is 40. In

the data assimilation procedure, a time window of one

day is adopted in IMA. By introducing pEnKF, the fore-

cast skill is found to improve at any time; l is approxi-

mately 4% for a lead time up to 10 days, and it gradually

decreases afterward (Fig. 6a). Moreover, in Fig. 6b, g in

IMA is close to unity unlike that in IC, indicating that the

ensemble with pEnKF has a sufficiently large spread.

This is attributed to the model ensemble further spread-

ing the trajectories evolved with initial perturbations

(e.g., Fig. 5b).

The improvement of the forecast using pEnKF pos-

sibly results from a combination of the following factors:

Factor A: improvement of the forecast model by the

estimated parameter,

Factor B: improvement of the analysis accuracy for

the state variables, caused by the improvement of

the forecast model used for first guess, and

TABLE 1. List of experiments using the L96 model. Symbols are explained in text.

Name Ensemble methods Model Parameters

IP Initial condition Perfect Undefined

IC Initial condition Imperfect (parameterized) â
c
, b̂

c

IS Initial condition Imperfect (parameterized) â(t, t), b̂(t, t)

IS2 Initial condition Imperfect (parameterized) âc, b̂�(t, t)

IMA Initial condition and model Imperfect (parameterized) âc, b(t, t)

IA Initial condition Imperfect (parameterized) â
c
, b(t, t)

4 IMA: Initial condition and model ensembles with the assimilation

parameter.
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Factor C: increase of the spread among members with

different parameters by introducing the model en-

semble method.

To understand the relevance of each factor, an addi-

tional experiment is performed with the state variables

and an unperturbed but assimilated parameter derived

from IMA. This experiment, denoted IA,5 is thus the

initial condition ensemble with N 5 10 and M 5 1 (see

Table 1). The impact of factors A and B is then evalu-

ated by comparing IA (N 5 10), IC (N 5 10), and IS2

(N 5 10), and that of factor C by comparing IA (N 5 10)

and IMA (N 5 10, M 5 4). Figure 7 shows l in IMA, IA,

IC, and IS2; the curve of l in IMA is the same as that in

Fig. 6a. First, the similarity between the curves of l in

IA (thin solid curve) and in IS2 (dotted curve) repre-

sents the success of parameter estimation by pEnKF, as

shown in Fig. 4. Note that l in IA is higher as the lead

time becomes short as compared to that in IC (broken

curve). This is because of both factors A and B. Second,

l in IMA (thick solid curve) is higher than that in IA for

a lead time longer than 6 days. This is explained by in-

troducing the model ensemble (factor C). Consequently,

at a lead time shorter than one week, the improvement in

both the forecast model and the analysis accuracy is

particularly useful for error reduction, whereas the model

ensemble method is effective for a lead time longer than

one week.

The above results may depend on the time scale of the

model imperfections relative to the forecast period. To

investigate the relationship between l and the time scale

of the model imperfections, the four experiments shown

in Fig. 7 are repeated but with different values of Tp in

(22). Figure 8 shows l for Tp 5 30 days and Tp 5 360

days. For the model imperfections having a short time

scale (Fig. 8a), l in IA is still higher than that in IC at

a short lead time but is much lower than that in IS2. This

indicates that the accuracy of parameter estimation is

poor for Tp 5 30 days. However, l in IMA is higher than

that in IA at a lead time longer than 6 days. Therefore,

factor C dominates for the improvement of forecast with

short Tp, but factors A and B do not. On the other hand,

for the model imperfections having a long time scale

(Fig. 8b), l in IA is much higher than that in IC and even

that in IS2 at any lead time. This suggests that the pa-

rameter estimation for Tp 5 360 days is quite successful.

The model ensemble also works at a lead time longer

than 6 days, as in the other cases. In conclusion, the pa-

rameter estimation contributes to reduce forecast errors

with a lead time shorter than one week, whereas the model

FIG. 2. The relationship between the lead time and the two scores: (a) RMSE and (b) l. The

solid and dotted curves show the score in IP and IC, respectively. The broken line in (a) shows

the RMSE in the climatological forecast, and the shading in (b) denotes the area worse than the

climatological forecast. The ensemble size is 40, and the reference RMSE Rr is given by the

RMSE in IC (N 5 40).

5 IA: Initial condition ensemble with the assimilation parameter.
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ensemble is effective for improving the forecast with

a longer lead time. In particular, the former is relevant

when the model imperfections have a longer time scale

than the forecast lead time, and the latter appears to

hold regardless of Tp.

Finally, we investigate whether pEnKF can be use-

ful for a large observation error. The variance of the

Gaussian random noise added to the observation is 1.0

for x, and Rb,b 5 1.0 (i.e., 250%). It turns out that

pEnKF remains effective for reducing forecast errors

and optimizing the spread (not shown). However, the

maximum l is approximately 2%, which is smaller than

that in the previous experiments. The improvement is

mainly caused by factor C as opposed to factors A and

B; this result indicates that the large observation error

prevents parameter estimation.

c. Comparison between pEnKF and conventional
augmented EnKF

We test whether pEnKF has advantage in improving

forecasts over EnKF, introducing the conventional state

augmentation method described in section 2b, simply

called the augmented EnKF. Figure 9a shows l in IMA

(N 5 10, M 5 4), the augmented EnKF (N 5 40), and

IS2 (N 5 40); the curve of l in IMA is the same as that

in Fig. 6a. The similarity between the curves of l in the

augmented EnKF (broken curve) and in IS2 (dotted

curve) represents the success of parameter estimation by

the augmented EnKF. Note that l in the augmented

EnKF is higher than that in IMA (thick solid curve)

for a lead time shorter than 6 days. This is because the

ensemble size for the state variable in the augmented

FIG. 3. The relationship between the time window and l in three experiments: (a) IS, (b) the

experiment using â and b̂c, and (c) the experiment using âc and b̂. The solid, broken, and dotted

curves indicate the analysis time, lead time of 7 days, and lead time of 15 days, respectively. The

ensemble size and the reference RMSE are the same as in Fig. 2.
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EnKF is larger than that in IMA (i.e., N 5 40 in the

augmented EnKF and N 5 10 in IMA). On the other

hand, l in IMA is high for a lead time longer than one

week. This is caused by the model ensemble (factor C)

included in pEnKF.

The ratio of spread to RMSE, g, in the above experi-

ments is shown in Fig. 9b. The augmented EnKF is less

useful for optimizing the spread, unlike IMA. This means

that the trajectories of the model ensemble by different

parameters do not spread, unlike pEnKF. Moreover, in

the augmented EnKF, if we increase the spread of pa-

rameters (by increasing cp in section 2c) to enhance the

effectiveness of the model ensemble, l decreases con-

siderably. The large spread among parameters appears to

disturb the analysis for state variables. This problem does

not occur in pEnKF because of the separation of EnKF

for the state variable and that for the parameter, and also

by the averaging process over parameter members in

EnKF for the state variable (cf. section 2c). Consequently,

under the condition that the total ensemble size is pre-

scribed, the conventional augmented EnKF is useful for

improving forecasts with a lead time shorter than one

week by estimating parameters, whereas pEnKF is effec-

tive for improving forecasts with a lead time longer than

one week because of the model ensemble.

d. Other features of pEnKF

Since the model and parameterization, (20) and (21),

are specific, further experiments are performed to dem-

onstrate that pEnKF has generality in improving the

forecast. First, the dependence of l on the size of the

parameter ensemble in IMA is investigated (Fig. 10a). We

change the number of parameter members M with fixed

total ensemble size at N 3 M 5 40. Note that IC (N 5 40)

is performed for N 5 40 and M 5 1 because parameter

assimilation is not possible. For 2 # M # 5 (8 # N # 20),

pEnKF is shown to work effectively because l is higher

than that for M 5 1 at any lead time (Fig. 10a). In par-

ticular, l for the set of N 5 10 and M 5 4 is better than

that for other values. For M . 5 (N , 8), l remains

positive at a lead time of 15 days but is almost zero or even

negative at a short lead time. This is because the ensemble

size of the state variables, N, is too small to improve the

analysis accuracy. If we adopt a smaller ensemble size

such as N 3 M 5 20, pEnKF has no advantage at a short

lead time (not shown). This is also due to the insufficient

number of initial members. We also investigated whether

pEnKF remains valid when we increase I in (21) from I 5

8 to I 5 40. The result shows that pEnKF still has the

advantage for improving forecasts, although l at lead

times longer than one week is smaller than that in the

previous experiments (figures not shown). Consequently,

for a large ensemble size of N 3 M, which depends both

on the practical computational resources and on the de-

gree of the freedom that the model has, pEnKF has

a particular advantage in improving the forecast.

The ratio of spread to RMSE, g, is compared among

the four experiments, as shown in Fig. 10b. As expected

from Fig. 6b, pEnKF optimizes g, but at a very short lead

time. For example, at a lead time of 7 days, g in IC

(without pEnKF; N 5 40, M 5 1) is 0.81, whereas that in

IMA (with pEnKF; N 5 10, M 5 4) is 0.94. We also

investigate the impact of the covariance inflation (cf.

section 2) because it can widen the spread. With a 1.5

times factor (cx 5 0.48) in IC, g increases from 1.07 to

1.18 during the analysis (plus sign in Fig. 10b). In con-

trast, at lead times of 7 and 15 days, l increases only by

0.07 and 0.02, respectively, which is still lower than l in

IMA (N 5 10, M 5 4) (X symbol and asterisk in Fig. 10b,

respectively). In addition, l decreases by 4% at a short

lead time and increases only by 0%–1% at a lead time of

longer than 6 days (not shown). Hence, at a lead time

longer than one week, the increase in the covariance in-

flation factor is less useful for reducing the RMSE, al-

though it may be slightly useful for optimizing the spread.

We also test the dependence of l on the time window,

t. It turns out that IMA with shorter t results in the

better forecast (not shown). The result of IS in section 4a

FIG. 4. Time series of the parameter b from 9000 to 9360 days. The thick solid, thin dotted,

and thin broken lines respectively indicate b2(t, 1) estimated in IMA (N 5 10, M 5 4), b (t, 1)

estimated in the statistical linear regression, and bc.
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(i.e., that statistically estimated parameters with short t

improve the forecast) supports the above finding; more-

over, it suggests that the time window in pEnKF affects

the parameter estimation.

5. Application to AGCM

In this section, we present preliminary results of pEnKF

applied to an AGCM in order to verify the generality

of the results obtained in section 4. A full description of

this work will be reported in a forthcoming paper; there-

fore, in this section we present only a description of the

relevance of pEnKF in a complex atmospheric model.

The model used is the global spectral model developed

at the Center for Climate System Research (CCSR),

University of Tokyo, the National Institute for Environ-

mental Studies (NIES), and the Frontier Research Center

for Global Change (FRCGC), called the CCSR–NIES–

FRCGC AGCM (Hasumi and Emori 2004). We choose a

horizontal resolution of T21 and 11 vertical layers.

A single integration by this model but not the real ob-

servation is regarded as a true state, as in the experiments

using the L96 model. The perfect model is defined by

the model in which six parameters in the cumulus con-

vection and cloud schemes (cf. Table 2) are varied by

referring to the red noise having a decorrelation time of

FIG. 5. The forecast and the true time series of x1 from 6450 to 6480 days in (a) IC (N 5 40)

and (b) IMA (N 5 10, M 5 4). The thin solid, thick solid, and thick broken curves indicate the

individual member, ensemble mean, and true trajectory, respectively. (c) The instantaneous

scores of the RMSE and spread using all variables. The thick and thin solid curves indicate the

RMSE in IMA and in IC, and the thick and thin dotted curves indicate the spread in IMA and in

IC, respectively. The broken line shows the RMSE in the climatological forecast. The hori-

zontal axis indicates the lead time.
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approximately three months. These parameters are called

true parameters. Note that the parameters are fixed in

space. The imperfect model is defined by the same model

except that the true parameters are unknown. Observa-

tions are generated by adding a Gaussian random noise

with a 10% magnitude of climatological standard de-

viations to the true state. State variables in the AGCM

include the zonal and meridional winds, temperature,

specific humidity, and surface pressure. They are assimi-

lated by using the imperfect model every 6 h and every

three horizontal grids. The standard deviations of the ob-

servation errors are of the same magnitude as the above-

mentioned Gaussian random noise. Moreover, the six

parameters are estimated every 2 days. As in the previous

section, we compare two experiments of IC (N 5 128)

using the climatological mean values of the parameters

and IMA (N 5 32, M 5 4) using parameters estimated by

pEnKF.

Figure 11 shows the time series of two parameters of

dqrat and rhmcrt. For each parameter, the estimated

time series in IMA well resembles the true time series

except for the initial one month when pEnKF is adapt-

ing to the model. To assess the validity of the small pa-

rameter ensemble of M 5 4, we performed additional

experiments with fewer parameters, for which we selected

two sets of parameters of (dqrat, rhmcrt) and (b1, preczh).

FIG. 6. The relationship between the lead time and the two scores: (a) l and (b) g. The thick

and thin solid lines indicate the score in IMA (N 5 10, M 5 4) and IC (N 5 40), respectively.

Shading is as in Fig. 2b.

FIG. 7. The relationship between the lead time and l. The thick solid, thin solid, broken, and

dotted curves indicate l in IMA (N 5 10, M 5 4), IA (N 5 10), IC (N 5 10), and IS2 (N 5 10),

respectively. Shading is as in Fig. 2b.
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These experiments are referred to as EXP1 and EXP2

and compared with IMA. Another experiment (EXP3)

was also carried out with a larger M (M 5 16). The

correlation coefficients between the true and estimated

parameters (Table 3) show that the parameters dqrat

and rhmcrt are well estimated in EXP1 and EXP3, in-

dicating that these parameters are robust. Table 3 also

presents the correlation for b1 and preczh; they are not

FIG. 8. As in Fig. 7, but for (a) Tp 5 30 days and (b) Tp 5 360 days.

FIG. 9. The relationship between the lead time and the two scores: (a) l and (b) g. The thick

solid, broken, and dotted curves indicate the score in IMA (N 5 10, M 5 4), the conventional

augmented EnKF (N 5 40), and IS2 (N 5 40), respectively. Shading is as in Fig. 2b.
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well estimated in IMA but are better estimated when M

is increased. One of them (preczh) can be successfully

estimated in EXP2 as well. These results indicate that

the performance of the parameter estimation in pEnKF

depends on the number of parameters and the size of the

parameter ensemble. However, our conclusion based on

IMA will not be seriously affected because the two pa-

rameters playing an important role in improving the

forecast do not heavily depend on the choice of M and

the number of parameters.

We then performed the one-month forecasts starting

from the seven initial dates in December, January, and

February. The 500-hPa temperature and the 850-hPa

specific humidity, which are averaged over the last 22 days,

are shown in Fig. 12a for IC (they are very similar in

IMA). The temporal RMS error for these variables in

IC and IMA and the difference (latter minus former)

are also shown in Fig. 12. It is clearly seen that the

temperature error is reduced over the North Pacific,

Mediterranean Sea, and tropical Atlantic (contour in

Fig. 12d). The forecast error of the specific humidity is

also reduced in low-latitude regions (shading in Fig. 12d).

These results are obtained because of the improvement in

the parameterization due to pEnKF. The parameter en-

semble is also useful for improving the 850-hPa specific

humidity but is not as effective as that in the L96 exper-

iment. Finally, instead of using the pEnKF with M 5 16,

we performed the one-month forecasts with M 5 4 but

the initial 16-parameter perturbations were prepared by

adding the Gaussian random noise to the analysis. This

forecast is to confirm whether the small parameter ensem-

ble of M 5 4 can represent the probability distribution.

FIG. 10. The relationship between the size of the parameter ensemble and the two scores: (a)

l and (b) g. The total ensemble size is fixed at N 3 M 5 40. The notation (n, m) in (a) represents

the set of n initial members and m parameter members. In both IC and IMA (or in IC using cx 5

0.48), the solid (or plus symbol), broken (or 3 symbol), and dotted curves (or *) indicate the

analysis time, lead time of 7 days, and lead time of 15 days, respectively.

TABLE 2. List of parameters selected in the experiments using AGCM.

Abbreviation Scheme type Description

b1 Cloud process Efficiency for the indirect effect

dqrat Cloud process PDF width for the subgrid water

tsice Cloud process Critical temperature for cloud liquid–ice partition ts (if t $ ts, only water cloud)

twice Cloud process Critical temperature for cloud liquid–ice partition Tw (if T # Tw, only ice cloud)

preczh Cumulus convection Vertical profile of precipitation (scale height)

rhmcrt Cumulus convection Critical relative humidity
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It turns out that the improvement rate of the forecast

with this ensemble was quite close to that in IMA. The

major reason as to why the small ensemble is sufficient

for representing the probability distribution may be the

pseudo-observations that are generated by the identical

model only by perturbing parameters and thereby pre-

vent the large ensemble spread among different attrac-

tors. If we use real observations, the forecast may reveal

higher sensitivity to M. This issue is currently ongoing

with higher-resolution AGCMs.

6. Summary and discussion

a. Summary

We have introduced a method (pEnKF) based on EnKF

with the state augmentation method to reduce the fore-

cast error in the extended-range to one-month forecast.

The main features of pEnKF are the combined ensemble

forecast of the initial condition and the model parameter,

and the adaptive estimation of the time-varying param-

eter for the parameter ensemble. We first validate pEnKF

in the imperfect L96 model constructed by parameterizing

the small-scale variable of the perfect model. The results

indicate the success of the parameter estimation, the re-

duction in the ensemble-mean forecast error, and the

optimization of the ensemble spread. It is found that

the time-dependent parameter estimation contributes to

reduce forecast errors with a lead time shorter than one

week, whereas the model ensemble is effective for im-

proving forecasts with a longer lead time. The former

works well when the model imperfections have a longer

time scale than the forecast lead time, while the latter

appears to hold in any time scale. Preliminary results us-

ing a low-resolution AGCM that implements pEnKF

support some of the above findings: the success of the

parameter estimation and the reduction in the ensemble-

mean forecast error.

b. Discussion

We proposed pEnKF on the basis of the serial EnSRF,

which is a particular implementation of EnKF. How-

ever, pEnKF can be applied to any type of EnKF. In

fact, we found that pEnKF based on the local ensemble

FIG. 11. Time series of the parameters (a) dqrat and (b) rhmcrt from 1 Nov 2007 to 30 Nov

2008. The solid, dotted, and broken lines indicate the parameter estimated in IMA (N 5 32,

M 5 4), true parameter, and climatological parameter, respectively.

TABLE 3. Correlation coefficient between the true parameter

and estimated parameter for the period from 1 Dec 2007 to 31 Mar

2008.

Experiment IMA EXP1 EXP2 EXP3

Parameter All (dqrat, rhmcrt) (b1, preczh) All

M 4 4 4 16

dqrat 0.92 0.89 — 0.87

rhmcrt 0.98 0.98 — 0.97

b1 0.36 — 20.12 0.54

preczh 0.21 — 0.74 0.69
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transform Kalman filter (LETKF; Hunt et al. 2007;

Miyoshi and Yamane 2007; Miyoshi et al. 2007) also

works as expected. The choice of the type of EnKF is

mainly important with regard to the computational ef-

ficiency rather than the concept of pEnKF.

The combined forecast of the initial condition and

model ensembles in pEnKF can settle on different at-

tractors, as described in section 2. This has an advantage

and a disadvantage in comparison with only the initial

condition ensemble. The advantage is that the optimum

forecast spread of the probability density distribution

can be constructed by considering possible differences

between the nature and model attractors; this can also

lead to a reduction in the forecast error. The disadvan-

tage is that the accuracy of analysis of the state variable

can be reduced by using ensembles with different at-

tractors unlike the conventional EnKF. In pEnKF, this

disadvantage is overcome by the separation of EnKF for

the state variable and that for the parameter, and by the

average process over parameter members in EnKF for

the state variable (13). The above separation also helps

the parameter estimation by using the average process

over initial condition members in EnKF for the pa-

rameter (14). This is because of reducing the difference

between forecasts due to inaccurate initial conditions

and also extracting the difference between forecasts by

using different parameters.

We used a sinusoidal (periodic) model error in the

experiments using the L96 model, in which the time

scale but not the periodicity is crucial for the behavior of

pEnKF. This is ascertained by experiments using a non-

periodic model error, in which the parameters b and c

are varied by red noise having a decorrelation time of

approximately 17 days (denoted as RN17; roughly Tp 5

90 days) and 72 days (RN72; roughly Tp 5 360 days).

They still support the effectiveness of pEnKF, but the

improvement rate l is lower than that in the sinusoidal

model error; the maximum value is only l 5 2%. This

suggests that the model error with a time scale shorter

than the forecast lead time, which is due to the red noise,

reduces the effectiveness of pEnKF. The impact of the

parameter ensemble does not change for either type of

model error; in contrast, the parameter estimation is

successful in RN72 but fails in RN17. Even if we select

a longer time window, the parameter estimation in RN17

is not improved. Hence, we may have to modify pEnKF

for such a model error. This could be done in two ways.

First, a state variable having a longer lead time could be

used in EnKF for the parameter; this may lead to a higher

correlation between the state variable and parameter,

and a parameter optimized for the forecast of a longer

lead time can be estimated. Second, the tendency of the

state variable (Rodwell and Palmer 2007) in EnKF for

the parameter could be used; this may lead to a higher

correlation between the state variable and the parameter.

It is found that in the L96 experiments, the effective-

ness of pEnKF does not depend on the initial value and

perturbation of parameters. However, the parameter

FIG. 12. (a) The 500-hPa temperature (contour, interval 5 K) and the 850-hPa specific humidity (shading, g kg21). (b) The temporal

RMS errors for the temperature (contour, interval 1 K) and specific humidity (shading, g kg21) in IC (N 5 128). (c) As in (b), but for IMA

(N 5 32, M 5 4). (d) Values for (c) minus (b) (contour: interval is 0.1 K, shading: g kg21). All the quantities are averaged over the last

22 days of the one-month forecasts, starting from the seven initial dates in December–February.
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perturbation tends to maintain the initial one. This may

have negatively affected the parameter ensemble in the

experiments using a more complex model. Adding a ran-

dom term may solve the above problem, but it may also

lead to other problems (e.g., an increase in sampling errors).

The advantages of pEnKF may not be supported in the

following cases: the state variable and the parameter are

less correlated and are nonunique, the observation for the

state variable is poor, and the phenomena involving the

model error cannot be simulated in the model. Some of

the above problems may be solved by using a different

method instead of the state augmentation method [e.g.,

the methods proposed by Dee and da Silva (1998) and

Gillijns and De Moor (2007)]. We will clarify these prob-

lems by AGCM experiments using a realistic observation

and will modify pEnKF in a forthcoming paper.
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