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ABSTRACT

An ensemble Kalman filter (EnKF) has been implemented for atmospheric data assimilation. It assimi-
lates observations from a fairly complete observational network with a forecast model that includes a
standard operational set of physical parameterizations. To obtain reasonable results with a limited number
of ensemble members, severe horizontal and vertical covariance localizations have been used.

It is observed that the error growth in the data assimilation cycle is mainly due to model error. An
isotropic parameterization, similar to the forecast-error parameterization in variational algorithms, is used
to represent model error. After some adjustment, it is possible to obtain innovation statistics that agree with
the ensemble-based estimate of the innovation amplitudes for winds and temperature. Currently, no model
error is added for the humidity variable, and, consequently, the ensemble spread for humidity is too small.
After about 5 days of cycling, fairly stable global filter statistics are obtained with no sign of filter diver-
gence.

The quality of the ensemble mean background field, as verified using radiosonde observations, is similar
to that obtained using a 3D variational procedure. In part, this is likely due to the form chosen for the
parameterized model error. Nevertheless, the degree of similarity is surprising given that the background-
error statistics used by the two procedures are rather different, with generally larger background errors
being used by the variational scheme.

A set of 5-day integrations has been started from the ensemble of initial conditions provided by the
EnKF. For the middle and lower troposphere, the growth rates of the perturbations are somewhat smaller
than the growth rate of the actual ensemble mean error. For the upper levels, the perturbation patterns
decay for about 3 days as a consequence of diffusive model dynamics. These decaying perturbations tend
to severely underestimate the actual error that grows rapidly near the model top.

1. Introduction

The ensemble Kalman filter (EnKF) has been pro-
posed as a method for performing 4D data assimilation
(Evensen 1994; Houtekamer and Mitchell 1998, here-
after HM98). The EnKF generates an ensemble of ini-
tial states that can in principle be used to initiate an
ensemble forecast. A fairly complete recent overview
of the work done with the EnKF in the oceanographic
and atmospheric sciences can be found in Evensen
(2003).

Encouraging results, using an ocean general circula-
tion model and real data, have been obtained by Kep-
penne and Rienecker (2002). Whitaker et al. (2004)
have performed a reanalysis of the atmospheric state
using a long series of available surface pressure obser-

vations. The potential of the EnKF as a basis for nu-
merical weather prediction has been discussed by
Lorenc (2003). For the atmospheric applications it is
not clear that the EnKF, implemented with a modest
ensemble size and with a forecast model having impre-
cisely known error characteristics (Dee 1995, Orrell et
al. 2001), will be competitive with existing data assimi-
lation and ensemble generation methodologies. For in-
stance, at the Canadian Meteorological Centre (CMC),
a system simulation approach is used for ensemble pre-
diction (Houtekamer et al. 1996). Currently in the data
assimilation component of that system, multiple analy-
sis cycles are run with multiple versions of a spectral
forecast model and with an optimal interpolation (OI)
data assimilation procedure. In the future, we would
like to use the EnKF to perform the multiple analysis
cycles.

As part of the historical development of the EnKF,
we have performed a series of experiments in increas-
ingly realistic environments ranging from the 3-level
quasigeostrophic model used in HM98 to the dry 21-
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level primitive equation model used in Mitchell et al.
(2002, hereafter MHP). It would appear from these
studies that modest ensemble sizes (order 100) are suf-
ficient. However, in these studies we only used simu-
lated observations and there has been a concern, ex-
pressed most specifically in MHP, about the perhaps
dominant role of poorly understood model imperfec-
tions in an operational environment with real observa-
tions.

In the present study, the EnKF is implemented with
a medium-resolution version of a primitive equation
model that includes a complete set of physical param-
eterizations. A fairly complete set of real observations,
including radiance observations from satellites, is used.
This allows a first impression of the potential quality of
the EnKF in a realistic environment and permits an
examination of the error dynamics in a data assimila-
tion cycle and in a subsequent forecast.

In the next section, we describe the experimental en-
vironment. In section 3, two simulation experiments
are performed to investigate filter behavior with and
without a simulated model error having known statis-
tical properties. Subsequently in section 4, using real
data, we obtain innovation statistics for the EnKF and
compare with innovation statistics of a 3D variational
data assimilation (3DVAR) procedure as well as with
an ensemble-based prediction of innovation ampli-
tudes. In section 5, the growth rates in an ensemble
prediction initiated from the analyses produced by the
EnKF are investigated. We summarize our results in
section 6.

2. The experimental environment

The experimental environment has been largely in-
herited from our earlier studies (most recently MHP)
with a number of modifications to, in particular, the
forecast model and the observational network. These
were mostly motivated by a desire to increase compat-
ibility with the tools that are supported at our opera-
tional center. This approach has the additional advan-
tage that it allows for direct comparisons with the cur-
rently operational deterministic 3DVAR (Gauthier et
al. 1999a, hereafter GBF; Chouinard et al. 2001; Choui-
nard et al. 2002; Sarrazin and Brasnett 2002) and its 4D
variational successor, which is under development.

a. The model

At the CMC, different configurations of the Global
Environmental Multiscale (GEM) gridpoint model
(Côté et al. 1998a; Côté et al. 1998b) are used to pro-
duce global as well as regional forecasts. For the EnKF
experiments, we use a configuration of the GEM model
that is very similar to the version used for operational
global deterministic forecasting. A lower 240 � 120
horizontal resolution is used here with a corresponding
increase in the horizontal diffusion with respect to the

operational version. Both versions use the same 28 �
levels between the surface and the model top at 10 hPa.
We also use the same set of physical parameterizations,
including the new subgrid-scale orographic blocking
term implemented by Zadra et al. (2003). We modified
the treatment of snow over ice to reduce the rate of
adjustment to the radiative equilibrium temperature.
We also found that we could collocate the model’s com-
putational poles with the geographical poles and thus
avoid an interpolation step between the forecast model
and the data assimilation procedure.

b. The observations

In our first implementation of the EnKF, we try to
benefit as much as possible from the existing local in-
frastructure. We also feel that it is preferable to begin
with a relatively simple algorithm and to subsequently
add enhancements, guided by the outcome of the early
experiments. Therefore, the current treatment of ob-
servations in the prototype EnKF is very similar to the
corresponding operations for the operational 3DVAR
that provides the initial conditions for the high-resolu-
tion global forecast.

At our center, data assimilation cycles operate with a
6-h period. Each day a sequence of analyses valid at
0000, 0600, 1200, and 1800 UTC is produced. All avail-
able observations are grouped into a time window of 6
h centered on the analysis time. In the data assimilation
procedure, it is assumed that all observations are valid
exactly at the central analysis time. This assumption is
reasonable for, in particular, the radiosonde observa-
tions. For other observation types, the data-selection
procedures give preference to observations taken close
to the central time.

The operational 3DVAR outputs an observation file
that contains information on whether an observation
has been used in the analysis. From this file we extract
all accepted observations. This procedure allows us to
benefit from the operational quality control and data-
selection procedures, many of which are specific to
each particular observation type. For example, radio-
sonde profiles are subject to hydrostatic, lapse rate, and
wind shear checks; aircraft reports are sorted by aircraft
identifier and then quality controlled one aircraft at a
time; while level-1b microwave radiances from the Ad-
vanced Microwave Sounding Unit-A (AMSU-A) in-
struments are subject to a three-step bias-correction
procedure. All observations are also subject to a “back-
ground check” that verifies that each observation is rea-
sonably close to the available background field. A data-
selection procedure is then applied to reduce the den-
sity of aircraft, satellite-wind, and microwave-radiance
reports. This thinning procedure reduces the horizontal
resolution of aircraft and satellite-wind reports to �1°
and �1.5° of latitude, respectively, and microwave-
radiance reports to �250 km. Further information
about the preprocessing and quality control of aircraft,
satellite-wind, and level-1b microwave-radiance reports
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in the operational 3DVAR can be found in Chouinard
et al. (2001), Sarrazin and Brasnett (2002), and Choui-
nard et al. (2002), respectively.

By assimilating only those observations that have
been accepted by the operational system, the EnKF
benefits also from the subsequent variational quality
control (Andersson and Järvinen 1999) procedure
(hereafter QC-Var) that is currently applied to all ob-
servations except the microwave radiances. This proce-
dure verifies that each observation is reasonably con-
sistent with all available information, including nearby
observations. In the 3DVAR, the QC-Var smoothly re-
duces the weight given to outlying observations. It
never rejects an observation completely. However in
the EnKF, observations mostly accepted by the QC-
Var are given full weight, and observations mostly re-
jected by the QC-Var are completely rejected; there is
no middle ground between these two extremes.

Currently, the EnKF does not assimilate observa-
tions of surface wind and surface humidity. In an ex-
periment including surface-wind observations, we could
not demonstrate a positive impact. We have not yet
performed experiments with surface humidity. Nor did
we include the humidity from satellite (HUMSAT)
data (Garand 1993) that were being used operationally
during our experimental period but were later replaced
at our center by the direct assimilation of 6.7-�m chan-
nel data from the Geostationary Operational Environ-
mental Satellite (GOES) platforms. Finally, since the
EnKF runs at lower resolution than the operational
system, we remove (i) surface observations that are too
far from the EnKF topography, and (ii) upper-air ob-
servations that are too close to it.

In Table 1, we list the number of observational items
that are actually used by the EnKF on the first day, 19
May 2002, of the assimilation experiments. It may be
noted that we assimilate of the order of 105 observa-
tions per analysis time. With respect to the level-1b
microwave radiances, we assimilate channels 3–10 over
open ocean and from three to five of these channels
over land and ice depending on the height of the to-
pography, as described by Chouinard et al. (2002).

c. Model error

A proper statistical description of the model error is
a crucial component of any implementation of the Kal-
man filter (Dee 1995). It is not our intention in this
paper to develop a realistic description of model error.
Rather, we aim to develop an algorithmic framework
that will allow us to learn more about the error dynam-
ics in operational data assimilation. This acquired
knowledge will hopefully provide guidance for more
realistic experiments in the future. Therefore, for our
first implementation of the EnKF, we decided to stay
close to our center’s 3DVAR, which is known to work
well for operational atmospheric data assimilation.

To account for model error, we use a model-error
covariance matrix from which we sample different ran-
dom fields for different members of the ensemble
(Mitchell and Houtekamer 2000, hereafter MH2000).
As suggested in that study, we assume that the model-
error covariance, Q, is of the same functional form as
the forecast-error covariance matrix, P f

3D, used by our
center’s 3DVAR analysis (GBF), but with a smaller
amplitude:

Q � 0.25P3D
f . �1�

We have made a number of simplifications with re-
spect to the complete covariance description that is
used in the variational algorithm. Of the independent
covariance components for streamfunction, divergence,
unbalanced temperature, natural logarithm of specific
humidity, and of unbalanced surface pressure, we only
implemented the components for streamfunction and
unbalanced temperature. For these two components,
we neglected the wavenumber dependence of the ver-
tical correlations, the seasonal dependence, and the
latitudinal dependence of the variances. To generate
an approximately balanced perturbation for u, v, T, and
ps from a streamfunction perturbation field, we now
use the same linear regression operator (GBF) as the
3DVAR does.

Our approach of adding a covariance matrix from a
3DVAR algorithm to dynamically evolved covariances
is similar to what is done in a hybrid scheme (Hamill
and Snyder 2000). However, because we add a sample
of model-error fields to a sample of background fields,
in our algorithm the rank of the covariance matrix is at
most the size of the ensemble. In the classical hybrid
scheme, the combined covariance matrix is full rank.
The advantage of our approach is that we can use a
computationally more efficient direct algorithm for the
data assimilation procedure, whereas the hybrid
method uses a variational algorithm for each member
of the ensemble.

d. The method

The design of an EnKF algorithm that makes optimal
use of an ensemble of necessarily limited size is an area

TABLE 1. Number of observations used by the EnKF on the first
day of the assimilation experiments. National Oceanic and At-
mospheric Administration (NOAA) satellites NOAA-15 and
NOAA-16 were the two polar-orbiting satellites providing
AMSU-A level-1b microwave radiances in May–Jun 2002.

UTC

0000 0600 1200 1800

Radiosonde upper air 40 153 5248 39 941 3718
Radiosonde surface 1086 77 1083 52
Surface 9243 9661 9557 9829
Aircraft 10 905 6781 11 033 11 536
Satellite wind 10 990 10 728 10 844 13 474
NOAA-15 15 942 10 225 15 863 15 131
NOAA-16 17 379 15 808 17 060 17 928
Total 105 698 58 528 105 381 71 668
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of active research (e.g. Tippett et al. 2003; Hamill and
Snyder 2000; Lawson and Hansen 2004). Present-day
computers could likely support most of the proposed
algorithms. The emphasis of the current paper is on
obtaining a “reality check” using real observations. For
the data assimilation algorithm, we use a configuration
that is very similar to our earlier algorithm (MHP). In
particular, we use a pair of ensembles where the Kal-
man gain used for the assimilation of data into one
ensemble is computed from the other ensemble. The
algorithm, also known as a double EnKF, is shown
schematically in Fig. 1. The forecast model and the
analysis both use an � terrain-following vertical coor-
dinate. Note that an interpolation of analysis incre-
ments from pressure levels to � levels (Lönnberg and
Shaw 1987) was used in MHP.

Another important change to the EnKF algorithm is
the replacement of the satellite-derived thicknesses,
which we assimilated previously, by AMSU-A micro-
wave radiances. These are assimilated as described in
Houtekamer and Mitchell [2001, hereafter HM2001,
Eqs. (1)–(3)]. For the interpolation from the back-
ground to a given radiance profile, we first interpolate
horizontally to produce a profile of model variables at
the given latitude and longitude. This profile is then
used to simulate the radiances—that is, brightness tem-
peratures for the channels being assimilated—using a
fast radiative transfer model. As was done in the
3DVAR at the time, RTTOV-6 (Saunders et al. 1999,
Saunders 2000) was used for this purpose.

The state vector for the analysis consists of the two
horizontal wind components, the temperature, and the
specific humidity at each of the 28 � levels, as well as
the surface pressure and surface skin temperature
fields. This skin temperature is required for the assimi-
lation of radiance observations. It is produced by the

forecast model at the end of the 6-h integration and is
updated by the analysis, but the updated skin tempera-
ture field is not subsequently used by the forecast
model for the next 6-h integration.

With the addition of seven more vertical levels and a
model top that is now at 10 hPa (as compared to 50 hPa
in MHP), it proved beneficial to perform covariance
localization not only in the horizontal but also in the
vertical (Keppenne and Rienecker 2002; Whitaker et
al. 2004). For this covariance localization, we use a
fifth-order piecewise rational function [Gaspari and
Cohn 1999, Eq. (4.10)] with the natural logarithm of
pressure as the vertical coordinate. The localization is
such that covariances are forced to zero in two units of
ln p. Thus, for example, the covariances associated with
a 1000-hPa observation fall to zero at 135 hPa, while
those associated with a 10-hPa observation fall to zero
at 74 hPa.

To motivate the vertical localization of covariance,
we use the final set of background fields of the experi-
ment that is described in detail in section 4. We perform
an analysis similar to the one that was presented by
HM98 (their Fig. 7) to motivate a horizontal localiza-
tion. In Fig. 2, we show vertical correlations of tem-
perature with respect to the temperature at model level
23 (approximately at 100 hPa). At each grid point we
computed the vertical correlations, and subsequently
we computed the global average of these correlations.
We notice that for this level the correlations are very
narrow. In fact, they are so narrow that at levels 22 and
24 the correlations are already negative. The narrow-
ness of these correlations suggests that we may encoun-
ter some difficulties with the assimilation of tempera-
ture observations above the tropopause. In principle,
the low global mean average correlations could mask
locally significant features. To investigate this, we quan-

FIG. 1. The procedure used to perform a data assimilation cycle with the double EnKF.
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tify the agreement between the correlation estimates
from the two individual 64-member ensembles. At each
grid point, the vertical correlations from each of the two
ensembles are computed and multiplied together. We
then compute the global average of this product and
finally take the square root of this average. We obtain
a broader curve now, which tends to zero only near
level 15 and near the model top. The convergence to
zero occurs as the two correlation estimates become
uncorrelated values that are distributed about zero. It
would appear then that the narrow vertical oscillations
in the background temperature field remain well orga-
nized over a number of extremes before damping out.
The dynamical or algorithmic origin of these upper-
level oscillations is not known. We also compute the
magnitude of the correlation using all 128 members, by
computing the correlation at each grid point, squaring
it, taking the global mean, and subsequently taking the
root. This value asymptotes to 0.089 � 128�0.5 [HM98,
Eq. (12)] as the vertical separation increases and the
ensemble loses its information content. Again this
value is nearly obtained at level 15 and at the model
top. The presence of nonzero spurious correlation esti-
mates suggests that the filtering of ensemble-based cor-
relations of vertically remote variables may be benefi-
cial.

In our algorithm, we apply the horizontal and vertical
localizations separately as follows:

Kj � 	�V � �H � �P j
fHT�
	�V � �H � �HP j

fHT� � R
�1. �2�

Here Kj is the Kalman gain calculated from ensemble j;
�H and �V are the correlation functions used for hori-
zontal and vertical localization, respectively; � denotes
the Schur product; and R is the observation-error co-
variance matrix. The terms P f

jH
T and HP f

jH
T can be

calculated from the members of ensemble j as in
HM2001 [Eqs. (2) and (3)].

To apply the horizontal and vertical localizations, we
require the 3D coordinates (longitude, latitude, and
pressure) of each observation and each model variable.
The horizontal locations of all observations and vari-
ables used here are well defined. The vertical localiza-
tion is more problematic. The surface pressure is con-
sidered to be valid at the surface (where the pressure
equals the surface pressure by definition), even though
the surface pressure, via the definition of the � coordi-
nate, has an impact on all model variables. The skin
temperature is also considered to be valid at the sur-
face. This temperature is important in the assimilation
of radiance observations even though these typically
correspond to higher model levels. Consequently, the
skin temperature will be used properly in the interpo-
lation operator H, but because of the terms �V in the
Kalman gain, the radiance innovations may have only a
small impact on the skin temperature of the back-
ground.

The different microwave-radiance channels are sen-
sitive to different, fairly broad layers of the atmosphere.
Each of the eight channels that are assimilated by the
EnKF is assigned the (approximate) pressure at which
that channel peaks. Thus, for example, channel 3 (the
lowest peaking channel) is assigned a pressure of 625
hPa, while channel 10 (the highest peaking channel) is
assigned a pressure of 37 hPa. The question of how to
localize becomes more complicated for certain other
radiance observations that are affected by temperature
and humidity values at fairly different vertical locations
(e.g., AMSU-B microwave radiances). Such radiances
were not being assimilated operationally at the CMC at
the time we performed these experiments.

For the experiments described in this paper, the im-
pact of any observation will drop to zero at a horizontal
distance of 2800 km and at a vertical distance of two
units of ln p. Based on some experiments with different
parameters for the localization in which we tried to
minimize the radiosonde innovation amplitudes, both
values seemed reasonable for use with a pair of 64-
member ensembles. At the time of this writing, we do
not know if the vertical localization has undesirable
side effects. The vertical localization would appear to
be beneficial, as evaluated using radiosonde innovation
statistics, but its precise formulation is a subject of in-
vestigation.

3. Simulation experiments

To validate our EnKF, we perform a simulation ex-
periment in which the statistical descriptions of all
sources of error are considered to be known exactly and
are made available to the EnKF. Any subsequent dis-
crepancy between the ensemble spread and the en-
semble mean error would suggest the presence of an

FIG. 2. Vertical correlations in the background fields valid at
1200 UTC 2 Jun 2002 for temperature with respect to the tem-
perature at model level 23. The solid curve shows the average over
the globe of the correlations computed over the entire set of twice
64 members. The dashed curve shows the agreement between the
two ensembles of the pair (i.e., the square root of corresponding
correlations computed from each ensemble of 64 members). The
dotted curve is the square root of the mean squared correlations
of the entire set.
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as-yet-unknown source of error in our implementation.
This is similar to previously performed experiments
(e.g., MHP, sections 4a and 4b).

To initialize a truth run we take the CMC operational
deterministic analysis, valid at 0000 UTC 19 May 2002,
and interpolate it to the 240 � 120 grid used by the
model. The truth run, which ends at 1200 UTC 2 June
2002, is performed as a sequence of 6-h integrations.

Using the covariance matrix Pf � Pf
3D, we perturb the

truth field valid at 0000 UTC 19 May 2002 to obtain a
central background field valid at that same time
[HM98, Eq. (7)]. Then, using the same covariance ma-
trix, we obtain a pair of 64-member ensembles centered
on that field [HM98, Eq. (8)]. To obtain the first analy-
sis valid at 0000 UTC 19 May 2002, we take the obser-
vations that were assimilated operationally and replace
them with values interpolated from the truth run and
perturbed with a random observational error [HM98,
Eq. (6)]. A sequential analysis algorithm (HM2001) is
used with batches of 3 � 200 observations.

Every 6 h, a model-error component with covariance
given by (1) is added, as in Fig. 2 of MH2000. For this
simulation experiment, the model-error parameters
used to increase the spread of the ensemble are the
same as those used to describe the difference with the
truth run. The parameters of the model-error compo-
nent used here, in particular the amplitude and the
horizontal length scale, have been subject to a certain
amount of tuning and represent an estimate of the iso-
tropic model-error component.

Starting at 0000 UTC 19 May 2002, we perform a 6-h
data assimilation cycle until 1200 UTC 2 June 2002. We
want to see if the ensemble statistics remain represen-
tative of the ensemble mean error. In this simulation
experiment, the ensemble mean error is computed with
respect to the available truth run.

Figure 3 shows some summary statistics for the as-
similation cycle. For winds, temperature, and surface
pressure, we use an energy norm [MHP, Eq. (9)]. For
specific humidity, we select a level (� � 0.631) with
behavior representative of all levels of the lower tro-
posphere. For winds, temperature, and surface pres-
sure, the ensemble spread remains very close to the true
ensemble mean error that it simulates. This suggests
that the EnKF works well for these variables. However,
for specific humidity, the ensemble spread is systemati-
cally too small. This may be related to the almost com-
plete absence, from our observational database, of hu-
midity observations in the tropical areas that dominate
the humidity content of the atmosphere.

Similar to our earlier results (MHP, section 4b), we
observe that the error amplitudes grow mostly because
of the model-error component. For winds and tempera-
tures, error amplitudes actually decrease during the 6-h
prediction step. There is a subsequent increase due to
the addition of a model-error component and, as ex-
pected, a decrease due to the assimilation of new ob-
servations. For surface pressure, we observe a modest

increase of amplitudes with the model dynamics fol-
lowed by a significant increase due to model error and
a similarly significant decrease due to the data assimi-
lation. For humidity, it is very hard to discern any dy-
namics from Fig. 3. This is due to the absence of a
humidity component in the model-error parameteriza-
tion and also to the relative lack of observations related
to humidity in our observational dataset.

In summary, the filter appears to behave well for
winds, temperature, and surface pressure, with no dis-
cernible model error being due to deficiencies of the
assimilation component of the EnKF. However, the
lack of error growth due to model dynamics is in con-
trast with the classical picture of the analysis cycle being
a “breeding ground” for fast growing modes (Toth and
Kalnay 1993). This is a serious concern because we
would like to use the EnKF to provide the unstable
initial conditions for an ensemble prediction system
with realistic spread in the medium range.

From these results, it appears that the error dynamics
during the assimilation cycle are dominated by the ad-
dition, every 6 h, of a model-error term of significant
amplitude. It is interesting to investigate the error dy-
namics in the absence of such a model-error term. We
have therefore redone the previous experiment without
the regular addition of model error. This simulates how
the EnKF would behave if it were used with an atmo-
spheric model that exactly represents the atmospheric
dynamics.

The results in Fig. 4 show that error amplitudes,
as measured by the ensemble spread, decrease by
roughly a factor of 3 for winds, temperature, and sur-
face pressure if a perfect forecast model is used. For
humidity, for which we had no model-error term even
in Fig. 3, the decrease is less significant. Having no
model-error term for any of the model variables, we
note that a significant discrepancy between the en-
semble spread and the ensemble mean error now de-
velops for all variables. This is similar to what was
observed in the perfect-model experiment by MHP
(their Fig. 3) and is indicative of the presence of an
error or inconsistency in the experimental configura-
tion that we have yet to identify. Possibilities are the
presence of inbreeding in a sequential EnKF (HM2001,
their Fig. 3) and an unintentional difference between
the integration of the truth run and of the individual
ensemble members. Finally, we note the extremely
modest error growth of both the temperature and hu-
midity due to the model dynamics. This suggests that
the lack of perturbation growth, which was observed in
Fig. 3, is not simply a consequence of adding param-
eterized model-error fields that were perhaps fairly un-
balanced.

In section 5, we return to the subject of error growth
rates when we investigate the dynamics of an ensemble
of 5-day forecasts started from initial conditions pro-
vided by the EnKF.
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4. An experiment with real data

An experiment with real observations has been per-
formed in order to further evaluate the impact of the
different approximations and assumptions that are part
of our proposed EnKF configuration. For the proper
functioning of the filter, it is important to verify and
ensure that the ensemble spread is in general agree-
ment with innovation statistics. We also want to com-
pare the quality of the ensemble mean with the analyses
and background fields from a currently operational al-
gorithm.

To assimilate real observations, the EnKF is config-
ured as in the experiment of section 3 that includes
model error. Now, however, the truly observed values
are assimilated instead of being replaced with values
that have first been interpolated from a truth run and
then been perturbed with a small random value. The

data assimilation cycle extends from 0000 UTC 19 May
2002 until 1200 UTC 2 June 2002. A set of particularly
reliable stations from the global radiosonde network is
used for validation purposes. To compare with the ra-
diosonde observations, the ensemble mean and the en-
semble spread are interpolated to the 16 standard pres-
sure levels (1000, 925, 850, 700, 500, 400, 300, 250, 200,
150, 100, 70, 50, 30, 20 and 10 hPa). To allow for the
spinup of the filter properties (see Fig. 3), the first 5
days of the experiment are discarded so that the vali-
dation period runs from 0000 UTC 24 May 2002 until
1200 UTC 2 June 2002. The validations are performed
at 0000 and 1200 UTC each day, since it is at these
hours that a large number of radiosonde observations
are available. The validation statistics are thus averaged
over 20 cases, which yield a total of approximately 6500
individual reports.

For the EnKF we performed a number of experi-

FIG. 3. Analysis, prediction, and forecast error every 6 h for the period between 0000 UTC 19 May 2002 and 0000
UTC 2 Jun 2002 for a simulation experiment with added model error. The solid line is for the rms spread in the
ensemble. The dotted line gives the rms error of the ensemble mean with respect to the known truth. All results
are for the first ensemble of the pair. The results for (a) winds, (b) surface pressure, and (c) temperature are
expressed in terms of a total energy norm. For (d) specific humidity at level 0.631, the global rms value is shown
in units of 10�4 kg kg�1.

610 M O N T H L Y W E A T H E R R E V I E W VOLUME 133



ments in which we used a separate bias-correction
scheme. This algorithm used the zonal-mean analysis
increment to update an evolving estimate of the zonal-
mean bias. The idea was that the EnKF has been de-
signed to reduce the second moment of the error and
one would not expect it to accurately remove the bias
that cannot be simulated with the internal dynamics of
the model. Equipped with a bias-correction scheme, the
EnKF showed significantly less bias, and the second
moment was somewhat better as well. However, our
subsequent experience was that it was very difficult to
isolate the impact of further modifications to the ex-
perimental environment. We decided, therefore, to re-
move the bias-correction scheme and to rely on the
success of ongoing research on the forecast model for
the future reduction of the bias.

a. Validation of the ensemble spread

A certain amount of prior experimentation has been
performed to ensure reasonable behavior of the EnKF.

As mentioned in section 3, the amplitude and the
length scale of the model-error component were con-
sidered free parameters. The material presented in this
subsection is thus to be viewed both as a description of
the adjustment procedure and as proof that the filter
behaves well.

The basic equation for model-error estimation
[Moghaddamjoo and Kirlin 1993; MH2000, Eq. (7)] is

�n�n
T� � HPn

pHT � HQnHT � R. �3�

Here �n is the innovation vector at time tn, H is the
forward interpolation from a complete model state to
the observations, Pp

n and Qn are the prediction and the
model-error covariance matrices, and R is the observa-
tional error covariance. It is possible (Dee 1995;
MH2000) to use an adaptive procedure to adjust a small
number of model-error parameters using an ensemble-
based estimate of HPp

nHT.
For this study, a nonautomated procedure has been

used in which only the diagonal of (3) has been consid-
ered:

FIG. 4. Analysis and forecast error, every 6 h for the period between 0000 UTC 19 May 2002 and 0000 UTC 2
Jun 2002 for a simulation experiment without model error. (a)–(d) As in Fig. 3.
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diag��n�n
T�� � diag�HPn

f HT� � diag�R�. �4�

Here the forecast-error covariance, P f
n, is the sum of

the prediction error, Pp
n, and the model-error covari-

ance, Q. In our experiments, the same model-error co-
variance, Q, is used for an entire 14.5-day data assimi-
lation cycle. All terms in (4) can be evaluated from a
data assimilation cycle with the EnKF. The innovation
is obtained as the difference between observations and
the interpolated ensemble mean value [MH2000, Eq.
(5)], P f

n can be estimated from the ensemble of back-
ground fields, and an estimate of R is available from the
data assimilation code. Several data assimilation cycles,
with different fixed values for the model-error param-
eters, were run until a reasonable agreement was ob-
tained between the two sides of (4).

At the end of the 14.5-day cycle, the mean innovation
statistics were computed for different variables and lev-
els. It can be seen from Fig. 5 that there is general
agreement between the standard deviation of the inno-
vations and the corresponding ensemble estimate.
However, there are a few systematic differences. The
predicted innovation standard deviation for humidity is
generally too small, which is taken to imply that the
ensemble spread is too small. This is related to the
absence of a humidity component in our model-error
description. Some preliminary experiments with pa-
rameterized model error for humidity did increase the
ensemble spread for humidity but did not reduce the
ensemble mean innovation amplitudes for humidity.

For geopotential height, the ensemble spread is gen-
erally too small above 300 hPa. Combining this infor-
mation with the narrow vertical correlations for tem-
perature from Fig. 2 and the satisfying ensemble spread
for temperature would suggest that we need broader
vertical correlations for the model error at the upper
levels. However, it should be noted that the validation
of geopotential height is less direct than the validation
of temperature. Geopotential height observations have
long been used at our center for the deterministic OI
analysis (Mitchell et al. 1996). That analysis, which
forms the basis of the data assimilation procedure used
by the operational ensemble prediction system
(Houtekamer et al. 1996), uses geopotential height as
an analysis variable. Initially the same was true for the
new 3DVAR (Gauthier et al. 1999b). However, the
geopotential height variable is no longer used by the
3DVAR (Chouinard et al. 2001), nor is it used by the
EnKF. These newer algorithms use temperature and
surface pressure as analysis variables for the mass field.
A diagnostic program is run to obtain geopotential
height fields from the surface pressure and the tem-
perature fields so that they can be compared to geopo-
tential height observations for validation purposes. The
narrow vertical structures for temperature in the upper
levels (Fig. 2) lead to an inherent uncertainty in the
derived values for geopotential. It is not clear how this
impacts on the results shown in Fig. 5c.

For winds and temperature, we feel that the agree-
ment is within the uncertainties of the experimental
procedure followed here. We note, for instance, that
the observational errors used for Fig. 5 are those used
in the EnKF for all radiosondes, whereas the validation
is restricted to a subset of particularly reliable radio-
sonde stations. These latter stations, being more reli-
able, should be assigned a smaller observational error.

Looking at the observational and forecast compo-
nents in Fig. 5, one notices that they are generally of the
same magnitude. This is reassuring because a relatively
small ensemble spread could cause the EnKF to give
insufficient weight to the observations. That condition
could lead to filter divergence. The worst behavior,
with a difference in amplitude of a factor of 2, again
occurs for humidity and for geopotential height above
300 hPa. It is possible to do the validation separately for
small subareas, but such validations are difficult to in-
terpret and they might lead to more complex correla-
tion models for the model error. We do not feel that
this is a fruitful area for future EnKF research and we
discuss an alternative (perturbing some parameters of
the forecast model) in the concluding discussion.

b. Validation of the ensemble mean

Our objective is to implement the EnKF as the data
assimilation component of the operational ensemble
prediction system at CMC. It would thus replace the
currently operational OI system, which runs on a 300 �
150 horizontal grid. Some comparisons were performed
between the innovation statistics for the mean of the
ensemble produced by the EnKF and the mean of the
ensemble produced by the operational OI system. The
statistics were much better for the EnKF, but it was
difficult to interpret this result because the operational
system uses an ensemble of configurations of a different
dynamical model and the OI uses satellite-derived
thicknesses instead of directly assimilating the observed
radiances. It was impossible to say whether the 4D pro-
cedure, the improved treatment of the observations, or
the use of the GEM dynamical model was responsible
for the observed improvement with respect to the OI
system.

We subsequently decided to compare with the
3DVAR that was operational during the spring of 2002.
That system used an older version of the GEM dynami-
cal model, a 400 � 200 horizontal grid, and model com-
putational poles not located at the geographical poles.
The observational dataset was almost identical but in-
cluded observations of surface winds, surface humidity,
as well as the HUMSAT observations. The EnKF also
used an older description, with larger values, for satel-
lite-wind observational errors, and, finally, observa-
tional errors for dewpoint depression observations that
did not depend on height. Verification against radio-
sonde observations of ensemble mean 6-h forecasts
from the EnKF and of 6-h forecasts from the 3DVAR
gave very similar results, with the two schemes behav-
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ing slightly differently in different areas. Interestingly,
it was possible to hypothesize that the differences in the
model configurations were responsible for a significant
part of the observed differences, whereas we had in-
tended to evaluate the impact of changing from a 3D to
a 4D procedure.

We therefore decided to rerun the 3DVAR at the
same resolution as the EnKF, with exactly the same

dynamical model, and with exactly the same set of ob-
servations and observational error statistics. The result-
ing verifications of 6-h forecasts against radiosonde ob-
servations are shown in Fig. 6. Based on these results, it
is very difficult to choose one system over the other.
The EnKF has smaller standard deviation for humidity
but it has a larger bias for that variable. The EnKF also
has a larger bias for geopotential height. It would seem

FIG. 5. Comparison of error amplitudes that have been averaged over a 10-day experimental period.
Shown are the predicted innovation std dev (solid) that should match the observed innovation std dev
(dashed–dotted). The predicted std dev is computed from the rms observational error (dotted) and the
rms ensemble spread (dashed).
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that minor changes in either the 3DVAR or the EnKF
could cause either of these systems to improve relative
to the other. In any case, a comparison based on just 10
days in one particular season has its limitations.

It is puzzling that these two conceptually different
data assimilation systems lead to verifications that are
so similar. In fact, verifications over smaller subareas or
shorter periods (not shown) generally exhibit the same
close agreement. To shed further light on this, we com-

puted the difference between the radiosonde observa-
tions and the interpolated analysis values. This mea-
sures how closely the analysis draws to the observations
it has used. The results are presented in Fig. 7. As each
analysis has already used the same observations that it
is now being compared with, the values plotted in Fig.
7 are generally smaller than the corresponding innova-
tion amplitudes in Fig. 6. More interestingly, it can be
seen that the variational algorithm draws substantially

FIG. 6. Comparison of verification scores, obtained over a 10-day experimental period, of the ensemble
mean background of the EnKF and the 3DVAR background. The mean value (bias) and std dev of the
observed minus interpolated values are shown for the EnKF (dashed and solid, respectively) and the
3DVAR (dotted and dashed–dotted, respectively).
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closer to the wind and humidity observations and also
tends to draw closer to the temperature observations.
The differences are seen to be largest near the surface
and to decrease gradually with decreasing pressure. A
different behavior is observed for geopotential height,
but, as mentioned previously, geopotential height ob-
servations are not assimilated in either the EnKF or the
variational algorithm.

The differences in the observed minus analyzed val-
ues of the EnKF and the variational algorithm reflect
differences in the error statistics of the background
field. The EnKF generally has smaller error covari-
ances near the surface. Accounting for the uncertainty
in the surface fields (Houtekamer et al. 1996; Keppenne
and Rienecker 2002) would likely increase the lower-
level ensemble spread in a realistic manner. Because

FIG. 7. Comparison of observed minus interpolated values, averaged over a 10-day experimental
period, of the ensemble mean analysis of the EnKF and the 3DVAR analysis. The mean value (bias) and
std dev of the observed minus interpolated values are shown for the EnKF (dashed and solid, respec-
tively) and the 3DVAR (dotted and dashed–dotted, respectively).
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Fig. 6 suggests that the current implementations of the
EnKF and the variational algorithm are roughly of the
same quality, and because the two schemes give differ-
ent weight to observations, it follows that at least one of
the two algorithms would benefit from a revision of its
background-error statistics. In the variational algorithm
one can modify these statistics directly, while in the
EnKF changing the model-error description is the most
direct way of changing the background-error statistics.
The use of a model-error parameterization, based on
the 3DVAR forecast-error-covariance matrix, is likely
partly responsible for the observed similarity in verifi-
cation statistics.

5. Growth rates

Some concern was expressed in section 3 about the
analysis cycle not being a breeding ground for growing
modes in our experiments. This would appear to be in
conflict with the following generally accepted belief
[but see Orrell et al. (2001) for a different opinion] in
the ensemble prediction community: the analysis error
contains some patterns that are unstable and that will
give rise to rapid error growth. After, say, about 2 days
of integration, these growing components will dominate
the forecast error. This belief is supported by the addi-
tional observation that forecast errors grow quickly in
operational forecasts. Therefore, one would expect an
ensemble prediction system based on initial conditions
that are decaying to be unable to match the observed
growth rates without the use of additional measures,
such as the addition of a very significant model-error
component.

To further investigate the observed (Fig. 3) initial

decay of the perturbations, we performed an ensemble
of 5-day integrations starting from initial conditions
taken from the data assimilation cycle described in sec-
tion 4. For simplicity we only used the 64 analyses, valid
at 1200 UTC 2 June 2002, that constituted the first of
the two ensembles of the pair. We extended the data
assimilation cycle for 5 more days so that the ensemble
mean analyses, as computed from the first ensemble of
the pair, could be used to validate the ensemble of
sixty-four 120-h forecasts.

The growth rate of the perturbations, as measured
with the energy norm, is displayed in Fig. 8a. The total
error energy is seen to decrease for about 24 h, after
which time the growth of the growing modes apparently
starts to dominate over the decay of the decaying
modes. To put these error levels in a context, we display
in Fig. 8b the corresponding errors of the ensemble
mean validated against the ensemble mean analysis.
These latter curves would have zero error at the initial
time by construction (not plotted). For short lead times
of 6 h, we saw in Fig. 5 that error levels in the ensemble,
due in large part to the addition of model error every 6
h, are in approximate agreement with innovation am-
plitudes. Beyond day 1 the error involved in validating
against analyses is less dominant, so we conclude from
Fig. 8 that the ensemble spread, which here evolves
because of internal dynamics only, grows more slowly
than the ensemble mean error. Such behavior was ob-
served in MHP (Fig. 7) and is commonly seen in en-
semble prediction systems (e.g., Table 4 of Houtekamer
et al. 1996). In an ensemble of medium-range integra-
tions, this difference would be reduced by a simulation
of the model-error component.

To permit a better understanding of the dynamical

FIG. 8. The growth rate of (a) perturbations and (b) the ensemble mean error are shown in units of energy for
an ensemble of sixty-four 120-h forecasts. The contributions from wind, temperature, and surface pressure are
shown by the dashed, dotted, and dashed–dotted curves, respectively.
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behavior of the ensemble of perturbations, Fig. 9a
shows the growth of the combined wind and tempera-
ture error energy at the model top (� � 0.0), at two
intermediate levels (� � 0.101 and � � 0.302), and at
the surface (� � 1.0). At the top of the model, the error
energy decays during 84 h, with an overall significant
decrease of the error amplitude. Level � � 0.101 shows
a fairly flat growth curve with the minimum being ob-
tained at 60 h. The most rapid perturbation growth is
obtained near level � � 0.302 where the minimum error
energy occurs at 6 h. Growth rates drop off toward the
surface as shown.

We may again compare these growth rates with the
growth of the ensemble mean forecast error as vali-
dated against the ensemble mean analysis. Discarding
the first 12 h, during which validating against an analy-
sis leads to artificially low error levels, one may note a
fairly similar behavior for the levels � � 0.302 and � �
1.0. It can be seen, by considering Figs. 9a and 9b, that
both the ensemble spread and the actual errors grow
smoothly; as expected, the actual error exhibits larger
growth rates. For the top levels, the behavior of the
spread and the actual error is qualitatively different; the
actual errors grow rapidly, whereas the ensemble
spread decreases for several days before showing some
moderate growth. The observed growth of the actual
error likely reflects the limited quality of the forecast
model near the model top. The decrease of the en-
semble spread likely results from strongly diffusive
model dynamics near the model top. The resulting dis-
crepancy between the behavior of the spread and the
actual error implies that the simulation of model error
near the model top warrants careful attention in EnKF
or ensemble prediction applications.

6. Summary and concluding discussion

The EnKF algorithm implemented here has been
based on our earlier studies. A configuration consisting
of a pair of ensembles (Fig. 1), having a total of 128
members, has been used. Because we aim at an opera-
tional application of the EnKF at our center, we have
upgraded our environment to be closer to the one used
operationally for the deterministic 3DVAR. Thus, we
have adopted a forecast model that is very similar to the
version used for high-resolution global deterministic
forecasting. In particular, the same set of physical pa-
rameterizations is employed and the model top has
been raised to 10 hPa. The selection and processing of
observations is very similar to what is done in the
3DVAR. The EnKF, like most modern data assimila-
tion algorithms, directly assimilates the observed radi-
ances.

In our experiments, we have measured very narrow
vertical temperature structures in the upper layers of
the model (Fig. 2). This is likely related to our raising of
the model top to 10 hPa. However, the precise algo-
rithmic origin of these correlations is not known at the
time of this writing. It is clear though that such narrow
unresolved structures have a negative impact on the
analysis. In this study we use a vertical Schur product to
limit the vertical extent over which an observation may
have an impact. In our follow-up work, we intend to
further investigate the effects of the vertical localiza-
tion. Perhaps changing either the model or the model-
error parameterization would result in smoother verti-
cal structures.

In section 3, we present two simulation experiments
in which all observed values are replaced by values in-

FIG. 9. The growth rate of (a) perturbations and (b) the ensemble mean error are shown for four different levels
in units of energy for an ensemble of sixty-four 120-h forecasts. The combined wind and temperature error-energy
contributions at the levels � � 0.0, � � 0.101, � � 0.302, and � � 1.0 are shown by the solid, dashed, dotted, and
dashed–dotted curves, respectively.
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terpolated from a truth run (with a subsequent addition
of a small random error). In the first of these experi-
ments (Fig. 3), model error is simulated using an iso-
tropic model-error covariance term. We find that error
growth in our data assimilation cycle is mainly due to
this term. In our experimental setup, this term repre-
sents a multitude of terms that have in common that
they are not directly simulated in our EnKF implemen-
tation. These, so far elusive, terms include imperfec-
tions such as (i) errors in the forward interpolation op-
erator; (ii) errors in the specification of the statistics of
observations; (iii) errors due to the parameterization of
unresolved dynamical and physical processes; and (iv)
errors due to imperfectly known surface fields. The cur-
rent experimental results do not support a view in
which rapidly growing baroclinically unstable perturba-
tions emerge, as a simple consequence of model dy-
namics, in a data assimilation cycle (Toth and Kalnay
1993). This is surprising because baroclinic instability
should be well represented in a primitive equation
model of modest resolution such as used here. Our re-
sults are not in conflict with the singular vector ap-
proach (Molteni et al. 1996). The lack of unstable per-
turbations could result from our way of accounting for
model error. It is possible that the use of more realistic
error source terms, whose nature remains to be identi-
fied, would lead to the highly unstable initial conditions
whose presence is postulated by the singular vector
method. Our results seem to support the paradigm, pro-
posed by Orrell et al. (2001), in which model error is the
main error source for the first few days of a forecast.

For our current experiments, very few humidity ob-
servations were available. Consequently, we observe
from Fig. 3d that the humidity variable does not sys-
tematically benefit from the data assimilation. We ex-
pect that this situation will change as our center re-
cently started using AMSU-B radiances for operational
data assimilation.

We do not know if a meaningful isotropic parameter-
ization of humidity-related “model error” exists. Con-
sequently, at the present time, we are not adding pa-
rameterized model error for the humidity variable.
However, we are currently investigating perturbing
some parameters of the forecast model in order to
simulate forecast-model-related model error. Perturb-
ing parameters related to convection and condensation
would likely augment the ensemble spread for humid-
ity.

A second simulation experiment, in which the model
is now considered to exactly represent the atmosphere
and in which consequently the isotropic model-error
term is set to zero, shows (Fig. 4) that in this case the
error amplitudes are smaller by roughly a factor of 3 for
winds, temperature, and surface pressure. However,
this experiment also shows that there is some unknown
imperfection or inconsistency in our current implemen-
tation of the EnKF. This conclusion is arrived at by

comparing the ensemble spread and the error of the
ensemble mean. As in Figs. 3 and 4 of HM98 and Fig.
3 of MHP, this comparison is a useful diagnostic of
EnKF performance.

In section 4, we present an experiment in which we
assimilated real data. It can be inferred from Fig. 5 that
the ensemble spread is in broad agreement with inno-
vation statistics. This is reassuring, because a lack of
agreement might eventually lead to filter divergence.
We find, however, that the ensemble spread appears to
be too small for humidity and for geopotential height
above 300 hPa. The lack of spread for humidity is re-
lated to the absence of a model-error component for
humidity in our experiments. The lack of spread for
geopotential height is likely related to the narrow ver-
tical structures already observed in Fig. 2. We note that
the EnKF provides a new tool, via the predicted am-
plitude of the innovations, that can be used to work
toward a coherent simulation of all sources of error in
a data assimilation cycle. This includes the “model er-
ror” component, which has properties that are not well
known. It could project, with small amplitude, on highly
unstable modes, which would potentially support the
breeding and singular vector method for ensemble pre-
diction, or also, with large amplitude, on stable modes.

The quality of the ensemble mean background field
is found to be similar to that obtained with a 3DVAR
using exactly the same forecast model and the same
observational network, as shown by Fig. 6. However, as
seen in Fig. 7, the variational algorithm generally draws
closer to the observations. This would seem to be due to
the generally larger background-error amplitudes used
in the variational procedure. Since, as observed, the
current background fields have similar quality, this im-
plies that some retuning of the algorithms would likely
lead to improved results.

The small difference in quality between the ensemble
mean background from the EnKF and the background
from the 3DVAR would seem to suggest that the im-
pact of dynamically evolving covariances is fairly small.
One may note that a 4D algorithm in principle also
allows for an accurate interpolation of model states to
the location and time of the observations. The temporal
interpolation will likely be implemented in the EnKF as
our center also moves to a 4D variational approach and
as quality controlled observation sets not centered on
synoptic times become available.

We have started investigating whether the initial con-
ditions from the EnKF can be used as the basis for our
center’s medium-range ensemble prediction system.
From Fig. 8a one observes that the initial conditions
provided by the EnKF, when integrated with a unique
version of the forecast model, do not immediately show
error growth. Even after a few days of integration, the
growth rate of the perturbations is below the rate at
which the actual ensemble mean error grows (Fig. 8b).
From Fig. 9 it is clear that this is, in part, due to an
unrealistic lack of perturbation growth near the top of
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the model. To couple the EnKF with the existing en-
semble prediction system (Pellerin et al. 2003), we
might, for an initial implementation, simply interpolate
the first 16 initial states provided by the EnKF to the
grids used by the 16-member ensemble. The multiple
model versions used in the ensemble prediction system
sample the model-error component and would help to
obtain a larger, more realistic spread in the ensemble.
For future implementations, we would of course prefer
having a more unified approach in which the short-
range ensemble prediction for the EnKF is performed
in the same manner as the medium-range ensemble
prediction for the ensemble prediction system.

In summary, we note that operationally interesting
results can be obtained with an EnKF using an en-
semble of moderate size. We, therefore, are continuing
to further develop the EnKF so that it may be used as
the 4D data assimilation method for the ensemble pre-
diction system at our center.

The results of the comparison with the 3DVAR are
perhaps more intriguing than earthshaking. However,
because we are not yet simulating the very significant
model-error terms, which we are currently only ac-
counting for using an isotropic parameterization, we
are not yet in a position to make definite statements
about the potential of the EnKF algorithm. It is there-
fore too early to predict precisely how the fully devel-
oped EnKF will compare with fully developed 3D and
4D variational methods.
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