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Abstract Spatial downscaling of climate change scenarios can be a significant source of
uncertainty in simulating climatic impacts on soil erosion, hydrology, and crop production.
The objective of this study is to compare responses of simulated soil erosion, surface
hydrology, and wheat and maize yields to two (implicit and explicit) spatial downscaling
methods used to downscale the A2a, B2a, and GGa1 climate change scenarios projected by
the Hadley Centre’s global climate model (HadCM3). The explicit method, in contrast to
the implicit method, explicitly considers spatial differences of climate scenarios and
variability during downscaling. Monthly projections of precipitation and temperature during
1950–2039 were used in the implicit and explicit spatial downscaling. A stochastic weather
generator (CLIGEN) was then used to disaggregate monthly values to daily weather series
following the spatial downscaling. The Water Erosion Prediction Project (WEPP) model
was run for a wheat–wheat–maize rotation under conventional tillage at the 8.7 and 17.6%
slopes in southern Loess Plateau of China. Both explicit and implicit methods projected
general increases in annual precipitation and temperature during 2010–2039 at the
Changwu station. However, relative climate changes downscaled by the explicit method,
as compared to the implicit method, appeared more dynamic or variable. Consequently, the
responses to climate change, simulated with the explicit method, seemed more dynamic and
sensitive. For a 1% increase in precipitation, percent increases in average annual runoff (soil
loss) were 3–6 (4–10) times greater with the explicit method than those with the implicit
method. Differences in grain yield were also found between the two methods. These
contrasting results between the two methods indicate that spatial downscaling of climate
change scenarios can be a significant source of uncertainty, and further underscore the
importance of proper spatial treatments of climate change scenarios, and especially climate
variability, prior to impact simulation. The implicit method, which applies aggregated
climate changes at the GCM grid scale directly to a target station, is more appropriate for
simulating a first-order regional response of nature resources to climate change. But for the
site-specific impact assessments, especially for entities that are heavily influenced by local
conditions such as soil loss and crop yield, the explicit method must be used.
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1 Introduction

The Intergovernmental Panel on Climate Change (IPCC (Intergovernmental Panel on
Climate Change) 2001) has concluded that precipitation very likely increased by 0.5 to 1%
per decade in the twentieth century over most mid- and high latitude land areas of the
Northern Hemisphere, and the frequency of heavy precipitation events likely increased by
2–4% over the second half of the century as well. Across the contiguous United States,
precipitation has increased by some 10% since 1910, and the increase has been primarily in
the form of heavy and extreme daily storms (Karl and Knight 1998). Specifically, about
53% of the total national increase is due to the precipitation increase within the upper 10%
of all the daily precipitation amounts since 1910. Groisman (see SWCS 2003) analyzed the
trends in share of total annual precipitation occurring in heavy (>95th percentile), very
heavy (>99th), and extreme daily precipitation events (>99.9th) in the contiguous U.S.
between 1910–1970 and 1970–1999, and reported that the linear trends between the two
periods increased by 4.6, 7.2, and 14.1% per decade, respectively, which are in contrast to
the 1.2% increase per decade for total annual precipitation. Zhai et al. (1999) analyzed daily
rainfall records across the contiguous China and reported that frequency of heavy storms,
on average, decreased from 1951 to 1990, but intensity of heavy storms (mm d−1) increased
significantly. This bias toward more intense rainfall events is of great concern for assessing
the potential impacts on soil erosion and surface hydrology because severe soil erosion and
catastrophic environmental destruction are often caused by infrequent heavy storms.

Besides the historical trends, most Global Climate Models (GCMs) have projected that
globally averaged mean water vapor, evaporation, and precipitation will be very likely to
increase in the twenty-first century, and intensity of daily precipitation events will also
likely to increase (IPCC (Intergovernmental Panel on Climate Change) 2001; U.S. NAST
2001). Most GCMs have also projected that increases in extreme precipitation and
temperature in a warmer climate are likely to be much greater than increases in their means
(Hegerl et al. 2004; SWCS 2003). An expert panel assembled by the Soil and Water
Conservation Society after a thorough synthesis and review of historical climate trends as
well as future GCMs projections has concluded that the potential for climate change to
increase the risk of soil erosion, surface runoff, and related environmental consequences is
clear (SWCS 2003). The panel further called for comprehensive and detailed evaluations of
the potential impacts of climate change across various physiographical conditions at
multiple temporal scales to answer two basic questions: whether a change in soil and water
management practices is warranted under climate change and what adaptive measures
should be taken if a change is warranted.

Physically based crop and erosion models, which are best suited to assess the impacts of
climate change on soil erosion and crop production, require daily climate data at specific
locations. Although some GCMs are capable of producing daily values at their grid scales,
spatial downscaling is still needed to generate climate input to simulation models for a specific
location of interest. If GCM-monthly projections are to be used, both spatial and temporal
downscaling are required. Many methods have been developed to statistically downscale
regional climate models (RCMs) or GCMs projections, among which stochastic weather
generators are widely used (e.g., Wilks 1992; Semenov and Barrow 1997; Katz 1996; Mearns
et al. 1997; Mavromatis and Jones 1998; Hansen and Ines 2005). A common approach in
using weather generators is to adjust the ‘present-day’ climate parameters according to GCM-
projected relative climate changes, and then to generate ‘future climate’ using perturbed
parameter values. Both implicit and explicit spatial downscaling methods are employed in this
approach. In the implicit method, relative climate changes such as precipitation ratios and
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temperature shifts computed from climate projections at a GCM- or RCM-native grid box are
used to directly adjust baseline daily time series established for a station (also referred as
‘change factor’ method), or to modify relevant climate parameters derived from the baseline
climatology for stochastic generation of future climate (e.g., Favis-Mortlock and Savabi 1996;
Mavromatis and Jones 1998; Pruski and Nearing 2002; Mearns et al. 2003; Hansen and Ines
2005; Zhang et al. 2004; O’Neal et al. 2005; Smith et al. 2005). This method does incorporate
the climatic characteristics of the target station as well as the areal-averaged relative climate
changes projected at the GCM grid level, but fails to consider differences between climate
variability at the GCM grid scale and that at the target station. In the explicit spatial
downscaling method, GCMs or RCMs projections at the native grid box are first downscaled
to the target station using transfer functions, and stochastic weather generators are then used
to generate daily weather series using climate parameters modified by the spatially
downscaled climate scenarios or relative changes at the station scale (e.g., Wilby 1997;
Semenov and Barrow 1997; Wilby et al. 1998; Kilsby et al. 1998; Diaz-Nieto and Wilby
2005; Zhang 2005).

Different downscaling methods often lead to statistically different realizations of daily
weather series and therefore result in different soil erosion and runoff predictions for a given
climate change scenario. For example, a simple proportional adjustment method (change
factor), which directly scales up or down historical or generated daily precipitation series by
GCM- or RCM-projected percent changes disregarding changes in number of wet days (e.g.,
Favis-Mortlock and Savabi 1996; Mearns et al. 2003; Wood et al. 2004), tended to
overestimate simulated soil loss (Yu 2005). The overestimation of soil loss is attributed to the
fact that when daily precipitation amount is scaled or multiplied by a ratio the variance of
daily precipitation is multiplied by the square of the ratio. More importantly, how to handle
projected climate variability (e.g., variance of daily and monthly precipitation) during
downscaling is extremely important to soil erosion, runoff, and crop predictions. An increase
in precipitation variance is accompanied by an increase in occurrence of heavy storms, which
often have high intensity and therefore result in severe soil erosion (Zhang et al. 2004; Zhang
and Nearing 2005). Nearing et al. (2005) have shown that soil erosion was quite sensitive to
changes in total rainfall amounts associated with changes in either storm intensity or duration,
and soil erosion was more sensitive to those changes than runoff. To date most soil erosion
trends under climate change reported in literature are from model simulations without an
explicit spatial downscaling of GCMs projections (Zhang 2005). This type of approach tends
to provide a first order sensitivity of regional response to climate change (Hewitson 2003;
Zhang and Liu 2005; Zhang 2006).

The Water Erosion Prediction Project (WEPP) model is a continuous daily simulation
model (Flanagan and Nearing 1995). It contains erosion, hydrology, daily water balance,
plant growth, and residue decomposition components, and uses a stochastic weather
generator (CLIGEN) to generate daily weather data. The plant growth and water balance
components are modified to account for the CO2 effects on evapotranspiration (ET) and
biomass production as described by Favis-Mortlock and Savabi (1996). The modified CO2-
sensitive version has been used to study the impacts of climate change on runoff and
erosion (e.g., Savabi et al. 1993; Favis-Mortlock and Savabi 1996; Pruski and Nearing
2002; Zhang et al. 2004; O’Neal et al. 2005). Most studies showed that under similar crop
management a 1% increase in annual precipitation would result in a 0.5–4% increase in
annual soil loss and a 1–4% increase in surface runoff.

Climate change scenarios used in this study are from the recent climate change
experiments conducted using a third generation general circulation model (HadCM3) at the
Hadley Centre, UK (Gordon et al. 2000; Pope et al. 2000). The climate change scenarios
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projected using the greenhouse gas emissions scenarios of A2, B2, and GGa are selected to
represent relatively high, low, and intermediate CO2 increases, respectively. Each scenario
describes a possible demographic, economic, societal, and technological future. Since this
is a methodology study, only one GCM and three emissions scenarios are used.

The Loess Plateau, which occupies 380,000 km2 (Chen et al. 1988), is situated in the
middle reaches of the Yellow River. It is covered with thick and highly erodible aeolian
deposits. The climate varies from semiarid to subhumid, with heavy storms mostly falling in
July through September. It is one of the most eroded regions in the world because of highly
erodible soils, steep slopes, heavy storms, and low vegetation cover stemming from intensive
cultivation and improper land uses. On average, suspended sediment of some 1.53 billion tons
(equivalent to 5–6 mm soil depth) is delivered from the Loess Plateau each year, and about a
quarter is deposited on the riverbeds in the lower reaches of the Yellow River, which are 3–
12 m above the ground outside the stream banks and are rising at 8–10 cm each year (Chen et
al. 1988). The wellbeing and safety of densely populated people in the lower reaches region
are of great concern for the country. Undoubtedly, any increase in soil erosion and floods
under climate change from the Loess Plateau would exacerbate the existing problems. Thus, a
detailed assessment of climatic impact on soil erosion and water resources is warranted for the
region, and is needed for developing national strategic mitigation plans.

The objective of this study is to compare responses of simulated soil erosion, surface
hydrology, and crop production to two (implicit and explicit) spatial downscaling methods
using the CLIGEN and WEPP models under three climate change scenarios of HadCM3 in
the Loess Plateau of China. The monthly precipitation and maximum and minimum
temperatures of the 2010–2039 period are temporally downscaled to daily time series with
or without an explicit spatial downscaling for input to the WEPP model. The two
downscaling methods form the basis of comparison in this study.

2 Materials and methods

2.1 Site description

The study site is located at the Changwu experiment station (35.2° N and 107.8° E)
in the Loess Plateau region of China. The elevation is about 1,206.5 m above sea level. The
prevailing landform is loessial tableland. The loess is more than 100-m thick on the tableland.
The soils are predominantly silt loam with silt content greater than 50%. The average annual
precipitation is 578 mm, with 55% falling in July through September. The annual average
temperature is 9.2°C. The common regional cropping system is a three-year rotation of winter
wheat–winter wheat–summer maize.

2.2 Wepp calibration

Measured soil properties, climate, cropmanagement, surface runoff, and sediment yield from field
runoff plots (20 m long by 5 m wide) from 1988 to 1992 were used to calibrate soil erodibility
parameters of the WEPP model (v2004.7). Measured properties of the Huangmian soil series
included soil texture, organic matter content, bulk density, hydraulic conductivity, wilting point
water content, and field capacity of the soil profile (Table 1). Daily precipitation amount, rainfall
duration, rainfall intensity, maximum and minimum temperature were measured. Two field
runoff plots and two cropping systems were selected. One runoff plot (8.7% slope) was under
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conventionally tilled continuous bare fallow. Another plot (17.6% slope) was under
conventionally tilled continuous soybean with residue removed after harvest. Soil erodibility
was calibrated to the soil of both plots under the condition that measured average annual runoff
matched WEPP-predicted runoff. Calibrated critical shear stress, interrill and rill erodibility for
the soil were 3.5 Pa, 1.5×106 kg s m−4, and 0.0025 s m−1, respectively. The measured and
calibrated average annual soil losses were 7.2 and 7.6 ton ha−1, respectively, for continuous
soybean, and 9.4 and 9.2 ton ha−1 for continuous fallow.

Plant growth parameters for maize were taken directly from the WEPP technical
documentation (Flanagan and Nearing 1995) with a biomass-energy conversion ratio of
28 kg MJ–1 to represent the medium fertility level. For winter wheat, the calibrated
parameter values were 0.5 for harvest index, 1,600 degree days (°C·day) for growing degree
day to maturity, 35 kg MJ–1 (high fertility) for biomass-energy conversion ratio, and 1.8 m
for rooting depth. The rest of parameter values were taken from Flanagan and Nearing
(1995). With the calibrated parameter values, simulated average annual grain yields under
the present climate were 3.15 ton ha−1 for wheat and 6.84 ton ha−1 for maize, which agreed
well with the regional average yields of 3.16 ton ha−1 for wheat and 6.44 ton ha−1 for maize
between 1986 and 1999 (surveyed and compiled by the Changwu experiment station).

2.3 Stochastic climate generator (CLIGEN)

The CLIGEN model is a stochastic daily weather generator (Nicks and Gander 1994). It
generates the occurrence of daily precipitation (related to precipitation frequency) using a
first-order, two-state Markov chain based on transition probabilities of a wet day following
a wet day (Pw/w) and a wet day following a dry day (Pw/d). The daily mean precipitation
(Rd, mm) is generated using a transformed (skewed) normal distribution. The daily
maximum and minimum temperatures are generated using normal distributions. In this
study, means and variances of daily precipitation depths and temperatures as well as the two
transition probabilities are modified to generate changed climates. Other parameters
including skew coefficient of daily precipitation, storm characteristics such as storm
duration, dew temperature, solar radiation, and wind speed and direction, which are
generated in CLIGEN, are not adjusted. In CLIGEN, daily weather is generated on a
monthly basis (i.e., no dependency between months), and each variable is generated
independent of other variables. Because each variable is generated independently and for
each month, incorporation of GCM-projected monthly changes either with or without an
explicit spatial downscaling into model parameters is straightforward.

Table 1 Soil properties used in the WEPP calibration and simulation

Depth
(cm)

Sand
(%)

Clay
(%)

Organic
matter (%)

Bulk density
(t m−3)

Ksa

(mm h−1)
Field capacity
(m3 m−3)

Wilting point
(m3 m−3)

CECb

(cmolc kg
−1)

0–20 8.0 34.8 0.75 1.41 3.7 0.305 0.094 7.5
20–40 7.5 34.8 0.53 1.41 4.6 0.305 0.094 6.0
40–60 7.3 34.8 0.53 1.38 6.3 0.313 0.115 6.0
60–80 7.2 32.9 0.41 1.31 6.7 0.311 0.110 5.8
80–100 8.0 33.3 0.41 1.26 6.8 0.309 0.106 5.8
100–180 9.5 36.8 0.54 1.40 6.8 0.309 0.106 5.8

a Saturated hydraulic conductivity; bCation exchange capacity
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2.4 Explicit method

2.4.1 Spatial downscaling

Spatial downscaling in this study is to downscale monthly precipitation and temperature of
GCMs projections at a GCM grid box to monthly values at a specific location using transfer
functions. Monthly precipitation and temperatures of 1957–2001 projected at the GCM grid
box were used as control to develop transfer functions in conjunction with the baseline
monthly data of the same period measured at the Changwu station for each calendar month.
Monthly data of 2010–2039 projected at the grid box were then spatially downscaled to the
Changwu station using the derived transfer functions.

The observed and GCM-projected monthly precipitation of 1957–2001 were analyzed for
each calendar month. The ranked observational monthly precipitation (Y-axis) was plotted
with the ranked GCM-projected precipitation (i.e., paired by their ranks or corresponding
quartiles, also called qq-plot). A univariate linear and a nonlinear function were fitted to
each plot to obtain transfer functions for each month using the LAB-fit software
(Universidade Federal de Campina Grande, Brazil). This curve fitting software automat-
ically searches through about 200 nonlinear functions having one independent variable and
up to four fitting parameters, and returns a list of functions ranked by their residual errors.

Those transfer functions were then used to downscale 2010–2039 monthly precipitation
at the native GCM scale to those at the Changwu station assuming that those transfer
functions are applicable to the changed climate. Since the transfer functions are based on
the distributions of monthly precipitation of 1957–2001, this assumption is deemed valid so
long as future monthly precipitation of 2010–2039 falls in the ranges within which the
transfer functions are established. However, the validity is questioned if future projections
are outside the ranges. For better results, this method is more appropriately used with longer
baseline records and for ‘nearer-future’ projections (say, next 20–30 years). For each
calendar month, the nonlinear function was used to transform the projected monthly
precipitation values that were within the range in which the nonlinear function was fitted,
while the linear function was used for the values outside the range. The downscaled
monthly precipitation values, which represent the future monthly precipitation distribution
at the Changwu station, were used to calculate monthly mean and variance of the changed
climate for the location for each month. Those means and variances of the downscaled
monthly precipitation were used to estimate means and variances of daily precipitation,
which are input parameters to CLIGEN for generating daily weather series of the changed
climate for the Changwu station.

Likewise, the GCM-projected monthly maximum and minimum temperatures were
downscaled spatially in the same manner as was for monthly precipitation. Mean
temperature shifts as well as variance ratios between the downscaled monthly GCM
projections of 2010–2039 and the local monthly measurements of 1957–2001 were
calculated for each month.

2.4.2 Temporal downscaling

Measured daily weather data of 1957–2001 at Changwu were used to estimate the baseline
CLIGEN input parameters, which were subsequently adjusted to generate daily weather
series of the changed climates for the station. For precipitation, adjusted precipitation
parameters include mean (Rd) and variance (s2

d) of daily precipitation depths (excluding
zeros) and conditional transition probabilities of a wet day following a dry day (Pw/d) and a
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wet day following a wet day (Pw/w). For transition probability adjustment, linear relationships
between transition probabilities and mean monthly precipitation (Rm) were developed for each
calendar month using historical station records. For each calendar month (say January), some
25 wettest and driest months were selected to compute Pw/w , Pw/d, and Rm for each group
(note that some average years were used in both groups for longer records). Linear
relationships between Pw/w and Rm as well as between Pw/d and Rm were established between
the dry and wet groups. The adjusted Pw/w and Pw/d for the changed climate were linearly
interpolated for the downscaled Rm using the relationships. For convenience, the adjusted
conditional transition probabilities are equivalently expressed in term of an unconditional
probability of daily precipitation occurrence (π) and a dependence parameter (r) defined as
the lag-1 autocorrelation of daily precipitation series:

π ¼ Pw=d

1þ Pw=d � Pw=w
ð1Þ

r ¼ Pw=w � Pw=d ð2Þ
The adjusted mean daily precipitation per wet day (Rd) was estimated as:

Rd ¼ Rm

Ndp
ð3Þ

where Nd is the number of days in the month and Ndπ is the average number of wet days in
the month. New daily precipitation variance (s2

d) related to monthly precipitation variance
at the station in the form of (Wilks 1999):

s2
d ¼

s2
m

Ndp
� 1� pð Þ 1þ rð Þ

1� r
R2
d ð4Þ

For maximum and minimum temperature, downscaled monthly temperature means and
temperature variance ratios between spatially downscaled monthly values of 2010–2039 and
measured monthly values of 1957–2001 were calculated for each calendar month.
Downscaled mean maximum and minimum temperatures were directly used in CLIGEN as
the adjusted monthly means for the changed climate. Adjusted daily temperature variances
were obtained by multiplying the baseline daily temperature variances by the aforementioned
monthly variance ratios for each month. Parameter adjustment was made separately for each
climate change scenario. All adjusted parameter values were input to CLIGEN (v5.111), and
100 years of daily weather data were generated for each climate change scenario.

2.5 Implicit method

This method is similar to the explicit method but without the spatial downscaling step. The
monthly precipitation projected for the native grid box (containing the target station) for the
periods of 1950–1999 and 2010–2039 was used to calculate mean precipitation ratios as
well as variance ratios between the two periods for each month. Projected mean monthly
minimum and maximum temperatures for the two periods were used to compute mean
temperature shifts and variance ratios for both maximum and minimum temperatures for
each month. Those relative changes calculated at the native grid box were directly applied
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to the baseline climate parameters derived using observed daily data of Changwu without
an explicit spatial downscaling.

For each month, new monthly mean precipitation at Changwu (Rm) was calculated by
multiplying the observed baseline monthly precipitation mean by the mean ratio of GCM-
projected monthly precipitation between 2010–2039 and 1950–1999. New Pw/w and Pw/d

were interpolated for the new monthly mean precipitation using the established linear
relationships presented in Section 2.4.2. New mean daily precipitation per wet day (Rd) was
calculated using Eq. 3. New variance of daily precipitation under climate change was
approximated by multiplying the baseline variance derived from the daily station records by
the variance ratio of projected monthly precipitation between the two periods.

Projected mean maximum and minimum temperature shifts were directly added to the
corresponding baseline monthly means. New daily temperature variance was calculated by
multiplying the baseline variance of daily temperature by the calculated variance ratio of
monthly mean temperature. All new parameter values were then input into CLIGEN, and
100 years of daily weather data were generated for each climate change scenario.

In general, newly generated average annual precipitation was several percent points
greater than the projected or downscaled target annual average for both methods and
three climate change scenarios. Thus, the initially adjusted mean daily precipitation by
Eq. 3 was further scaled down for all 12 months to match the target value. The
overestimation might have resulted from model approximation and interactive effects of a
general increase in precipitation variance and a skewed normal distribution of daily
precipitation employed in CLIGEN. More information on testing and evaluation of both
methods can be found in Zhang et al. (2004) and Zhang (2005).

2.6 Impact simulation

All measured soil properties including saturated hydraulic conductivity (3.7 mm h−1 in the
top 20-cm layer) and the two runoff plots (20 m long, 8.7 and 17.6% slope), which were
used in the WEPP model calibration, were used in the climatic impact simulation. Overall
mean of measured storm duration at Changwu was 2.88 times that of CLIGEN-generated
storm durations. To offset this bias, a factor of 2.88 was multiplied to CLIGEN-generated
storm durations and relative peak intensities (ratio of instant peak rainfall intensity to
average storm intensity) in both baseline and changed climates (Zhang and Liu 2005). A
common regional three-year rotation of wheat–wheat–maize was simulated. In the
simulation under the baseline climate condition, winter wheat was planted on September
23 and harvested on June 27 of the following year; and maize was planted on April 15 and
harvested on September 22. However, under the changed climates, wheat was planted
3 days later and harvested 3 days earlier; and maize was planted 3 days earlier and
harvested 4 days earlier to accommodate the increased temperature. Conventional tillage
and residue management systems were simulated. About 90% of crop residue was removed
and field was moldboard plowed one week after harvest. Based on the emissions scenarios
of A2, B2, and GGa, the corresponding CO2 concentrations in the atmosphere by 2025
would be 592, 416, and 444 ppmv, which were used in the WEPP simulation.

Fig. 1 a Historical mean monthly precipitation at Changwu during 1957–2001, b ratio of mean monthly
precipitation of 2010–2039 to that of 1950–1999 under GGa1 estimated using the explicit and implicit spatial
downscaling methods for Changwu, and c variance ratio of monthly precipitation of 2010–2039 to that of
1950–1999 (Note the horizontal line at 1 indicates no change between the two periods, greater than 1 an
increase, and less than 1 a decrease)

b
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The WEPP model was run for 100 years at two slopes for both baseline and six climate
scenarios downscaled using explicit and implicit methods. The contrasts of simulated
annual output between the two methods were tested for statistical significance using a
nonparametric test of Kolmogorov-Smirnov (K-S). The K-S test, which is applicable to any
distribution, was used to test the null hypothesis that the two distributions in each contrast
are identical.

3 Results and discussion

3.1 Comparison of downscaled monthly projections

3.1.1 Climate scenario GGa1

Explicitly and implicitly downscaled means and variance ratios of monthly precipitation of
the GGa1 climate change scenario are shown in Fig. 1 for Changwu. Historical mean
monthly precipitation during 1957–2001 at Changwu is also presented in Fig. 1a, showing
that the primary rainy season in the region is in the summer during which most severe
storms and soil erosion events occur. Overall, both methods predicted precipitation
increases for almost all the months. The seasonal patterns of the monthly precipitation
means estimated by both methods were similar, with the explicit method predicting slightly
more precipitation, especially in May, July, and August (Fig. 1b). The variance ratios of
monthly precipitation estimated by both methods agreed very well for all months except
August, September, and October (Fig. 1c). The explicit method estimated greater variance
in this period, which would have important implications in terms of soil loss and runoff
predictions as is shown later.

Temperature shifts and variance ratios estimated by the two methods are contrasted in
Fig. 2 for maximum temperature and in Fig. 3 for minimum temperature. The shifts in
maximum temperature estimated by the explicit method were lower than those estimated by
the implicit method for all the seasons except the winter (January, February, and March);
however, the seasonal trends of variance changes were rather similar (Fig. 2). The shifts in
minimum temperature estimated by the explicit method were consistently higher than those
by the implicit method for all the months except January; but, the variance ratios of the two
methods followed a similar pattern closely (Fig. 3).

3.1.2 Climate scenario B2a

Monthly precipitation of climate change scenario B2a, as compared to the present climate, would
increase for most months at Changwu, and the increases estimated by the explicit method were
similar to those estimated by the implicit method for most months (Fig. 4a). The seasonal patterns
of the variance ratios by both methods were also similar, showing an overall increase in
variability under the climate change, but the explicit method tended to predict greater variability
than did the implicit method for March, July, and December (Fig. 4b). There were no consistent
biases between the two methods in terms of both shifts and variance ratios for maximum
temperature (Fig. 5). In contrast, the shifts in minimum temperature estimated by the explicit
method were higher than those by the implicit method for all months except January (Fig. 6a).
The month-to-month fluctuations of the variance ratios of minimum temperature estimated by
both methods were similar except September, October, and November (Fig. 6b).
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3.1.3 Climate scenario A2a

Although monthly mean precipitation estimated by both methods followed a similar
seasonal pattern, greater increases were estimated by the implicit method, especially for
September and October (Fig. 7a). Variance ratios of monthly precipitation estimated by the
implicit method were greater than those estimated by the explicit method for most months,
especially for October (Fig. 7b). The greater increases in monthly precipitation means and
variances in September and October with the implicit method were because a few extremely
large monthly precipitation totals were projected for the 2 months by HadCM3 and those
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Fig. 2 a Maximum temperature shift between 2010–2039 and 1950–1999, and b variance ratio of monthly
mean maximum temperature (Tmax) of 2010–2039 to that of 1950–1999 under GGa1 estimated using the
explicit and implicit downscaling methods for Changwu (Note the horizontal line at 1 indicates no change
between the two periods, greater than 1 an increase, and less than 1 a decrease)
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extremes were directly used in computing variance ratios and precipitation means in the
implicit method while the transformed data were used in the explicit method. The shifts
and variance ratios of maximum temperature estimated by both methods followed
similar seasonal patterns well (Fig. 8). Similar to scenarios GGa1 and B2a, the shifts in
minimum temperature estimated by the explicit methods were consistently higher than
those estimated by the implicit method for most months (Fig. 9a). However, the month-to-
month fluctuations of variance ratios estimated by both methods were rather similar
(Fig. 9b).
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Fig. 3 a Minimum temperature shift between 2010–2039 and 1950–1999, and b variance ratio of monthly
mean minimum temperature (Tmin) of 2010–2039 to that of 1950–1999 under GGa1 estimated using the
explicit and implicit downscaling methods for Changwu
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3.2 Difference in generated daily weather series

Precipitation and temperature means and variances of explicitly and implicitly downscaled
monthly values (Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9) have to be incorporated or disaggregated to
daily time series using CLIGEN. During disaggregation, daily precipitation variance was
estimated using Eq. 4 in the explicit method, while it was estimated by directly multiplying
the baseline daily variance by the monthly variance ratio in the implicit method. Such
proportional adjustment was justified because monthly precipitation variances under climate
changes at the Changwu station were not known without an explicit spatial downscaling. As
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Fig. 4 a Ratio of mean monthly precipitation of 2010–2039 to that of 1950–1999, and b variance ratio of
monthly precipitation of 2010–2039 to that of 1950–1999 under B2a estimated using the explicit and implicit
downscaling methods for Changwu
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noted by Zhang et al. (2004), this proportional adjustment would tend to underestimate
variance of daily precipitation and consequently variance of monthly precipitation. The
underestimation of daily precipitation variance would have significant consequences on
runoff and soil loss prediction. Greater daily precipitation variance leads to a greater number
of heavier storms in the generated daily weather. Heavier storms, as generated by CLIGEN,
often have greater peak rainfall intensities during storms. This is because peak intensity is
positively related to storm depth by a two-parameter gamma distribution in CLIGEN. Thus,
greater daily precipitation variance would lead to greater runoff and soil loss. Except for
precipitation variance, all other variables including temperature mean and variance, daily
precipitation mean, and conditional probabilities of precipitation occurrence (Pw/w and Pw/d)
were estimated using the same procedure or equations in both methods. It is very likely that
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Fig. 5 a Maximum temperature shift between 2010–2039 and 1950–1999, and b variance ratio of monthly
mean maximum temperature (Tmax) of 2010–2039 to that of 1950–1999 under B2a estimated using the
explicit and implicit downscaling methods for Changwu
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the differences between the two downscaling methods as presented in Figs. 1, 2, 3, 4, 5, 6, 7,
8 and 9 for the monthly values would be amplified in the generated daily time series,
especially as far as precipitation variability is concerned.

3.3 Averaged annual climate change

Explicit and implicit methods predicted a general increase in both annual precipitation
amounts and variability at Changwu during 2010–2039 for all three climate change
scenarios (Table 2). Compared with the explicit method, 15.6 and 2.0% more precipitation
(percent of the baseline) were predicted by the implicit method for the A2a and B2a climate
scenarios, respectively, and 4.9% lesser precipitation for GGa1. The large discrepancy
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Fig. 6 a Minimum temperature shift between 2010–2039 and 1950–1999, and b variance ratio of monthly
mean minimum temperature (Tmin) of 2010–2039 to that of 1950–1999 under B2a estimated using the
explicit and implicit downscaling methods for Changwu
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between the two methods indicated the potential effect of downscaling methods on
downscaled climate scenarios and the importance of using appropriate downscaling
technique for impact assessments. The averaged variance ratios of monthly precipitation
were also influenced by the downscaling methods. As mentioned earlier, precipitation
variance has a great effect on predicted runoff and soil loss.

Average temperature increases during 2010–2039 would range from 0.5 to 1.0°C for
maximum temperature and 1.5 to 2.3°C for minimum temperature (Table 2). The average
monthly variances under climate change would be slightly greater than those of present
climate for both maximum and minimum temperatures. Overall, the average increases in
maximum temperature predicted by both methods were relatively close; however, the
average increases in minimum temperature estimated by the explicit method tended to be
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Fig. 7 a Ratio of mean monthly precipitation of 2010–2039 to that of 1950–1999, and b variance ratio of
monthly precipitation of 2010–2039 to that of 1950–1999 under A2a estimated using the explicit and implicit
downscaling methods for Changwu
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higher than those estimated by the implicit method. These results further underscore the
need of using appropriate downscaling methods for more accurate impact assessments.

3.4 Impact on runoff and soil erosion

3.4.1 Long-term impact

Predicted average annual precipitation, runoff, and soil loss during 2010–2039 are
presented in Table 3. Note that the percent precipitation increases in Table 3 are slightly
different from those in Table 2. The values in Table 2 are the target changes calculated
using spatially downscaled GCM projections, while those in Table 3 are calculated using
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Fig. 8 a Maximum temperature shift between 2010–2039 and 1950–1999, and b variance ratio of monthly
mean maximum temperature (Tmax) of 2010–2039 to that of 1950–1999 under A2a estimated using the
explicit and implicit downscaling methods for Changwu
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CLIGEN-generated daily weather data. Compared with the runoff depth under the baseline
climate, runoff depths increased by 6–112% for all climate scenarios. The sensitivity of
runoff increase to precipitation increase under climate change was heavily influenced by the
downscaling methods. Runoff distributions with the explicit method significantly shifted to
higher values compared with the implicit method under Ba2 and GGa1 at P=0.001
(Table 3). However, no difference was detected for A2a. This is because runoff increases
due to increases in precipitation variance were largely offset by runoff decreases due to
precipitation decreases predicted with the explicit method. For a 1% increase in
precipitation, percent increases in runoff were 3–6 times greater in the explicit downscaling
than those in the implicit downscaling for all climate scenarios. This is because the implicit
method tends to underestimate daily precipitation variance. For a similar median value,
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Fig. 9 a Minimum temperature shift between 2010–2039 and 1950–1999, and b variance ratio of monthly
mean minimum temperature (Tmin) of 2010–2039 to that of 1950–1999 under A2a estimated using the
explicit and implicit downscaling methods for Changwu
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lesser precipitation variances mean fewer heavy storms and lower peak rainfall intensities,
which often lead to smaller portions of rainwater to run off.

Due to the increases in runoff depths, annual average soil loss rates during 2010–2039,
compared with those under the baseline climate, increased by 18–167% for all cases except the
implicit method of the GGa1 scenario (Table 3). The decrease in soil loss under GGa1 might
be caused by the decreases of monthly precipitation variances estimated by the implicit
method for July and August during which most soil erosion occurred in the region as well as

Table 3 Predicted mean annual precipitation, runoff, and soil loss during 2010–2039 as well as their percent
changes relative to the corresponding slope in the baseline scenario for Changwu, China under conventional
tillage in a wheat–wheat–maize rotation for three climate change scenarios following explicit or implicit
spatial downscalinga

Slope (%) Spatial downscaling Precipitation Runoff Soil loss

Depth (mm) Change (%) Depth (mm) Change (%) Rate (t ha−1) Change (%)

Baseline scenario of Changwu Station at 350 ppmv CO2

8.7 Station 579 0 45 0 3.2 0
17.6 Station 579 0 55 0 9.5 0
Scenario A2a at 592 ppmv CO2

8.7 Implicit 683b 18 82 82 5.3d 69
8.7 Explicit 604 4 96 112 8.4 167
17.6 Implicit 683 18 94 71 14.8c 56
17.6 Explicit 604 4 107 96 22.1 133
Scenario B2a at 416 ppmv CO2

8.7 Implicit 673 16 58b 29 4.0d 26
8.7 Explicit 662 14 82 81 6.2 96
17.6 Implicit 673 16 69b 26 11.1c 18
17.6 Explicit 662 14 93 70 17.0 80
Scenario GGa1 at 444 ppmv CO2

8.7 Implicit 652 12 48b 6 2.9c −8
8.7 Explicit 685 18 72 60 4.7 49
17.6 Implicit 652 12 58c 6 8.5c −10
17.6 Explicit 685 18 82 49 12.4 31

aNinety percent residue was removed and soil was moldboard plowed within one week after each harvest in
a wheat–wheat–maize rotation; b, c, d significantly different for the Implicit–Explicit contrast at the given
slope at P=0.001, 0.01, and 0.05, respectively, using the K-S test.

Table 2 Averaged annual climate changes of explicit and implicit spatial downscaling between 1950–1999
and 2010–2039

Climate scenario Spatial downscaling Precipitation Maximum temperature Minimum temperature

Change (%) M.V.R.a Shift (°C) M.V.R. Shift (°C) M.V.R.

A2a Explicit 1.8 1.25 0.86 1.08 2.27 1.13
Implicit 17.4 1.65 0.78 1.21 1.59 1.14

B2a Explicit 13.9 1.27 0.54 1.22 2.12 1.09
Implicit 15.9 1.16 0.50 1.18 1.48 1.13

GGa1 Explicit 17.5 1.13 0.80 1.00 1.97 0.97
Implicit 12.6 1.08 0.96 1.04 1.48 1.01

aM.V.R.=average monthly variance ratio of 2010–39 over 1957–2001.

Climatic Change (2007) 84:337–363 355



by better maize growth in the period under climate change. Distributions of soil loss rates
estimated with the explicit method shifted significantly to higher values compared with the
implicit method for all cases at P<0.05. For a 1% increase in precipitation, percent increases
in soil loss were 4–10 times greater with the explicit method than those with the implicit
method under the A2a and B2a scenarios. More dramatic changes were seen under the GGa1
scenario where soil loss rates, compared with the baseline, were decreased by 8–10% with the
implicit method while they were increased by 31–49% with the explicit method. Overall, soil
loss changes were more sensitive than runoff to precipitation changes for both downscaling
methods. This result is consistent with the finding of Nearing et al. (2005), who concluded
that soil erosion was likely to be more affected than runoff by changes in rainfall.

3.4.2 Distribution of event soil loss for erosion-prone months

As is shown in Fig. 1a, the rainy season is between July and September in the region,
during which most severe erosion occurs. Soil loss measured in field plots at Changwu
during 1988–1992 showed that more than 98% of total soil loss was from July and August.
The severe erosion in this period was a result of occurrence of large convective storms and
unprotected soil in the conventional tillage under winter wheat production. In order to
examine the effects of the downscaling methods on event soil loss prediction, probability
distributions of simulated event soil loss in most erosive months are shown in Figs. 10, 11,
and 12 for the three climate change scenarios. Soil losses for the period of July–October
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Fig. 10 Box plot of simulated event soil loss on a 17.6% slope in a wheat–wheat–corn rotation under
conventional tillage for four summer months using the implicit (I) and explicit (E) methods under GGa1.
(95th, 90th, 75th, 50th, 25th, 10th, and 5th percentiles are shown by upper solid circle, upper whisker, upper
box border, middle horizontal line, lower box border, lower whisker and solid circle, respectively)
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estimated with the implicit method (explicit method) accounted for 84 (86), 88 (94), and
93% (97) of total annual soil losses for GGa1, B2a, and A2a, respectively. Since most soil
losses occurred in the selected months, any conclusion drawn from Figs. 10, 11 and 12
should be representative of and applicable to total annual soil loss. Under GGa1, event soil
losses at the 50th, 75th, 90th, and 95th percentiles estimated with the explicit method were
greater than the corresponding soil losses estimated with the implicit method in all months
but July (Fig. 10), indicating much greater variability in simulated event soil loss associated
with the explicit method. This result is consistent with the fact that soil loss is very sensitive
to daily precipitation variability and the implicit method tends to underestimate it. Similar
trends are shown in Figs. 11 and 12 for B2a and A2a, respectively, in which event soil
losses at the four percentiles were consistently greater with the explicit method for all four
months. The contrasting soil loss distributions between the two downscaling methods
indicate the importance of appropriately handling precipitation variance in predicting
climatic impacts on soil erosion.

3.5 Impact on soil water balance and crop yield

3.5.1 Soil water balance

Predicted mean annual plant transpiration, soil evaporation, long-term soil moisture reserve
in the 1.8-m soil profile, and wheat and maize grain yields under the conventional tillage
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Fig. 11 Box plot of simulated event soil loss on a 17.6% slope in a wheat–wheat–corn rotation under
conventional tillage for four summer months using the implicit (I) and explicit (E) methods under B2a. (95th,
90th, 75th, 50th, 25th, 10th, and 5th percentiles are shown by upper solid circle, upper whisker, upper box
border, middle horizontal line, lower box border, lower whisker and solid circle, respectively)
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are shown in Table 4. Compared with the baseline conditions, plant transpiration, as a result
of overall increases in annual precipitation, increased from 12 to 19% for all scenarios and
downscaling methods except the explicit method under A2a. The decrease in A2a with the
explicit method was because the annual precipitation increase (25 mm) was less than the
average runoff increase (45 mm, Table 3) as a result of an increase in precipitation variance
that led to an increase in number of heavy storms. Similar to plant transpiration, average
annual soil evaporation, compared with the baseline, increased in all cases but the explicit
method of A2a. The increases ranged from 2 to 12%, with a tendency that the percent
increases with the explicit method were smaller than those with the implicit method for three
climate scenarios. Long-term average soil water reserve in the 1.8-m soil profile under
climate changes increased by 1–7% except the explicit method of A2a. The increased soil
moisture reserve is an integrated effect of all hydrological changes in the agro-ecosystem.
Overall, simulated distributions of transpiration, soil evaporation, and soil moisture reserve
with the explicit method are significantly different from those with the implicit method for
A2a, because significant difference in precipitation between the two methods was detected
for A2a. Significant differences in distributions were also found for soil evaporation at the
17.6% slope and for soil moisture at both slopes under B2a. Simulated results showed that
less than 1.5-mmwater, on average, was percolated below the 1.8-m depth each year, and less
than 0.3-mm laterally transported downslope. In addition, slope steepness had negligible
effect on plant transpiration, soil evaporation, and soil moisture balance in this study.
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Fig. 12 Box plot of simulated event soil loss on a 17.6% slope in a wheat–wheat–corn rotation under
conventional tillage for four summer months using the implicit (I) and explicit (E) methods under A2a. (95th,
90th, 75th, 50th, 25th, 10th, and 5th percentiles are shown by upper solid circle, upper whisker, upper box
border, middle horizontal line, lower box border, lower whisker and solid circle, respectively)
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3.5.2 Grain yield

Simulated percent increases in wheat grain yield under climate change, compared to the
baseline, ranged from 22 to 41% for all cases except the explicit method of A2a (Table 4).
In general, the percent increases in yield corresponded well to the increases in precipitation,
plant transpiration, and CO2 concentration, as well as the negative effect of temperature
rise. The significant difference in yield distributions between the two methods was
diagnosed only for A2a. The 1% decrease in the explicit method, in contrast to the 31%
increase in the implicit method, was an integrated result of greater water deficit (Table 4)
and a 0.38°C more increase in annual mean temperature under A2a (Table 2). Water is the
limiting factor for crop production in the region, and therefore any difference in
precipitation will considerably affect crop yields. As for the temperature effect, Zhang et
al. (2004) reported that simulated wheat yield decreased by some 8% for a 1°C increase in
growing-season mean temperature in Oklahoma, USA. Mearns et al. (1997) evaluated
wheat yield sensitivity to temperature in Kansas, USA, and reported a 10–12% decrease in
yield for 1°C increase in mean annual temperature. In the B2a scenario, the yield was
numerically about 8% higher with the implicit method than with the explicit method,
resulting from a greater increase in soil water and a 0.34°C less increase in mean

Table 4 Predicted mean annual transpiration, soil evaporation, average daily soil moisture in 1.8-m soil
profile, wheat and maize grain yields during 2010–2039 as well as their percent changes relative to the
corresponding slope in the baseline scenario for Changwu, China under conventional tillage in a wheat–
wheat–maize rotation for three climate change scenarios following explicit or implicit spatial downscalinga

Slope
(%)

Spatial
downscaling

Transpiration Soil evaporation Soil moisture Wheat Maize

Depth
(mm)

Change
(%)

Depth
(mm)

Change
(%)

Depth
(mm)

Change
(%)

Yield
(t ha−1)

Change
(%)

Yield
(t ha−1)

Change
(%)

Baseline scenario of Changwu Station at 350 ppmv CO2

8.7 Station 353 0 183 0 301 0 2.9 0 7.0 0
17.6 Station 348 0 179 0 297 0 2.8 0 6.8 0
Scenario A2a at 592 ppmv CO2

8.7 Implicit 397b 12 205b 12 324b 7 3.8c 31 10.2c 45
8.7 Explicit 339 −4 171 −7 289 −4 2.9 −1 8.0 15
17.6 Implicit 390b 12 201b 12 318b 7 3.6c 30 9.9c 45
17.6 Explicit 332 −5 166 −7 285 −4 2.8 −1 7.8 14
Scenario B2a at 416 ppmv CO2

8.7 Implicit 412 17 205 12 322d 7 3.8 31 9.2 32
8.7 Explicit 396 12 187 2 305 1 3.5 23 8.6 23
17.6 Implicit 405 16 201d 12 318d 7 3.6 30 9.1 33
17.6 Explicit 389 12 182 2 300 1 3.4 22 8.3 22
Scenario Gga1 at 444 ppmv CO2

8.7 Implicit 406 15 199 9 311 3 3.8 31 9.6 37
8.7 Explicit 419 18 196 7 312 4 4.1 41 9.6 37
17.6 Implicit 400 15 195 9 307 4 3.7 31 9.4 38
17.6 Explicit 413 19 192 7 308 4 3.9 41 9.5 38

aNinety percent residue was removed and soil was moldboard plowed within one week after each harvest in
a wheat–wheat–maize rotation. On average, less than 1.5-mm water was percolated below the 1.8-m soil
profile, and less than 0.3-mm water was laterally transported downslope each year; b, c, d significantly
different for the Implicit–Explicit contrast at the given slope at P=0.001, 0.01, and 0.05, respectively, using
the K-S test.
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temperature with the implicit method. The 10% more increase with the explicit method
relative to the implicit method under GGa1 was mainly attributed to the increase in soil
water because the mean temperatures predicted by the two methods were similar. Although
there were numerical differences in mean yields between the two downscaling methods for
B2a and GGa1, their yield distributions were not significantly different from one another.

Similar to wheat, maize yields corresponded well to increases in precipitation, soil water,
and CO2 concentration in all scenarios (Table 4). However, the responses were somewhat
different between the two crops, reflecting the effects of seasonal variations in downscaled
temperature and precipitation on crop yield. For example, the 15% increase in maize yield
with the explicit method under A2a, in contrast to the 1% decrease in wheat, might be
caused by lesser temperature rise and more precipitation increases in summer than in winter
(Figs. 7, 8 and 9). The largest increase in maize yield with the implicit method under A2a
was a result of greater increases in precipitation and CO2 concentration and a moderate
increase in mean temperature, as compared to the other scenarios. The maize yield with the
implicit method was some 10% greater than that with the explicit method under B2a,
because a greater precipitation increase and a lesser temperature rise were predicted by the
implicit method. There was little difference in the maize yields between the two methods
under GGa1, though some 10% difference was found in wheat yields, again showing
seasonality of crop response to climatic change. Similar to wheat, differences in yield
distributions between the two methods were significant for A2a but not for B2a and GGa1,
simply because significant differences in precipitation were predicted only for A2a.

Differences in crop yields between the two downscaling methods resulted from the
fundamental differences in spatial treatments of climate scenarios, and especially climate
variability between the two methods. Climate scenarios and climate variability at a GCM
grid box are different from those at a point scale. For simulating the site-specific impacts of
climate change on crop yield, explicit spatial downscaling must be used. Results from this
study clearly showed the importance of procedures or methods used for developing daily
weather data for a target station under climate change for input to crop models. This finding
is consistent with that reported by Mearns et al. (2003) and Tsvetsinskaya et al. (2003).
They studied the effect of spatial scale of climatic change scenarios on simulated maize and
winter wheat yield at various spatial scales in the Southeastern US. They directly applied
relative climate changes, projected by a GCM at 300-km grids and a RCM at 50-km grids,
to historical daily climatology at selected target stations using the conventional change
factor method to generate daily weather data of changed climate. The RCM was used to
dynamically downscale GCM output to finer spatial resolution. They found that the spatial
scales (300-km vs. 50-km grids) had a significant impact on simulated maize yields but not
on wheat yield and further concluded that spatial resolution of climate change scenarios
could be an important uncertainty in climate change impact assessments.

4 Conclusions

Both implicit and explicit spatial downscaling methods were used in literature to generate
daily weather series for a particular location using relative climate changes projected by
GCMs or RCMs at their native grid scales. The implicit methods are easy to implement but
fail to consider differences between climate variability at the GCM grid scale and that at the
target station. Responses of natural resources to climate change, simulated using the implicit
methods, tend to reflect more of a first-order regional sensitivity, and therefore are less
variable due to their areal-averaged character. The explicit spatial downscaling methods,
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which explicitly consider spatial differences of climate scenarios and variability, are more
appropriate for assessing the site-specific impacts of climate change on natural resources,
especially for those heavily influenced by local conditions such as soil erosion and crop
production. As pointed out by Diaz-Nieto andWilby (2005) in a similar study, differences in
treating climate natural variability, temporal structuring of daily climate variables, and
large-scale forcing of local climate variables between the change factor and sophisticated
spatial downscaling methods are responsible for differences in impact assessments.
Different spatial downscaling methods (spatial treatments) often lead to statistically
different realizations of daily weather series and therefore to different outcomes in impact
assessments. Relative climate changes downscaled with the explicit method in this study
appeared more dynamic or variable than those with the implicit method, especially for
precipitation. Consequently, the responses assessed with the explicit method seemed more
dynamic and sensitive than those with the implicit method that tends to reflect more of a
regional-aggregated trend. The contrasting results between the two methods show that
spatial treatment of climate change scenarios can be a significant source of uncertainty and
thus underscore the importance of proper spatial downscaling prior to impact simulation.

The explicit and implicit methods used in this study predicted a general increase in
precipitation and temperature during 2010–2039 at Changwu. Compared to the baseline,
percent changes in annual precipitation estimated by the implicit method were 15.6 and 2.0%
greater than those estimated by the explicit method for A2a and B2a, respectively, and 4.9% less
for GGa1. Annual mean temperatures estimated with the explicit method were 0.38, 0.34, and
0.17°C higher than those estimated with the implicit method for A2a, B2a, and GGa1,
respectively.

The sensitivities of runoff and soil loss increases to precipitation increases were remarkably
affected by the downscaling methods. For a 1% increase in precipitation, percent increases in
average annual runoff (soil loss) were 3–6 (4–10) times greater with the explicit downscaling
than those with the implicit downscaling under three climate change scenarios. Compared with
the implicit method, the explicit method predicted less precipitation but greater soil loss for A2a
and B2a. This is because the explicit method predicted greater variance of daily precipitation,
which led to more and heavier storms, and thus greater soil loss. This result is further
substantiated by individual soil loss events. Probability distributions of event soil loss estimated
with the explicit method were more spread than those estimated with the implicit method. These
results also indicate that soil loss is more sensitive than runoff to precipitation changes,
especially changes in variance of daily precipitation.

Contrasting grain yields were found between the two downscaling methods. Compared
with the baseline climate, the percent increases in wheat yield estimated with the implicit
method were about 31% in all three climate change scenarios, while those estimated with the
explicit method were – 1% in A2a, 23% in B2a, and 41% in GGa1. The percent increases in
maize yield estimated with the implicit (explicit) method were approximately 45% (15) in
A2a, 33% (23) in B2a, and 38% (38) in GGa1. The considerable differences in crop yields
between the two downscaling methods demonstrated the importance of considering the
spatial scale effects of climate change scenarios on impact assessments. For the site-specific
assessments, explicit spatial downscaling is more appropriate for predicting crop yields using
process-based models.

The explicit method downscales climate change scenarios from GCM grid scales to a
target station by explicitly considering spatial variability using transfer functions. The
technique suffers from the same shortcomings as all statistical downscaling methods, as it
largely relies on the applicability of transfer functions to future climate. Transfer functions
in this study are established based on distributions of observed and retrospectively projected
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monthly values. Thus, so long as future monthly projections fall in the ranges within which
transfer functions are derived, those functions are perfectly applicable to future climate.
However, the validity is questioned if future projections are outside the ranges. To diminish
outliers, the technique is better used with longer baseline records and for ‘nearer-future’
projections (say, next 20–30 years).
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