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1. INTRODUCTION

Realistic simulations of multi-site precipitation
sequences are required for many hydrologic studies,
including flood estimation and climate-change impact
assessment (Hutchinson 1995, Wilks & Wilby 1999).
Several approaches have been developed. For exam-
ple, the normal distribution for single sites may be
adapted to the multivariate situation using truncation
of negative values to represent dry days (e.g. Bardossy
& Plate 1992). Chain-dependent processes, in which
the occurrence of precipitation is described by a
Markov chain, may be extended to multi-site cases

using transformed, spatially correlated, normal vari-
ables to specify precipitation occurrence and amounts
(e.g. Wilks 1998). Alternatively, non-homogeneous
hidden Markov models simulate distinct patterns of
multi-site precipitation occurrence and amounts condi-
tional on a set of atmospheric predictor variables (e.g.
Charles et al. 1999a, Hughes et al. 1999). Others em-
ploy linear and non-linear regressions on atmospheric
circulation indices, geographic and topographic vari-
ables, or regionalization techniques to estimate the
parameters of generalized spatial-temporal models
(e.g. Cowpertwait & O’Connell 1997, Wilby et al.
2002a). Some question whether parametric models 
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can reproduce all aspects of spatial dependence of
daily precipitation and have chosen to develop non-
parametric resampling schemes. For example, involv-
ing the selection of daily precipitation amounts from
observed data using analogue methods (e.g. Zorita et
al. 1995) or re-sampling of nearest neighbours, condi-
tional on simulated values for previous days (e.g.
Rajagopalan & Lall 1999, Buishand & Brandsma 2001).

This paper deals with multi-site generation of daily
precipitation at stations in Eastern England (EE) and
the Scottish Borders (SB) using an extension to a
hybrid regression/weather-generator model (Wilby &
Dettinger 2000, Wilby et al. 2002b). The inter-site dis-
tances range from 13 to 291 km, and the site elevations
from 2 to 253 m above mean sea level. The weather
generator, Statistical DownScaling Model (SDSM),
was initially developed for downscaling future climate-
change scenarios at single sites given large-scale cli-
mate variables supplied by general circulation models
(GCMs). Because of intended applications to extreme
discharge simulation under present and future climate
forcing, attention is now focused on the model’s ability
to reproduce temporal and spatial dependence of daily
and N-day maximum precipitation amounts across
multiple sites. Accordingly, model simulations are
assessed using the temporal dependence of daily
amounts, correlation decay lengths, and Kendall’s τb

statistic for joint exceedance of 1 and 20 d winter-max-
imum precipitation amounts at pairs of stations. The
20 d event was chosen to interrogate lower-intensity,
longer-duration events of the type resulting in the
autumn 2000 UK floods (DEFRA 2001). In addition, dis-
tributions of observed and synthetic 5, 10, 20 and 60 d
annual maxima are compared for critical flood seasons.

2. MODEL DESCRIPTION AND DATA

The SDSM approach to multi-site generation of daily
precipitation involves 2 distinct steps. First, the gener-
ation of a ‘marker’ precipitation series for areal aver-
age amounts across multiple sites conditional on a set
of large-scale atmospheric predictor variables. Sec-
ondly, the resampling of observed daily precipitation
from constituent sites, conditional on the downscaled
precipitation series of the marker site. This 2-stage
process is described in more detail below, along with
the station data and performance measures.

2.1. Generation of daily precipitation series for the
marker site. Full technical details and split-sample
tests of SDSM are provided by Wilby et al. (1999,
2002b), and Wilby & Dettinger (2000). Within the tax-
onomy of statistical downscaling techniques, SDSM is
best described as a hybrid of the stochastic weather
generator and regression-based methods, because

large-scale daily circulation patterns and atmospheric
moisture variables (j = 1, 2, …, n) are used to linearly
condition local-scale weather-generator parameters
(e.g. precipitation occurrence and intensity) at individ-
ual sites. In general:

(1)

where ωi is the conditional probability of precipitation
occurrence on day i, ûi

( j) are normalised atmospheric
predictor variables (see below), and αj are regression
coefficients estimated for each month using least-
squares regression. Wet- and dry-spell sequences are
determined stochastically by comparing ωi with the
output of a linear random-number generator, ri. If it is
found that precipitation occurs (i.e. ωi ≤ ri), the condi-
tional distribution consists of regressions of inverse-
normal-transformed precipitation amounts at the site
on the large-scale atmospheric circulation using:

(2)

where Zi is the z-score, βj are regression coefficients
estimated for each month using least-squares regres-
sion, and ε is an error term which is modelled stochas-
tically using a series of serially independent Gaussian
numbers, ε ~ N(0,σ2), and:

Zi = φ–1[F(yi)] (3)

in which φ denotes the normal cumulative distribution
function and F(yi) is the empirical distribution function
of yi, the daily precipitation amounts (Charles et al.
1999a). The normal cumulative distribution is con-
structed from all daily amounts. In other words, sepa-
rate φare not derived for each month so as to maximise
the sample of large precipitation amounts available for
resampling (see below). Note also that the same pre-
dictor variables, ûi

( j), are used for downscaling both
precipitation occurrence and amounts, and that all
predictors have been normalised with respect to their
climatological mean,

–
X ( j), and the standard deviations,

σ(j) (in this case using the period 1961–1990):

(4)

Normalised predictors are routinely employed in
order that the same models may, if necessary, be
applied to future climate-scenario generation using
normalised GCM output.

2.2. Extension to multiple sites. For multi-site appli-
cations, the single-site model is first used to generate
a series of daily precipitation amounts at a ‘marker’
site. In the present study, the area average is used as
the marker series, but precipitation occurrence at
individual sites might also be used (as in Palutikof et
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al. 2002). Wet-day amounts are resampled from the
empirical distribution of area averages (yi), condi-
tional on the large-scale atmospheric forcing and the
stochastic error term (Eqs. 2 & 3). The actual amount
is determined by mapping the modelled normal
cumulative distribution value onto the observed
cumulative distribution at the marker site. For exam-
ple, Zi = 0 would map to the median value of the
observed set of daily precipitation amounts, together
with the specific date on which that amount fell. The
date is, in turn, used to resample the actual amount
from each location in the multi-site array (some of
which may return zero amounts, despite the fact that
the marker series indicates a wet day). Note that it is
possible for a combination of January predictors to
produce a value of Zi that can only be matched to a
precipitation amount in June.

If the marker series is based on an unweighted aver-
age of several sites (as here), the resampling procedure
preserves both the areal average of the marker series
and the spatial pattern of the multi-site array. Further-
more, by using areal averages instead of single sites as
the marker series, the risk of employing a non-homo-
geneous record is reduced, and the signal-to-noise
ratio of the predictand is increased. As with all other
resampling methods, the maximum daily value(s) to be
generated cannot exceed the maximum daily amount
in the observations. However, synthetic N-day totals
can exceed observed N-day totals if the atmospheric
conditioning produces a sequence of Zi previously
unencountered in the training set.

2.3. Study areas and data. Daily rainfall data for 24
UK Meteorological Office stations were selected on the
basis of their geographical coverage, completeness
and reliability of records for the period 1961–
1990 (Fig. 1). Half the sites were distributed across
Southern and Eastern England (EE), the remainder
across the Scottish Borders (SB). The station elevations
were generally lower in EE than in SB (an average of
35 and 126 m above mean sea level, respectively).
Conversely, station separations were on average
greater in EE than in SB (149 and 107 km, respec-
tively). Unweighted, area-averaged daily precipitation
amounts were obtained from the 12 sites in each
region. For the purpose of both the spatial analyses
and downscaling, wet days were defined as 24 h peri-
ods with non-zero precipitation. The transition from
imperial units to the metric system is unlikely to affect
whether or not a day was classified as wet, given that
the area average was derived from multiple sites.

All atmospheric predictor variables originate from
the National Center for Environmental Prediction
(NCEP) re-analysis data set (Kalnay et al. 1996), but
were processed to conform to the 2.5° latitude × 3.75°
longitude grid of the UK SDSM archive (Wilby & Daw-

son 2001), i.e. the Hadley Centre’s HadCM3 model
grid. The archive contains 32 daily predictors (describ-
ing circulation, thickness, and moisture content for
3 atmospheric levels), for 9 regions covering the British
Isles, for the period 1961–2000. Although the mean
sea-level pressures in the NCEP re-analysis are known
to have a positive bias from 1941 to 1967, the worst
affected areas lie outside the domain of the present
study (see Reid et al. 2001). In addition, there is a lag
interval between the timing of the precipitation day
(ending at 09:00 h GMT) and the NCEP daily averages
(indicative of conditions at midday). The influence on
the predictand of the ‘missing’ 9 h can be accommo-
dated by employing forward-lagged daily predictor
variables in the downscaling; however, this refinement
was not applied in the present investigation.

2.4. Experimental design. Two sets of experiments
were undertaken. Firstly, the full 30 yr record was used
to explore relationships between large-scale predictors
and precipitation amounts at individual sites in order
to elucidate the dominant physical controls in each
region. This was undertaken via stepwise multiple lin-
ear regression without seasonal stratification of the
data. The purpose of this experiment was to identify,
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Fig. 1. Location of stations with daily precipitation observa-
tions in the Eastern England (EE) and the Scottish Borders
(SB) for 1961–1990. The regional boundaries correspond to 

the SDSM predictor grid-boxes used for downscaling
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by consensus, the most promising sub-set of predictors
for area-averaged downscaling (below).

Secondly, the models were trained using the entire
record of area-averaged daily precipitation amount in
each region and predictors drawn from the multi-site
analysis (above). For each region and month, large-
scale atmospheric predictors were fit by stepwise mul-
tiple linear regression to the inverse-normal-trans-
formed areal averages. Three sets of downscaling
experiments were then performed: (1) DET, in which
only the deterministic component of the area-averaged
amounts is represented (i.e. the ε term in Eq. 2 is omit-
ted); (2) VAR, with variability in area averages due to
both deterministic and stochastic components (i.e. the ε
term in Eq. 2 is included); and (3) RND, an uncondi-
tional area-average model involving stochastic resam-
pling of observed amounts with replacement. In all
3 cases, the resulting area-averaged amounts were
used as the marker series for multi-site resampling.

3. MEASURES OF MODEL PERFORMANCE

Multi-site model performance was assessed using
3 sets of measures applied to observed data and model
syntheses for the period 1961–1990. (For a discussion
of the model’s single site, and split-record skill, refer to
Wilby & Dettinger [2000].) Use of the full 30 years’ data
herein is justified on a number of counts. Firstly, the
models were fit to the statistics of area-averaged daily
precipitation occurrence and amounts, but were
assessed in terms of spatial and temporal dependency
at individual sites. Secondly, Kendall’s τb statistic
returns unreliable estimates from small numbers of
station pairs and years, so the available record length
had to be maximised. Thirdly, this is the conventional
approach to models with stochastic processes and/or
re-sampling procedures (see, for example, Wilks 1998,
Charles et al. 1999a, Buishand & Brandsma 2001).

3.1. Temporal dependence. As witnessed by the
events of the year 2000, extreme river discharges in the
UK can arise from periods of prolonged heavy rainfall
in autumn and winter (DEFRA 2001, Marsh 2001). Fol-
lowing Wójcik et al. (2000), sample standard deviations
and lag-1 autocorrelation coefficients of daily precipi-
tation values were calculated for each station for the
winter half year to compare observed data with model
syntheses. In addition, N-day winter maximum precip-
itation amounts were investigated for 5, 10, 20, and
60 d totals using observed and model data represent-
ing the area averages of the 2 regions, as well as the
distributions of maxima at selected sites (Cambridge
[EE], Carlise [SB], Edinburgh [SB] and Oxford [EE]).

3.2. Correlation decay lengths. Following the
method of Osborn & Hulme (1997) the correlation, r,

between the precipitation series at a station and every
other station in the grid box was plotted against their
separation distance, d. An exponential decay function
was then fitted to the scatter of points, giving:

r = e–d/d0 (5)

where d0 is the correlation decay length at the distance
where r falls to 1/e. A major advantage of this method
over the estimation of mean inter-station correlation
between all pairs of stations (r2) is that regions with
different station distributions can be compared. The
exponential decay has also been shown to be a reason-
able function for describing variations in daily pre-
cipitation correlations with separation distance for
European sites (Osborn & Hulme 1997).

3.3. Spatial association of N-day precipitation max-
ima. The final performance measure evaluates the
spatial dependence of the N-day winter maxima at
multiple sites by counting the number of joint
exceedances of specified thresholds. Buishand &
Brandsma (2001) used Kendall’s τb statistic to assess
the degree of association from counts of exceedances
of extreme rainfall at sites across the Rhine basin. They
showed that if t1 and t2 are threshold precipitation
totals at Sites 1 and 2, and π1 = F1(t1), π2 = F2(t2), and 
π12 = F(t1,t2), then τb can be defined as:

(6)

If t1 and t2 are the 100 p percentiles of the marginal
distributions (i.e. F1[t1] = p and F2[t2] = p), then τb

becomes:
(7)

For the median p = 0.5. As in the case of the correla-
tion coefficient, complete positive dependence is given
by, τb(p) = 1; conversely, for independent data τb(p) = 0.
For observed, annual winter maxima at 2 stations, p
can be estimated as:

(8)

where K is the number of years, K1 is the number of
winter maxima at Stn 1 that are less than or equal to t1,
and K2 is the corresponding number for Stn 2. the
probability π12 is estimated as:

(9)

where Kjoint is the number of years for which the winter
maxima are less than or equal to the threshold at both
stations.

For the purpose of the present study, τb was esti-
mated for the median (MED) and 90th percentile (Q90)
of the 1 and 20 d winter-maximum precipitation
amounts using all combinations of station pairs for the

ˆ     π =
K

K
joint

ˆ     p
K K

K
=

+( )
2

1 2

τ
π

b p
p

p p
( )

(1– )
    =

−12
2

  
τ

π π π
π π π πb   

( ) ( )
=

−
− −
12 1 2

1 1 2 21 1

186



Wilby et al.: Multi-site simulation of precipitation

period 1961–1990. Resulting estimates of τb for ob-
served and synthetic series were then plotted against
separation distance and smoothed using the exponen-
tial decay function (see above), to estimate an equiva-
lent correlation decay length for the joint exceedances.
Smoothing is necessary because estimates of τb for
individual station pairs have large standard errors
(Buishand & Brandsma 2001).

4. RESULTS

4.1. Selection of predictors

Table 1 shows the frequency of predictor variable
selection (number of stations), comparing the outcome
for EE with that for SB. For each station, the optimal
combination of predictors was identified by stepwise
multiple linear regression, with the stipulation that all
regression coefficients of included predictors be signif-
icant at p ≤ 0.001. In both regions, the specific humid-
ity at 500 hPa (Q500) was selected at every station.
Near-surface relative humidity (RSUR) and near-
surface southerly wind (VWND) were selected at the
majority of sites in SB, but rarely at sites in EE. The
500 hPa geopotential height (H500) was the second
most frequently selected predictor in EE and, along
with the near-surface vorticity (VORT), was chosen at
over half the sites in SB. Mean sea-level pressure
(MSLP) was the fifth most frequently selected variable.
The wind strength at 500 hPa (F500) was of secondary
importance at SB stations, but of no consequence to
precipitation at stations across EE. Apart from the
near-surface specific humidity (QSUR) in EE, the re-
maining selected predictors represent regional winds
at various heights in the atmosphere, mainly of local
importance to stations across SB. The larger number of
predictors selected for SB stations probably reflects the
greater heterogeneity of the topography in this
region. Finally, it is worth noting that 15 out of the
possible 32 predictors were never selected, and
that only 12 predictors were selected on more than
1 occasion.

The above predictors convey information about
different aspects of the atmosphere (i.e. thickness,
circulation and moisture content), and they have
been variously related to precipitation in earlier
regional studies (e.g. Kilsby et al. 1998, Charles et
al. 1999a, Murphy 1999). Nonetheless, the per-
centage of explained variance for daily precipita-
tion occurrence at individual stations was rela-
tively low, averaging 25% across EE and 30%
across SB. Average levels of explained variance
were even lower for precipitation amounts, just 9
and 17%, respectively. This reflects, in part, the

decision to evaluate predictors without seasonal strati-
fication. Had predictor-predictand relationships been
examined at the seasonal or monthly level, different
combinations might have emerged, with higher levels
of explained variance anticipated for winter, and lower
for summer (Wilby & Wigley 2000).

For example, Fig. 2 shows variations in the correla-
tion between wet-day amounts at Eskdalemuir (the
westernmost station in SB) and 2 of the most influential
predictors at this site (MSLP and QSUR). Although
both predictors could have been selected at this site on
the basis of the average correlation throughout the
year, it is evident that amounts are most strongly asso-
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Predictor Description EE SB
(n = 12) (n = 12)

Q500a,b Specific humidity at 500 hPa 12 12
H500a,b 500 hPa geopotential height 10 7
VWNDb Near-surface southerly wind 3 9
VORTb Near-surface vorticity 4 7
MSLP Mean sea-level pressure 4 5
RSURb Near-surface relative humidity 0 9
QSURa Near-surface specific humidity 4 1
F500b Wind strength at 500 hPa 0 5
UWNDa Near-surface westerly wind 1 3
U500 Westerly wind at 500 hPa 0 3
U850 Westerly wind at 850 hPa 0 2
V850a Southerly wind at 850 hPa 2 0
V500 Southerly wind at 500 hPa 0 1
H850 850 hPa geopotential height 0 1
Z850 Vorticity at 850 hPa 1 0
F850 Wind strength at 850 hPa 0 1
D850 Divergence at 850 hPa 1 0
aIncluded in EE area model
bIncluded in SB area model

Table 1. Predictor variable description and frequency of se-
lection at individual stations. EE: Eastern England; SB: Scot-

tish Borders

Fig. 2. Monthly variations in the strength of the correlation between
daily wet-day amounts at Eskdalemuir (55° 19’ N, 3° 12’ W) and
mean sea-level pressure (MSLP) and near surface specific humidity 

(QSUR) over the Scottish Borders region, 1961–1990
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ciated with QSUR in winter, and with MSLP in sum-
mer. Regional variations in explained variance are also
consistent with previous studies showing generally
greater skill over wetter western and northern areas
than over drier regions to the south and east (e.g.
Goodess & Palutikof 1998, Murphy 1999). This proba-
bly reflects the greater proximity of moisture sources in
the west and the greater significance of sub-grid scale,
convective precipitation events in the south and east.

There are a number of practical and theoretical
advantages of using area-average series as opposed to
individual station series for downscaling (Gregory et
al. 1993). Although area averaging reduces the proba-
bility of zero rainfall and increases the probability of
small non-zero amounts, it also reduces the variability
due to very local events and thereby increases the sig-
nal attributable to large-scale forcing. This is reflected
in the improved levels of explained variance for area-
average models when stepwise multiple linear regres-
sion was used to identify optimal sets of predictors. In
Region EE, the 5 predictor variables Q500, H500,
QSUR, UWND and V850 explain 33% of the variance
in area-averaged daily precipitation amounts. In
Region SB, the 6 predictors Q500, H500, VWND,
VORT, RSUR and F500 explain 42% of the variance.
These 2 sets of predictors were used to train the
monthly models in SDSM and then to generate the

DET and VAR marker series used
in the following syntheses of
multi-site precipitation.

4.2. Temporal dependence

Fig. 3a compares the standard
deviations of observed and syn-
thetic daily precipitation amounts
for all stations in EE (left panel)
and SB (right panel). The average
percentage differences between
observed and synthetic series
(VAR) were 3 and 2% in EE and
SB, respectively. The largest out-
liers in EE were the stations at
Lowestoft (52° 29’ N, 1° 45’ E) and
Manston (51° 21’ N, 1° 21’ E)—2
coastal locations situated at the
very easterly margin of the grid
box (see Fig. 1). In comparison,
DET consistently under-repre-
sented standard deviations at all
stations in both regions, by an
average of 16% in EE and by 31%
in SB. The greater skill of VAR
was also reflected in the area-

averaged results with differences of less than 4% in
both regions. As would be expected, the unconditional
resampling by RND produced near-perfect syntheses
of the standard deviations at all stations (not shown).

Fig. 3b compares the lag-1 autocorrelations of ob-
served, VAR and DET precipitation amounts for all sta-
tions in EE (left) and SB (right); RND produced negligi-
ble temporal dependency so is not shown. In both
regions, VAR slightly under-represented the autocorre-
lation and, as before, the 2 outliers for EE were Lowest-
oft and Manston. Conversely, DET generally over-
estimated temporal dependency, and for EE exhibited
far greater inter-station variability of autocorrelations
than in observations. This was because VAR consis-
tently over-estimated the frequency of dry-days (by as
much as 6% at some sites), thereby increasing persis-
tence relative to observations. The area-average auto-
correlation for VAR reflected the underestimation at the
station level, but for DET the difference from observa-
tions was even higher. Again, this was attributed to
over-representation of dry days by DET: for area aver-
ages this was +9%.

Discrepancies in the standard deviation and autocor-
relation of daily precipitation amounts are manifested
in N-day winter maximum precipitation amounts.
Figs. 4 & 5 compare distributions of observed and syn-
thetic 5, 10, 20 and 60 d area-averaged amounts for EE

188

Fig. 3. Comparison of observed versus synthetic (a) standard deviations and (b) lag-1
autocorrelations of daily precipitation amounts at all stations in EE (left) and SB
(right), 1961–1990. Open triangles denote the VAR model, and open circles the DET

model; solid symbols are the respective results for area averages

a)

b)
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and SB, respectively. VAR consistently
produced the best synthesis of maxima
for both regions, for all return periods
and values of N. However, VAR gener-
ally over-estimated the magnitude of
longer-duration events in SB and under-
estimated shorter-duration amounts in
EE. DET, and to a lesser extent RND,
under-estimated magnitudes of N-day
maxima throughout. Presumably, DET
under-estimates maxima because the
standard deviation of daily amounts is
too low, leading to sequences of moder-
ate-sized daily amounts, whereas RND
under-estimates because the model has
a temporal persistence too low to synthe-
sise prolonged spells of heavy rainfall.
The fact that RND produced more realis-
tic distributions of EE maxima than DET
implies that, for this measure, replicating
the overall distribution of daily amounts
was more important than replicating the
serial correlation of amounts.

The above findings were also valid at
the level of individual stations. Once
again, VAR showed greater skill than
both RND and DET for winter maxima at
Cambridge and Oxford (Fig. 6). How-

ever, the superiority of VAR over RND was
less pronounced, especially for the 60 d
amounts. As for the SB area average, VAR
over-estimated the 20 and 60 d amounts at
both Carlisle and Edinburgh (Fig. 7). Inter-
estingly, none of the models replicated the
marked step-change in amounts at
Carlisle associated with 20 and 60 d events
of 25+ years return period, although a sim-
ilar feature in the Oxford 60 d distribution
was synthesised by VAR (Fig. 6).

4.3. Correlation decay lengths

Comparisons of observed and synthetic
inter-site correlations were undertaken
for all possible pairs of daily precipitation
series. Fig. 8a shows that DET systemati-
cally under-estimates the pairwise corre-
lations of station daily precipitation series
across the EE region, whereas the VAR
and RND procedures are clearly much
more successful in simulating this aspect
of spatial dependency. The same pattern
of behaviour was evident for the SB region
(Fig. 8b). As would be expected, RND pro-
duces near-perfect spatial correlations,
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Fig. 4. Distributions of 5, 10, 20, and 60 d annual maximum precipitation for
the winter season (September–March) in EE, 1961–1990. Solid lines repre-
sent observations; open symbols are model syntheses (N: VAR; H: RND; 

S: DET)

Fig. 5. Distributions of 5, 10, 20, and 60 d annual maximum precipitation for
the winter season (September–March) in SB, 1961–1990. Solid lines repre-
sent observations; open symbols are model syntheses (N: VAR; H: RND; 

S: DET)
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whilst VAR a slight positive bias, and
DET significant under-estimation of
inter-station correlations. The depressed
pairwise correlations of DET was attrib-
uted to the relatively narrow sampling
range of daily precipitation by this
model, as indicated by the under-esti-
mated standard deviation of daily
amounts (noted above).

An alternative means of visualising
the results in Fig. 8 is to plot each set of
pairwise correlations of station daily
precipitation series versus station sepa-
ration distance. For example, Fig. 9
shows the expected decline from the
high correlations of nearest neighbours
to the low correlations of distant sites
across the 2 regions. The structure of the
observed decay differs between the
regions: EE displays a progressive
decline with distance compared with the
more heterogeneous pattern for SB,
again no doubt reflecting the more com-
plex orography of the latter region.
However, the under-estimation by DET
of correlation strengths at all separations
is clearly evident in both cases.

Table 2 compares the decay lengths
(km) estimated from the best-fit exponen-
tial function of pairs of correlations of sta-
tion daily precipitation series versus sepa-
ration distance (Eq. 5) for observed and
synthetic (DET, VAR, and RND) data.
Osborn & Hulme (1997) report that the
characteristic scale of observed precipita-
tion-causing disturbances is larger in win-
ter than in summer, due to a higher pro-
portion of precipitation associated with
fronts in winter. (Events associated with
winter weather fronts are generally more
widespread than summer convective
storms, leading to greater decay lengths
in winter.) Although VAR and RND (but
not DET) simulate well the correlation
decay length for the year as a whole
(Table 2), none of the models capture
observed seasonal variations in the decay
length. For example, observed decay
lengths vary between 189 km (145 km) in
summer and 270 km (227 km) in winter for
EE (SB). However, the models yield
approximately the same decay lengths all
year round because the normal cumula-
tive distribution (φ) used for resampling
daily amounts was not stratified by season
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Fig. 7. Distributions of 20 and 60 d annual maximum precipitation for the win-
ter season (September–March) at Carlisle and Edinburgh, 1961–1990. Solid
lines represent observations; other symbols are model syntheses (N: VAR; 

H: RND; S: DET)

Fig. 6. Distributions of 20 and 60 d annual maximum precipitation for the
winter season (September–March) at Cambridge and Oxford, 1961–1990.
Solid lines represent observations; other symbols are model syntheses 

(N: VAR; H: RND; S: DET)
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or month, unlike the regression
coefficients in Eqs. (1) & (2). This
implies that conditioning Zi in Eq.
(2) by atmospheric predictors
alone (albeit weighted by different
coefficients in each month) does
not implicitly capture seasonal
variations in correlation decay
lengths.

4.4. Association of N-day winter
maxima

The spatial dependence of win-
ter maxima precipitation totals
was assessed for all station pairs

by means of Kendall’s τb statistic. For example, Fig. 10
shows estimates of τb for Q90 of the 1 d winter maxima
across EE, together with the exponential function for
observed and synthetic data. As expected, joint excee-
dences of observed series are relatively high at short
distances, and they decrease for greater separations.
This trend is reproduced by the models; however, all 3
under-estimate τb for nearest neighbours and over-
estimate joint exceedances at greater separations.
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Fig. 8. Comparisons of pairwise correlations of station daily precipitation amounts in the observations (horizontal) and synthetic 
series (vertical) generated by DET, VAR and RND for (a) EE and (b) SB

Fig. 9. Correlation between pairs of station daily precipitation amounts vs their sepa-
ration distance for all possible combinations of station pairs in EE (left) and SB (right),
1961–1990. Solid lines represent exponential decay functions fitted to the obser-
vations (solid circles); open symbols are model syntheses (N: VAR; H: RND; S: DET)

a)

b)

EE SB

Obs. DET VAR RND Obs. DET VAR RND
213 126 215 226 211 135 232 213

Table 2. Correlation decay lengths (km) obtained from all
possible pairs of station daily precipitation time series using
the entire year. The best model syntheses of observations are 

given in bold
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Over-estimation of long-distance associations was par-
ticularly evident in RND; conversely, DET performed
worst for nearest neighbours.

As in Section 4.3, decay lengths were estimated from
the best-fit exponential function of τb for all station
pairs. Table 3 reports the decay lengths arising from
the Q90 and MED of the 1 and 20 d winter maxima.
Comparing the results for 1 and 20 d maxima, it is evi-
dent that the average strength of association is typi-
cally greater for longer-duration events. These results
are consistent with the findings of Buishand &
Brandsma (2001) for 1 and 10 d winter maximum pre-
cipitation in the Rhine basin. Overall, VAR yielded the
best estimates of the 20 d maxima in EE, whereas DET

was most proficient for SB. The pattern for 1 d maxima
was less clear-cut: RND performed best in EE but not
in SB.

Finally, it is evident from Table 3 that the spatial
coherence (i.e. decay lengths) of joint exceedances
was much greater across EE than SB. This is confirmed
by the regional average Kendall’s τb shown in Table 4.
With the exception of the MED of 1 d maxima, VAR
produced a close approximation of the average level of
association across EE. Again, the results for SB are less
consistent, with no model emerging as overall leader.
However, all models correctly signified that the joint
exceedences were strongest for the MED of 20 d max-
ima, and least for the Q90 of the 1 d maxima. In other
words, the 20 d event that occurs on average once in
2 yr (MED) has greater spatial coherance than the
single-day event that occurs on average once in 10 yr
(Q90).

5. DISCUSSION AND CONCLUSIONS

Multi-site downscaling of daily precipitation using
conditional resampling methods was explored for East-
ern England (EE) and the Scottish Borders (SB). Fol-
lowing an investigation of the relative importance of a
host of atmospheric predictors to station precipitation
series, the Statistical DownScaling Model (Wilby et al.
2002b) was used to synthesise area-averaged daily
precipitation amounts in each region. Three methods
were compared: (1) a fully deterministic procedure
involving atmospheric conditioning of precipitation
amounts (DET); (2) a semi-stochastic procedure involv-
ing atmospheric forcing and stochastic representation
of model errors (VAR); and (3) an unconditional proce-
dure involving random sampling of daily precipitation
amounts with replacement (RND). Multi-site series
were then constructed for each method and region by
sampling the days at constituent stations correspond-
ing to the days represented by the area-average
‘marker’ series. Finally, the realism of multi-site pre-
cipitation amounts was assessed using a range of sta-
tistical measures of temporal and spatial dependency.
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EE SB
Obs. DET VAR RND Obs. DET VAR RND

Q9020 113 162 110 154 37 5 >300 >300
Q901 94 4 75 75 24 32 18 32
MED20 205 >300 270 107 97 112 >300 47
MED1 79 na 28 57 5 4 33 33

Table 3. Decay lengths (km) obtained from Kendall’s τb using
all possible pairs of stations. The best model syntheses of
observations are given in bold. na: no relationship with 

distance

EE SB
Obs. DET VAR RND Obs. DET VAR RND

Q9020 0.30 0.35 0.32 0.40 0.19 0.28 0.44 0.20
Q901 0.23 0.07 0.21 0.27 0.12 0.18 0.11 0.19
MED20 0.45 0.53 0.46 0.29 0.37 0.38 0.53 0.23
MED1 0.28 0.15 0.16 0.15 0.18 0.18 0.18 0.23

Table 4. Average Kendall’s τb using all possible pairs of 
stations. The best model syntheses of observations are given 

in bold

Fig. 10. Estimates of Kendall’s τb for the 90th percentile (Q90)
1 d winter maxima precipitation amounts across EE, 1961–
1990. The solid black line represents the exponential decay
function fitted to the observations (d); grey dotted line and s:
DET; solid grey line and n: VAR; grey dashed line and h: RND
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The analysis of large-scale predictor-predictand
relationships supported the view that atmospheric
humidity, in addition to circulation patterns, is needed
for effective downscaling of daily precipitation
amounts (Charles et al. 1999b, Wilks & Wilby 1999,
Beckmann & Buishand 2001). Comparisons of the dom-
inant predictor variables of EE with those of SB further
underlined the level of sub-regional variability of pre-
dictors. This reflects the interaction of regional airflows
with local variations in station elevation, aspect, prox-
imity to coast, etc. (see Kilsby et al. 1998). Correlations
between grid-box circulation indices and precipitation
are typically stronger at locations near oceanic sources
in winter, where the advection of atmospheric moisture
is more direct (Robertson & Ghil 1999, Wilby & Wigley
2000). This was reflected by the higher explained vari-
ance for area-averaged precipitation in SB (42%) than
in EE (33%). Furthermore, westerly winds figured
more prominently as predictors of precipitation
amounts at stations in the ‘maritime’ SB grid box than
in the ‘near-continental’ EE grid box.

The preceding analyses indicated that some, but by
no means all, of the variance in daily area-averaged
precipitation amounts was explained by large-scale
atmospheric predictor variables. In fact, the fully deter-
ministic DET procedure for generating area-averaged
daily precipitation amounts was the least successful of
the 3 methods for multi-site resampling. This was
because the variance of the daily area averages was
too low (resulting in under-estimated standard devia-
tion of daily amounts and winter N-day maxima at
individual stations), whereas the lag-1 autocorrelation
coefficient was too high (due to over-representation of
dry-days). The DET procedure also significantly
under-estimated spatial dependency amongst stations
for both daily series and joint exceedance of N-day
amounts. Without artificial variance inflation DET
resamples from too narrow a range of observed daily
amounts to produce credible syntheses of observed
data.

In contrast, the RND procedure for synthesising
area-average marker series resamples from the full
range of daily amounts at the station level, and hence
it yields excellent results for the standard deviation.
Unsurprisingly, the lag-1 autocorrelation coefficient of
observed series is not replicated by this method. The
absence of conditioning by atmospheric predictors
also meant that the distribution of N-day winter max-
ima was generally too low (i.e. without atmospheric
modes leading to clusters of heavy rain-days, winter
maxima are less likely to be represented stochasti-
cally). However, as expected, RND did yield near-per-
fect results for pairwise correlations of station daily
precipitation amounts and decay lengths for 1 d joint
exceedances of MED and Q90 amounts. Decay dis-

tances for the 20 d exceedances of MED were signifi-
cantly under-estimated because of the non-existent
autocorrelation. The spatial associations for the 20 d
Q90 amounts were more ambiguous, possibly reflect-
ing larger standard errors in the estimate of τb for
rarer events.

The VAR procedure combines the features of both
the DET and RND methods and, as such, represented
the most promising basis for resampling. Standard
deviations of daily amounts, area-averaged N-day
winter precipitation maxima, pairwise correlations of
station daily amounts, and decay distances (for daily
amounts and joint exceedances) were all successfully
synthesised. However, VAR was less successful at sim-
ulating distributions of station N-day winter precipita-
tion maxima and 20 d joint exceedances, particularly
across SB. This is because the inclusion of the stochas-
tic component slightly degrades the autocorrelation of
synthetic daily series, a deficiency that might be
addressed by further conditioning of the error term ε in
Eq. (2). Alternatively, the relative significance of the ε
term could be reduced through improved conditioning
of the daily amounts by a more judicious choice of
lagged predictors and/or grid-point location. For
example, a number of studies have indicated that the
optimum grid point for downscaling does not necessar-
ily coincide with the target region, but may be located
to the west or northwest of the station(s) (Wilby &
Wigley 2000, Brinkmann 2002).

An acknowledged weakness of the downscaling pro-
cedures was their collective failure to reproduce sea-
sonal variations in the pairwise daily correlation and
decay lengths. This was traced to the unstratified
resampling of daily amounts by Zi (Eq. 3). A diagnostic
statistic such as the Kolomogorov-Smirnov could, in
future, be applied to test for significant differences
between the sub-samples of seasonally stratified and
unstratified amounts. Although this presents an oppor-
tunity for further model refinement, resampling strati-
fied by month or season might not be helpful in all sit-
uations. For example, in semi-arid climates there may
be insufficient rain days to properly characterise
amounts at the monthly scale. Alternatively, Charles et
al. (1999a) demonstrated that the worst results from a
spatio-temporal model were linked to particular
weather states with limited power for resolving precip-
itation occurrence at multiple sites. In other words, it
may be informative to further disaggregate downscal-
ing model output to examine synoptic conditions yield-
ing the largest anomalies in multi-site precipitation
amounts. Ongoing research will focus explicitly on N-
day precipitation maxima to identify the most useful
predictors for downscaling such events, with a view to
constructing climate-change scenarios of future flood
risk in the UK.
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