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Summary

Daily precipitation in northern Europe has different sta-
tistical properties depending on season. In this study, four
statistical downscaling methods were evaluated in terms of
their ability to capture statistical properties of daily pre-
cipitation in different seasons. Two of the methods were
analogue downscaling methods; one using principal compo-
nent analysis (PCA) and one using gradients in the pressure
field (Teweles-Wobus scores, TWS) to select the analogues
in the predictor field. The other two methods were con-
ditional-probability methods; one using classification of
weather patterns (MOFRBC) and the other using a regres-
sion method conditioning a stochastic weather generator
(SDSM). The two analogue methods were used as bench-
mark methods. The study was performed on seven precip-
itation stations in south-central Sweden and the large-scale
predictor was gridded mean-sea-level pressure over Northern
Europe. The four methods were trained and calibrated on
25 years of data (1961–1978, 1994–2000) and validated on
15 years (1979–1993). Temporal and spatial limitations
were imposed on the methods to find the optimum predictor
settings for the downscaling. The quality measures used for
evaluating the downscaling methods were the residuals of a
number of key statistical properties, and the ranked prob-
ability scores (RPS) for precipitation and maximum length
of dry and wet spells. The results showed that (1) the
MOFRBC and SDSM outperformed the other methods for the
RPS, (2) the statistical properties for the analogue methods
were better during winter and autumn; for SDSM and TWS
during spring; and for MOFRBC during summer, (3) larger
predictor areas were needed for summer and autumn
precipitation than winter and spring, and (4) no method could
well capture the difference between dry and wet summers.

1. Introduction

General circulation models (GCMs) are important
tools in evaluating the effects of climate change
as caused by the increase of radiatively-active
gases on a global scale. Since catchment-based
simulation of runoff requires input on a much
higher resolution than what can be provided by
these global models, precipitation-downscaling
tools are required to study the effects of a global
change on local and regional scales. Runoff in
central Sweden has a clear seasonal variation with
lower values during winter and summer months,
and higher values during spring flood and early
autumn (Xu et al., 1996). In order to model the
seasonality in daily runoff in a perturbed climate,
it is important to correctly capture the seasonal
cycle of the daily precipitation in statistical
downscaling studies. The seasonal variation of
both the mean and the variability of precipitation
also have an important impact on the length of the
vegetation period (Barrow and Semenov, 1995).

Earlier studies on statistical precipitation down-
scaling have been performed both on a single
season, for example daily winter precipitation
(Zorita and von Storch, 1999; Biau et al., 1999)
and autumn precipitation (Obled et al., 2002), and
on two or more seasons (Beckmann and Buishand,
2002; Hay et al., 1991; Stehlik and Bardossy, 2002;



Wilby et al., 1998). Methods of statistical precip-
itation downscaling can be categorised in many
ways and we choose to classify them into three
main groups: Analogue or resampling, regres-
sion, and weather classification methods. For a
more extensive description of the methods see
Wilby and Wigley (1997) and Xu (1999). The
methods that include two or more seasons ad-
dress seasonality in different ways. The typical
approach in regression models is to generate dif-
ferent regression parameters for different seasons
or for different months. The methods of weather
classification use seasonally-dependent precipita-
tion generators conditioned on the classification.
If a method is constructed with different param-
eter values for different seasons, the imposed
seasonality has to be valid for a future perturbed
climate (Kilsby et al., 1998). Earlier studies have
also noted that circulation patterns influence the
precipitation amount and occurrence differently
depending on the season (Zorita et al., 1995).

The aim of the study was to evaluate the sea-
sonality properties of four different methods in
downscaling daily precipitations from the large-
scale mean-sea-level-pressure (MSLP) field and
compare method downscaling skills within each
season. Two analogue methods (i.e. principal-com-
ponent analysis (PCA) and Teweles-Wobus Scores
(TWS)), one weather-pattern method (MOFRBC),
and one regression method (SDSM) with a weather
generator were selected for this study.

Since precipitation is an inherently stochastic
and non-linear process, the evaluation focused on

the statistical properties (i.e. distributions and key
variables rather than on the precipitation amounts
on single days). The seasonality properties of the
downscaling methods were analysed both with
respect to the inherent methodological features
of each method and spatial and temporal calibra-
tion of the predictor–predictand relationships.

2. Study region and data

2.1 Predictands

The predictand (i.e. the variable to be down-
scaled) was daily precipitation. Daily data from
19610101–20001231 were purchased from the
Swedish Meteorological and Hydrological Insti-
tute (SMHI) for 10 stations close proximal to
Uppsala in south-central Sweden (Fig. 1). The
stations were selected within the southern NOPEX
region (Halldin et al., 1999), approximately at
60� N latitude and 18� W longitude, in order to
support other climate-related research carried out
for this region. We retained data from 7 stations
(Table 1) for which the data sets were reasonably
complete. Slightly less than 6% of the data from
one or more stations was missing for the entire
period; whereas the time series was 100% com-
plete for the period 1974–1997. Since precipita-
tion occurrence and amounts are stochastic by
nature, gap-filling would not improve results.
Therefore, we did not pre-process data this way.
The data we received were original measure-
ments. SMHI also supplied correction factors to

Fig. 1. Location of precipitation stations in the target area and extent of the 2.5� � 2.5� mean-sea-level-pressure predictor
dataset. Modified from Wetterhall et al. (2005)
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account for wind loss, adhesion to, and evapora-
tion from measurement vessels at each station
(Eriksson, 1983). We used the corrected data in
this study.

2.2 Predictors

The selection of an appropriate predictor, or char-
acteristics from the large-scale atmospheric cir-
culation, is one of the most important steps in a
downscaling exercise. Three main factors con-
strain the choice of predictors. Data should be
(1) reliably simulated by GCMs, (2) readily
available from archives of GCM output, and
(3) strongly correlated with the surface variables
of interest (Wilby et al., 1999). Daily MSLP ful-
fils the two first criteria and has been widely used
in downscaling of precipitation (e.g. Barrow and
Semenov, 1995; Zorita et al., 1995; Kilsby et al.,
1998; Conway and Jones, 1998; Stehlik and
Bardossy, 2003) and has a documented correla-
tion with precipitation (e.g. Wetterhall et al., 2005).

In this study, only MSLP was used in order to
compare the different methods in an objective
manner. The predictors covering an area of
45�–75� N, 40� W–40� E were downloaded from
the NCEP=NCAR reanalysis project (Kalnay
et al., 1996; http:==dss.ucar.edu=pub=reanalysis=).
The geographical extent was chosen to include
all areas with noticeable influence on the circula-
tion patterns that govern weather in Scandinavia
(Hanssen-Bauer and Førland, 2000). The dataset
had a grid resolution of 2.5� � 2.5� longitude–
latitude.

3. Methods

Four methods to downscale precipitation were
used in this study (i.e. two benchmark methods
using historical analogues, one classification
method using weather patterns, and one regres-
sion method). For the sake of completeness, a
brief description of the methods is presented in
the following sub-sections. See the references in
Table 2 for a more detailed description of each
method.

3.1 Analogue methods

Analogue methods use historical data sets of pre-
dictor and predictand to model the predictand.
The methods search an historical database of pre-
dictors and sample the predictor from this dataset
that best resembles the predictor on the day on
which to downscale the predictand (target day)
(Zorita and von Storch, 1999; Obled et al., 2002).

Table 1. The mean annual precipitation (1961–1990) and
the coordinates of the precipitation stations used in the study

No. Station Latitude Longitude Prec.
(mm)

1 V€aasterås-H€aassl€oo 59�3505100 16�3705700 561
2 Sundby 59�4104600 16�3903800 659
3 Skultuna 59�4205000 16�2601000 656
4 Sala 59�5401600 16�3903800 637
5 Uppsala airport 59�5304300 17�3503600 599
6 Dr€aalinge 59�5903200 17�3402500 615
7 Vattholma 59�104400 17�4302700 657

Table 2. Statistical-downscaling methods used in the study

Notation Description References

PCA Analogue method that uses principal component analysis
to select the most suitable analogue from an historical
dataset of mean-sea-level pressure

Cubasch et al. (1996),
Zorita and von Storch (1999)

TWS Analogue method that compares the N–S and E–W gradients
in the mean-sea-level-pressure field to select the most suitable
analogue from an historical dataset

Teweles and Wobus (1954),
Obled et al. (2002)

MOFRBC A weather-pattern-classification method using fuzzy rules.
The patterns can be objectively or subjectively derived.
The method has been used in European mainland and Great Britain

Bardossy et al. (1995),
Stehlik and Bardossy (2002)

SDSM Statistical-downscaling model (SDSM) is a multivariate regression
model that uses a weather generator to model a predictand
from derived regression equations. The model has been used
in Great Britain and North America

Wilby et al. (2002)
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The analogue of the target day is selected by
analysing circulation patterns of the predictor
field. In this application, the entire time series
was used to select the analogue; with the excep-
tion that an analogue could not be selected from
the same year as the target pattern. The predictor,
in this case the MSLP pattern, was modelled in
the calibration and validation periods by choos-
ing the analogue to the MSLP patterns in the
training period. The generated precipitation was
the precipitation resampled from the selected oc-
currence in the training period. The benefits of
the methods are that they can easily be applied to
predictands that are not normally distributed and
the spatial correlation of the predictand is pre-
served. The primary drawback is that only events
that have occurred in the past can be modelled;
possibly limiting the validity in a perturbed cli-
mate (Zorita and von Storch, 1999). The methods
provide no physical interpretation of the relation-
ship between predictor and predictand (Zorita
et al., 1995), but the introduced areal and tem-
poral restrictions on the predictor should be phys-
ically valid. The methods were used in this study
as benchmarks against which the two more so-
phisticated methods were compared.

The two techniques used in selecting the ana-
logues from the MSLP were PCA and TWS.
The PCA, also known as Empirical Orthogonal
Functions (EOFs) in meteorological applications,
basically determines the internal relationship of
the anomalies of the predictors and relates them
to the predictand (Huth and Kysely, 2000). The
TWS method compares the gradients instead of
the anomalies at each point in the predictor field.
This method was first used as a quality measure
of geopotential-height forecasts (Teweles and
Wobus, 1954), but has been used in downscaling
studies in recent years as a predictor of precipita-
tion in flood forecasting (Obled et al., 2002). The
two methods have been evaluated over the study
area and it was found that both methods repro-
duced daily and monthly precipitation character-
istics well enough to be considered as benchmarks
in comparison studies (Wetterhall et al., 2005).

3.2 Weather classification method

MOFRBC is a conditional-probability method
based on an objective weather-pattern classifica-
tion (Bardossy and Plate, 1992; Bardossy et al.,

1995) that has been used for downscaling in
the British Isles, Central Europe, Germany and
Greece (Stehlik and Bardossy, 2002, 2003). The
method is based on fuzzy rules which provide a
statistical method for classifying an event into a
specific predetermined classification using logi-
cal and probabilistic statements (Bardossy et al.,
1995). The term fuzzy refers to the logical ex-
pression, or rule, dependant on which class the
weather pattern belongs to and is associated with
a certain degree of fulfilment (DOF). An event is
classified by assigning it to the weather pattern
which has the highest DOF. The scheme can use
any type of predictor (MSLP, GPH) and local
weather variable as predictand (precipitation, tem-
perature, runoff, et cetera).

The predictand is stochastically modelled
conditioned on an intermediate predictor, the
weather-classification patterns. These patterns
can either be built on existing subjective classi-
fication schemes or objectively derived patterns.
MOFRBC optimises the weather patterns to max-
imise variability in the predictand to give weather
situations of different character. In this study,
the 12 most common patterns from European
Grosswetterlagen (Baur et al., 1944) were adapted
to the study region and optimised to give precip-
itation patterns of different types i.e. very dry or
very wet conditions. The measure of a patterns
condition is defined by its wetness:

WetðiÞ ¼
1
P

PT
t¼1 pðtiÞP

ti

T

� 1 ð1Þ

where p is the total amount of precipitation for
the day t classified in pattern i, P is total amount
of precipitation for all the T classified days. In
order to achieve negative values for dry patterns,
1 is subtracted from the primary term. Days that
were not classified in any of the 12 patterns were
allocated to a residual group.

The classifications were optimised and evalu-
ated according to criteria depending on precipi-
tation occurrence (I1) and precipitation amount
(I2).

I1 ¼ 1

T

XT
t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
pðCPðtÞÞ � �pp

�2
q

ð2Þ

where T is the number of classified days, p(CP(t))
is the probability of precipitation on day t with
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classification CP, and �pp is the probability of pre-
cipitation for all days.

I2 ¼
1

T

XT
t¼1

���� ln

�
zðCPðtÞÞ

�zz

����� ð3Þ

where z is the mean precipitation amount on day
t with classification CP, T is the number of clas-
sified days. The patterns are hybrids between
subjectively and objectively classified patterns,
having the advantage of the physically meaning-
ful Grosswetterlagen, but modified to capture
differences in precipitation regimes. The trade-
off is that the patterns are not totally conditioned
on precipitation; also a wet pattern has dry days.
Enke et al. (2005) have proposed a subjective
classification scheme that uses whatever predic-
tor set that provides the optimum result and clas-
sifies circulation patterns according to predictand
intervals. This approach is appealing concerning
the precipitation statistics for each pattern, but it
also makes it even more important to make sure
that the patterns are physically reasonable and
not just mathematical artefacts.

3.3 Regression method

The Statistical-Downscaling Model (SDSM) uses
a multivariate linear regression method to derive
a statistical relationship between predictor and
predictand and has been applied to a number of
catchments in Great Britain and North America
(Wilby et al., 2002). Predictors can be any large-
scale atmospheric variables that have a correla-
tion with the predictand. The method includes
built-in transform functions in order to obtain
secondary data series of the predictand and=or
the predictor that have stronger correlations than
the original data series (Wilby et al., 2002). The
precipitation is then modelled through a weather
generator conditioned on the predictor variables.
The problem of over-fitting caused by collinear-
ity (i.e. too many variables and parameters in the
model that are highly correlated) has to be ad-
dressed when building a regression model (Wilby
and Wigley, 2000; Enke et al., 2005). Over-fitting
problems tend to produce a calibration result that
is too optimistic and have the tendency to per-
form poorly when presented with new observa-
tions or instances (i.e. they do not generalise well
to the prediction of ‘‘new’’ cases). One of the

methods to handle this problem is reducing the
number of variables in the model or increasing
the size of the sample. The predictors with high-
est Spearman-ranked correlation with precipita-
tion were all highly inter-correlated (>0.8) so
the best model should be built using only the
predictor with the highest explained variance
in the predictand. However, using only one vari-
able resulted in under-fitting the problem, mean-
ing that the model is not sufficiently complex to
fully detect the signal in a complicated data set.
In our case, the duration of wet and dry spells
were not captured by the model using only one
variable. Under-fitting produces excessive bias in
the outputs, whereas over-fitting produces exces-
sive variance. To compromise, the chosen predic-
tors were extended to six grid points of MSLP
and two grid points of 1-day-lagged MSLP using
the highest correlation with the predictand. This
approach introduced some collinearity in the pre-
dictors and over-fitted the stochastic weather gen-
erator to some extent, but since the duration of
dry and wet spells were improved and no signif-
icant change could be detected in the other objec-
tive functions, this model setup was preferred.

4. Method evaluation

The comparison study was carried out by apply-
ing the same training data set to all methods. The
40-year precipitation-data series was broken up
into a calibration period and a validation period.
The methods were calibrated on the training pe-
riod 1961 to 1978 and 1994 to 2000. Method val-
idation involved period 1979 to 1993. These time
periods were selected to agree with the periods
used in the European project for inter-comparison
of statistical downscaling methods, STARDEX
(2001). The validation period, 1979 to 1993, was
selected to agree with the ERA-15 reanalysis
period.

4.1 Objective functions

The method evaluation used objective functions
representing 3 precipitation-distribution proper-
ties and 4 key precipitation variables (Table 3)
suggested by the STARDEX (2001) project.
The STARDEX variables were selected to cap-
ture extreme probabilities in precipitation series
rather than monthly or yearly totals.
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The first objective function was the ranked-
probability score (RPS), developed to evaluate the
probability distribution of an ensemble of fore-
casts compared to the observed values. In this
case RPS was calculated for daily precipitation
and seasonal maximum duration of dry and wet
spells (Epstein, 1969; Murphy, 1971; Obled et al.,
2002). To define RPS we consider a random vari-
able X withK> 2 thresholds x1< x2< � � �< xk that
define the events Ak¼ {X� xk} for k¼ 1,2, . . .K
with the forecast probabilities (p̂pk; p̂pk; . . . ; p̂pk).
The binary indicator variable for the kth event
is denoted ok and defined as ok¼ 1 if Ak occurs
and 0 otherwise. RPS is then

RPS ¼ 100
1

N

XN
n¼1

Bk ð4Þ

Bk ¼
1

K

XK
k¼1

ðp̂pk � okÞ2 ð5Þ

where N is the number of forecasts. The factor
100 in Eq. (4) is used to scale the RPS values to a
range that is convenient to use. A value close to 0
denotes a good simulation. RPS has a subjective
component, i.e. the choice of the number of
classes and the limits of each class. When used
for precipitation quantity, 8 classes were estab-
lished: 0 (no rain), 0–1, 1–3, 3–5, 5–10, 10–20,
20–50, and more than 50 mm rain per day.
When used for maximum dry-spell length, the es-
tablished classes were <7, 7–9, 10–12, 13–16,

17–20, and >20 days. For maximum wet-spell
lengths the established classes were <5, 5–7,
8–10, 11–14, 14–20 and >20 days. The classes
were established to reflect the distribution in the
observed data and were the same for all stations.
In the results RPS was averaged over all stations.

The second objective function calculates and
compares the difference of the statistical proper-
ties between observed and calibrated precipita-
tion series. This function is henceforth referred
to as the residual function (RF):

RFðyjÞ ¼
1

N

XN
n¼1

½yobsðnÞ � ysimðn; jÞ�2 ð6Þ

where y is the statistical property of the jth simu-
lated and observed precipitation series respective-
ly and N is the number of stations. A value close
to zero for the residual function implies good
downscaling. The RF value and RPS were con-
sistently used during the calibration to optimise
the settings for each method. The standard devia-
tion for the observed values was calculated from
yearly means over the validation period.

4.2 Spatial coverage

The first step in the downscaling was to decide
on the optimal predictor grid-point area. The pro-
cedure differed somewhat between methods. The
procedure for the analogue methods was to ex-
clude grid points, one by one, and graphically
evaluate downscaling for each objective function.
The spatial variability of the objective function,
OF, is expressed as

OFðyiÞ ¼
XK
k¼1

RFðykÞ; k ¼ 1; 2; . . . ;K; k 6¼ i

ð7Þ

where i denotes the simulation with the
excluded grid point, and K are the included grid
points. Area windows of varying size and ori-
entation over the study area were constructed
following the result of this analysis. These
windows ranged from a local window covering
only the area above the stations to one including
the entire predictor data set. The area windows
were used in the optimisation of the two anal-
ogue methods and the MOFRBC method. Twelve
large-scale circulation patterns derived from the

Table 3. Objective functions and evaluation distributions=
variables. Evaluation variables are selected from the core
indices suggested by the STARDEX (2001) project

Objective function Evaluation distribution=variable

Ranked-probability
score

Precipitation distribution
(RPSprec)
Dry-spell-length distribution
(RPSdry)
Wet-spell-length distribution
(RPSwet)

Residual function Average-wet-day amount
(RFamount; mm=day)
90th-percentile-of-rain-day
amounts (RF90%; mm=day)
Greatest 5-day total rainfall
(RFmax; mm)
Maximum length of dry spell
(RFdry; days)
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European Grosswetterlagen, describing cyclonic,
anticyclonic, N–S and E–W circulation, were used
as input classification for the latter method.

For the SDSM, the Spearman-rank-correlation
coefficient for the predictor, 1-day-lagged predic-
tor data, and predictand data were analysed. We
used the 6 grid points of MSLP data combined
with the 2 one-day-lagged MSLP data that had
the highest correlation with precipitation in the
study (Fig. 6).

4.3 Evaluation of seasonality

Precipitation distribution in Sweden is highly af-
fected by elevation (Johansson and Chen, 2003)
and precipitation quantities show distinct sea-
sonal cycles having maximum precipitation in
August and a minimum during winter. Variability
is largest during summer months. The construction,
calibration and validation of each method were
performed on four seasons, winter (DJF), spring
(MAM), summer (JJA) and autumn (SON), in
order to achieve optimum seasonality perfor-
mance of the methods. The approach in dealing
with seasonality differed between methods.
Seasonality was considered implicitly in the ana-
logue methods by using a time window such that
an analogue could only be selected from training
periods in the same time of year as the target day.
For example, if the target day was 1 June and the
optimum time window �17 days, then analogues
were selected from the range 14 May to 18 June
in the data set. The optimum time-window size
was selected by simulating precipitation with all
possible combinations of spatial and temporal
windows.

The MORFBC includes seasonality implicitly
through the use of seasonal variation of the pre-
cipitation variance (Stehlik and Bardossy, 2003).
The seasonality was investigated by separately
analysing the precipitation patterns provided
by each classification for different seasons.
Seasonality, in SDSM, was explicitly expressed
by comparing the Spearman-rank-correlation co-
efficient between predictor and predictand and
then selecting the optimum predictor set for each
season. The objective functions were then inves-
tigated for each season and the model was built
accordingly. The resulting parameter-value sets
for the model were, therefore, different for each
season.

The methods were also evaluated for the five
wettest and five driest summers in order to com-
pare how the methods processed different climate
situations within the study area and time period.
The selection of wet and dry summers was based
on the total precipitation amount for the specific
season. It is noticeable that all the wettest sum-
mers occurred during the validation period and
all the driest summers during the calibration pe-
riod. All results were averaged from an ensemble
of 20 downscaled simulations in order to derive
results that were representative of the method.
This was straightforward with MOFRBC and
SDSM because they produce stochastic time
series. In contrast, this is problematic with the
analogue methods because they are determinis-
tic. Ensembles of analogue downscaled time
series were created by including simulations
with time and area windows that were close to
optimal. The ensemble included simulations with
area window �1 and time window �3 result-
ing in 21 simulations. An ensemble of 20 was
produced by excluding one randomly selected
simulation.

5. Results

5.1 Main circulation modes

The four leading principal components (PCs) of
the PCA method explained 83% of the winter
variance; 73% of the spring and autumn variance;
and 74% of the summer variance of the MSLP-
anomaly field. The anomaly field is basically the
same over the year (Fig. 2).

The MSLP-anomaly patterns obtained from
classification after the optimisation procedure
with the MOFRBC method indicated similarities
between different patterns (Fig. 3). The patterns
in Fig. 3 exemplify the summer classification.
The most frequently occurring wet pattern was
CP11. However, this pattern was not the wettest
during summer (Fig. 4). Rather, the wettest pat-
terns were associated with CP6 and CP12 which
involve a strong cyclonic anomaly centre over
the study area and corresponding anticyclonic
activity around Iceland. The dry CP3 closely re-
sembled a mirror image of the wet CP6; the latter
with a cyclonic anomaly over the study area. The
frequency and wetness index varied depending
on season (Fig. 4).
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Fig. 2. The four leading principal components (PCs) of the daily 1961–1990 mean-sea-level-pressure field during winter
(DJF), spring (MAM), summer (JJA) and autumn (SON). The percentage is explained variance of each PC

Fig. 3. Composite maps of 1961–1978 mean-sea-level-pressure-anomaly circulation patterns (CPs) for summer according to
the multiobjective-fuzzy-rule-based classification method
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5.2 Spatial and temporal calibration

The optimum-area windows for the analogue meth-
ods varied highly in size depending on season
(Fig. 5). Both TWS and PCA methods had larger

optimum areal windows for summer season than
winter and spring. In addition, TWS also had a
larger autumn window. The time windows for the
TWS and PCA methods were 5 and 20 days for
winter, 7 and 15 days for spring, 15 and 35 days

Fig. 4. Wetness index and frequency for the 12 different circulation patterns (CPs) of the MOFRBC method. UC represents
unclassified days

Fig. 5. Optimum area windows for 3 different methods and 4 seasons. PCA and TWS are two analogue methods, and
MOFRBC is a weather-classification method
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for summer, and 13 and 15 days for autumn,
respectively.

The optimum areal windows for the MOFRBC
were extracted with the same procedure used with
the analogue methods, but the evaluation was
completed with the selection criteria I1 and I2.
This resulted in the largest areal window in the
summer.

The screening of the MSLP grid in the SDSM
method provided different results depending on
season. Winter precipitation had its maximum,
non-lagged, negative correlation located in the
south–west of the study area (Fig. 6). The grid
points directly above the stations were not in-

cluded in the regression for winter because these
grid points were not sufficiently correlated with
precipitation. The maximum negative correlation
was concentrated over the study area during the
summer. A weak negative correlation field was
associated with the area around Iceland. The
one-day-lagged grid points with the highest cor-
relation were consistently east of the non-lagged
points. There was no overlap between these
points except for one point in V€aasterås during
summer. The correlation field for spring was
similar to the winter field and the autumn corre-
lation field resembled the summer field.

5.3 Intra-annual variability

All methods simulated the intra-annual variation
well, but the general result was that all methods
under-estimated summer precipitation (Fig. 7).
The SDSM method best captured monthly sum-
mer precipitation. Winter precipitation was gen-
erally best downscaled.

5.4 Measures of precipitation-downscaling skill

The MOFRBC method performed best con-
cerning downscaling the RPSprec in all seasons
(Table 4) and SDSM next best. The results were
not so unanimous for the RPSdry and RPSwet. The
MOFRBC performed overall best concerning
RPSdry, and SDSM best for RPSwet. The analogue
methods outperformed the more complicated
methods during winter in terms of the STARDEX
variables (Table 5). The PCA provided the driest

Fig. 7. Observed (Obs) and downscaled precipitation of monthly precipitation amounts averaged over seven precipitation
stations in south-central Sweden for the validation period 1979–1994 with the four different downscaling method; the
analogue methods (PCA and TWS), the conditional-probability method (MOFRBC), and the regression method with a
weather generator (SDSM)

Fig. 6. Spearman-rank-correlation coefficient between in-
stantaneous (circles) and 1-day-delayed (squares) mean-
sea-level pressure (MSLP) and winter=summer precipitation
in V€aasterås and Uppsala. Circles and squares show grid
points used in the regression. The triangles give the station
locations
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climate and the best result for precipitation
amount on a wet day and second best 5-day max-
imum in winter. It was notable that MOFRBC
managed to downscale maximum length of dry
spells best for all seasons except summer, other-
wise the method performed poorly during winter
and spring for the STARDEX indices. All meth-
ods, except MOFRBC, underestimated precipita-
tion amount for a rainy summer day. This method
was also the best overall method for summer.

The MOFRBC downscaled the STARDEX
variables best for the wettest summers, except
for maximum length of dry spell (Table 6). The
TWS method performed best overall during dry
summers. No method captured the magnitude
of difference between wet and dry climate con-
ditions very well, but a one-sided rank-sum test
(Mann-Whitney) rejected the hypothesis that
5-day maximum rainfall came from the same
population for SDSM and MOFRBC on the sig-
nificance level 0.01.

6. Discussion

This study showed significant differences in how
seasonality was processed by different statistical

downscaling methods. Furthermore, downscaling
ability was seasonally dependant. We suggest
that important differences are related to (1) the
geographical areas that determine precipitation
in winter and summer, and (2) how this spatial
information is used by the different methods.

6.1 Spatial correlations

The PCA method required large areas to optimise
results for summer precipitation (Fig. 5). This
was expected because the leading PCs had im-
portant modes around Iceland (Fig. 2). This, in
turn, may be an effect resulting from the high
variation in the MSLP field west of Sweden.
Both summer and winter PC1 were centred in
the North Atlantic Ocean between Iceland and
Norway and contributed to about 1=3 of the var-
iance. The centre shifted somewhat towards the
south in the winter both for PC2 and PC3. This
indicated slightly different circulation patterns
for winter and summer months. A good down-
scaling model should reflect if the daily precipi-
tation is governed by regional pressure fields.
The optimum PCA time window was almost
7 times larger in summer than in winter. This in-
dicated that more data is needed during summer
to correctly capture the variability.

The circulation patterns (CPs) in MOFRBC
(Fig. 3) represent another decomposition of the
MSLP-anomaly field (Fig. 2) optimised to give
differences in precipitation. CP6 and CP12 were
the wettest patterns and, although they were not
very frequent (about 5% each); they provided
the patterns for which extreme precipitation
amounts were expected. These patterns had simi-
larities with PC2 (Fig. 2). The most frequent pat-
tern, CP3, had anticyclonic centres close to the
station area and a strong resemblance to the first
principal component of the MSLP (Fig. 2). This
is important if the classification done in the
MOFRBC method is to possess physical credibil-
ity i.e. the composite anomaly patterns must cor-
respond to distinguishable weather situations.

The correlation patterns between MSLP and
precipitation in the SDSM model indicated that
the most important non-delayed MSLP-grid points
were located southwest of the station area. The
summer precipitation is mainly driven by local
convective circulation, but Fig. 6 also shows a
westerly influence. The winter precipitation had

Table 4. Ranked-probability scores of downscaled precipi-
tation during the validation period 1979–1993, averaged
from seven precipitation stations in south-central Sweden,
for four downscaling methods; the analogue methods (PCA
and TWS), the conditional-probability method (MOFRBC),
and the regression method (SDSM). Relative ranks are given
as superscripts

PCA TWS MOFBRC SDSM

Winter (DJF)
RPSprec 7.83 8.44 5.31 6.42

RPSdry 131 143 131 143

RPSwet 123 9.31 134 112

Spring (MAM)
RPSprec 6.83 8.24 4.51 4.82

RPSdry 133 144 111 111

RPSwet 6.73 8.24 5.63 5.92

Summer (JJA)
RPSprec 9.23 124 6.11 6.42

RPSdry 9.32 134 9.11 103

RPSwet 144 122 133 9.51

Fall (SON)
RPSprec 9.83 114 6.41 6.92

RPSdry 104 9.43 8.12 7.61

RPSwet 114 9.72 103 8.71
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an area of influence southwest of the study area,
indicating a strong relationship between westerly
winds and precipitation during winter. It can be
noted that this area was included in the optimum
area for the winter TWS simulations.

6.2 Seasonal variations

All methods generated seasonal precipitation var-
iations similar to the observed values (Fig. 7).
Precipitation during winter, spring and autumn

seasons was generally well downscaled by all
methods, but summer precipitation was under-
estimated. This was especially the case for
August, and SDSM performed best during this
month. This suggested that SDSM best captures
local convective precipitation, which is not in-
dicated in the STARDEX variables, but can be
seen in the precipitation probabilities. MOFRBC
captured STARDEX variables best for summer,
but underestimated precipitation totals. The TWS
method had constantly higher precipitation totals

Table 5. Evaluation variables for observed (average and standard deviation) and downscaled precipitation during the validation
period 1979–1993, averaged from seven precipitation stations in south-central Sweden, for four downscaling methods; the
analogue methods (PCA and TWS), the conditional-probability method (MOFRBC), and the regression method (SDSM). The
top number in each pair gives the variable value; the lower number (in italics) gives the residual-function value

Obs � std. dev. PCA TWS MOFRBC SDSM

Winter (DJF)
Average-wet-day amount (mm=day) 3.40 � 0.56 3.491 3.582 3.824 3.693

RFamount <0.1 0.18 0.41 0.29
90th-percentile-of-rain-day amounts (mm=day) 8.65 � 1.9 9.173 8.992 9.634 8.821

RF90% 0.52 0.34 0.99 0.17
Greatest 5-day total rainfall (mm) 53 654 643 611 622

RFmax 11 11 8.0 8.3
Maximum length of dry spell (days) 21 184 222 211 243

RFdry 3.6 0.9 3.8 2.4

Spring (MAM)
Average-wet-day amount (mm=day) 3.52 � 0.73 3.481 3.452 3.854 3.593

RFamount <0.1 <0.1 0.34 <0.1
90th-percentile-of-rain-day amounts (mm=day) 8.86 � 2.2 8.713 8.901 9.654 8.802

RF90% 0.15 0.04 0.80 0.06
Greatest 5-day total rainfall (mm) 51 583 531 634 572

RFmax 6.8 1.8 12 5.8
Maximum length of dry spell (days) 24 252 283 241 284

RFdry 0.25 3.3 0.4 4.0

Summer (JJA)
Average-wet-day amount (mm=day) 5.78 � 1.2 5.433 4.964 5.911 5.442

RFamount 0.35 0.82 0.12 0.33
90th-percentile-of-rain-day amounts (mm=day) 14.5 � 3.9 14.21 12.54 15.12 13.53

RF90% 0.26 1.9 0.62 0.98
Greatest 5-day total rainfall (mm) 109 994 1003 1042 1091

RFmax 9.6 9.3 5.3 0.26
Maximum length of dry spell (days) 16 181 213 192 264

RFdry 2.0 5.2 3.2 10

Fall (SON)
Average-wet-day amount (mm=day) 4.53 � 1.15 4.452 4.481 5.004 4.443

RFamount <0.1 <0.1 0.47 <0.1
90th-percentile-of-rain-day amounts (mm=day) 11.4 � 3.0 10.92 11.11 12.54 10.73

RF90% 0.54 0.33 1.1 0.73
Greatest 5-day total rainfall (mm) 79 974 943 862 821

RFmax 18 15 7.5 2.7
Maximum length of dry spell (days) 17 154 182 171 193

RFdry 2.4 1.1 <0.1 1.6
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in summer compared to MOFRBC but much
lower STARDEX variable values. This paradox
was explained by the number of wet days. The
probability of a wet day was 0.46 with the TWS
method and 0.38 with the MOFRBC method,
making the total summer rainfall greater with
the TWS method. The STARDEX variables were
designed to give emphasis on extreme events
rather than monthly totals, therefore the inability
of the MOFRBC method to capture monthly total
may be a consequence of too few wet days. The
MOFRBC was designed to capture extreme events
in this study, and could perhaps downscale month-
ly totals better if the weather patterns were opti-
mised towards this.

All methods except TWS overestimated pre-
cipitation amounts and maximum precipitation
over 5 consecutive winter days. TWS performed
best overall in winter. This result, along with the
smaller window for the TWS method in winter,
indicated that small areas are needed to capture
the circulation that primarily governs daily win-
ter precipitation over the study area.

The difference between wet and dry summers is
apparent in the observed data (Table 6). However,
no method could reproduce the large differences.
A Wilcoxon-rank-sum test was rejected on the

significance level 0.01 that the 5-day maximum
for MOFRBC and SDSM came from the same
population and on the 0.05 level for TWS. The
test was also rejected for MOFRBC and TWS for
wet-day amount on the 0.05 level. This may indi-
cate that these methods are sensitive to different
climate regimes, but this needs to be more rigor-
ously tested. It is however promising that the
signal is present. PCA was not sensitive to differ-
ent climate regimes.

6.3 Downscaling skill

MOFRBC and SDSM performed well in com-
parison to the benchmark methods over the
seasons (Table 4), especially when looking at
RPSprec where the analogue methods were
clearly outperformed. The MOFRBC captured
the durability and distribution of dry spells
overall best (Tables 4, 5). This indicates that
large-scale circulation of predictor data are
important for a good downscaling of dry pat-
terns. MOFRBC tended to overestimate precipi-
tation amount on a wet day and 5-day maximum
whereas SDSM were closer to the observed
values and had the lowest RPSwet for summer
and autumn. This indicates that local variations

Table 6. Evaluation variables for observed (average and standard deviation) and downscaled precipitation for the five driest
and the five wettest summers, averaged from seven precipitation stations in south-central Sweden, for the four downscaling
methods

Obs � std. dev. PCA TWS MOFRBC SDSM

The 5 driest summers
Average-wet-day amount (mm=day) 4.42 � 1.2 5.00 4.88 5.72 5.08
RFamount 0.58 0.46 1.3 0.66
90th-percentile-of-rain-day amounts (mm=day) 11 � 4.5 13 12 15 13
RF90% 1.5 1.2 3.7 1.4
Greatest 5-day total rainfall (mm) 57 73 64 63 64
RFmax 16 7.0 6.7 7.1
Maximum length of dry spell (days) 19 14 20 17 21
RFdry 5.6 0.7 2.4 2.1

The 5 wettest summers
Average-wet-day amount (mm=day) 6.45 � 1.1�� 4.80 5.55� 6.13� 5.35
RFamount 1.6 0.89 0.32 1.1
90th-percentile-of-rain-day amounts (mm=day) 16 � 3.9* 12 14 16 14
RF90% 4.0 1.7 <0.1 2.2
Greatest 5-day total rainfall (mm) 101�� 69 75� 89�� 75��
RFmax 33 27 13 26
Maximum length of dry spell (days) 11� 14 13 15 15
RFdry 2.8 2.0 4.2 3.8

Significance levels of rejection �0.05 and ��0.01 of the one-sided Mann-Whitney test with ‘‘H0: The values are equal’’
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in the MSLP field are important for the varia-
tions in precipitation.

The different methods performed differently
well depending on season, so which method is
preferable? No method performed best in all sea-
sons. The choice of method is instead dependant
on the purpose of the study. The recommendation
of the authors is to use a number of methods in
the downscaling study in order to achieve diver-
sity within the results. There is also the question
as to whether or not the methods can be used to
downscale precipitation in simulation of a future
perturbed climate. Since the two analogue sam-
pling methods only reproduce historical data the
future precipitation and circulation patterns have
to be assumed to have the same variability as the
present in order to simulate precipitation in a
perturbed climate. This also applies to the two
other methods since no method is valid outside
its calibrated interval, but at least the MOFRBC
and SDSM possess the potential to produce good
results in a different climate. The analogue meth-
ods can always serve as benchmarks to more
complicated methods in downscaling studies
(Zorita and von Storch, 1999).

In this study only MSLP was used as the pre-
dictor. One could argue that other large-scale
parameters, alone or in combinations, such as
geopotential heights, vorticities and humidity,
may increase the performance of the methods.
Introducing more predictors, however, increases
the degrees of freedom. This increases difficulties
for results interpretation and method optimisa-
tion. The purpose of this study was to compare
the methods as objectively as possible. This
boundary condition led to the selection of MSLP
as predictor.

7. Conclusions

The SDSM and MOFRBC performed on par or
better than the analogue benchmark methods in
terms of reproducing precipitation distributions
for all seasons. MOFRBC captured the RPSprec

best, but had a tendency to produce too wet pat-
terns. The methods in the study performed dif-
ferently depending on season concerning indices
such as precipitation amount on a rainy day
and greatest 5-day total rainfall. The analogue
methods were better during winter and autumn;
SDSM and TWS during spring; and MOFRBC

during summer. Larger predictor areas were nec-
essary for summer precipitation than for other
seasons. This indicates that large-scale circula-
tions are important for the downscaled persis-
tence of weather patterns, especially dry spells.
In contrast, the SDSM method applied using a
smaller predictor area captured precipitation
intra-annual variance and RPSwet well. This in-
dicates that local MSLP activities are important
for precipitation patterns. The TWS, SDSM and
MOFRBC methods captured differences between
extreme climate situations better than PCA.
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