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[1] Four methods of statistical downscaling of daily precipitation were evaluated on three
catchments located in southern, eastern, and central China. The evaluation focused on
seasonal variation of statistical properties of precipitation and indices describing the
precipitation regime, e.g., maximum length of dry spell and maximum 5-day
precipitation, as well as interannual and intra-annual variations of precipitation. The
predictors used in this study were mean sea level pressure, geopotential heights at 1000,
850, 700, and 500 hPa, and specific humidity as well as horizontal winds at 850, 700,
and 500 hPa levels from the NCEP/NCAR reanalysis with 2.5� � 2.5� resolution for
1961–2000. The predictand was daily precipitation from 13 stations. Two analogue
methods, one using principal components analysis (PCA) and the other Teweles-Wobus
scores (TWS), a multiregression technique with a weather generator producing precipitation
(SDSM) and a fuzzy-rule-based weather-pattern-classification method (MOFRBC), were
used. Temporal and spatial properties of the predictors were carefully evaluated to derive the
optimum setting for each method, and MOFRBC and SDSM were implemented in two
modes, with and without humidity as predictor. The results showed that (1) precipitation was
most successfully downscaled in the southern and eastern catchments located close to the
coast, (2) winter properties were generally better downscaled, (3) MOFRBC and SDSM
performed overall better than the analoguemethods, (4) the modeled interannual variation in
precipitation was improved when humidity was added to the predictor set, and (5), the
annual precipitation cycle was well captured with all methods.
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1. Introduction

[2] Outputs from general circulation models (GCMs) can
be useful in getting an overview of possible climate scenar-
ios but are typically too coarse in scale to be useful in
practical comprehensive planning situations, such as apply-
ing hydrological modeling in flood-risk analysis. GCMs
model precipitation patterns, but the important extreme
events are badly represented [Durman et al., 2001]. In
many hydrological applications, extreme precipitation pat-
terns such as a number of consecutive rainy days and
prolonged dry spells must be well described. Simulations
of multisite precipitation series that are to be used in climate
change impact studies should thus reproduce the important

patterns in the observed precipitation. One possible solution
to overcome this problem is to downscale the output from
GCMs to a higher resolution in space/time, thereby making
use of scenario output in local water management.
[3] The basic idea of downscaling is to transfer large-

scale changes in atmospheric variables (predictors), reliably
simulated from GCMs, to local weather series (predictands)
[Hanssen-Bauer et al., 2005]. GCM outputs such as mean
sea level pressure (MSLP), geopotential heights (GPH), and
specific humidity (SH) can be useful predictor variables in
statistical downscaling of precipitation in catchment-based
studies. Downscaling can be carried with a nested regional
climate model (RCM) or differential resolution modeling
with GCMs [e.g., Hellström et al., 2001]. Another technique
is to apply a statistical link between predictor and predic-
tand. The statistical-downscaling methodology has many
obvious drawbacks, such as the uncertain assumption of
applicability in a future climate, but it is a computationally
cheap and statistically sound complement to dynamical
downscaling. Note that predictor and predictand can be
the same parameter on different scales, but statistical
methods have the freedom to select any variable as predictor
as long as it can be motivated.
[4] Several methods of statistical downscaling exist and

have been applied in different climate regions [Wilby and
Wigley, 1997; Xu, 1999; Linderson et al., 2004]. Although
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several comparative studies have been carried out in Europe
[Wilks and Wilby, 1999; Beckmann and Buishand, 2002;
Stehlik and Bárdossy, 2002; Wetterhall et al., 2006], the
methods used have only been tested in climates where they
were developed. It is important to identify the strengths and
weaknesses of different statistical-downscaling methods to
understand under which conditions they can be applied,
such as time of year and spatial domain of the predictor
data. However, compared with the rich studies performed in
the United States and European countries, few statistical-
downscaling exercises have been carried out in the Chinese
context [Chen and Chen, 2003; Liao et al., 2004]. While
studies for single station and single method in China have
appeared [e.g., Jia et al., 2006], no study has been reported
that compares different downscaling methods in different
climatic regions of China [Fan et al., 2006]. This study is
thus the first to evaluate the performance of different
statistical-downscaling methods in eastern, southern, and
inland China. The comparison is important if the uncertainty
of statistical downscaling of precipitation concerning pre-
dictors and methodology is to be evaluated [Chen et al.,
2006].
[5] The precipitation pattern in China is strongly gov-

erned by the East Asian Monsoon, which brings moist,
warm air in summer and dry, cool air during winter, creating
a strong variation in the annual precipitation cycle [e.g.,
Ding, 1994]. The summer precipitation amount decreases
with latitude and distance from the coast, resulting in the
largest precipitation amounts in the southeast and the driest
climate in the northwest and the Tibetan Plateau. The start
date of the summer monsoon is later with increasing latitude
(Figure 1). The circulation patterns that govern precipitation
distribution work on a very large scale; therefore the
selection of predictor in terms of spatial and temporal
domain imposes a great challenge for any downscaling
study in China [Samel et al., 1999]. The interannual
variability of total rainfall in China during summer also
has a strong relationship to the Eurasian circulation [Samel
et al., 1999]. Further understanding of the link between

large-scale circulation patterns and local precipitation is thus
essential for assessing the possible effects of a global
climate change on water resources in China.
[6] The purpose of this study was therefore twofold. The

first aim was to analyze and model the seasonal relationship
between large-scale circulation and precipitation in the three
regions in China with four statistical-downscaling methods.
The second aim was to compare the ability of the four
methods to downscale extreme events and intra-annual
variation in order to find the best suited model for each of
the three catchments, depending on season.

2. Study Area and Data

2.1. Study Areas

[7] The study region consists of three catchments in
southern, eastern, and central China (Figure 1). The areas
were selected to represent three different climates; subtropical
with heavy monsoon precipitation in the south (Jouzhou),
intermediate monsoon to the east (Baixi), and inland tem-
perate climate in central China (Laoyukou). The three areas
are subcatchments to the three largest rivers in China, the
Yangtze River (Baixi), the Yellow River (Laoyukou), and
the Pearl River (Jouzhou). The precipitation in China has a
seasonal cycle, with the largest precipitation amounts falling
during the summer months because of the monsoon circu-
lation (Figure 1), but the amounts are strongly dependent on
the direction of moisture flux from the South China Sea
[Simmonds et al., 1999].

2.2. Data

[8] The predictands are daily precipitation data (1961–
2000) from four weather stations inside or within a 100-km
distance of Baixi and Laoyukou catchments each, and five
weather stations inside or within a 100-km distance of
Jouzhou catchment. The observed daily precipitation data
were provided by the National Climate Centre of China, and
the quality of the records was controlled. All station records
used in the analysis have complete series for the whole time

Figure 1. Map of mainland China with the location and annual cycle (January–December) of mean
daily precipitation for the stations used. The amounts (millimeters) are averaged over the period 1961–
2000 for all stations in each area.
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period. The precipitation amount is expressed as millimeters
per day throughout this paper, unless something else is
expressed explicitly. A summary of the station data is given
in Table 1. The predictor variables were large-scale grid-
point data of MSLP, geopotential height at 1000, 850, 700,
and 500 hPa (H1000, H850, H700, and H500), wind speed
and direction (U/V850, U/V700, U/V500), and specific
humidity (S850, S700, S500) from the National Centers
for Environmental Predicion/National Center for Atmo-
spheric Research (NCEP/NCAR) reanalysis project [Kalnay
et al., 1996] (http://dss.ucar.edu/pub/reanalysis/). All pre-
dictors were evaluated, but only a few were ultimately
selected for each method and region.

3. Methods and Model Setup

3.1. Analogue Method

[9] The analogue method models precipitation in two
steps. The first step is to analyze characteristics of the
large-scale circulation that are relevant for the predictand
precipitation to optimize the temporal and spatial domain of
the predictor. Second, the target predictand at a certain time
t is simulated by selecting an historic event F(u) based on
similarities of certain characteristics in the predictor F(t)
field using equation (1):

min k F uð Þ � F tð Þ k; ð1Þ

where the target predictand is the historic event that
minimizes the difference. The predictand can be extended
to an ensemble of events by selecting not only the one
historic event, but a number of events that give lowest
values for equation (1).
[10] There exist a number of techniques to analyze the

predictor field. In this paper, the principal component
analysis method (PCA) and Teweles-Wobus scores (TWS)
were applied. PCA analyzes anomalies of the predictor
series where the long-term mean, trend, and seasonality
have been removed. The application of PCA as an analogue
method has been outlined by Zorita and von Storch [1999].

The TWS method uses a measure of the differences in
gradients of the large-scale predictor field to select the
analogue. Obled et al. [2002] presented an application of
TWS in the analogue method for precipitation downscaling.
The methods have been applied on a catchment in central
Sweden by Wetterhall et al. [2005, 2006].

3.2. Multiobjective Fuzzy-Rule-Based Classification
Method

[11] The weather pattern method is a multiobjective
fuzzy-rule-based classification method (MOFRBC) that
has been applied to a number of areas in Europe, i.e.,
Germany [Bárdossy et al., 2001], Germany and Greece
[Stehlik and Bárdossy, 2002], mainland Europe [Stehlik
and Bárdossy, 2003], and Sweden [Wetterhall et al.,
2006]. The method identifies and classifies large-scale
circulation patterns from a gridded predictor using fuzzy
rules [Bárdossy et al., 1995]. The classification patterns
(CPs) are objectively and automatically optimized on pre-
cipitation using simulated annealing [Bárdossy et al., 2001].
The optimization derives circulation patterns that explain
precipitation patterns (dry and wet conditions), and this is
achieved by maximizing two objective functions, describing
precipitation occurrence (I1) and amount (I2) for a specific
pattern,

I1 ¼
1

T

XT
t¼1

j p CP tð Þð Þ � pð Þj ð2Þ

I2 ¼
1

T

XT
t¼1

ln
z CP tð Þð Þ

z

� �����
����; ð3Þ

where T is the number of classified days, p(CP(t)) is the
probability of precipitation on day t assuming that
the circulation pattern is known and equal to CP(t), p is
the probability of precipitation for all days, z is the mean
precipitation amount on day t with classification CP(t), and
z is the mean precipitation amount for all days.
[12] The precipitation model is dependent on the circula-

tion pattern and calendar day t*. The model will only be
briefly introduced here; for a more extensive explanation,
see Bárdossy and Plate [1992], Bárdossy et al. [2001], and
Stehlik and Bárdossy [2003]. Let A = {a1,.., an} be the set
of atmospheric patterns from where the observed atmo-
spheric pattern ~At is taking its value. The modeled precip-
itation amount Z at time t and point u is a random function

Z t; uð Þ ¼ 0 if W t; uð Þ � 0ð Þ
W b t; uð Þ if W t; uð Þ > 0ð Þ;

�
ð4Þ

where W(t,u) is a normally distributed random function,
with mean m and standard deviation s, for any location u.
The parameter b is a positive exponent that skews Wb(t,u)
to fit the precipitation distribution. This approach links the
discrete-continuous distribution Z(t,u) to a normally dis-
tributed function that makes it easier to model multivariate
processes. The distribution of precipitation at a certain
location is CP dependent. In a recent development, moisture
flux was included in the model (W. Yang et al., manuscript
in preparation, 2006), and therefore this part will be

Table 1. Precipitation Stations in the Three Catchments in Chinaa

Station ID Latitude Longitude
Meters Above
Sea Level

Precipitation,
mm

Laoyukou
57034 34�150 108�130 448 623
57036 34�180 108�560 398 574
57134 33�320 107�590 1088 942
57232 33�30 108�160 485 908

Baixi
58457 30�140 120�100 42 1376
58467 30�120 121�160 4 1257
58556 29�360 120�490 104 1286
58562 29�520 121�340 5 1373

Jouzhou
59501 22�480 115�370 17 1869
59298 23�50 114�250 22 1716
59293 23�440 114�41 41 1933
59493 22�330 114�60 18 1873
59303 23�560 115�460 121 1495

aPrecipitation values (millimeters) are given as annual averages for
1961–1990.
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described more in detail. Moisture flux is defined as
geostrophic wind multiplied by the specific humidity. The
distribution parameters m and s of the CP-dependent
Gaussian distribution W(t,u) are replaced by the parameters
mi and si, defined as

mi t; uð Þ ¼ m0 þ a*MF t; uð Þ ð5Þ

si t; uð Þ ¼ s0; ð6Þ

where MF is the daily moisture flux, a* is a coefficient from
the linear relationship between MF and precipitation, and i
denotes the classification. The expected value of precipita-
tion is therefore dependent on both CP and time of year. The
random process W(t,u) is defined as

W t; uð Þ ¼ r t*ð Þ W t � 1; uð Þ �Wi0 t*� 1; uð Þð Þ þ Ci t*; uð ÞY t; uð Þ;
ð7Þ

where r(t*) is the autocorrelation for 1-day time lag, i0 is the
CP on day t � 1, Ci(t*,u) is a matrix of spatial and space-
time covariations, and Y(t,u) is a random vector of
independent normalized random variables. The autocorrela-
tion function is independent on the circulation pattern, but
dependent on the annual cycle, which in turn is approxi-
mated by a Fourier series, usually with three parameters.
The parameter estimation of equations (5)–(6) is done by
the maximum likelihood method.

3.3. Statistical Downscaling Method

[13] The statistical downscaling model (SDSM) [Wilby et
al., 1999, 2002] is a hybrid between a multilinear regression
method and a stochastic weather generator. Large-scale
predictors are used to linearly condition local-scale weather
generator parameters. The model has been applied in many
catchments in North America [Wilby and Dettinger, 2000]
and Europe [Wilby et al., 2002; Wetterhall et al., 2006]. The
method is generally described as [Wilby et al., 2003]

wt ¼ a0 þ
Xn
j¼1

ajû
jð Þ

t ; ð8Þ

where wt is the conditional probability of precipitation
occurrence on day t, ût

(j) are the normalized predictors, and

aj are the estimated regression coefficients. Precipitation
occurs if wt � rt, where rt is a computer-generated
uniformly distributed stochastic number. The precipitation
amount given that precipitation occurs is modeled by

Zt ¼ b0 þ
Xn
j¼1

bjû
jð Þ

t þ e; ð9Þ

where Zt is the z-score for day t, bj are estimated regression
coefficients calculated for each month, e is a normally
distributed stochastic error term, and

yt ¼ F�1 f Ztð Þ½ �; ð10Þ

where f is the normal cumulative distribution function and
F is the empirical distribution function of the yt daily
precipitation amounts. It can be noted that the same
predictors are used to model precipitation occurrence and
amounts and that the predictors are normalized over the
period 1961–1990.

3.4. Evaluation

[14] The simulated rainfall was evaluated by calculating
extreme precipitation indices as stipulated by the Statistical
and Regional dynamical Downscaling of Extremes for
European regions (STARDEX) project [Frei, 2001]
(Table 2). The indices were used to assess the ability of
the methods to downscale extreme events, which are of
interest in climate impact assessments. If the models are to
be used in climate change studies, the interannual variability
has also to be reasonably well modeled; otherwise the
models lack in sensitivity to climate variability and the
usefulness in climate change studies can be questioned.
Therefore the annual rainfall, ranked probability scores
(RPS) [Epstein, 1969; Murphy, 1971; Obled et al., 2002]
of precipitation and continuous ranked probability scores
(CRPS) [Hersch, 2000] for the seasonal STARDEX indices
were also used to compare the methods.
[15] The probability scores are commonly used to eval-

uate forecasts [Jolliffe and Stephenson, 2003] and are
calculated by classifying a random variable X with K (>2)
thresholds, x1 < x2 <. . .< xk, that defines the events Ak =
{X � xk} for k = 1,2,..,K with the forecast probabilities
( p̂1, p̂2, . . ., p̂k). The binary indicator variable for the kth
event is denoted ok and defined as ok = 1 if Ak occurs and
0 otherwise,

RPS ¼ 1

N

1

K

XN
n¼1

XK
k¼1

p̂k nð Þ � okð Þ2 ð11Þ

CRPS ¼ 1

N

XN
n¼1

Z1

�1

F x nð Þð Þ � H x nð Þ � x0ð Þ2
h i

dx; ð12Þ

where x(n) is the nth forecast of the N number of forecasts
and x0 is the observed value. The CRPS is the continuous
extension of RPS where F(x) is the cumulative distribution
function (CDF) F(x) = p(X � x) and H(x � x0) is the
Heaviside function, which has the value 0 when x � x0 < 0

Table 2. Abbreviations of Indices Used to Evaluate the Resultsa

Index Abbreviation

Ranked-probability score RPS
Continuous ranked-probability score (C)RPS
Average wet day amount, mm wetday
Largest 5-day total rainfall, mm max5
Maximum length of dry spell, days maxdry
Ninetieth-percentile-of-rain-day
amounts, mm/d

90perc

Number of days exceeding long-term
90th percentile, days

90days

Percentage of days long-term
exceeding 90th percentile

90amount

aAll indices except the (C)RPS are suggested by the STARDEX [2001]
project.
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and 1 otherwise. In order to quantify the skill of the
probability score, the skill score is calculated as

SS Cð ÞRPS ¼ 1� Cð ÞRPSFP
Cð ÞRPSRP

; ð13Þ

where (C)RPSFP denotes the forecast score and (C)RPSRP is
the score of a reference forecast of the same predictand.
The (C)RPS is a verification tool that compares how the
distribution of an ensemble of forecasts predicts the
observed value, and it is sensitive to bias as well as
variability in the forecasted values. A skill score SS(C)RPS
close to unity means a successful simulation; if the skill
score is negative, the method is performing worse than the
reference forecast.
[16] For the seasonal STARDEX indices the reference

forecast was stochastically resampled precipitation for each
season generated from the observed data by selecting
analogues randomly from the historical database. The
reference forecast for RPS was a persistence forecast, i.e.,
the precipitation on day t was the observed precipitation on
day t � 1. The thresholds for RPS were the observed
precipitation percentiles at 90, 95, 98, 99, 99.5, and
100 in order to represent the extreme precipitation events
rather than the mean values. The arithmetic means of the
STARDEX indices were tabulated to identify possible
biases. Persistence forecasts are more useful in climate
studies since they preserve the statistical properties of the
predictand, but since this would yield negative values for
the STARDEX skill scores indices using the analogue
methods, this reference forecast was only possible for
RPS. Also, the correlation coefficient for seasonal total
precipitation was used as an indicator of the methods’
ability to capture interannual variations in seasonal total
amount of precipitation.

3.5. Model Setup

[17] The methods were calibrated and validated by split-
sample test, using 25 years for calibration (1961–1978,
1994–2000) and 15 years for validation (1979–1993),
deliberately selecting the same time periods as those pro-
posed by the STARDEX project. This makes the study
comparable with other studies carried out in Europe
[STARDEX, 2001; Wetterhall et al., 2006]. The analysis
was also divided into two seasons, one summer season
stretching from April to September and one winter season
from October to March. This seasonality follows the intra-
annual variability of the monsoon, with southwesterly
winds bringing moisture in summer and northeasterly drier
winds in winter. The interannual variability of the timing
and magnitude of the monsoon rain season is large, and the
analysis was carried out both on annual, seasonal, and daily
statistics of the precipitation. In order to study the relative
importance of the moisture flux, two of the methods, SDSM
and MOFRBC, were applied in two modes, one using only
MSLP and/or geopotential heights (H850 and H700) as
predictors and one adding moisture flux or specific humid-
ity as a predictor (SDSMh and MOFRBCh). The analogue
methods were only applied in the first mode. The motiva-
tion for this restriction was to limit the number of model
setups.
[18] The spatial coverage of the predictors was evaluated

by varying the spatial domain of the predictor data for all

catchments and seasons. The temporal domain was restricted
by imposing a time window on the predictor. The time
window prohibits analogues from a totally different season
to be selected as the target predictand. For example, if the
target predictand was 1 June and the time window 8 days,
the available analogues in the historical database were
limited to dates between May 24 and 9 June for all years.
The optimum setting was selected by calculating an un-
weighted objective function of the sum of the normalized
values of RPS and the STARDEX indices over the calibra-
tion period,

O j; kð Þ ¼
XT
t¼1

XN
n

js j; kð Þt;n�ot;nj; ð14Þ

where s is the simulated and o is the observed normalized
objective functions (RPS and STARDEX) for season t and
station n. The objective function was calculated for different
spatial domains j, and time windows k, ranging from 1 to
60 days. The predictor setting that minimized the objective
function was selected as the predictor. Since the analogue
methods are deterministic, the creation of an ensemble of
forecasts was achieved with a selection scheme,

F ¼ F i; jð Þ½ �i¼�7;...;þ7
j¼0 ; F i; jð Þ½ �i¼�3;...þ3

j¼�1 ;
n

F i; jð Þ½ �i¼�3;...þ3
j¼þ1 ;F 0; 0ð Þ

o
;

ð15Þ

where F denotes the ensemble of the 30 forecasts F(i,j) with
the spatial window j and temporal window i. The optimum
window is at i = j = 0, and j = ±1 denotes the l spatial, and i =
±n denotes the n time windows, closest to the optimum
window.

3.6. Using MSLP and/or Geopotential Heights as
Predictors

[19] The predictor set for the SDSM method was
screened by forward stepwise multilinear regression of all
predictors for each catchment and season in the daily
precipitation series adding predictors that improved the
model on a significance level of 0.001, and removing
predictors on the significance level 0.1. The model was
then built in the SDSM interface with the selected predictors
from the first step. The stringent significance level in the
first step was selected to restrain the number of predictors
going in to the model. The model has the ability to modify
the results in terms of bias and inflation and the optimum
settings for each station were calibrated manually using the
objective function (equation (14)) as indicator of model
performance. The objective functions used in the optimiza-
tion of MOFRBC (equations (2)–(3)) yield very wet/dry
rather than intermediate weather, since they give high values
for classifications that are either really wet or dry. The
classification with the highest I1 and I2 were selected as the
best. Precipitation and normalized ranked precipitation were
used as predictands in the optimization of the circulation
patterns.

3.7. Adding Moisture Flux or Specific Humidity as a
Predictor

[20] In the second mode, moisture flux was considered as
an additional predictor for MOFRBC and SDSM. In the
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case of SDSMh, S850, S700, and S500 as well as U/V850,
U/V700, and U/V500 were added to the predictor set using
the same methodology as above. For the MOFRBCh
method the moisture flux was used to modify the precipi-
tation model by adjusting the parameters (equation (5)). The
moisture flux was defined as specific humidity multiplied
by wind speed in u and v directions at the levels 850, 700,
and 500 hPa. The analysis was carried out seasonally for
grid points closest to each catchment in order to find
the moisture flux direction with highest correlation with
precipitation.

4. Results

4.1. Analogue Methods

[21] The five leading principal components (PCs) were
used to select analogues for the PCA method, which
explained 75–90% of the variance of the MSLP field
depending on station and extent of the predictor field. The
cutoff at five PCs was selected after plotting the eigenvalues
and keeping the PCs above the threshold for which the
explained variance did not increase substantially. The
screening of best large-scale predictor resulted in MSLP
for the analogue methods with different spatial and temporal
windows depending on catchment and season (Figure 2,
Table 3). It is seen from Figure 2 and Table 3 that (1) for all
catchments the spatial window was of similar size indepen-
dent of season and method, except for the Laoyukou
catchment, where the optimum spatial window was much
larger for PCA than for TWS, and (2) as for the time
window, significant differences existed between seasons,

methods, and catchments. The largest variation in predictor
settings was found for Laoyukou catchment, and the small-
est variation was found for Baixi catchment.

4.2. SDSM Method

[22] MSLP was chosen as predictor for SDSM according
to the results from the predictor evaluation. A screening of
the relationship between MSLP and precipitation gave
different results depending on season and catchment
(Figure 3). It is seen that (1) the Spearman ranked correla-
tion coefficient between MSLP and precipitation was much
larger during winter than during summer for all catchments;
(2) the grid points with largest negative correlation for Baixi
and Jouzhou were outside the coast, whereas the area was
stretching farther inland for Laoyukou; (3) the summer
pattern was similar to the winter patterns but the correlation
was much weaker for summer; and (4) the selected predictor
points for SDSM were more centered over the study area for
Laoyukou in summer, but this was not the case for the other
catchments. Specific humidity and wind speed were the
most selected parameters from the stepwise multiple regres-
sion for the SDSMh. The only case where MSLP was
clearly important was for Baixi in wintertime.

4.3. MOFRBC Method

[23] The optimum predictor for MOFRBC was MSLP at
all catchments, although the difference was not very large
when using H850 or H700 as predictor. The classification
also improved in terms of I1 and I2 (equations (2) and (3))
when using the weather patterns that were optimized using
ranked precipitation for the coastal catchments Baixi and
Jouzhou. The reason to use ranked precipitation is to
improve classification by removing the skewness of the
distribution of daily precipitation amounts. For these catch-
ments, separate classifications were used for summer and
winter since an optimized classification for the whole year
was not attainable. Splitting the classification in two seasons
disrupted the lagged autocorrelation of the precipitation
model (equation (7)). However, since the evaluation of the
STARDEX indices was done seasonally, this was not
considered a major problem. For Laoyukou the same
classification was used for both seasons. The I1 and I2 were
generally lower for this region than for the other two.
[24] The optimum spatial window for each region was

quite large and always centered over the precipitation
stations (Figure 4). Figure 4 also shows that (1) the wet
summer and dry winter patterns varied depending on
catchment; (2) the dry and wet patterns for the southerly
catchments (Baixi and Jouzhou) were similar for winter-
time, with wet conditions caused by a negative anomaly
pattern centered directly over the area. The wet pattern for
Laoyukou was instead a strong bipolar structure, caused by
geostrophic winds from southeast; (3) the dry patterns for
Baixi and Jouzhou were almost the mirror images of the wet

Figure 2. Optimum spatial windows for the analogue
methods for summer and winter season. The solid lines are
the principal components analysis (PCA) method, and
dotted lines are the Teweles-Wobus scores (TWS) method.
For Jouzhou the optimum areas coincide.

Table 3. Optimum Time Windows for the Analogue Methods

Method

Laoyukou Baixi Jouzhou

Winter Summer Winter Summer Winter Summer

TWS, days 10 10 25 25 20 25
PCA, days 40 20 25 20 15 30
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for the winter classification, with a strong positive anomaly
on the sea south/southwest of the catchment; (4) the dry
pattern for Laoyukou was similar to the wet pattern, but the
negative anomaly was deeper and stretched farther north;
and (5) the wet patterns for summer had similar structure for
all catchments with a bipolar anomaly field that is rotating
anticlockwise as it moves northward. At Laoyukou the
negative anomaly is located west of the catchment with a
positive ridge in the north. For Baixi, the negative anomaly
has moved north and the positive anomaly has moved south,
creating bipolar structure. Finally, at Laoyukou, a negative
anomaly is located far north and the positive anomaly is
located to the southeast. No resemblance between the dry
patterns was recognizable.

4.4. STARDEX Indices

[25] The statistical properties averaged over seasons and
catchments for the evaluation period were quite well cap-
tured for all methods and seasons (Table 4, Figure 7). The
models generally performed worse during summer than
winter with some differences between indices. For example,

max5 was better downscaled for the summer season. The
best performance for all methods were for the southerly
catchments during winter, with the exception for max5, and
the overall performances of the more complicated methods
were better than the analogue methods. MOFRBCh was the
best method during winter season, and SDSMh was best for
Jouzhou and MOFRBC for Baixi during the summer
season. MOFRBC also captured maxdry best for winter.

4.5. Timing and Amount of Precipitation

[26] The occurrence and amount of daily precipitation
were best captured by SDSM and SDSMh, but also
MOFRBC outperformed the analogue methods for all
seasons and catchments (Table 5). The modeling of the
seasonal cycle was improved in the MOFRBCh and espe-
cially for the SDSMh compared with MOFRBC and SDSM
(Figure 5). MOFRBCh modeled the start of the summer
monsoon too early and underestimated the cyclonic precip-
itation of the late summer. Both SDSM models and TWS
captured the interannual variability (both RPS and correla-
tion) quite well for Laoyukou (Table 5). SDSM captured the

Figure 3. Isolines of ranked correlation between mean sea level pressure (MSLP) and precipitation for
three catchments. Dashed lines denote negative, solid lines denote positive, and the bold line denotes zero
correlation, whereas crosses denote the grid points used in the statistical downscaling model (SDSM).
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interannual variability well also for Baixi and Jouzhou,
although the correlation coefficient for summer decreased
farther to the south. The opposite was apparent for the
MOFRBC models, which totally missed the interannual
variability for Laoyukou (although a reasonable correlation
coefficient of 0.48 was obtained for MOFRBCh in sum-
mer), but managed quite well in the southerly catchments
(highest correlation coefficients were found for MOFRBCh
for both seasons).
[27] The spatial correlation of daily precipitation did not

decrease so drastically with distance (Figure 6). The
MOFRBCh preserved the correlation structure better than
SDSMh, but SDSM models have the apparent disadvantage
in spatial correlation since each station was modeled sepa-
rately with a large stochastic component added to each time
series (equation (9)). The spatial correlation was higher for
winter than for summer. The most southerly catchment
(Jouzhou) had the lowest correlation for both winter and
summer. Since no additional data about the locality of the
precipitation stations were available, no conclusion could be
drawn about this behavior.

5. Discussion

5.1. Predictor Selection

[28] In order to compare the methods as objectively as
possible the predictor setting was restricted to only MSLP in

the first mode of the MOFRBC and SDSM. In the case of
MOFRBC, also H850 and H700 were evaluated as predic-
tors, but the optimum classification was achieved with
MSLP as predictor. This could be because MSLP incorpo-
rates near-surface variations to a higher extent than geo-
potential heights. MOFRBCh included moisture fluxes at
850, 700, and 500 hPa levels, so in order to make SDSMh
as comparable as possible in terms of the available predictor
set, specific humidity, geostrophical winds, and geopotential
height at the same levels were added to represent the
moisture flux in this mode. The predictor set could thus
be increased for SDSM, but the focus here was to make the
two methods comparable. The consequence of the different
spatial windows for the analogue methods in the Laoyukou
catchment was that PCA incorporates MSLP variations in
the China Sea, whereas TWS only captures gradients just
above the study area. The predictor optimization for this
area was the most difficult to evaluate, and this may indicate
that the methods did not capture processes that are impor-
tant for precipitation sufficiently. A thorough study of the
local processes governing precipitation might give better
results.
[29] There were large similarities in the classification

patterns for MOFRBC and SDSM predictor variables for
winter. The extreme circulation patterns for MOFRBC at
Baixi and Jouzhou had their centers outside the coast of the
catchment area although with opposite anomaly signs

Figure 4. Composite maps of normalized MSLP anomalies for the driest and wettest circulation
patterns classified with the multiobjective fuzzy-rule-based classification method (MOFRBC/
MOFRBCh). The boxes indicate the optimum spatial window for each region.
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(Figure 4). Very similar patterns were shown in the corre-
lation pattern and in the selected predictor points for SDSM.
For Laouyukou the similarity was not as striking, but the
fields were similar. This indicates that the methods identify
the same predictor area as being important for winter
precipitation. For summer the patterns differed more, which
indicated that the summer precipitation is governed by a
more complex large-scale circulation and/or more local
factors.

5.2. STARDEX Indices

[30] The SS(C)RPS revealed that the indices were not
overall successfully modeled for Laoyukou, and often
worse than the reference simulation except for maxdry in
winter (Figure 7). This was not evident in the STARDEX
indices (Table 4), and the reason for this was that SS(C)RPS
evaluates the timing and distribution of extreme events
rather than the seasonally averaged values. For the two
southerly catchments all methods performed much better,

and here the two complicated methods outperformed the
analogue methods for all seasons. The skill scores for winter
precipitation were generally higher than for summer pre-
cipitation for Jouzhou and Baixi catchments (Figure 7), and
an explanation for this might be that the processes govern-
ing winter precipitation for these catchments are more
regional (low pressure in the China Sea) compared with
the wet summer monsoon circulation.
[31] Since objective functions were summarized for all

indices, or for wet and dry patterns with MOFRBC, the
optimum setting was not optimal for all indices. The poor
results for Laoyukou concerning SS(C)RPS indicated that the
four statistical-downscaling methods we tested did not work
well for the STARDEX indices with the selected predictor
settings for this region. SDSMh performed fairly well,
indicating that local processes are much more important
for precipitation properties than the large-scale circulation.
This points to the difficulty in optimizing the weather
patterns for both dry and wet conditions. The relatively

Table 4. STARDEX Indices for the Three Catchments; Average Over All Stations for the Validation Period

Obs PCA TWS MOFRBC MOFRBCh SDSM SDSMh

Laoyukou
Winter (Oct–Mar)
wetday, mm 3.4 4.1 3.3 4.6 4.1 4.0 4.0
max5, mm 41 44 41 51 49 56 54
maxdry, days 31 24 27 28 26 21 22
90perc, mm/d 10.0 11.5 8.9 12.3 10.8 11.0 11.3
90days, days 16 18 17 19 21 19 21
90amount 0.86 0.90 0.87 0.91 0.90 0.89 0.89

Summer (Apr–Sep)
wetday, mm 8.45 8.40 8.43 9.59 7.68 8.86 8.55
max5, mm 104 100 110 106 93 115 107
maxdry, days 11 11 11 15 13 10 11
90perc, mm/d 24 23 23 25 20 24 23
90days, days 21 20 21 20 20 24 22
90amount 0.78 0.78 0.77 0.78 0.71 0.78 0.77

Baixi
Winter (Oct–Mar)
wetday, mm 6.3 5.7 5.9 6.7 6.6 5.7 5.4
max5, mm 80 70 70 82 85 80 75
maxdry, days 21 12 15 19 18 12 13
90perc, mm/d 17 15 16 17 17 15 15
90days, days 8.1 7.9 7.5 7.3 8.5 7.8 7.6
90amount 0.44 0.44 0.43 0.42 0.42 0.46 0.43

Summer (Apr–Sep)
wetday, mm 10.9 10.6 10.9 11.7 10.1 11.7 11.5
max5, mm 141 140 158 146 137 174 181
maxdry, days 13 8.3 9.8 14.0 12.3 11.1 10.5
90perc, mm/d 30 29 29 30 26 30 29
90days, days 10 9.9 10 8.6 7.8 10 11
90amount 0.47 0.47 0.50 0.44 0.34 0.52 0.49

Jouzhou
Winter (Oct–Mar)
wetday, mm 7.36 7.28 5.51 8.59 7.38 6.01 5.72
max5, mm 108 101 74 84 95 82 85
maxdry, days 34 20 28 32 22 20 18
90perc, mm/d 21 20 16 23 19 17 16
90days, days 6.9 5.9 3.8 5.1 7.2 4.9 5.7
90amount 0.58 0.61 0.45 0.53 0.46 0.53 0.50

Summer (Apr–Sep)
wetday, mm 15.4 14.8 14.7 17.1 15.46 15.9 15.7
max5, mm 260 227 234 219 222 259 272
maxdry, days 11 8.5 8.3 16 13 10 8.8
90perc, mm/d 42 41 42 44 39 43 43
90days, days 9.8 8.8 9.7 7.9 7.9 9.1 11.4
90amount 0.49 0.46 0.47 0.40 0.35 0.50 0.50
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poor performance for max5 during winter season (Figure 7)
for the southerly catchments indicated that the methods
were not so sensitive to heavy precipitation occurrences
during this season. The same was seen in maxdry for
summer, especially at Jouzhou. An explanation could be
that heavy precipitation during the dry winter monsoon and
long dry spells during the wet summer monsoon are rather
rare events.
[32] The overall performance of SDSMh and MOFRBCh

were slightly improved (Figure 7) compared with SDSM
and MOFRBC, except for MOFRBCh at Baixi for the
summer season. The poor performance of 90amount for
MOFRBCh in summer season for Jouzhou (Figure 7) was
also reflected in the STARDEX indices (Table 4). The
inclusion of humidity increased the number of days with
intermediate precipitation. Other indices, such as wetday
and maxdry, were better captured with humidity flux
included in the predictor set than with MSLP only.

5.3. Timing and Amount of Precipitation

[33] The SSRPS indicated that daily precipitation for Baixi
catchment was generally best downscaled and that the
SDSMh was most successful for all areas and seasons,

although MOFRBCh also outperformed the analogue meth-
ods. The results indicated that RPS can be a useful indicator
for measuring precipitation extreme events if the thresholds
are selected to analyze large precipitation amounts.
[34] The introduction of specific humidity enhanced the

intra-annual variation for SDSM and MOFRBC (Figure 5).
The inclusion of moisture flux shifted the precipitation
toward intermediate precipitation amounts, which was also
seen in the STARDEX indices. The method, however, was
optimized to downscale extreme events, so the annual cycle
could be improved with a different optimization. It could
also be other local phenomena, such as late summer cyclo-
nes, that deliver much of the precipitation during this
period. For Jouzhou the MOFRBCh increased the monthly
totals at the same time as wetday and 90perc decreased
compared with MOFRBC, indicating a shift in the precip-
itation distribution toward more wet days with less precip-
itation when moisture flux was included. This indicated that
the moisture flux corrected the bias in the wet summer
indices, and did so for all catchments.
[35] RPS were consistently lower for the analogue meth-

ods (Table 5), which indicated that MOFRBCh and SDSMh
were more responsive to the daily variations in the predic-

Figure 5. Observed and simulated monthly precipitation averaged over the validation period.

10 of 13

W11423 WETTERHALL ET AL.: DAILY PRECIPITATION-DOWNSCALING TECHNIQUE W11423



tors. Even though this study focused on daily precipitation,
it is important for the methods to be able to cope with the
interannual variability sufficiently if they are expected to
render reasonable results for years with different climate.
Taking humidity into account in the methods clearly
increased the seasonal correlation for all catchments during
summer and for most catchments during winter season
(Table 5). The seasonal correlation for MOFRBCh increased
with decreasing latitude, and this together with the fact that
wetday and max5 were best downscaled for Baixi and
Jouzhou indicated that the summer monsoon precipitation
was best captured with this method.
[36] The spatial correlation of precipitation series within

each catchment showed quite weak decline with distance
(Figure 6). The MOFRBC includes spatial correlation in
the precipitation model (equation (7)), a feature that is
missing in the SDSM since it models each station sepa-
rately, and the correlation was on par with the analogue
methods. The spatial correlation between stations was
preserved with the analogue methods, which also was
expected since the spatial dependence between stations is
kept intact with this method. The ability to correctly model
the spatial correlation of precipitation is important for
hydrological reasons, since flooding often is caused by
heavy precipitation over large areas. In this sense the
MOFRBC clearly has an advantage over the single-site
version of SDSM. However, a more stringent comparison
would be to compare MOFRBC with a multisite configu-
ration of SDSM as was done by Wilby et al. [2003].
[37] The geographical difference between areas in terms

of spatial correlation, especially in summer, is difficult to
interpret. It does not seem to have any relationship to
latitude or closeness to the sea. It might be local effects
influencing the stations during winter. The correlation is
higher during summer because of more rain during the

monsoon period, and thus more days with rain at all stations
at the same time.

6. Conclusions

[38] In this study, four statistical downscaling methods
were evaluated and their skills in downscaling daily precip-
itation amount and other characteristics were compared on

Table 5. Ranked-Probability Scores for Daily Precipitation and Seasonal Correlation of Total Precipitation of

Downscaled Precipitation During the Validation Period 1979–1993 Over All Precipitation Stations in Each

Catchmenta

PCA TWS MOFRBC MOFRBCh SDSM SDSMh

Laoyukou
Winter (Oct–Mar)
SSRPS 8 31 35 35 44 43
rFP �0.22 0.57 0.02 0.05 0.45 0.65

Summer (Apr–Sep)
SSRPS 24 33 41 42 49 50
rFP �0.04 0.72 �0.16 �0.10 0.67 0.73

Baixi
Winter (Oct–Mar)
SSRPS 14 25 43 49 54 52
rFP 0.25 0.40 0.12 0.72 0.71 0.75

Summer (Apr–Sep)
SSRPS 22 19 45 48 48 48
rFP 0.25 0.40 0.12 0.72 0.71 0.75

Jouzhou
Winter (Oct–Mar)
SSRPS 7 22 32 37 41 42
rFP 0.07 0.51 0.62 0.81 0.89 0.81

Summer (Apr–Sep)
SSRPS 18 22 40 43 46 47
rFP 0.49 0.50 0.67 0.82 0.46 0.57

aProbability scores are multiplied by 100.

Figure 6. Spatial correlation of daily precipitation between
pairs of stations plotted against distance between the stations.
The solid lines represent a fitted exponential decay of the
observed values.
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three catchments in China, representing three climatic
regions. It is concluded from the study that (1) for the
subtropical monsoon region in southern China (Jouzhou)
the SDSMh and SDSM methods performed best in summer
season, and MOFRBCh method performed better in winter;
(2) for the intermediate monsoon region in eastern region
(Baixi) the MOFRBCh and MOFRBC performed best in
summer season and the MOFRBCh method performed best
in winter; and (3) for inland China the SDSMh method
performed best for summer season and SDSM performed
best for winter season. The analogue methods generally
performed worse than the more sophisticated methods. The
overall recommendation for any downscaling study, how-
ever, is to use an ensemble of methods, and this study
supports this idea since no method was outstanding.
[39] The relationship between large-scale circulation and

precipitation was strongest in the two southerly catchments,
which also were more influenced by the monsoon than the
central catchment. Winter precipitation was generally better
captured than summer precipitation for the coastal stations.
This study did not incorporate any known local processes,
and more knowledge about these might improve the results
for the Laoyukou catchment. The seasonal cycle was well
captured for all methods. Including humidity improved the

overall results for most indices, especially for the interan-
nual correlation of seasonal precipitation totals and the
precipitation distribution. Humidity is therefore suggested
as a key variable to use together with circulation variables
for downscaling of precipitation in this part of China.
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60176 Norrköping, Sweden. (fredrik.wetterhall@smhi.se)

C.-Y. Xu, Department of Geosciences, University of Oslo, P.O. Box
1047 Blindern, N-0316 Oslo, Norway. (chongyu.xu@geo.uio.no)

W11423 WETTERHALL ET AL.: DAILY PRECIPITATION-DOWNSCALING TECHNIQUE

13 of 13

W11423


