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ABSTRACT

Large-scale atmospheric variables have been statistically downscaled to derive winter (December–
March) maximum daily precipitation at stations over North America using the generalized extreme value
distribution (GEV). Here, the leading principal components of the sea level pressure field and local specific
humidity are covariates of the distribution parameters. The GEV parameters are estimated using data from
1949 to 1999 and the r-largest method. This statistical downscaling procedure is found to yield skill over the
southern and northern West Coast, central United States, and areas of western and eastern Canada when
tested with independent data.

The projected changes in covariates or predictors are obtained from transient climate change simulations
conducted with the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled General
Circulation Model, version 3.1 (CGCM3.1) forced by the Intergovernmental Panel on Climate Change
(IPCC) A2 forcing scenario. They are then used to derive the GEV distribution parameters for the period
2050–99. The projected frequency of the current 20-yr return maximum daily precipitation for that period
suggests that extreme precipitation risk will increase heavily over the south and central United States but
decrease over the Canadian prairies. The difference between the statistical downscaling results and those
estimated using GCM simulation is also discussed.

1. Introduction

Changes in extreme precipitation due to the increase
in greenhouse gases in the atmosphere have received
increasing attention. This is because extreme precipita-
tion can be more variable than total precipitation
(Groisman et al. 1999; Katz 1999), and it is extreme
precipitation that has greater potential to result in natu-
ral disasters (Meehl et al. 2000). In addition, general
circulation model (GCM) simulations suggest that ex-
treme precipitation will change at a much greater rate
than the total precipitation in the future (Zwiers and
Kharin 1998; Kharin and Zwiers 2000; Kharin et al.
2007). Plausible scenarios are required to assess ex-
treme precipitation change impacts. Scenarios at local
scale and resolution finer than GCM resolution may be
produced with regional climate models. For example,
Bell et al. (2004) used regional climate model simula-

tions to construct extreme climate scenarios for Cali-
fornia. This dynamical downscaling approach provides
output at a resolution much higher than a GCM can
produce, but at a very high computational cost. An al-
ternative approach is to make use of statistical tools,
typically regression methods, by establishing a statisti-
cal relationship between local-scale variables and
GCM-simulated large-scale fields. Such a statistical
downscaling approach has an advantage of being easy
and inexpensive to use and easy to understand. It has
been used in many studies to construct regional climate
scenarios over North America (e.g., Wigley et al. 1990;
Crane and Hewitson 1998; Easterling 1999). Because of
the importance of extreme precipitation, some studies
have also attempted to derive scenarios for extreme
precipitation from large-scale fields. Cavazos (1999)
used an artificial neural network (ANN) technique to
downscale daily rainfall in the winter season for north-
eastern Mexico and southeastern Texas from a circula-
tion–humidity field. He found that his method was suc-
cessful in differentiating the driest from wettest winters,
but wet winters’ extreme precipitation amount was not
well reproduced. Harpham and Wilby (2005) compared
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three statistical models for downscaling occurrences
and amounts of heavy daily precipitation at multiple
sites. They found that the aggregation of dry and wet
days was well reproduced, but the skill for reproducing
annual quantiles and exceedance thresholds was poor.
Schmidli et al. (2007) compared daily precipitation sta-
tistics obtained by using six statistical and three dy-
namical downscaling models for the European Alps.
They found that the performance for reproducing the
present climate conditions varied substantially for dif-
ferent regions and/or seasons. They also found that the
skill of downscaling precipitation-intensity-related indi-
ces is generally lower than that of precipitation occur-
rence. These studies have focused on moderate ex-
tremes at their best. None of them have attempted to
downscale maximum daily precipitation amount, which
is very relevant to many impact studies, directly from
the large-scale field. This is the main focus of the cur-
rent paper.

A typical statistical downscaling method uses some
sort of regression method that assumes that the down-
scaled variables have normal probability distributions.
It is, in general, not suitable for downscaling extreme
precipitation since extreme precipitation follows a form
of generalized extreme value distribution (GEV). To
address this issue, Katz et al. (2002) proposed a method
that uses the GEV distribution whose parameters are
functions of predictors (e.g., sea level pressure, ENSO
index, etc.). This idea has been further extended to the
development of methods for producing future scenarios
of extreme wave height for the North Atlantic Ocean
(Wang et al. 2004) and for computing trends in extreme
values (Zhang et al. 2004). Wang et al. (2004) found
that the use of seasonal mean sea level pressure (SLP)
anomaly and squared SLP gradient index as covariates
can significantly improve the goodness-of-fit of signifi-
cant wave heights over the North Atlantic Ocean,
meaning that these variables have significant influence
on the wave weights. As a result, they used the empiri-
cal relationship between large-scale predictors and lo-
cal wave heights and model-projected future scenarios
of the predictors to produce future projections of ex-
treme wave height. Zhang et al. (2004) found that the

power of detecting a significant trend in extreme values
is improved if the underlining probability distribution
of extreme values is considered. They also suggested
the use of the r-largest method, that is, using the r-
largest values rather than the single largest value in a
season or a year, which potentially makes more effi-
cient use of data for model fitting to improve the power.

This study presents a method for construction of an
extreme precipitation scenario over North America us-
ing a statistical downscaling approach. We improve the
approach in Wang et al. (2004) by using the r-largest
method to establish a statistical relationship between
large-scale predictors and winter season maximum
daily precipitation at a station. Independent data have
been used to validate the downscaling procedure. We
then use projected changes in predictors extracted from
GCM simulations to derive parameters of GEV distri-
butions corresponding to the last 50 yr of the twenty-
first century, and subsequently to estimate the changes
in the risk of extreme precipitation. The remainder of
this paper is organized as follows: the methods and data
are described in sections 2 and 3, respectively; results
are presented in section 4; and a summary and discus-
sion are given in section 5.

2. Methods

A statistical downscaling approach requires two basic
ingredients: 1) a proper regression model that estab-
lishes the connection between predictors and the pre-
dictand statistically, and 2) predictor variables that
have a strong influence on the predictand. When con-
structing scenarios for the future, it is also assumed that
the observed statistical relationship is still valid for the
future and the predictors are well simulated by the
GCM. In the following, our statistical methods are
briefly outlined.

a. Modeling the extreme value distribution

Extreme daily precipitation may be modeled with a
GEV distribution whose cumulative distribution func-
tion has the following form:

F �y� � � exp{��1 � ��y � ������1��}, 1 � ��y � ���� � 0, � � 0,

exp{�exp���y � �����}, � � 0,
�1�

where �, 	(
0), and � are the location, scale, and shape
parameters, respectively. Predictor variables may be in-
corporated into the GEV distribution (e.g., Smith 1989;
Coles 2001; Katz et al. 2002) by expressing the location

and scale parameters as functions of the predictors. The
shape parameter is usually taken as a constant. Because
the scale parameter needs to be positive, a log trans-
ferred scale parameter is used:
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, �2�

where x1, x2, · · · xJ are J predictor variables. In the
following, we call the model without a predictor (the
caes when J � 0) M0. In this case, the covariates have
no influence on the parameters of the distribution, and

the modeling becomes the classical GEV modeling.
The coefficients aj, bj, ( j � 1, 2, · · · , J) represent the
effect of predictors on the GEV distribution. They can
be estimated using the maximum likelihood (ML)
method, along with �0, 	0, and �0.

Instead of using one largest value for each winter, we
use the r(r 
 1) top values. This approach makes better
use of information in the daily data and reduces the
uncertainty in parameter estimation. The method is
called the r-largest method (Coles 2001) in the statisti-
cal literature. When r largest values are used, the like-
lihood function becomes

L��, �, �� � �
i�1

m �exp���1 � ��yi
�r� � �

�
����1����  �

k�1

r

��1�1 � ��yi
�k� � �

�
����1����1	 , �3�

where y(k)
i (i � 1, 2, · · · , m; k � 1, 2, · · · , r) is the kth

largest precipitation amount in the winter i, and m is the
number of winters. The choice of r is a compromise
between uncertainty and bias (see Zhang et al. 2004 for
details): a larger r uses more information and hence
helps to reduce uncertainty in parameter estimation;
but on the other hand, a larger r also increases biases

in the estimation due to the use of smaller extreme
values. The likelihood ratio test (described below) in-
dicates that wintertime maximum daily precipitation
amount over North America can generally be modeled
with a Gumbel distribution, a special case of GEV
where � � 0. In this case, the likelihood function of (3)
becomes

L��, �� � �
i�1

m �exp��exp���yi
�r� � �

�
���  �

k�1

r

��1 exp���yi
�k� � �

�
��	 . �4�

In this function, � and 	 are taken in the form pre-
sented in (2). So, the likelihood function depends on
the regression coefficients �0, 	0, aj, and bj (j � 1, 2, · · · ,
J). They are estimated using an iterative procedure pro-
posed by O’Neill (1971) that finds the minimum of
�log(L).

b. Likelihood ratio test

Let M1 be a model with one or more covariates. And
also let l1 and l0 be the log likelihoods under the models
M1 and M0, respectively. When the influence of the
covariates in the model is not significant, the log like-
lihood ratio statistic

T � 2�l1 � l0� �5�

is asymptotically �2
q distributed (Cox and Hinkley

1974), with q being the difference in the number of free
parameters in the two models. We reject hypothesis M0

(the influences of the covariates are not statistically sig-
nificant) at significance level � if T is bigger than the
upper-� point of the �2

q distribution. This likelihood

ratio test is used to assess the statistical significance of
the influence of covariates.

3. Data

a. Observation

Three types of observational data have been used in
this study. They include station daily precipitation
amount, gridded sea level pressure field, and humidity
field for the period 1949–99. We use daily precipitation
amount for North America, extracted form the Global
Daily Climatology Network (Gleason 2002) compiled
at the NOAA/National Climatic Data Center. We in-
clude only the stations that have at least 30 yr of com-
plete observations during 1949–99. As a result, 4128
stations covering Canada, the United States, and
Mexico are retained for this analysis. The winter sea-
son, covering the period December to March, has been
selected because the influence of large-scale circulation
on precipitation is strongest in the region during this
season. The r in r-largest method is taken as 3; that is,
we use the three largest daily precipitation amounts per
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FIG. 1. The first three REOFs of observed winter sea level pressure anomalies for 1950–99.
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winter as extreme daily precipitation (see Zhang et al.
2004 for details). These values are declustered so that
none of the extreme daily amounts occurs within 10
days of the occurrence of another extreme precipitation
(Todorovic and Zelenhasic 1970).

Gridded sea level pressure is used to represent large-
scale flow patterns that influence precipitation. Though
geopotential heights at 700 or 500 hPa have been fre-
quently used to represent large-scale flow for precipi-
tation prediction, they are not always good choices for
the construction of scenarios since global warming will
ultimately increase tropospheric temperatures and
hence will result in higher geopotential heights (Zorita
and von Storch 1999). The monthly values of the SLP
field covering the eastern North Pacific and North
America (15°–75°N, 180°–45°W) are extracted from the
National Centers for Environmental Prediction–
National Center for Atmospheric Research (NCEP–
NCAR) reanalysis dataset (Kalnay et al. 1996). Winter
mean SLP is computed as the average of monthly SLP
through the four winter months (December to March).
Wilby and Wigley (2000) showed that the maximum
correlation between observed precipitation and SLP
occurred at a distance away from the place of precipi-
tation. This reflects the remote connection between
SLP and station precipitation, suggesting that the large-
scale flow pattern is far more important than the actual
local SLP value. To preserve the large-scale flow pat-
tern and also to keep the number of predictor variables
manageable, a principal component analysis is con-
ducted on the winter season SLP anomalies and only
the leading principal components (PCs) are used as pre-
dictors. We retain the first three PCs. Each of those PCs
contributes at least 10% of SLP variance. Together,
they explain 73% of SLP variability. Varimax rotation
is further applied on the first three leading modes. The
spatial distributions of the three rotated EOFs (REOFs)
are shown in Fig. 1. The first REOF is dominated by
a deeper than usual lower pressure system over the
North Pacific and a weak ridge over the northern part
of the continent; the second REOF shows a subtropical
high off the west coast and a dipole structure over the
Atlantic; the third REOF displays a dipole structure
too, but over the North Pacific.

The humidity-based predictor is represented by spe-
cific humidity at the 850-hPa level, which is also ob-
tained from the NCEP reanalysis dataset. Because it is
the amount of local precipitable water that plays an
important role on precipitation (Wilby and Wigley
2000) at a station, the specific humidity at the station
location obtained by interpolating from surrounding
grids is used as the humidity predictor. The grids where
humidity is employed are displayed in Fig. 2.

b. GCM-simulated data

Historical and future scenario simulations of sea level
pressure, humidity, and precipitation conducted with
the third version of the Canadian Centre for Climate
Modelling and Analysis (CCCma) Coupled Global Cli-
mate Model, version 3.1 (CGCM3.1) have also been
used. Flato and Boer (2001) and Scinocca and McFar-
lane (2004) provide some details about the model.
CGCM3.1 was run at two different resolutions (T47
and T63). The T47 runs have been used here since they
have more than one member in the ensemble of tran-
sient climate change experiment. This T47 version has a
surface grid whose spatial resolution is roughly 3.75°
latitude by longitude and 31 levels in the vertical. The
ocean grid shares the same land mask as the atmo-
sphere, but there are four ocean grid cells underlying
every atmospheric grid cell. Because the NCEP re-
analysis and CGCM3.1 have different resolutions, we
interpolate the NCEP and CGCM3.1 original grid val-
ues to a common 5°  5° grid before they are used in
the analysis.

The CGCM3.1 historical climate simulation is forced
with observed greenhouse gases (GHG) concentrations
and with direct aerosol forcing. The future climate

FIG. 2. Location of precipitation stations (small dots) and grid
points (big dots) at which specific humidity values at the 850-hPa
level are employed.
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simulation is forced under the Intergovernmental Panel
on Climate Change (IPCC) Special Report on Emis-
sions Scenarios (SRES) A2 (Nakicenovic and Swart
2000), in which which is a “high” level emission in
SRES range. We use the time slices of the model simu-
lation, the periods 1950–99 and 2050–99, to represent
current climate and future climate under doubling
greenhouse gases concentration.

There are five members of the historical ensemble
simulation. We compute the 1950–99 SLP anomalies
separately for each member of the ensemble by remov-
ing their relevant mean values. These SLP anomalies
are also subject to the REOF analysis. The model-
simulated REOFs are shown in Fig. 3. They are in close
resemblance to their counterparts from the observed
sea level pressure field over the region. The simulated
REOF1 is very similar to the observed REOF1 (Fig. 1,
top) except that there is an additional negative anomaly
centered over the Atlantic. The observed REOF2 (Fig.
1, middle) is very similar to the REOF3 from simula-
tion, and the observed REOF3 (Fig. 1, lower) is very
close to simulated REOF2. Overall, the GCM was able
to capture the main features of the observed large-scale
circulation over the region.

Atmospheric moisture is perhaps one of the variables
that is less well simulated by GCMs. Figure 4 displays
climatology of the observed and simulated historical
specific humidity at 850 hPa. They show essentially the
same spatial pattern, but the simulated humidity field is
dryer over midlatitude land areas. Figure 5 shows the
future changes in the specific humidity, which increases
everywhere over the continent. This agrees well with
the physical understanding that higher temperature can
hold more water vapor in the atmosphere (Trenberth
1999). This means that even if the GCM does not simu-
late humidity variability well enough and climatology of
humidity accurate enough, the future changes projected
by the GCM is still physically plausible and is perhaps
still creditable information for the purpose of downscal-
ing of extreme precipitation.

The GCM-simulated changes in mean sea level pres-
sures for 1950–99 to 2050–99 are shown in Fig. 6, which
indicates that the low pressure over North Pacific will
be deeper and the anticyclone circulation off the west
coast will be stronger. The deeper low pressure over the
North Pacific is favorable to the transport of moister air
to the west coast, but its effect is modulated by the
intensified offshore high pressure. As the result, the
circulation change would favor carrying more moisture
to the north and to the west, when compared with the
southwest United States and northern Mexico (Fig. 5).

Model-simulated extreme daily precipitation may
also be used to directly derive changes in the risks of

extreme precipitation. It should be noted however that
extreme precipitation at model grid resolution may or
may not be comparable with that obtained through the
statistical downscaling approach, since the model grid
has a size that is far larger than an area the station
observation can represent. Daily CGCM3.1 precipita-
tion data are available for the periods 1961–2000, 2046–
65, and 2081–2100. They are used to represent the cur-
rent and future climates, respectively. Three members
of ensemble simulations are available. Data from those
simulations are concatenated to increase sample size
for extreme value analysis. We fit one GEV distribu-
tion for the current climate and one GEV distribution
for the future scenario extreme precipitation. We then
compute the return period of the current climate 20-yr
return values under future climate conditions and drive
the changes in the risks of extreme precipitation due to
doubling greenhouse gases concentration.

4. Results

a. Influence of predictors on extreme precipitation

The influence of predictors on the location and scale
parameters of extreme daily precipitation is summa-
rized in Fig. 7. Figure 7a indicates that a southward
shifted and intensified Aleutian low is associated with
an increase in location parameter over the southern and
central United States and eastern coast but a decrease
in location parameter over continental Alaska, the
northern plains, and the Ohio River valley (ORV). This
finding is in general agreement with earlier studies. Ly-
ons (1990) identified a connection between a northward
shift of the high pressure ridge and wet winter months
in Texas. Cavazos (1999) discussed the influence of the
Aleutian low on winter precipitation in northeastern
Mexico and southeastern Texas. Cayan et al. (1998)
found that the anomalously low pressure south of the
Aleutians contributes to the wet conditions in the
southwest United States. Coleman and Rogers (2003)
identified a positive correlation between North Pacific
index (NPI) of sea level pressure and ORV winter pre-
cipitation. The ridge riding over the northwestern part
of the continent may result in reduced precipitation
over western Canada. More than 15% of stations show
significant influence of the associated PC on the loca-
tion parameter at the 5% level. Figure 7b suggests that
the REOF2 of the SLP anomaly—which is dominated
by a large positive anomaly centered west to the coast
of midlatitude North America, a positive anomaly cen-
tered over the Sargasso Sea in the southeast, and a
negative anomaly in the high latitude—has significant
influence on the location parameters mostly in the
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FIG. 3. The first three REOFs of model-simulated winter sea level pressure anomalies for
1950–99.
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western part of the continent, with lower values over
the western United States, and higher values over Pa-
cific Canada, southern Alaska, and the Great Lakes
area. This is because the anticyclone circulation off the
west coast brings moisture from ocean surface to the
northern part of the west coast, while it plays an oppo-
site role along southern west coast. Cayan and Peterson
(1989) studied the correlation between the circulation
pattern very similar to that of REOF2 and winter
streamflow. They found that the high pressure centered
off the coast reduces streamflow along the west coast
corridor. They also found that negative streamflow
anomalies in the interior are associated with a negative
SLP anomaly stationed remotely over the central North
Pacific. Because changes in precipitation are in good
agreement with changes in the streamflow over this re-
gion (Cayan et al. 1998), this pattern of circulation

would result in precipitation changes in a similar man-
ner. The response of precipitation in the Great Lakes
area to such a circulation pattern is consistent with the
study of Rodionov (1994). Location parameters at
about 13.8% of all stations are significantly influenced
by changes associated with this pattern. The REOF3
has no significant impact on location parameter. None
of the REOFs analyzed showed significant influence on
the scale parameter.

Figures 7c and 7d display the connection between the
specific humidity at the 850-hPa and the location and
scale parameters, respectively, of the extreme precipi-
tation distribution. The influence of humidity is signifi-
cant at the 5% level at 33.6% of stations for the location
parameter and at 11% of stations for the scale param-
eter. In general, higher humidity levels are associated
with higher values of both location and scale param-

FIG. 4. 1950–99 mean specific humidity (g kg�1) at the 850-hPa level from (top) NCEP
reanalysis and (bottom) CGCM3.1 simulation.
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eters, indicating that higher humidity is responsible for
severe extreme precipitation. However, higher humid-
ity may be associated with smaller location parameters,
though not very significant statistically, over the north-
ern plains and Canadian prairies. This may indicate that
higher humidity levels in that region are associated with
large-scale circulation that is unfavorable for precipita-
tion in the region and that the influence of circulation
overwhelms that of humidity.

The above analysis suggests that the first two leading
rotated PCs of SLP and the specific humidity at the
850-hPa level should be incorporated into model fitting

as covariates, with rotated PCs as covariates for the
location parameter only, and humidity as a covariate
for both location and scale parameters. In the following
section, we show the performance of this model.

b. Statistical model validation

It is important to evaluate the skill of a statistical
downscaling procedure before applying it to construct
future scenarios. As the main objective of statistical
downscaling is to construct scenarios for the future, and
also as future climate could be quite different from the
current climate, a statistical downscaling procedure
needs to show skills when validated under a climate
that is different from the climate under which the
model is calibrated. The well-known shift in the large-
scale circulation over the Northern Hemisphere, and
the northern Pacific in particular, around 1976 (Tren-
berth 1990) provides a good testing bed for our proce-
dure. To assess the skill of the downscaling procedure,
we divide the observational data into two periods,
1949–76 and 1977–99. When compared with 1949–76,
the mean sea level pressures over ocean are much lower
for 1977–99, while they are higher over land. The dif-
ference could also be seen in the mean humidity values:
they are higher in the west, but lower in the east (Fig. 8).

Stations in Mexico and Alaska with at least 45 yr of
data, and stations in the rest of the region without miss-
ing values, are selected for the purpose of validating
our downscaling procedure. This results in a total of
1064 stations being selected. Extreme precipitation
data are also divided into two periods, 1949–76 and
1977–99. Figure 9 shows the risk of the 1949–76 20-yr
return maximum daily precipitation in the 1977–99 pe-
riod. It appears that maximum daily precipitation dur-
ing 1977–99 has substantially increased over some parts

FIG. 6. CGCM3.1 projected change in sea level pressure (hPa) from 1950–99 to 2050–99.

FIG. 5. CGCM3.1 projected increase in 850-hPa level specific
humidity (g kg�1) from 1950–99 to 2050–99.
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of southern United States and the west coast, but de-
creased over a large portion of Canada and Mexico. It
should be noted that since the data density in northern
Canada is very low, the pattern in this area is less reli-
able.

The data from one period are used to calibrate the
model and data from the other period are used to vali-
date the downscaling model. We use a skill score s de-
fined below to evaluate the performance of the down-
scaling procedure:

FIG. 7. (a), (b) The sign of coefficients for the first two rotated PCs of SLP on the location parameter, (c) specific
humidity on the location parameter, and (d) the specific humidity on scale parameter. Blue indicates positive sign
while red indicates negative sign. The bigger dots show stations whose location or scale parameters are significantly
influenced by the covariates at the 5% level.
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s � 1 � |r�d � r��|�|r�c � r��|, �6�

where r�d is the downscaled 20-yr return value for the
validation period, and r�c and r�� are observed 20-yr
return values for calibration and validation periods, re-

spectively. When the skill score s is greater than zero,
that is, when the difference between the statistically
downscaled return value and the observed value is
smaller than the error in climate persistence forecast,
the downscaling method is considered to have skill. We
then interchange the data from two periods and obtain
a combined score by weighting the two scores according
to the period length in calibration. Figure 10 shows the
map of combined skill score. The skill score is positive
over northwestern Mexico, southwestern and central
United States, the northwestern coast, and areas of
western and eastern Canada.

We also computed skill score using a block bootstrap
procedure. This provides some evidence of the stability
of the statistical relationship. To reserve interannual
variability, we divide the 50-yr observation period
(1950–99) into ten 5-yr groups. Five of the groups are
selected to form a 25-yr dataset for model calibration
and the remaining 25-yr data for model validation.
There are 252 possibilities. The skill score was origi-
nally designed for seasonal forecast for which there is
usually quite a big difference between climatology and
individual seasonal value. Here, we compare down-
scaled probability distribution with the observed one. If
the difference in the probability distribution of extreme
precipitation in the two datasets is small, it will be very
hard for any downscaling method to improve upon the
climatology. We shall therefore ask if downscaling pro-
cedure improves climate persistence forecast when the
climates are different in the two periods. For this pur-

FIG. 9. The risk of 20-yr return maximum daily precipitation
computed from 1949–76 during 1977–99. A value of 2 indicates
that the occurrence of daily precipitation at the 20-yr return level
in 1949–76 has been doubled in 1977–99. Black dots show the
locations of stations.

FIG. 8. Difference (g kg�1) in the 850-hPa specific humidity
between 1977–99 and 1949–76.

FIG. 10. The skill score s of statistical downscaling procedure in
downscaling 20-yr return values of maximum daily precipitation.
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pose, we compute the difference in the mean values of
extreme precipitation from the two subsets. We rank
the absolute differences and compute the skill scores
corresponding to the 20 most different subsets. Figure
11 shows the proportion of times the downscaling pro-
cedure outperforms the climate persistence forecast. It
appears that our downscaling procedure improves the
forecast based on climatology almost everywhere. The
lower skill score shown in Fig. 10 is perhaps due to a
too-small difference in the extreme precipitation during
the two subperiods 1949–76 and 1977–99. These indi-
cate that the downscaling procedure and the variations
in the predictors are indeed able to capture important
factors that influence extreme precipitation variation.

c. Projected extreme precipitation change

The observed relationships between the covariates
and extreme precipitation distribution parameters are
derived from the whole observational dataset at every
station. They are then used to derive GEV parameters
for the second half of the twenty-first century at North
American stations by applying such relationships to the
predictors obtained from the CGCM3.1 model simula-
tions. The probability that the observed 20-yr return
maximum daily precipitation will be exceeded in the
future is then estimated. The ratio between this value
and the nominal probability 0.05 represents the changes
in the risks of the current 20-yr return extreme precipi-

tation (Fig. 12). It indicates that the current 20-yr return
level of daily precipitation will generally be more fre-
quent across North America, with larger increases in
the southern and central United States and the Pacific
Northwest. The changes in the occurrence of 1949–99
20-yr return daily precipitation are comparable to the
changes of 1949–76 20-yr return daily precipitation in
1977–99 in those regions. But this could be underesti-
mated since the GCM may undersimulate the magni-
tude of anthropogenic sea level pressure change
(Gillett et al. 2003). Note that lower risks in extreme
precipitation appear in the Canadian prairies, in north-
ern Alaska, and in southern Mexico. But from the
northern prairies to northern Alaska, the available data
are rare and our downscaling procedure does not show
much skill. Therefore, our confidence of projection for
these areas is low.

To understand how the changes in the large-scale
circulation and the humidity contents could affect the
changes in extreme precipitation, we show in Fig. 13 the
projected changes in the risks attributable to changes in
circulation and humidity. It appears that the changes in
circulation would have an effect to reduce the risk of
extreme precipitation over much of the western conti-
nent especially over the north of California, and an
effect to increase the risk of precipitation in the central
and eastern United States. Changes in humidity would

FIG. 11. The percentage of times the downscaling procedure
outperforms the climate persistence forecast in 20 cases for which
the difference in the mean of extremes in two subsets is largest.

FIG. 12. Statistically downscaled changes in the risks of current
20-yr return daily precipitation in 2050–99. A value of 2 indicates
that extreme daily precipitation at the 20-yr return level in current
climate will occur twice as frequently in 2050–99 climate. Black
dots show the locations of 4198 stations.
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result in an increase in the extreme precipitation risks
in general. The pattern of projected change is more
dominated by the increase in humidity.

Changes in extreme precipitation risk are also ob-
tained from GCM-simulated daily precipitation. Be-
cause of the availability of model-simulated daily pre-
cipitation, we use the years 1961–2000 to represent cur-
rent climate and years 2046–65 and 2081–2100 to
represent future climate. Figure 14 shows the changes
in extreme precipitation risks. It indicates an increase in
the risk of extreme precipitation, at a much larger mag-
nitude when compared with downscaling results, over
much of the United States and Canada, and a strong
decrease over Mexico.

Projected extreme precipitation change from the
downscaling approach shows a spatial pattern similar to
that obtained from GCM simulations, with richer struc-
ture and much smaller amplitude, over regions where
the downscaling procedure has skill. The difference in
the magnitude is perhaps due to a spatial-scale mis-
match. Results from the downscaling procedure repre-
sent small scales corresponding to station locations,
while those from model simulations represent areas of
tens of thousands of square kilometers. The magnitude
of extreme precipitation at the same return level would
decrease dramatically with the increase in the spatial
scale. A change in the magnitude of extreme precipita-
tion would cause a much larger change in the risks for
larger areas than for a particular location. Thus the

projected changes in the extreme precipitation risks by
the two approaches are broadly consistent. Because of
the highly variable nature of daily precipitation both
spatially and temporally, extremes observed at very
large spatial scales may not be very relevant to ex-
tremes at local scales that are required for many impact

FIG. 14. Same as in Fig. 12, but computed from GCM-simulated
daily precipitation.

FIG. 13. Same as in Fig. 12 but for the changes in the risks that are attributable to changes in (left) large-scale circulation and (right)
specific humidity separately.
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studies. Our downscaling approach therefore does pro-
vide added value to the GCM-simulated precipitation,
especially for the assessment of impacts at local scale.

The changes in the 20-yr return of winter extreme
precipitation and winter mean precipitation in the
GCM simulation are compared. Both show a north-
increase and south-decrease contrast, almost with the
same buffer zone. The increase in extremes at high and
middle latitudes is stronger than that of mean precipi-
tation, and its decrease in Mexico is less than the mean
state. A difference could be seen at the southern tip of
Mexico, where the extreme increases while the mean
decreases. These results are consistent with the study
by Groisman et al. (2005) on simulated changes in in-
tense precipitation and mean precipitation. However,
comparison between the extreme and total precipita-
tion requires the investigation of changes in the prob-
ability distribution of total precipitation and is not dis-
cussed here.

5. Summary and discussion

By fitting generalized extreme value distributions
with large-scale circulation and humidity as covariates,
we have quantified the influence of those predictors on
winter extreme precipitation over North America. It
was found that large-scale circulation exerts a strong
influence mostly on location parameters, with little im-
pacts on scale parameter or the spread of extreme val-
ues. Different circulation patterns have impacts on dif-
ferent regions. Humidity has a strong impact on both
location and scale parameters, which shifts the tail of
the extreme precipitation distribution to the right. Per-
formance of our downscaling method is examined with
independent data under a climate condition different
from the one with which the model was established.
The downscaling procedure has shown useful skills.

Future changes in extreme precipitation risks at re-
gional and local scales are derived by using the ob-
served relationship between large-scale circulation and
humidity and extreme precipitation, and projected
changes in the predictor fields simulated by the
CGCM3.1 model (T47) under the IPCC A2 scenario.
The model projected changes in large-scale circulation
and humidity would increase, due largely to the in-
crease in the humidity field, as would the extreme pre-
cipitation risks in most parts of North America, espe-
cially in the southern and central United States and the
Pacific Northwest. This agrees with Trenberth’s (1999)
finding that change in the atmospheric moisture con-
tent will play a large role in extreme precipitation
change.

Several caveats need to be considered when inter-
preting the results presented in this paper. One is that,

like any downscaling method, our method works only
when a statistically significant relationship between
predictors and predictand can be established. Future
projections over the areas where the downscaling pro-
cedure showed no skill would not be reliable. The re-
liability of projected changes also rely on the ability of
the GCM in simulating future changes in the predictors,
as well as the validity of the fundamental assumption
made for any statistical downscaling studies that the
observed relationship would hold in the future. In ad-
dition, we only considered a linear relationship be-
tween predictors and extreme precipitation. A nonlin-
ear relationship is possible, especially when multiple
factors are considered (Jain and Lall 2001). However,
consideration of a nonlinear relationship will be much
more complicated. It involves making an assumption on
the form of the relationship and perhaps needs more
data for model estimation and validation. We only
demonstrated the usefulness of our downscaling
method with large-scale fields simulated by one GCM
forced by one emission scenario. In real application,
climate change scenarios at local scale should be pro-
duced with simulations from different GCMs under dif-
ferent forcing scenarios (Haylock et al. 2006).
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