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1.  INTRODUCTION

1.1.  Downscaling climate change projections

Translating global model simulations of future cli-
mate change into high-resolution regional-scale pro-
jections represents one of the primary challenges to
climate change impact assessments. Barriers to gener-
ating these high-resolution projections are computa-
tional in nature, as well as being due to limitations in
our understanding of the geophysical processes that
determine the interactions between larger-scale pat-
terns of change and local climate. Resolving future
changes in surface climate characteristics at the local

level, however, is essential to determining the likely
impacts of climate change. The value of climate infor-
mation to regional planners and decision makers in-
creases significantly and may even be altered by the
spatial resolution of the analysis (e.g. Mearns 2003 and
references therein). The more precise (and hopefully
more accurate) our ability to determine what changes
will occur and where, the more effective the allocation
of resources to address potential impacts from those
changes. Hence, extraction of higher-resolution spatial
climate information from global or regional models has
important applications to both long-term forecasting
(from a few months to several years) as well as climate
impact assessments (on time scales of years to decades). 
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Introduction of spatial variability into larger-scale
fields is commonly achieved by either (1) dynamical
downscaling, also known as regional climate modeling,
or (2) statistical downscaling, which relies on observed
relationships between large- and small-scale climate
fields to extrapolate into the future (e.g. Mearns et al.
1999, Murphy 1999). 

Dynamical downscaling is based on the simulation of
the smaller-scale dynamical processes that control cli-
mate at the regional level. Coupled atmosphere–ocean
general circulation model (AOGCM) output is used to
force the boundary conditions of regional models,
which can then produce climate projections down to
resolutions of 5 km2. However, regional climate model-
ing requires a significant investment in production of
both high temporal resolution AOGCM output, as well
as the computing resources required to generate the
regional model simulations themselves. As such, it is
currently possible to apply regional models only to
limited periods and regions, and only for the AOGCMs
and emission scenarios from which the required high-
resolution input fields are available. 

Statistical downscaling is the second approach com-
monly taken to introduce higher spatial resolution into
large-scale fields. Relationships between local-scale
surface conditions and large-scale variable output
fields (chosen such that they are strongly related to the
local-scale conditions of interest) are first developed,
based on observed data. These relationships are then
used to estimate projected changes at higher spatial
resolutions (at the station level or at a finer grid-scale
level), based on future projections of larger-scale fields
by global or regional models. 

1.2.  Weather typing and clustering methods for
downscaling

The weather typing approach to statistical down-
scaling generally attempts to define weather states
based on large-scale upper-air variables alone, and
has demonstrated some success in reproducing ob-
served surface precipitation patterns, particularly when
combined with stochastic weather generation (e.g.
Wilby et al. 1998, 2002, Wilks 1999, Wilks & Wilby
1999, Bischoff & Vargas 2003). Atmospheric patterns
are generally determined in 2 ways, either through
subjective or objective definitions. The subjective
approach to defining weather types is based on prior
knowledge and expert opinion, the best known being
the Lamb Weather Type (LWT) classification for the
British Isles (Lamb 1972). In contrast, the objective
approach determines classifications for a certain re-
gion automatically on the basis of clustering methodo-
logies. 

Many clustering and classification methods have
been applied in atmospheric sciences in general and in
weather typing in particular. For instance, Zorita et al.
(1993) employed a hierarchical descending clustering
method applied to the first few components of an
empirical orthogonal function (EOF) analysis of sea
level pressure anomalies to identify 3 weather states in
the Columbia River Basin for the winter season. Schnur
& Lettenmaier (1998) used a similar approach for sea
level pressure over Australia to define stochastic mod-
els of rainfall amounts according to weather states. 

A ’K-means‘ clustering procedure (sometimes termed
’dynamic clustering‘) was used by Akkur et al. (1992) as
part of a framework to predict ozone in Australia and by
Bárdossy et al. (1993) for stochastic precipitation model-
ing. Huth (2001) performed a ‘repeated’ K-means ap-
proach (keeping the recurrent clusters) on daily 500 mb
geopotential height fields to define circulation types
over Europe, and related these to 9 climate variables in
the Czech Republic. In order to derive a climatology of
severe storms in Virginia, Davis et al. (1993) used re-
sults from an EOF analysis of surface and upper-air ob-
servations, such as sea level pressure, wind speed and
direction, temperature and dew point at the surface and
at 850, 700 and 500 mb constant pressure surfaces, to
obtain clusters via a hierarchical agglomerative algo-
rithm. These clusters were used as the initial step in
a K-means clustering procedure, which produced 9
circulation patterns or clusters. Similar methods have
been applied to surface variables, for instance by Kalk-
stein & Corrigan (1986), to derive a synoptic climato-
logy for sulfate concentrations in Delaware, and by
Davis & Kalkstein (1990) to define air quality regimes. 

Neural networks, generally employed as universal
regression tools, can be used in a clustering context
through self-organizing maps (SOMs), e.g. Hewitson &
Crane (2002), to downscale daily precipitation. They
can also be used for classification purposes; e.g. Bár-
dossy et al. (1993) used 51 input neurons, 2 hidden
layers of 45 and 40 neurons and 20 output neurons to
classify 700 mb pressure surfaces according to a given
scheme. Diday & Vrac (2005) developed a statistical
mixture of ‘distributions of distributions’ through the
copulas theory to determine air mass types from verti-
cal atmospheric profiles of specific humidity and tem-
perature (Naveau et al. 2004, Vrac et al. 2005). Pon-
gracz et al. (2001) used a fuzzy rule approach to model
frequency distributions of monthly precipitation in
Hungary, conditional on the Hess-Brezowsky circula-
tion patterns. Because large-scale seasonal cycles have
obvious influences on local-scale climate features, Vrac
et al. (2006) also applied an ‘estimation-maximization’
(EM) technique to identify and compare seasonal
atmospheric patterns and their temporal shifts over
North America from reanalysis and AOGCM outputs. 
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1.3.  Our approach

Downscaling methods based on patterns in upper-air
variables help to understand climate at the global scale
(i.e. at the pattern scale). However, defining the statis-
tical relationships between the states and some local
surface variables can be complicated, and local vari-
ables of interest are rarely considered in the defini-
tion of the weather states. Rather, the relationships
between local variables and large-scale patterns are
developed after the patterns have been identified. 

Here, we address the issue of global linkages to
local-scale precipitation features through application
of a stochastic approach based on a nonhomogeneous
hidden Markov model. This approach, though inspired
by the initial work of Hughes & Guttorp (1994) and
Hughes et al. (1999), includes the following significant
modifications: (1) We placed the method in a weather
typing scheme by defining prior weather states or cir-
culation patterns, but retaining the stochastic model-
ing of the precipitation. Hence, we characterized not
only the states themselves, but also the probabilities of
transition between those states, using a nonhomo-
geneous Markov model (NMM) that is not hidden any-
more. (2) We selected 2 different types of weather
states and used these to evaluate the stochastic weather
typing approach—‘classical’ upper-air patterns based
on large-scale atmospheric variables, and original
precipitation-related patterns based on available ob-
served local rainfall intensities in the studied region;
the latter patterns correspond to weather states that
are more regional- than large-scale, and were directly
defined from the climate variable to be downscaled.
After developing this approach, we evaluated the per-
formance of large-scale circulation pattern-based
downscaling vs. the new downscaling approach that
combines large-scale circulation fields (used to deter-
mine the transition probabilities between patterns)
with regional precipitation-based patterns. Based on
NCEP reanalysis output fields, we downscaled precip-
itation to 37 long-term rain-gauges in the state of
Illinois, USA, and compared them with observed sta-
tion-based precipitation records using a 20 yr dataset
independent of the 20 yr dataset used to fit the down-
scaling model, in order to draw conclusions regarding
the relative performance of the different downscaling
methods. 

2.  STATISTICAL MODEL AND METHODS

Hughes & Guttorp (1994) first suggested the use of
a nonhomogeneous hidden Markov model (NHMM)
to characterize the transition between non-observable
weather states. Conditional on the current state and on

each site, Hughes et al. (1999) modeled precipitation
occurrences through an autologistic model for multi-
variate binary data for a network of rain gauges. Like-
wise, given the current state and a site, Bellone et
al. (2000) applied a mixture of a Gamma distribution
and a point mass at zero (both site- and state-specific)
to describe the distribution of the rainfall intensity.
Although the latter assumes spatially independent
structures—i.e. except for the weather state that is
common to each location, nothing relates one site to
another—the results appear realistic when applied to
a test set of observational data. The main difference to
a more ‘classical’ weather typing method is that, in this
approach, the states are ‘precipitation’ patterns and
are obtained a posteriori rather than prior to modeling
conditional distributions. As a consequence, the pat-
terns provide a good description of local precipitation
structure. However, if we consider large-scale vari-
ables such as geopotential height or wind, the statisti-
cal distributions of these variables can overlap, re-
ducing the interpretation of these weather states in
terms of large-scale conditions. In contrast, a classical
weather typing method might not describe precipita-
tion as successfully, but the global circulation patterns
would be more distinct. 

Inspired by the work of Hughes & Guttorp (1994) and
Bellone et al. (2000), we developed a conceptually dif-
ferent alternative to NHMM. Our main goal was to
include their stochastic modeling of precipitation—
with the main assumption of a NMM—in a more clas-
sical weather typing framework, i.e. by defining ‘prior’
weather states or weather patterns, not determined
through a hidden Markov model. This context makes
this novel method arguably easier to interpret because
of the lack of a hidden layer. We then compared 2
approaches, one where our new method is conditioned
on regional precipitation patterns, and another where
it is conditioned on large-scale circulation patterns.

2.1.  Nonhomogeneous stochastic weather typing
model (NSWT)

In describing our model, we use the following nam-
ing conventions. Let Rt = {R t

1, ..., R t
n} be a multivariate

random vector giving rainfall intensities at a network
of n weather stations at daily Time t, 1 ≤ t ≤ T. Let St be
the weather state at Time t, and S 1

t–1 be the sequence
of states from Time 1 to t–1. Let X t be a vector of atmo-
spheric variables at Time t, and X 1

T the sequence of
values of the atmospheric variables of X t from Time 1
to Time T. 

Our nonhomogeneous stochastic weather typing
model is defined by 2 assumptions. Assumption (1) can
be formulated as in Hughes et al. (1999) by 
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P(St |S 1
t –1, X 1

T)  =  P(St |St–1, X t) (1)

Eq. (1) means that the probability of being in a given
state at Time t depends only on the state at previous
Time t–1 and on the value of the vector of large-scale
atmospheric variables at current Time t. A simple way
to parameterize this probability is as follows:

P(St = j |St –1 = i,X t) ∝ γij exp[– 1–
2

(X t – μij)Σ–1(X t – μij)'] (2)

where Σ is the variance-covariance matrix for the atmo-
spheric data (centered around their mean), μij is the
mean vector of the atmospheric variables when the
weather state at the previous time was i and the cur-
rent state is j, and γij gives the baseline transition prob-
ability from State i to State j. 

It is clear that an NMM is a generalization of a homo-
geneous Markov model. Indeed, the exponential term
in Eq. (2) corresponds to the influence of the atmo-
spheric variables Xt in the state transition probabilities.
If we remove this term, we retrieve a homogeneous
Markov model. So this term is used to influence the
appearance of the states (for either historical simula-
tions or future projections) based on upper-air vari-
ables, i.e. not just from the given transition probabili-
ties of a Markov model. 

Most of the time, the distribution of the large-scale
variables Xt we use is symmetrical. Hence, for conve-
nience, a Gaussian distribution is employed in Eq. (2),
even though other models could have been used.
Eq. (1) assumes that the transition probabilities of the
Markov model are proportional to the conditional den-
sity of Xt given the transition. This assumes that the
transition probabilities and therefore the appearance
of the weather states will change under conditions of
global change affecting the atmospheric variables Xt. 

Assumption (2) in our NSWT approach can be writ-
ten as 

ƒR t |S1
T,R1

t–1
,X1

T(r) = ƒR t |St,X t
(r) (3)

where ƒ denotes a probability density function and
R1

t –1 is the sequence of precipitation amounts from
Time 1 to t–1. Eq. (3) says that, given the weather state,
the observed stochastic process Rt (rainfall) is assumed
to be conditionally temporally independent. The para-
meterization can be done by modeling precipitation at
each station, given the weather state, as a mixture of a
point mass at zero and a gamma distribution (with site-
specific parameters) as follows: 

ƒR t |St,Xt
(rt) =

n
Π
i=1

[psi(X t)G(r t
i |αsi,βsi)]1{r t

i > 0}[1 – psi(X t)]1{r t
i = 0} (4)

where n is the number of rain stations, psi is the precip-
itation probability at Stn i in State s, and r t

i is the pre-
cipitation amount at Stn i and Time t. The indicator
function 1{r t

i > 0} takes the value 1 if the precipitation
value at Time t and Stn i is >0 and takes the value 0

if r t
i = 0. The density of the gamma distribution at

r t
i is denoted by G(r t

i |αsi,βsi) with parameters αsi and βsi

depending on State s and Stn i: 

(5)

where Γ(.) is the gamma function.
This model means that, for each weather station, we

model as many distributions of rainfall intensity and
probabilities of rain occurrence as the number of
weather states. The product in Eq. (4) corresponds to a
spatial independence of the rainfall occurrences and
intensities, conditional on the weather state. Although
the NHMM approach developed by Bellone et al.
(2000) used the same first assumption defined by
Eq. (1), it did not condition the density of rainfall inten-
sity Rt on Xt as we do here in our second assumption
(Eq. 3). Hence, given State s and Stn i, Bellone et al.
(2000) used constant probabilities psi of precipitation.
In practice, due to the variations of rain rate caused
by the possible presence of different precipitation
regimes, these constants can be unrealistic (Jeffries &
Pfeiffer 2000). That is why, in Eq. (4), we model these
probabilities as functions of large-scale atmospheric
variables Yt, through logistic regression models: 

(6)

where λλsi (which is state- and site-specific) is the vec-
tor of unknown logistic regression coefficients. The
vector Yt may or may not have components in com-
mon with the atmospheric variables Xt employed to
influence the transition probabilities in Eq. (1). For
convenience, we will assume Yt = Xt in this analysis
and associated applications. Hence, the estimation
process provides parameters for the rainfall occur-
rence model (Eq. 6), not constant numerical values of
probabilities.

As for the transition probabilities, conditioning the
rainfall occurrences on Xt implies that the occurrence
probabilities will be altered under conditions of
global change affecting the atmospheric variables Xt.
If Xt is correctly chosen, the rainfall occurrence prob-
abilities should be adequately driven and estimated.
The rainfall intensity itself is not regressed directly
against atmospheric variables (i.e. the parameters
and the associated model itself do not depend on
large-scale atmospheric variables—except on the
weather states—as do the occurrences). This arguable
choice, made for simplicity of the model, implies that
to characterize the influence of large-scale atmo-
spheric features on local rainfall intensity, it is suffi-
cient to use gamma distributions with state-specific
parameters, with weather states that summarize recur-
rent large-scale patterns.

p P S ssi si i( | ) ( | , ){ }Y Yt r t tt
λλ = = = =>1 0 1
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2.2.  Fitting the NSWT model to the weather patterns

By specifying the weather states (i.e. patterns) a pri-
ori, the state ‘labels’ are known and the model can
be trained by straight maximum likelihood, without
requiring the EM algorithm (Dempster et al. 1977).
More precisely, once the patterns are achieved a priori,
a NMM—Eqs. (1) & (2)—is fitted to the patterns to rep-
resent the transition process from one daily pattern to
another. The NMM (that is not hidden) is applied to
characterize the observed temporal sequence of the
patterns, rather than to define them as in the NHMM
approach. Since the state labels are known, the para-
meters in Eqs. (4) to (6) are estimated for the fitting
period (1980–1999) conditionally on the obtained
weather states, through a direct maximization of the
likelihood for the model defined by Eq. (4). 

The set of atmospheric predictors in this study was
selected based on previous studies (e.g. Charles et al.
1999) which found that local precipitation is closely
connected to specific large-scale atmospheric fields,
as well as on the practical issue of which daily fields
were available from reanalysis for use in this study.
The vector of large-scale atmospheric variables Xt is
defined here in terms of 3 NCEP reanalysis variables at
850 mb: geopotential height Zg850, specific humidity
Q850, and dew point temperature depression nTd850

(defined as the difference between the temperature
T850 and the dew point temperature Td850): 

nTd850 =  T850 – Td850 (7)

In particular, dew point temperature depression is an
index of the moisture saturation of the atmosphere and
is very relevant for precipitation downscaling (Charles
et al. 1999). Zg850 was introduced in our model, be-
cause this variable is frequently used in defining scale
relationships for downscaling purposes. After examin-
ing other variables, Q850 was also included, because it
noticeably increased the quality of the downscaled
precipitation estimates, compared to observations.

Xt was not directly defined in terms of these 3 upper-
air variables. Instead, for any one of the atmospheric
variables, we defined C as the matrix with element cij

representing the correlation coefficient between the
rainfall intensity time series at Stn i and some atmos-
pheric variable, e.g. Zg850, at grid-cell j. To relate the
occurrence of rain at Stn i in Illinois to large-scale infor-
mation, it would be meaningless to consider the direct
correlation between rainfall at Stn i and a very large
number of NCEP grid-cells covering a region compris-
ing Illinois. Instead, we assumed that the weather pat-
terns (precipitation or circulation patterns; see Sections
2.3 & 2.4) influence the atmospheric variables over
Illinois, which, à leur tour, influence rainfall occurrence
at Illinois weather stations. Even if it is reasonable to

assume that, in case of rain at Stn i, the intensity of local
rainfall—e.g. heavy or light rainfall, as characterized
by the parameters of the gamma distribution—depends
largely on the current large- or regional-scale weather
pattern, it is also reasonable to assume that the event
‘rain’ at Stn i is driven only by atmospheric variables
over Illinois. That is why we only considered m = 6 grid
cells covering Illinois for the correlation matrix. For
each of the 3 NCEP variables selected, the associated N
× m correlation matrix C was then decomposed by ap-
plying a singular value decomposition (SVD) step after
von Storch & Zwiers (1999) as follows: 

C =  U DV ' (8)

where U is an N × N matrix, V an m × N matrix, V ' the
transpose of V, and D is an N × N diagonal matrix
whose diagonal elements (d1, ..., dN) are the singular
values of C. A summary of the original atmospheric
variable can be built by multiplying the atmospheric
variable, standardized for each grid cell separately, by
Column i of Matrix V. This new summary variable con-
tains (d i

2�ΣN
j =1dj

2) × 100% of the correlation between
the atmospheric variable and the rainfall process. 

We applied this SVD step separately to each of the
3 NCEP variables Zg850, Q850 and nTd850. For each
variable, we retained the first summary, representing
93.6, 98.6 and 97.5% of the correlation, respectively.
This results in 3 summarizing variables instead of the
initial 18. The vector Xt, used in Eqs. (2) & (6), contains
these 3 summaries.

Our goal was not only to develop a transparent pat-
tern-based downscaling approach, but also to compare 2
approaches where our model is conditioned on the pat-
terns of (1) regional precipitation, and (2) large-scale cir-
culation. For this reason, before examining the results
obtained by applying the method to large-scale NCEP
reanalysis fields, we next describe the methods used to
define the precipitation and circulation patterns.

2.3.  Defining precipitation patterns

When downscaling daily surface precipitation, it is
logical to assume that patterns directly based on mea-
sured precipitation will prove more accurate than those
that are indirectly derived. For this reason, we first de-
fined a downscaling method based solely on precipita-
tion patterns that describe surface rainfall for the study
region, without considering upper-air variables. That is,
we used rainfall measured at N weather stations (rather
than large-scale NCEP reanalysis fields) to determine
precipitation patterns, by clustering the T days of the
fitting time period (see Section 3 for data used). 

Here, a hierarchical ascending clustering method
(HAC) was used. This approach does not assume any
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(explicit) distribution for the variables. Starting with
the items to be clustered as groups with only 1 element
(singletons), the principle consists, at each step, of
regrouping 2 groups according to a given criterion,
until we only have 1 group, comprising all the items
and using the Ward criterion (Ward 1963) to maximize
the interclass variance. 

The main problem with using the HAC approach,
however, is that if we only use raw (measured) values
of rainfall to characterize each day, the HAC method
(and almost any clustering method) will only consider
of the ‘high’ values of rainfall, or at least those that are
not too close to zero. Moreover, to obtain patterns that
differ in more than their mean rainfall intensity, we
need to introduce spatial and temporal precipitation
characteristics into the clustering process. 

For these reasons, we applied the HAC method
using an original metric D to evaluate the degree to
which 2 days t and t' differ, instead of the more classi-
cal Euclidian distance. The metric D is defined as 

(9)

where Pt = (Pt1, ..., PtN) corresponds to the precipitation
characteristics for each of the N weather stations. The
characteristics of Stn i for Day t are Pti = (Rti,Sa ti,Tati),
where Rti is the measured rainfall intensity, and Sati and
Tati are the spatial and temporal rainfall anomalies, re-
spectively, defined by Sati = Rti – 1/N ΣN

i=1Rti and Tati =
Rti – 1/TΣT

t=1R ti. Thus, Sati gives the spatial variation
on Day t and Ta ti gives the temporal variation for Stn i.
The metric d in Eq. (9), between 2 sets of characteristics
Pti and Pt'i for 2 days t and t' for a given Stn i, is given by 

(10)

where Ed is the bivariate Euclidean distance and h is
the function 

h(x,y)  =  | log(x + ∈1{x = 0}) – log(y + ∈1{y = 0})| (11)

where |.| corresponds to the absolute value and ∈ = 10–3.
The value of 10–3 is somewhat arbitrary and was cho-
sen because the difference between log(m) (m = mini-
mum observable rainfall) and log(10–3) is about 3-fold
larger than the difference between log(m) and log(m2)
(m2 = second minimum observable rainfall); m is de-
scribed in Section 3). 

With the metric given in Eqs. (9) & (10), we consider
that the distance between the characteristics Pti and Pt'i

is zero if and only if the 2 raw values of rainfall are zero.
To define precipitation patterns, we do not want to dis-
tinguish between 2 null values of rainfall. If they are not
both equal to zero, we compute a positive metric value
by adding 3 terms: (1) Ed[(Sati,Tati),(Sat'i,Ta t'i)], the bi-

variate Euclidean distance applied to the pairs of spatial
and temporal anomalies; this allows the clustering algo-
rithm to define precipitation structures that are in-
fluenced by the spatial and temporal information at
our disposal. (2) h(Rti,Rt'i), the absolute value of a log-
difference directly applied to the raw value of precipita-
tion; the introduction of the log function allows us to
emphasize small values of precipitation. (3) α is a penalty
term added when only 1 of the 2 raw precipitation values
is zero; this produces an improved distinction between
positive and zero values of rainfall. It is important to
make a good distinction between small values, but es-
sential in the case where 1 value is zero. The value of
1 was chosen for α; based on the data (Section 3), it
appears to provide a reasonable penalty compared to
the mean value given by Ed, producing the clearest and
most meaningful patterns. 

It is also important to note that metric d (Eq. 10) is not
scale invariant. Here, it is defined with units in cm. If
other units are used, this metric has to be redefined.
For example, Ed and h do not give equivalent results
in cm as compared to mm. Consequently, if the units
in the analysis are changed, the value of α must be
adjusted to provide a reasonable penalty.

2.4.  Defining circulation patterns

The method used to define our circulation-based
weather states was a mixture of statistical distributions
solved by an EM-type algorithm (Dempster et al. 1977,
review by McLachlan & Peel 2000). Although it is consid-
ered a very efficient clustering method, few studies have
used it to define atmospheric patterns (e.g. Smyth et al.
1999). Recently, Vrac et al. (2007) showed that the statis-
tical mixture clustering method tends to produce more
consistent results than a hierarchical clustering approach
across various datasets (e.g. NCEP vs. ERA-40 reanaly-
sis), and it is more sensitive to day-to-day variations in
pattern frequencies, even within seasons such as winter
and summer that are characterized by a strong signal. 

Here, we assumed that the distribution of the large-
scale atmospheric variables under consideration is a
statistical mixture of several components, each one
characterizing the distribution associated with a single
circulation pattern, i.e. one component of the mixture.
That is, if g is the probability density function (PDF) of
a large-scale atmospheric variable such as geopoten-
tial height at 850 mb, we can write g as a weighted sum
of K parametric PDFs: 

(12)

where gi is a parametric PDF with parameter ααi associ-
ated with component i of the mixture, πi is the ‘mixture

g x g xi i i
i

K

( ) ( ; )=
=

∑ π αα
1

d P P

R R

E Sa ai i

i i

d i i( , ) [( , )t t’

t t'

t t

if

T=

= =0 0

,,( , )]

( , )
' '

{ { }

Sa a
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i i

i i R i

t t
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ratio’ and corresponds to the probability of belonging to
component i, and K is the number of components (here,
circulation patterns). To solve Eq. (12) we use an EM
algorithm consisting of 2 successive and iterative steps
of Expectation (E step) and Maximization (M step) of
the so-called complete log-likelihood. For convenience,
the parametric PDFs gi are assumed to be Gaussian dis-
tributions, and ααi = (μμi,ΣΣi) where μμi is a vector of means
and ΣΣi the variance-covariance matrix of gi. Note that μμi

and ΣΣi are different from those in Eq. (2). A constraint is
imposed on the variances in the maximization process
(M step) to avoid singularities of the likelihood. These
singularities occur when a vector of means of 1 compo-
nent, e.g. μμi, is set equal to any observed multidimen-
sional data, and the variances tend to zero.

Because circulation patterns usually involve a large
number of grid cells, we need to reduce the dimension
of the problem. This was done by applying a principal
component analysis (PCA) to the dataset to be clus-
tered. Before the PCA, the data were standardized so
that each statistical variable had a mean equal to 0 and
variance equal to 1. Principal components represent-
ing 99% of the variance were retained to run the EM
algorithm. The number of components K is usually
given a priori, but in our application (Section 3), the
Bayesian Information Criterion (BIC) served to deter-
mine the ‘best’ K. We tested values from K = 1 to K =
10. Each EM run attempts to fit the model in Eq. (12) to
the data not only for a given value of K, but also for
several given structures of the variance matrix of the K
components. For instance, the variance matrix can be
spherical, diagonal or ellipsoidal, and with equal or
varying volumes (see Fraley & Raftery 2002). The BIC
was calculated for each pair of a variance structure and
a value K, and the pair (variance, K ) minimizing the
BIC was retained. Hence, K was obtained as a compro-
mise between a high likelihood with a very complex
model (with too many parameters) and a simple model
with a low likelihood. From the estimated parameters,
patterns were then derived by applying the principle
of posterior maximum, with

Si =  {x :πigi(x,ααi)  ≥ πkgk(x,ααk), k = 1, …, K } (13)

where Si denotes the circulation pattern corresponding
to State i. 

3.  APPLICATION OF NONHOMOGENEOUS
STOCHASTIC WEATHER TYPING (NSWT) TO

PRECIPITATION DOWNSCALING

3.1.  Station and reanalysis data

Two distinct 20 yr time periods were used to fit and
evaluate the statistical method (Eq. 4) designed to

introduce fine-scale spatial variability into larger-scale
fields. The fitting period was January 1, 1980 to
December 31, 1999, and the period used to evaluate
the downscaled results was January 1, 1952 to Decem-
ber 31, 1971. For each of these periods, 2 primary
datasets were used. The first consisted of daily precip-
itation measurements at 37 weather stations in Illinois,
and the second of upper-air reanalysis data  (2.5 × 2.5°
spatial resolution) from the National Center for Envi-
ronmental Prediction (NCEP). Variables used to define
large-scale patterns included geopotential height (Zg ),
temperature (T), specific humidity (Q), relative humid-
ity (H ) and dew point temperature (Td ); see Section
2.2 for definition of variables. We focused on the winter
season (December, January, February), which repre-
sents 1805 d for each of the two 20 yr periods.

3.2.  Evaluation of NSWT based on precipitation
patterns

We first evaluated the ability of the NSWT method to
downscale daily winter precipitation based on patterns
that describe surface rainfall only. Upper-air variables
are still used to determine the transition probabilities
between weather states (see Section 2.2). However,
we used station-based observed rainfall at each of the
37 Illinois stations (rather than large-scale NCEP re-
analysis) to determine regional precipitation patterns,
by clustering the days from the 20 winters of the fitting
time period (1980–1999). 

The metric given in Eq. (10) was employed in the
HAC method using the Ward criterion to choose the
number of clusters, with the criterion being the stabi-
lization of the interclass variance reduction. According
to this criterion, the best partition contained 4 clusters
(Fig. 1). Patterns 1 and 4 correspond to the weakest and
strongest rainfall intensities, respectively, whereas Pat-
terns 2 and 3 represent moderate precipitation. Pattern
2 shows a southwest–northeast gradient. A north–
south gradient is discernible in Patterns 3 and 4, the
typical distribution of winter rainfall in Illinois. Visual
comparisons with daily maps of precipitation, e.g. as
provided by the Illinois State Water Survey (available
at: www.sws.uiuc.edu/atmos/statecli/mapsv2/mapsv2.
htm), confirm these spatial gradients, suggesting that
the 4 precipitation patterns in Fig. 1 capture the princi-
pal features of winter precipitation in Illinois. 

Once the statistical parameters have been estimated,
local rainfall at each station can be simulated using
daily NCEP-based values of large-scale atmospheric
summary variables Xt (Zg850, Q850 and nTd850, see Sec-
tion 2.2) to influence transition probabilities from one
weather state to another, and to drive precipitation
probabilities at each site. Based on the parameters
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obtained over the fitting period 1980–1999, we there-
fore simulated local precipitation for the 37 weather
stations for the evaluation period 1952–1971 as a first
test of the quality of our model. Only Xt values from the
evaluation period were used to simulate temporal
sequences of precipitation patterns, and then local pre-
cipitation. The normalization of the 1952–1971 NCEP
data, which is necessary to build the SVD summary
values detailed in Section 2.2, was based on the
1980–1999 NCEP means and variances, and not on the
evaluation period characteristics (i.e. not on the 1952–
1971 means and variances). This prevents the removal
of any potential changes in mean and variability from
the evaluation period data.

In simulating n weather states from n vectors Xt of
NCEP reanalysis summaries, we first initialized S1, the
weather state for Day 1, according to e.g. the propor-
tion of each pattern, or the posterior probability of each
pattern conditional on X1. Then, for each Day t > 1,
State St was simulated from State St –1 for Day t–1 and
from the vector Xt of the NCEP outputs for Day t. For
each Day t (for which we now had the simulated State
St) we can simulate a local rainfall amount Rti for each
rain-gauge i. First, we simulated whether or not a rain-
fall event is present, according to Eq. (6), based on sta-
tion- and state-specific parameters. If there is no rain-
fall event, the rainfall amount Rti is zero. Otherwise,
Rti was simulated according to a Gamma distribution
(Eq. 5) with station- and state-specific parameters. Al-
though the 2 simulation processes for weather states
and rainfall amounts are presented separately, it is
equivalent to perform both at once by simulating the
rainfall amounts for each station for Day t directly after
the simulation of State St. Because of the stochasticity
of our approach, applying the same sequence of Xt

values (t = 1,..., t = T = 1805) twice will produce 2
slightly different sequences of simulated local precipi-
tation. The simulation process was thus performed 500
times. In consequence, we obtained 500 temporal
sequences of precipitation patterns for the T = 1805 d.
These simulated patterns are then used to generate
500 sequences of local precipitation for the N = 37
weather stations and the 1805 d. 

Initial indications of the degree to which the model is
successful at reproducing historical precipitation is
given by the quantile–quantile plots (QQplots) com-
paring observed and simulated daily winter precipita-
tion for the period 1952–1971, as shown in Fig. 2 for
the 6 representative stations shown in Fig. 1. 

Overall, these QQplots show very good agreement
between observed and simulated precipitation for
most of the 37 stations, particularly below the 99th
percentile. Although there are some gaps between
observed and simulated quantiles of extreme values of
precipitation for some stations (e.g. Du Quoin and
Peoria), the simulations are close to the observed distri-
butions, with no significant bias in either direction. 

Simulated precipitation (examples in Fig. 3) consis-
tently reproduced the probability of observed wet and
dry spells, even for small values of probabilities, corre-
sponding to long periods. Again, while there is a ten-
dency to under-estimate the wet spell probabilities for
some sites and over-estimate the dry spell probabilities
for others, the shape of the simulated distributions
is close to observed data, without significant bias
in either direction. Together, QQplots in Fig. 2 and
wet/dry spell probabilities in Fig. 3 suggest that the
NSWT approach based on precipitation patterns is
capable of generating local-scale daily precipitation
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with characteristics similar to observed, even for a
period such as 1952—1971, separated by 28 yr from the
dataset used for fitting purposes (1980–1999). 

To fully evaluate the benefits of using precipitation
patterns to drive a NSWT method, we next defined
upper-air circulation patterns –– normally used in
weather typing contexts –– and used these to drive the
same NSWT downscaling approach. 

3.3.  Evaluation of NSWT based on circulation
patterns

We next defined a set of upper-air circulation pat-
terns (Section 2.4). To identify the upper-air fields most
relevant to surface winter precipitation over the state
of Illinois, we first performed clustering of upper-air
reanalysis output fields for a range of different vari-
ables; we then interpreted the patterns obtained in
terms of large- and/or local-scale variables, and as-
sessed the differences between the patterns within the
results from each given set of variables. This assess-
ment was accomplished, for example, through box-
plots comparing the relationship of the derived pat-
terns to large- and/or local-scale variables, through
modeling/estimation of the relationships and/or corre-

lations to local-scale precipitation, and finally, by sim-
ulating local precipitation from relevant sets of patterns. 

Through analysis of all NCEP variables mentioned in
Section 3.1 , we selected 2 variables to define the circu-
lation patterns: 850 mb geopotential height (Zg850) and
850 mb specific humidity (Q850). These 2 variables pro-
duce a good overview of global atmospheric conditions
(note that they are not identical to the variables used
in Xt to determine the transition probabilities be-
tween the different states). We focused on the region
bounded by 26–71° N × 115–61° W, with 340 grid cells
covering North America from the Rocky Mountains to
the East Coast and from the Mexican border to the
Arctic Circle. Of the 680 principal components (or
EOFs), 100 (representing >99% of the variance) were
retained to run the EM algorithm. Amongst all tested
variance structures and all numbers of patterns, the
optimal BIC was obtained for K = 3 clusters with diag-
onal variance matrix and varying volumes. 

The clusters for geopotential heights (Fig. 4) repre-
sent alternating lower and higher pressures over Hud-
son Bay, with Pattern 1 corresponding to climatological
mean winter heights of higher pressure systems over
the Great Basin and lower pressures to the Northeast.
The humidity patterns are more variable, with (Pat-
tern 1) large positive anomalies centered inland from
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Fig. 4. Circulation patterns determined by the EM algorithm on geopotential height Zg850 and specific humidity Q850. Anomalies 
are indicated by shading, and geopotential and specific humidity composites by isolines
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the Gulf Coast, (Pattern 2) seaward from the Gulf and
(Pattern 3) Atlantic coasts, and over Illinois and the
eastern Midwest.

Fitting the NSWT model to the circulation patterns
was performed in the same way as for the precipitation
patterns (Section 2.2). Using the parameters obtained
from the fitting period (1980–1999), simulations were
performed for the evaluation period, as described in
Section 3.2, but on the basis of upper-air circulation
patterns, instead of surface precipitation patterns. 

We again used QQplots to evaluate the quality of
these simulations (Fig. 5). Similarly, circulation-based
NSWT-simulated wet and dry spells are compared to
observations in Fig. 6, which can again be directly
contrasted with the comparison of precipitation-based
NSWT simulations vs. observations in Fig. 3. For most
of the stations, the QQplots obtained from the ap-
proach based on precipitation patterns (Fig. 2) are
closer to observed data than those obtained from the
approach fitted to circulation patterns (Fig. 5). In most
cases, the circulation pattern-based approach exhibits
a consistent over-estimation of precipitation quantiles.
Although both approaches (i.e. NSWT simulations fit-
ted to both precipitation and circulation patterns)
result in relatively similar QQplots for some sites (e.g.
Peoria), for most stations the precipitation-patterns

approach produces daily winter precipitation quantiles
that are clearly closer to observations than those pro-
duced by the circulation-patterns approach.

Equally, the precipitation-based probabilities for wet
and dry spells (Fig. 3) are better than those simulated
from circulation patterns (Fig. 6), which again display a
general tendency to under-estimate the occurrence of
both wet and dry spells, relative to both observed and
precipitation pattern-based simulations. 

Given the systematic bias in the circulation pattern-
driven approach, we hypothesize that perhaps the
NSWT method itself may not be suited to circulation
patterns or to the predictors used, or the statistical rela-
tionships between the larger region used to determine
the circulation patterns and the state of Illinois might
be difficult to capture. However, these hypotheses
remain to be verified.

4.  CONCLUSIONS

This study describes the development of a relatively
simple and transparent stochastic model for downscal-
ing precipitation intensities, and evaluates this model
based on observed precipitation for 37 stations located
in the state of Illinois. The downscaling method, based
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on a weather typing approach, uses a nonhomoge-
neous Markov model (NMM) to represent the transi-
tion process from one weather pattern to another, here
driven by upper-air atmospheric variables Zg850, Q850

and nTd850. In contrast to the nonhomogeneous hidden
Markov model proposed by Bellone et al. (2000), our
NMM is not hidden. Instead, we defined our patterns
through a clustering step prior to the parameter esti-
mations. Moreover, local rainfall occurrence probabili-
ties were not held constant, but are stochastically influ-
enced by large-scale atmospheric variables through
logistic regression models with weather state- and site-
specific parameters. 

For comparison purposes, we defined 2 distinctly dif-
ferent types of weather patterns, based on (1) upper-air
circulation fields, and (2) surface precipitation. The
more traditional circulation patterns were defined here
by a model-based clustering method through a mixture
of Gaussian distributions. This method gives consistent
atmospheric structures which, when used to fit the
NSWT downscaling approach, resulted in relatively
successful simulation of local precipitation, although
with a distinct tendency to over-estimate precipitation
amounts, especially for high quantiles. However, when
the NSWT method was fitted to precipitation patterns
that are directly related to the observed rainfall values,
much more accurate simulations and characteristics of
observed rainfall were derived, as evaluated through
QQplots and probabilities of the length of wet/dry
spells. In particular, quantile–quantile plots between
observed and precipitation pattern-based simulated
precipitation were nearly 1:1 up to the 99th percentile.

We therefore conclude that, for a given downscaling
approach such as the NSWT method, the large-scale
patterns used to fit the model to observations are key in
determining the accuracy of the method. Specifically, a
precipitation pattern-based approach was better than
the more traditional circulation pattern-based approach,
particularly for higher precipitation quantiles. Further-
more, our goal of developing a model that was conceptu-
ally different from and potentially more transparent than
an NHMM was also achieved through the nonhomo-
geneous stochastic weather typing (NSWT) method
described here, which incorporated a non-hidden NMM
in a more ‘classical’ weather typing context. 

5.  NEXT STEPS

Despite the initial success of this method, there are
still a number of possible improvements. For example,
the precipitation pattern-based QQplots in Fig. 2
show that, although the core of the precipitation is usu-
ally well-simulated, the highest values (>99%) can be
either under- (e.g. Peoria) or over-estimated (e.g. Du

Quoin). Extreme precipitation events often have signif-
icant economic impacts, and improving simulation of
these events is crucial. 

We expect that introducing spatial dependence into
the NSWT scheme would also improve the correlation
between precipitation events at individual stations.
As a first step, we could model only the dependence of
rainfall occurrence between the different sites, while
intensity remained independent. As a second step, the
dependence for both occurrence and intensity could be
modeled simultaneously. Since this approach could
considerably complicate the estimation step and slow
down the process of estimation, an alternative could be
to consider modern statistical methods of resampling
such as bootstrapping (Efron & Tibshirani 1993). Re-
sampling methods in which entire precipitation fields
are resampled simultaneously present the advantage
of retaining the spatial structure of the data without
adding any new modeling. 

It would also be valuable to know how our NSWT
approach performs compared to a NHMM approach
and to a weather typing approach that does not incor-
porate the Markov assumption. Conditioning transition
pattern processes and rainfall occurrence probabilities
on large-scale atmospheric variables Xt implies that
these 2 features will be altered if Xt fields change (see
Section 2). For this reason, we expect that the accuracy
of local precipitation projections under conditions of
global climate change affecting the atmospheric vari-
ables Xt would be greater than methods that did not
include a dependence on large-scale circulation fields.
However, many weather typing or, more generally,
statistical downscaling methods without a Markov
assumption also force the pattern frequencies or the
rainfall probabilities to evolve with atmospheric vari-
ables. 

In terms of future applications, the success of this
method in simulating 1952–1971 observed precipita-
tion suggests that this method may be reasonably
applied to climate projections from an atmosphere–
ocean general circulation model (AOGCM) to both
supplement and potentially replace costly regional cli-
mate model (RCM) simulations in projecting future
changes in precipitation. However, before applying
this or any method to future projections, it is important
to evaluate the ability of AOGCMs to reproduce the
observation or reanalysis-based patterns used to fit
the downscaling method. Furthermore, a fundamental
assumption in any statistical downscaling approach is
that the relationship between independent and depen-
dent variables (here: weather states and local climate
variables) will continue to be valid under future forc-
ing. Some recent works suggest this assumption may
be reasonable (e.g. Wood et al. 2004). Combining a
statistical approach with regional model simulations
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would enable us to largely address this issue and thus
remove one of the primary caveats of the statistical vs.
the dynamical approach. 

Validation of a statistical downscaling approach such
as that presented here could be done in 2 steps (see
Charles et al. 1999): (1) Fitting our statistical model on
AOGCM and RCM outputs for a present-day time
period; the AOGCM data would provide us with simu-
lated large-scale variables, while the RCM outputs
would be used as local-scale ‘observed’ data. (2)
AOGCM output characterizing a future time period,
for which we have the corresponding AOGCM-forced
RCM output, could be used to verify if the simulated
future rainfall based on AOGCM output alone corre-
sponds well with RCM-simulated precipitation; this
step could be applied to various scenarios, to compare
the validity of the simulation under climate change
conditions. 

Although some limitations can arise from RCM
biases and caveats in their parameterization of small-
scale physical processes, this validation would provide
us with key information regarding the extent to which
circulation and precipitation pattern-based statistical
downscaling can be relied on to simulate the regional
to local-scale impacts of future change. Once vali-
dated, this approach could be used to generate high-
resolution and site-specific projections of future cli-
mate change at low computation cost, compared with
RCM simulations. These projections could be used as
input for impact assessments, where the effect of simu-
lated changes in precipitation distribution, frequency
and intensity on agricultural crops, water resources,
flooding, etc. could be evaluated, also with regard to
economic consequences (e.g. Hayhoe et al. 2004).
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