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Abstract1

Downscaling precipitation is a difficult challenge for the climate community. We propose2

and study a new stochastic weather typing approach to perform such a task. In addition to3

providing accurate small and medium precipitation, our procedure possesses built-in features4

that allow us to model adequately extreme precipitation distributions.5

First, we propose a new distribution for local precipitation via a probability mixture6

model of Gamma and Generalized Pareto (GP) distributions. The latter one stems from Ex-7

treme Value Theory (EVT). The performance of this mixture is tested on real and simulated8

data, and also compared to classical rainfall densities.9

Then, our downscaling method, extending the recently developed nonhomogeneous stochas-10

tic weather typing approach, is presented. It can be summarized as a three-step program.11

First, regional weather precipitation patterns are constructed through a hierarchical ascend-12

ing clustering method. Second, daily transitions among our precipitation patterns are rep-13

resented by a nonhomogeneous Markov model influenced by large-scale atmospheric vari-14

ables like NCEP reanalyses. Third, conditionally on these regional patterns, precipitation15

occurrence and intensity distributions are modeled as statistical mixtures. Precipitation16

amplitudes are assumed to follow our mixture of Gamma and GP densities.17

The proposed downscaling approach is applied to 37 weather stations in Illinois (USA) and18

compared to various possible parameterizations and to a direct modeling. Model selection19

procedures show that choosing one GP distribution shape parameter per pattern for all20

stations provides the best rainfall representation amongst all tested models. This work21
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highlights the importance of EVT distributions to improve the modeling and downscaling of22

local extreme precipitations.23
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1 Introduction24

In recent decades, the accuracy of general circulation models (GCM) to simulate the large-25

scale behavior of the atmosphere has greatly improved. Still, such models have difficulties26

capturing small-scale intermittent processes, e.g. local precipitation. To better understand27

and represent these sub-grid scale meteorological characteristics, Regional Climate Models28

(RCM) offer an elegant way to integrate local processes through physical and dynamical29

equations. However, they can be extremely computer-intensive and their spatial resolution30

- generally from 5 to 50 km - does not always provide the required information needed in31

impact studies. Again, local precipitation can be considered as the archetypical example32

of such limitations. While advances in computer sciences may give the necessary computer33

power to resolve these smaller scales in the future, practitioners (flood planners, insurance34

companies, etc) need to make decisions locally with the current information today.35

In order to link our large scale knowledge supplied by today’s GCM, RCM and reanalysis36

outputs with measurements recorded at weather stations, statistical downscaling techniques37

offer a computationally attractive and ready-to-use route. This statistical approach consists38

of inferring significant relationships among large, regional and local scale variables. How to39

estimate, apply and test such relationships in order to have accurate representations of local40

features constitutes the so-called group of statistical downscaling questions. Three categories41

of methods are usually given to answer such questions: transfer functions, stochastic weather42

generators and weather typing methods. The first category is a direct approach. The rela-43

tionships between large-scale variables and location-specific values are directly estimated via44
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either parametric, nonparametric, linear or nonlinear methods such as the analog method45

[e.g. Barnett and Preisendorfer, 1978; Zorita and von Storch,1998], multiple linear regressions46

[e.g. Wigley et al., 1990; Huth, 2002], kriging [e.g. Biau et al., 1999] and neural networks47

[e.g. Snell et al., 2000; Cannon and Whitfield, 2002]. The second category focuses on weather48

generators in which GCM outputs drive stochastic models of precipitation [e.g. Wilks, 1999;49

Wilks and Wilby, 1999]. They are particularly of interest to assess local climate change [e.g.50

Semenov and Barrow, 1997; Semenov et al., 1998]. The weather typing approach, the third51

and last category, encapsulates a wide range of methods that have in common an algorithmic52

step in which recurrent large-scale and/or regional atmospheric patterns are identified. These53

patterns are usually obtained from clustering and classification algorithms applied to geopo-54

tential height, pressure or other meaningful atmospheric variables over a large spatial area.55

These clustering and classification algorithms can be of different types: CART [Classification56

and Regression Trees, see Breiman et al., 1984; Schnur and Lettenmaier, 1998], “K-means”57

methods [e.g. Huth, 2001; Yiou and Nogaj, 2004], hierarchical clustering approaches [e.g.58

Davis et al., 1993; Bunkers et al., 1996], fuzzy-rules-based procedures [e.g. Pongracz et al.,59

2001], neural networks [e.g. Bardossy et al., 1994] or mixture of copula functions [Vrac et60

al., 2005]. Introducing such an intermediate layer (the weather patterns) in a downscaling61

procedure provides a strong modeling flexibility. For example, linking directly the relation-62

ships between large-scale atmospheric variables and precipitation recorded at a few weather63

stations may be too complex in most inhabited regions. In comparison, it may be easier64

and more efficient to first model the dependences between large-scale data and weather pat-65

terns, the latter representing the recurrent atmospheric structures corresponding to a kind66
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of summary of the large scale. Then, we can focus on the coupling between weather patterns67

and local measurements. Obviously, such a strategy will only be successful if the weather68

patterns are carefully chosen; i.e., if they capture relevant recurrent summary information.69

From a probabilistic point of view, the coupling step of a weather typing approach can be70

viewed as deriving the following conditional probability density function (pdf)71

fRt|St
(1)

which corresponds to the probability of observing local rainfall intensities, say Rt, given the72

current weather state, say St, at time t. In addition to providing a simple mathematical73

framework that can easily integrate various uncertainties, this probabilistic definition of74

statistical downscaling is wide enough to cover many case studies. In this work, to get more75

realistic precipitation variability than with a model only conditional on weather patterns,76

the pdf (1) is also defined conditionally on a vector of large-scale atmospheric variables, say77

Xt, at time t:78

fRt|Xt,St
. (2)

In this paper, our main application is to downscale precipitation over the region of Illinois79

(USA). Consequently, we would like to address the following questions: how to find adequate80

regional weather patterns for St? How to model the coupling between large atmospheric81

variables Xt and St? What is an appropriate form for the conditional density defined by82

(2)? The last question is the central one for the practitioner.83

To our knowledge, none of the statistical downscaling methods discussed previously in this84

section has been developed to address the issue of modeling both common and extreme values.85
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Nevertheless, although, for example, hydrologists and flood planners are interested in mean86

precipitation, they also have a particular interest in modeling extreme local precipitation87

because of its human, economical and hydrological impacts where large scale information88

may help at modeling such extreme events. Past studies [Katz et al. 2002, Naveau et al.89

2005] have illustrated how Extreme Value Theory (EVT), a statistical theory developed over90

the past 80 years, provides the mathematical foundation for appropriately modeling extreme91

precipitation. Hence, another important objective in this paper is to integrate EVT models92

within a weather typing approach, i.e., throughout the density (2). To perform such a task,93

we extend the original work on the nonhomogeneous stochastic weather typing approach by94

Vrac et al. [2006].95

The paper is organized as follows. In the first part of Section 2, we recall three clas-96

sical distribution candidates that have been proposed to fit rainfall and we also introduce97

a mixture model inspired by Frigessi et al. [2003]. A comparison and a discussion about98

the performance of these four distributions is undertaken. In Section 3 the full data sets99

are presented. Regional precipitation-related patterns are obtained by applying a hierarchi-100

cal ascending clustering (HAC) algorithm to observed precipitation. Then, our statistical101

downscaling model is explained. Section 4 contains results about our application and many102

different diagnostics are computed to assess the quality of the models and to select the103

most appropriate one. All along this section, instead of “pure” GCM outputs as large-104

scale atmospheric variables, we take advantage of reanalysis data from the National Centers105

for Environmental Prediction (NCEP). Indeed, not only are NCEP reanalyses constrained106

GCM outputs, but also, using NCEP is necessary to assess our daily downscaling method in107

7



a present climate, before fitting the method to (pure) GCM outputs to project local change108

in precipitation. Hence, because the motivation is driven by the scale transformation of109

large-scale atmospheric variables (GCM outputs or reanalysis data), working on reanalyses110

is a first essential step. Lastly, in Section 5, we conclude and give some future research111

directions.112

2 Modeling rainfall locally113

There exists a wide range of distribution families to statistically model rainfall intensities.114

For example, [Katz, 1977; Wilks, 1999; Bellone et al., 2000; Vrac et al., 2006; Wilks, 2006]115

argued that most of the precipitation variability can be approximated by a Gamma distribu-116

tion. However, it is also well known [e.g. Katz et al., 2002] that the tail of this distribution117

can be too light to capture heavy rainfall intensities. This leads to the underestimation of118

return levels and other quantities linked to high percentiles of precipitation amounts. Con-119

sequently, the societal and economical impacts associated with heavy rains (e.g., floods) can120

be miscalculated. To solve this issue, an increasingly popular approach in hydrology [Katz121

et al., 2002] is to disregard small precipitation values and to focus only on the largest rain-122

fall amounts. The advantage of this strategy is that an elegant mathematical framework123

called Extreme Value theory (EVT) developed in 1928 [Fisher and Tippett, 1928] and reg-124

ularly updated during the last decades [e.g., Coles, 2001] dictates the distribution of heavy125

precipitation. More specifically, EVT states that rainfall exceedances, i.e. amounts of rain126

greater than a given threshold u, can be approximated by a Generalized Pareto Distribution127
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(GPD) if the threshold and the number of observations are large enough. In other words,128

the probability that the rainfall amount, say R, is greater than r given that R > u is given129

by130

P (R > r|R > u) =

(

1 + ξ
r − u

σ

)−1/ξ

+

, (3)

where a+ = max(a, 0) and σ > 0 represents the scale parameter. The shape parameter ξ131

describes the GPD tail behavior. If ξ is negative, the upper tail is bounded. If ξ is zero, this132

corresponds to the case of an exponential distribution (all moments are finite). If ξ is positive,133

the upper tail is still unbounded but higher moments eventually become infinite. These three134

cases are termed “bounded”, “light-tailed”, and “heavy-tailed”, respectively. The flexibility135

of the GPD to describe three different types of tail behavior makes it a universal tool for136

modeling exceedances. Although this GPD approach has been very successful to model heavy137

rains, it has the important drawback of overlooking small precipitation. Recently, Wilson138

and Toumi [2005] proposed a new probability distribution for heavy rainfall by invoking a139

simplified water balance equation. They claimed that the stretched exponential distribution140

tail defined by141

P (R > r) = exp

[

−

(

r

ψ

)ν]

, (4)

where ψ > 0 and ν > 0 correspond to the scale and shape parameter. The latter should142

be equal to ν = 2/3. This was justified by physical arguments that take into account of143

the distributions probabilities of quantities like the upward wind velocity w (although the144

distribution of w is much more unknown than the distribution ofR). Note also that, although145

the parameter ν is expected to be equal to 2/3 in theory, Wilson and Toumi did not say146
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that in practice this parameter has to be equal to 2/3. Indeed, they estimated the shape147

parameter from different weather station precipitation measurements over the world. They148

found that, in practical applications, the estimated shape parameter is usually different from149

the 2/3 constant. Despite its drawbacks, such a type of model is promising because it tries150

to combine probabilistic reasoning with physical arguments. But still, it is not designed151

to model small precipitation amounts. For their main example, Wilson and Toumi [2005]152

estimated the parameter (ψ, ν) in (4) for “heavy precipitation defined as daily totals with153

probability less than 5%”. Hence, one may wonder how to deal with the remaining 95%154

and what is the justification for working with 5% of the data and not 10%, 3% or any small155

percentages (this later problem also exists with a classical EVT approach). Because our156

final objective is to downscale the full range of precipitation values and because we do not157

want to choose an arbitrarily preset threshold (or percentage), we follow a different direction158

and opt for the method proposed by Frigessi et al. [2003]. These authors introduced the159

following mixture model160

hβ(r) = c(β) × [(1 − wm,τ(r)) × fβ0
(r) + wm,τ (r) × gξ,σ(r)] (5)

where c(β) is a normalizing constant, β = (m, τ, β0, ξ, σ) encapsulates the vector of unknown161

parameters, fβ0
corresponds to a light-tailed density with parameters β0, the function gξ,σ162

represents the GPD density that can be obtained from deriving the tail defined by (3) and163

wm,τ(.) is a weight function that depends on two parameters164

wm,τ (r) =
1

2
+

1

π
arctan

(

r −m

τ

)

. (6)
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Note that this weight function is non-decreasing, takes values in (0, 1] and tends to 1 as r165

goes to ∞; i.e., heavy rains are represented by the GPD density gξ,σ(r) in the mixture hβ(r)166

for large r. Conversely, small precipitation values are mostly captured by the light-tailed167

density fβ0
(r). Hence, the idea behind equations (5) and (6) is rather simple: the mixing168

function wm,τ (r) provides a smooth transition from a light-tailed density (small and medium169

precipitation) to the GPD density (heavy rainfalls). The parameters m and τ in wm,τ (r)170

correspond to the location and the speed of the transition from fβ0
to gξ,σ in (5), respectively.171

In 2003, Frigessi et al. applied their model to Danish fire loss data and opted for a Weibull172

distribution as a light-tailed density in (5). In the context of precipitation modeling, past173

works [Bellone et al., 2000; Vrac et al., 2006; Wilks, 2006] indicate that a Gamma density,174

i.e.175

fβ0
(x) =

1

λγΓ(γ)
xγ−1 exp(−x/λ), with β0 = (γ, λ), (7)

should fit appropriately the bulk of the precipitation values (heavy rains excluded). This176

hypothesis could be challenged if the variable of interest was different, e.g. temperature. In177

addition, one may be puzzled by the “absence” of a threshold in Equation (5). Indeed, the178

threshold u in Equation (3) is forced to be equal to zero in (5). But introducing the weight179

function wm,τ (r) and fixing the GPD threshold to zero brings two important benefits. First,180

the difficult threshold selection problem is replaced by a simpler unsupervised estimation181

procedure, i.e. finding m and τ in wm,τ (r) from the data. This strategy is particularly182

relevant to large data sets analysis because it would be very time-consuming to find an183

adequate threshold for a large number of weather stations. Second, allowing for non-zero184

thresholds in (5) would impose an unwelcome discontinuity in hβ(r). From a physical point185
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of view, such a discontinuity represents an unrealistic feature in precipitation.186

In summary, we have four candidates for modeling local rainfall distribution:187

• the Gamma density that works well for the main rainfall range but not for large values,188

• the recently introduced stretched-exponential distribution function defined by (4), con-189

structed on a physical foundation but only designed for heavy rainfall and not for small190

precipitation values,191

• the GPD function that works for extreme precipitation but not for small values, that is192

mathematically sound and universal, in the sense that it can also fit temperature,winds193

extremes, etc,194

• and our new mixture model defined by (5) and (7) that combines the advantages of195

the Gamma and GPD densities, and consequently can fit small and heavy rainfall.196

To compare the performances of these four distributions, we implement the following pro-197

cedure. We simulate 100 samples of 1000 iid realizations of each density with: λ = 1 and198

γ = 0.25 for the Gamma distribution (see Equation (7)), u = 0, ξ = 0.3, σ = 0.1 for the GPD199

(see Equation (3)), u = 0, m = 1, τ = 0.1 for the mixture of the two previous distributions200

(see equation (5)), and ν = 2/3 and ψ = 1 for the stretched exponential (see Equation (4)),201

respectively. Such parameter values were chosen because they correspond to reasonable esti-202

mates for precipitation data. In particular, ν = 2/3 is recommended by Wilson and Toumi.203

As a second step, we fit each distribution to each of the four simulated samples by using the204

maximum likelihood approach to compute the “optimal” parameters for each distribution.205
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To be consistent with Wilson and Toumi’s paper, the parameter ν in (4) is not considered206

as a constant, i.e. we assume that this shape parameter has to be estimated. This has also207

the advantage that we don’t penalize the stretched exponential distribution with respect to208

the other distributions we test and for which the shape parameter is also not fixed but esti-209

mated. The last step is to compare the qualities of the fit with respect to the given density.210

Classically, one can compute the Akaike information criterion [AIC, Akaike, 1974], defined211

by −2 log(L) + 2p, and the Bayesian information criterion [BIC, Schwarz, 1978], defined by212

−2 log(L)+p log(n), where L is the likelihood of the model fitted to the data, p is the number213

of parameters, and n is the number of data. Minimizing AIC and BIC helps to select the214

model with a good fit to the data (i.e. high likelihood) while penalizing a model with too215

many parameters. The BIC tends to add a larger parameter cost than the AIC. For our216

simulations, the frequencies of selection of the four candidate distributions by the AIC and217

BIC values are summarized in Table 1. As expected, the best AIC and BIC (in bold) are218

majoritarily obtained along the diagonal of the table, i.e. the simulated samples are best219

fitted by the density from which they were generated. We can remark that about one time220

every third, the BIC indicates a Gamma fit when the true density is a mixture, i.e. the BIC221

penalizes too much. In comparison, the AIC largely selects the correct distribution for all222

four cases.223

Hence, for these simulations, the AIC appears to perform reasonably and will be used in224

the subsequent analyses. Still, we can not solely rely on these two criteria to discriminate225

among models. In particular, these criteria may not be well adapted for extreme values.226

Concerning the fit quality of the largest values, Figure 1 displays four quantile-quantile type227
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plots (QQplots). The o, ×, +, and � signs correspond to the analytically fitted Gamma,228

mixture, GP and stretched exponential densities, respectively. The y = x black line rep-229

resents the “true” distribution that can either be a Gamma (left-upper panel), a mixture230

(right-upper panel), a GP (left-lower panel) and a stretched exponential (right-lower panel)231

density. This graph mainly tells us that the mixture distribution (× signs) appears to pro-232

vide a very good fit in all cases. As expected, a Gamma fit (o signs) does not work very well233

when the true trail is heavy. The stretched exponential (� signs) is somehow limited because234

it only provides a good fit when the true tail is stretched exponential. The worst case is235

the GPD (+ signs), but this is expected because the threshold u was set to zero and it is236

well known that the GPD only works well for very large values. An alternative would be to237

select a high threshold, but then the main part of rainfall can not be statistically modeled238

(and consequently, be compared with the other densities). Still, it is very interesting to see239

that, despite of also having a GPD threshold set to zero, the mixture density provides very240

good results. This reveals that the weight function wm,τ in (6) can bring enough flexibility241

even if the mixture threshold is equal to zero. One may argue that the mixture density has242

too many parameters, but the AIC and BIC summarized in Table 1 do not show much cases243

of over-fitting. Even more importantly, figure 1 shows that the other three classical distri-244

butions for rainfall (Gamma, stretched exponential and GPD) do not offer the necessary245

latitude to model the full spectrum of precipitation distribution.246

Although the scope of this small simulation study is very limited and a more thorough247

investigation would be welcome to review the arguments and problems related to local rainfall248

distributions, Table 1 and Figure 1 strongly suggest that our mixture model could provide249
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a competitive probabilistic foundation. Consequently, this model will be used in the rest of250

this paper. Concerning the choice between the AIC and BIC, only the AIC will be presented251

in the remainder of this paper. In most cases, the BIC provides similar results and does not252

change the meaning of the main findings that will be presented in Section 3.253

With respect to real data, our goal is to analyze daily observations that were recorded254

at 37 weather stations in Illinois (USA) from 1980 to 1999. Those stations correspond255

to the complete dataset of precipitation provided for Illinois by the co-op observational256

program. The stations are found to be uniformly distributed over Illinois. To reduce seasonal257

influences, we only consider three winter months, December, January and February (DJF).258

To illustrate the fit between our mixture model and real rainfall observations and also to259

show the difference of fit to the data between a Gamma distribution and our mixture, we260

select one station (Aledo) and apply a maximum likelihood estimation procedure to derive261

the parameters of each distribution. Figure 2 shows the resulting quantile-quantile plots.262

The upper panel displays the fit obtained using a Gamma distribution, while the lower panel263

shows the result for our mixture distribution. As already seen in our simulation study, this264

latter model provides a gain at capturing extreme values behavior. At this stage, one could265

be satisfied by this type of station-per-station analysis. But from a statistical and physical266

point of views, we prefer to go a step further in our statistical analysis by relating local267

precipitation with large scale variables through an extension of our mixture model. This is268

the object of the following section.269
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3 Our downscaling procedure270

To develop a statistical model capable of downscaling precipitation, we need large-scale at-271

mospheric variables and local observed precipitation measurements. The latter are provided272

here by daily observations described in Section 2. Large-scale atmospheric variables are given273

by NCEP reanalysis data - with a 2.5◦×2.5◦ spatial resolution and at 850 mb. Three NCEP274

variables are considered in our analysis: geopotential height denoted Z850, specific humidity,275

Q850, and dew point temperature depression ∆Td850 defined as T850 − Td850, where T850 and276

Td850 are the temperature and dew point temperature at 850 mb, respectively.277

3.1 Modeling regional-scale precipitation patterns278

Classically, weather typing methods are based on circulation-related patterns. A number279

of studies (e.g. Mamassis and Koutsoyiannis, 1996) showed that, according to the studied280

region, large-scale atmospheric patterns can be efficient to explain and characterize local281

precipitation variability. However, to better represent precipitation behaviors, we follow the282

approach of Vrac et al. [2006]. Instead of defining upper-air circulation patterns, these283

authors recently constructed precipitation-related patterns, directly obtained from a subset284

of observed local precipitations, and showed that, for Illinois, these patterns are more efficient285

than classical upper-air circulation patterns to characterize and simulate local precipitation.286

These precipitation patterns were derived from a hierarchical ascending clustering (HAC)287

algorithm with Ward criterion [Ward, 1963], applied to the observed precipitation of the288

1980-1999 winter months (DJF). Instead of the common Euclidean distance, a special metric289
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tailored to precipitation was developed to take account of the spatio-temporal rain features.290

The details of this clustering algorithm can be found in Vrac et al. [2006]. Figure 4 shows the291

four precipitation patterns over the region of Illinois. It is clear that pattern 1 represents the292

smallest rainfall intensities whereas pattern 4 corresponds to the most intense precipitation.293

Patterns 2 and 3 show moderate precipitation, with opposite South/North and North/South294

gradients respectively. The North/South gradient (drier in the north and wetter in the south)295

that is also perceptible in pattern 4, is a classical recurrent feature of winter precipitation in296

Illinois.297

3.2 Relating regional precipitation patterns with large-scale NCEP298

outputs299

At this stage, precipitation-related structures St have been derived (see Figure 4) and repre-300

sent the regional scale. How to link them to the larger scale (the NCEP reanalysis) and how301

to connect them to the smaller scale (the weather stations) are the two remaining questions302

we have to address in this paper. In this section, we focus on answering the first one. To303

perform this task, we model the day-to-day probability transitions from the given weather304

state at day t, say St, to the state of the following day, St+1 as a function of the current305

large atmospheric variables, say Xt, from the NCEP reanalysis. More precisely, a nonhomo-306

geneous Markov model [e.g., Bellone et al., 2000] is fitted to our NCEP data and our states307

by applying the following temporal dependence structure308

P (St = s|St−1 = s′,X t) ∝ γs′s exp

[

−
1

2
(X t − µs′s)Σ

−1(X t − µs′s)
′

]

. (8)
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where the symbol ∝ means “proportional to” and where γs′s is the baseline transition proba-309

bility from pattern s′ to pattern s, corresponding to the observed transition probability from310

s′ to s, i.e. the proportion of transitions from s′ to s over the total number of transitions.311

In the above formula, we can recognize a weight represented by the exponential term that312

is proportional to a normal density whose mean µs′s and variance matrix Σ are directly313

representing the influence of the large atmospheric variable Xt. Eq. (8) comes from Bayes’s314

theorem, saying that:315

P (St = s|St−1 = s′,X t) =
P (St = s|St−1 = s′) P (Xt|St = s, St−1 = s′)

P (X t|St−1 = s′)

=
γs′s P (X t|St = s, St−1 = s′)

∑

k γksP (Xt|St = s, St−1 = k)
(9)

By assuming in Eq. (9) that X t is multivariate normal, Eq. (8) is easily derived. In Eq. (8),316

µs′s corresponds to the mean vector of the atmospheric variables at time t when transition-317

ing from St−1 = s′ to St = s. The four precipitation patterns defined in section 3.1 imply a318

reasonable number of 16 possible transition. Hence the 16 µs′s and γs′s to be computed can319

be estimated very fast. As for Σ, it is the variance-covariance matrix for the whole dataset320

of large-scale atmospheric data (centered around their mean). Indeed, as in Charles et al.321

(1999), Bellone et al. (2000) or Vrac et al. (2006), for stability reasons, a single covariance322

matrix is prefered over over one matrix per transition. In contrast to the exponential part323

of Eq. (8), the baseline transition probability γs′s in (8) is time invariant and corresponds324

to the transition probabilities that one would have if large scale features did not bring any325

information. This case corresponds to the homogeneous Markov model. Hence, allowing326

a non-homogeneity in our Markov modeling brings the necessary flexibility to mathemati-327
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cally integrate large-scale information at the intermediate level of the regional precipitation328

patterns.329

3.3 Linking regional precipitation patterns to local precipitation330

In order to implement an efficient downscaling precipitation scheme, we also need to model331

accurately the distributional properties of precipitation at the smallest scale, i.e. the ones332

recorded at rain gauges.333

We now assume that, given the current weather state s, all the rainfall intensities for334

station i follow the density hβsi
given in (5) with state- and site-specific parameters. This335

gives us the last ingredient to determine our main density defined by (2): the probability of336

observing local rainfall intensities at day t, say Rt = (Rt,1, ..., Rt,N), given the current weather337

state, say St = s, and large-scale atmospheric variables, say Xt. To compute fRt|Xt,St
, we338

follow Bellone et al. [2000] who considered that each rain gauge is spatially independent339

given the state St. Mathematically, this assumption translates into the following equality340

fRt|Xt,St
(rt1, . . . , rtN ) =

N
∏

i=1

fRti|Xt,St
(rti) (10)

To give an explicit form for the density fRti|Xt,St
, we take advantage of Vrac et al. [2006]341

who suggested the following form342

fRti|Xt,St=s(rti) = [p(X t; αsi)hβsi
(rti)]

�
{rti>0} × [1 − p(X t; αsi)]

�
{rti=0} (11)

where hβsi
is given by (5),

�
{a} = 1 if a is true and 0 if false, and p(X t; αsi) represents343

the probability of rain occurence for weather station i in state s. Equation (11) may look344

complex at first sight. Basically, it is composed of three elements:345
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(a) the indicator function
�
{rti=0} is necessary to take into account that the rain gauge i346

can record no precipitation during day t,347

(b) 1− p(X t; αsi) provides the probability of such a dry day and it depends on the atmo-348

spheric variables X t through a logistic regression with parameters αsi, as suggested349

by Jeffries and Pfeiffer [2000]:350

p(X t; αsi) = P (Rti > 0|St = s,X t) =
exp(X ′

tαsi)

1 + exp(X ′
tαsi)

(12)

(c) the density hβsi
(rti) corresponds to positive rainfall values.351

Combining equations (8), (5), (10) and (11) constitutes the main components of our stochas-352

tic weather typing approach. It integrates three scales (small, regional and large) through the353

variables Rt, St and Xt. In addition, the full spectrum of precipitation values (dry events,354

medium precipitation, heavy rainfall) is modeled.355

4 A case study: Precipitation in Illinois, USA356

As previously mentioned, Figure 4 displays our four selected regional precipitation patterns357

over the region of Illinois. From these four patterns, the nonhomogeneous Markov model358

is parameterized, and the parameters of the conditional distributions of precipitation are359

estimated by Maximum Likelihood Estimation (MLE), given each observed (i.e. pre-defined)360

pattern. In the following simulation process, the precipitation patterns are stochastically361

simulated, for each t, according to the parameterized NMM, influenced by the large-scale362

atmospheric variables. In other words, in the simulation step, we do not use the patterns363
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defined previously by HAC but we generate new ones according to X t and our model.364

Conditionally on the four patterns, equations (10) and (11) offer a wide range of modeling365

possibilities. For example, one may wonder if it is better to have a unique GPD shape366

parameter ξ for all precipitation patterns and at all rain gauges or if a better statistical367

fit can be obtained by allowing this shape parameter to vary from station to station, while368

taking into account the risk of over-parametrization. Before presenting the seven different369

models that we have tested and compared, we note that the parameter τ in Eq. (6) cannot370

be null. For this reason, from the limit of Eq. (6) when τ goes to 0, we extend Eq. (6) to371

wm,0(r) =































0, if r < m

0.5, if r = m

1, if r > m

(13)

for τ = 0, whenever we do not wish to estimate τ and we think that the transition from372

the Gamma to the GPD distribution is very fast in the mixture defined by (10). Our seven373

models are the following ones:374

(0) Gamma and GPD mixtures whose parameters vary with location and precipitation375

pattern,376

(i) only Gamma distributions (no GPD in the model) whose parameters vary with location377

and precipitation pattern,378

(ii) Gamma and GPD mixtures with one ξ parameter per pattern (i.e. given the weather379

pattern, the weather stations have the same ξ),380

(iii) same as (ii) with τ set to be equal to 0,381
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(iv) Gamma and GPD mixtures with one common ξ for all stations and all patterns,382

(v) same as (iv) with τ set to be equal to 0.383

(iii)∗ same as model (iii) - one ξ parameter per pattern with τ = 0 - except that only Gamma384

distributions are used in pattern 1. Indeed, since this pattern corresponds to small or385

null intensities of rainfall, a modelling of the extreme events could have no sense here.386

From a statistical point of view, the GPD shape parameters are very difficult to estimate387

(wide confidence intervals). Hence, diminishing the number of ξ parameters to estimate like388

in model (iii) reduces the overall variability. In addition, interpreting four ξ parameters (one389

per pattern, see models (ii) & (iii)) instead of 37 × 4 is much easier for the hydrologist.390

Besides these two general guidelines, we need a more objective “measure” to compare our391

seven models. As in Section 2, we opt for minimizing the classical AIC criterion (similar392

results are obtained with the BIC).393

Our seven models’ differences primarily focus on the degree of flexibility allowed for ξ394

and τ . Concerning the other parameters (σ,m, . . . ), we allow them to vary across stations395

and across patterns because they mainly represent local variability.396

For each model, we estimate its parameters by implementing a maximum likelihood397

estimation method. To illustrate the quality and drawbacks of our approach, we will comment398

on five example stations in this section: Aledo (North-West of Illinois), Aurora (North-East),399

Fairfield (South-East), Sparta (South-West), and Windsor (center-East of Illinois). This400

subset was picked because we believe that it represents a large range of cases and space401

limitations make it impossible to provide plots and tables for all 37 stations.402
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Concerning the large-scale atmospheric variables Xt, we assume that only the NCEP403

grid-cells over Illinois have the potential to influence local precipitation and transition prob-404

abilities. Consequently, we only work with the six grid-cells that cover Illinois. According to405

the studied region, it is possible that taking more NCEP grid-cells into account could improve406

the modeling and the simulation process. A few attempts have been made to enlarge the407

NCEP area influencing local precipitation and patterns transitions.The associated results,408

not presented here, did not show any clear improvement for the Illinois region, compared to409

the results obtained from the six grid-cells. Moreover, the more grid-cells we work on, the410

more parameters we have (with a risk of over-parameterization). Hence from a computa-411

tional point of view, it is better to restrict the large-scale influence to a reasonable number412

of NCEP grid-cells over Illinois. Based on these two considerations, we then limit the appli-413

cation presented here to the six NCEP grid-cells over Illinois to influence local precipitation414

and patterns transitions.415

Instead of working directly with the raw variables, Z850, Q850, and ∆Td850 - corresponding416

to 6×3 = 18 variables - we perform a Singular Value Decomposition [Von Storch and Zwier,417

1999; Vrac et al., 2006; Wilks, 2006]. This has the advantage of reducing significantly the418

dimensionality of the NCEP data, while keeping the main part of information brought by the419

reanalysis. The SVD operation gives us the following summary: the SVD explains 93.6%,420

98.6%, and 97.5% of the correlation for Z850, Q850, and ∆Td850 respectively.421

A central theme in this paper is how to capture the full range of precipitation, extremes422

included. To determine if the addition of a GPD to a Gamma density is worthwhile, Figure423

5 displays QQplots (empirical quantiles versus modeled quantiles) for the Sparta station for424
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two precipitation patterns (see the left and right panels) and in two models: (0) & (i), see425

the lower and upper panels, respectively. In contrast to histograms, the QQplots are, by426

design, capable of representing the quality of the estimated fit at the end of the distribution427

tail, i.e. they can show the capacity of our mixture model to represent extreme precipitation.428

Figure 5 indicates that a fitted Gamma has the tendency to either underestimate (5.a)429

or overestimate (5.b) the largest precipitation for this station, respectively to the precipi-430

tation patterns. Fig. 5.a and 5.c show that, for pattern 2, our mixture can model heavier431

rainfall than the gamma distribution alone (i.e. characterizes stronger intensities for this432

pattern/station). To explain how the Gamma model can overestimate large precipitation in433

Fig. 5.b, we have to keep in mind that the whole rainfall range is fitted and the Gamma434

distribution does not have a shape parameter for the tail of the distribution. In the presence435

of a heavy tail, it is not clear how the estimation procedure is going to compensate the facts436

that the gamma distribution is not heavy tailed and that the whole distribution has to be fit-437

ted. Either the Gamma scale parameter can be largely overestimated (by the largest values)438

or underestimated (depending on the spread and the size of the sample). Applying a robust439

estimator to find the Gamma scale parameter should remove the problem of overestimation,440

but then heavy tailed values will even be more disregarded. Consequently, a possible solution441

is to allow a distribution (like the GPD) with a shape parameter. More generally, Fig. 5442

clearly indicates that integrating a GPD improves the fit of “large” rainfalls for this station,443

as the closer the estimated quantiles are to the empirical quantiles the better. Of course, this444

does not mean that this is true for all stations and all patterns. Instead, this shows that our445

mixture defined by (5) provides the necessary modeling flexibility to describe heavy-tailed446
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behaviors when needed. If no heavy rainfalls are observed at a given station, the estimated447

weight defined by (6) should take small values to favor the Gamma distribution, i.e., m large448

for this station.449

Concerning the model selection, Table 2 compares models (0) and (i) with respect to the450

Akaike Information Criterion (AIC) for our five selected stations and for each precipitation451

pattern. Because the BIC values gave us equivalent results, they are not provided in this452

table, illustrating that the optimal choice between model (0) and model (i) varies greatly453

across stations and across patterns. For example, introducing a GPD seems to be a good454

choice for Sparta, while a simpler Gamma model appears to be sufficient for Aurora.455

Table 3 contain the AIC values obtained for the seven models. The bold values correspond456

to the optimal criterion of each row. Taking model (iii)∗ (τ = 0, a Gamma distribution for457

pattern 1 and one ξ parameter per pattern for patterns 2-4) provides the best AIC for Sparta,458

while setting one overall ξ parameter gives the best AIC for the four other stations. For any459

of the five stations, we can remark that setting τ = 0 in model (ii) - i.e. going from model (ii)460

to model (iii) - brings an improvement of the AIC. This means that restricting the number461

of ξ parameters generally provides better criteria. Models (iii)∗ and (iv) seem to be the most462

competitive ones in general (i.e. for most of the stations separately), while the preferred463

model tends to be (iii)∗ for the set of the five selected weather stations altogether (last row464

of Table 3). Consequently, model (iii)∗, i.e. pattern 1 associated to Gamma distributions465

and patterns 2-4 to mixtures with one ξ parameter per pattern with the constant τ = 0, is466

chosen as the most efficient model, as it provides the best overall criterion for the set of these467

five stations. Hence, this model can well represent both common and extreme precipitation468
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values with an acceptable number of parameters and has the overall preference.469

Table 4 shows the values of the ξ parameters and the values of the m parameters (when470

applicable) for the five example stations for model (iii)∗. The three ξ parameters are clearly471

positive. These positive values indicate that the heavy tail component in our mixture pdf472

is essential to model heavy rainfalls for precipitation patterns 2 to 4, while the Gamma473

distributions (with light tails) are sufficient in pattern 1 corresponding to small precipitation474

events. Unsurprisingly, the m parameters tend to increase from pattern 2 (with the smallest475

rainfall intensities among patterns 2-4) to pattern 4 (with the strongest rainfalls among all476

patterns).477

To visually evaluate the fit between our model (iii)∗ and the observed precipitation, a478

QQplot is plotted for the Aledo station in Fig. 6. The agreement between observed and479

theoretical quantiles (even for high quantiles) is clearly good. Fig. 6 has to be compared to480

Fig. 2. This allows us to conclude that, not only the AIC is better for model(iii)∗ than for a481

“no pattern” modeling, but also that model(iii)∗ improves the QQplot.482

Besides heavy rainfalls, an important characteristic of precipitation modeling is the rep-483

resentation of the so-called wet and dry spell periods, fundamental quantities in agriculture.484

Note that none of the following results concerning wet and dry spells and local precipitation485

probabilities, presented and shown from Fig. 7, depends on the Gamma or mixture models.486

Indeed, they are only related to the nonhomogeneity introduced in the Markov model (8) -487

that characterizes pattern transitions - and to the probabilities of local rain occurence mod-488

eled as logistic regressions (see (11) and (12)). So, the following results are directly derived489

from the model developed by Vrac et al. [2006] and allow us to compare some precipita-490
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tion appearance characteristics obtained from the “four precipitation patterns” and those491

obtained from the alternative “no pattern” approach.492

In this context, we have noticed that the four precipitation patterns have to be included493

in order to obtain adequate wet and dry spell probabilities. For example, Fig. 7 shows such494

probabilities (in log-scale) at two stations, respectively Fairfield and Windsor. Upper panels495

(a) and (b) display these probabilities when the four precipitation patterns are included in496

our analysis. In contrast, lower panels (c) and (d) show the results when no patterns are497

introduced. From these graphs, one can see that the “no pattern” option is not completely498

satisfying, it tends to underestimate the probabilities for long spells, above all for dry spells.499

5 Conclusion500

We presented here a nonhomogenous stochastic weather typing method to downscale the full501

spectrum of precipitation distributional behaviors. Our downscaling technique is based on a502

nonhomogeneous Markov model that characterizes the transitions amongst different precip-503

itation patterns obtained from a hierarchical ascending clustering algorithm. Conditionally504

on these precipitation patterns, the precipitation distribution is modeled by a mixture model505

that integrates heavy rainfalls, medium precipitation and no rain occurrences, and that de-506

pends on large-scale features given from a SVD applied to NCEP reanalysis.507

After applying our approach to the region of Illinois, it appears that a specific subclass of508

our model (the one with Gamma distributions for pattern 1 and mixture models with a single509

GPD shape parameter per pattern for patterns 2-4) produces the best fit with respect to510
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the AIC criterion for this region. In terms of extreme precipitation, this model corresponds511

to a very fast transition from the Gamma distribution to the GPD for patterns 2-4. It is512

also worthwhile to highlight that introducing four precipitation patterns produces better513

precipitation characteristics than a direct “no pattern” approach does.514

As possible improvements, spatial dependence modeling could be introduced in this model515

to better represent the correlation between stations. In that context, Bayesian hierarchical516

methods could provide an additional flexibility. A possible application of our downscaling517

procedure could be the projection of future local precipitation based on large-scale climate518

change simulated by GCMs. While the estimation step requires both present large- and519

local-scale data, the local projection of future climate scenarios can be done by using only520

the GCM outputs describing future time periods. Based on the NMM previously fitted, the521

future large-scale outputs are first used to influence the simulation of guture precipitation522

patterns through Eq. (8). No local precipitation is needed for this step, since it is obviously523

not even available. Conditionally on the generated future patterns, probabilities of local524

rainfall events can be computed - influenced by the large-scale GCM outputs - through Eq.525

(12) for rain appearances and through Eq. (11) for intensities. These local projections would526

then allow economic impact studies of extreme precipitation.527
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True density Fitted density

Gamma GP Mixture Stretched

Gamma AIC= 90 AIC= 0 AIC= 10 AIC= 0

BIC= 100 BIC= 0 BIC= 0 BIC= 0

Generalized- AIC= 0 AIC= 86 AIC= 11 AIC= 3

Pareto BIC= 0 BIC= 96 BIC= 1 BIC= 3

Mixture: AIC= 7 AIC= 0 AIC= 93 AIC= 0

GP + Gamma BIC= 36 BIC= 0 BIC= 64 BIC= 0

Stretched AIC= 3 AIC= 0 AIC= 10 AIC= 87

exponential BIC= 3 BIC= 0 BIC= 0 BIC= 97

Table 1: Frequencies of selections of the four candidate distributions by the Akaike Infor-

mation Criterion (AIC) and Bayesian information criterion (BIC) values obtained from 100

samples of 1000 simulated data (for each given density). The bold fonts correspond to the

highest frequencies with respect to the AIC and the BIC.
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Station Model Pattern 1 Pattern 2 Pattern 3 Pattern 4

Aledo (0) -351.15 -486.98 -162.21 86.72

(i) -349.15 -493.05 -163.29 84.86

Aurora (0) -948.62 -663.43 -228.28 272.63

(i) -954.48 -670.41 -235.40 265.43

Fairfield (0) -367.72 -513.05 57.15 499.93

(i) -375.99 -282.21 97.42 741.63

Sparta (0) -131.34 -488.52 -128.03 613.23

(i) -129.61 -466.06 -123.57 766.54

Windsor (0) -632.25 -982.22 -321.01 441.08

(i) -613.92 -985.26 -325.78 579.47

Table 2: Akaike Information Criterion (AIC) values obtained pattern by pattern for five

weather stations. The bold values correspond to the optimal criteria either for model (0) or

(i)

39



Station Model (0) Model (i) Model (ii) Model (iii) Model (iv) Model (v) Model (iii)∗

p = 24n p = 8n p = 20n+ 4 p = 16n+ 4 p = 20n+ 1 p = 16n+ 1 p = 12n+ 5

Aledo AIC=-796.52 AIC=-816.58 AIC=-795.76 AIC=-809.79 AIC=-819.46 AIC=-816.18 AIC=-816.79

Aurora AIC=-1137.47 AIC=-1149.99 AIC=-1256.53 AIC=-1293.89 AIC=-1358.48 AIC=-1152.51 AIC=-1299.89

Fairfield AIC=14.36 AIC=103.07 AIC=22.45 AIC=22.37 AIC=-76.81 AIC=-10.21 AIC=16.37

Sparta AIC=277.10 AIC=372.92 AIC=235.65 AIC=228.35 AIC=231.91 AIC=251.44 AIC=222.35

Windsor AIC=-1014.80 AIC=-920.68 AIC=-1016.25 AIC=-1017.59 AIC=-1069.99 AIC=-1028.91 AIC=-1023.59

All five stations AIC=-4433.18 AIC=-4422.27 AIC=-4479.50 AIC=-4515.13 AIC=-4425.06 AIC=-4423.78 AIC=-4553.13

Table 3: Akaike Information Criterion (AIC) values obtained for our five selected weather stations and for our seven models.

The bold values correspond to the optimal criterion per row. Below each model’s name, the number p of parameters for n

stations is provided.
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Pattern 1 Pattern 2 Pattern 3 Pattern 4

ξ NA 0.3 0.13 0.26

m for Aledo NA 0.73 0.81 1.06

m for Aurora NA 0.28 0.48 1.38

m for Fairfield NA 1.61 1.24 1.84

m for Sparta NA 0.46 1.01 1.83

m for Windsor NA 0.56 0.81 0.96

Table 4: Values of the ξ and m parameters for the five example stations for model (iii)∗.

Non-applicable (NA) is indicated for pattern 1, since this pattern is associated to Gamma

distributions in this model.
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Figure 1: Quantiles-quantiles plots (i.e. theoretical vs. fitted quantiles). The o, ×, +, and �

signs correspond to the QQplots from the Gamma, mixture, GP and stretched exponential

densities, respectively. Each distribution is analytically fitted by a Gamma (left-upper panel),

our mixture (right-upper panel), a GP (left-lower panel) and a stretched exponential (right-

lower panel) density. The 99% quantile is indicated for each fitted distribution. These

graphes mainly tell us that the mixture distribution (× signs) appears to provide a very

good fit in all cases.
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(a)

(b)

Figure 2: QQplot for Aledo with (a) Gamma distribution, and (b) our mixture.
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Figure 3: Schematic graph explaining the main components of our downscaling scheme.
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Figure 4: Four station-based precipitation patterns over Illinois derived by the Vrac et al.

(2006) HAC method, with area proportional to mean rainfall for each cluster.
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(a) (b)

(c) (d)

Figure 5: QQplots of precipitation patterns 2 and 3 for station “Sparta”, for function hβ in

(11) as a Gamma distribution in (a) and (b) and hβ as a mixture (5) in (c) and (d). Units

are cm.
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Figure 6: QQplot for Aledo with four patterns and model (iii)∗, i.e., Gamma distributions

for pattern 1 and mixtures for patterns 2-4 with one ξ per pattern and τ = 0.
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(a) (b)

(c) (d)

Figure 7: Wet and dry spells probabilities (in log-scale) obtained for Fairfield and Windsor. Upper panels (a) and (b): the

“4 patterns” approach; lower panels (c) and (d): the “no pattern” approach.
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