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a b s t r a c t

Climate change information required for impact studies is of a much finer spatial scale than climate
models can directly provide. Statistical downscaling models (SDMs) are commonly used to fill this scale
gap. SDMs are based on the view that the regional climate is conditioned by two factors: (1) the large-
scale climatic state and (2) local physiographic features. An SDM based on an analogue approach has
been developed within the Australian Bureau of Meteorology and applied to six regions covering the
southern half of Australia. Six surface predictands (daily minimum and maximum temperature and dew-
point temperature, daily total rainfall and pan evaporation) were modelled. The skill of the SDMs is
evaluated by comparing reconstructed and observed series using a range of metrics: first two moments
of the series, the ability to reproduce day-to-day and inter-annual variability, and long-term trends. Once
optimised, the SDMs are applied to a selection of global climate models which contributed to the
Intergovernmental Panel on Climate Change 4th assessment report released in 2007. A user-friendly
graphical interface has been developed to facilitate dissemination of the SDM results and provides
a range of options for users to obtain tailored information. Once the projections are calculated for the
places of interest, graphical outputs are displayed and can be downloaded jointly with the underlying
data, allowing the user to use the data in their own application.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Global climate models (GCMs) have resolutions of hundreds of
kilometres, whilst regional climate models (RCMs) may be as fine as
tens of kilometres. However, impact assessment applications often
require point specific climate projections in order to capture fine-
scale climate variations, particularly in regions with complex
topography, coastal or island locations, and in areas of highly
heterogeneous land-cover. Therefore a gap exists between what
climate models can predict about future climate change and the
information relevant for environmental studies. Statistical Down-
scaling Models (SDMs) are commonly used to fill this gap.

SDMs are based on the premise that the regional climate is
conditioned by two factors: the large-scale climatic state and local
physiographic features. From this perspective, regional or local
climate information is derived by first determining a statistical
model which relates large-scale climate variables (or ‘‘predictors’’)
to regional and local variables (or ‘‘predictands’’). The large-scale
output of a GCM simulation is then fed into this statistical model to
estimate the corresponding local and regional climate character-
istics. There have been numerous applications of SDMs both in
008 Published by Elsevier Ltd. All
Australia and elsewhere. According to the latest IPCC assessment:
‘‘Research on SDM has shown an extensive growth in application, and
includes an increased availability of generic tools for the impact
community’’ (p. 920, chapter 11, IPCC 4th assessment, Christensen
et al., 2007).

The Australian Bureau of Meteorology (BoM) has developed an
SDM using the idea of a meteorological analogue (Timbal and
McAvaney, 2001). This is one example of a more general type of
SDM based on weather classification methods in which predictands
are chosen by matching previous (i.e. analogous situations) to the
current weather-state. The method was originally designed for
weather forecasting applications (Lorenz, 1969) but was abandoned
due to its limited success and lack of suitable analogues for systems
with large degrees of freedom (Van Den Dool, 1994). The popularity
of the method has recently increased with the availability of longer
time-series datasets, following the completion of several reanalysis
projects and the recognition that the dimension of the search space
(i.e. the spatial domain and number of predictors) must be suitably
restricted when identifying analogues. Even so, the analogue
method still performs poorly when the pool of training observa-
tions is limited and/or the number of classifying predictors is large.

The BoM SDM was first developed for daily temperature
maximum and minimum (Tmin and Tmax) across the Murray–
Darling basin (MDB) in Australia (Timbal and McAvaney, 2001). The
rights reserved.
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choice of a single, best analogue is based on a closest neighbour
using a simple Euclidean metric. The metric is applied to a single
vector which comprises daily normalised anomalies of point values
within an optimised geographical area for the selected predictors.
The choice of the optimal combination of predictors and the
geographical area are two key steps in the optimisation of the
analogue model. The SDM was then extended to rainfall occur-
rences (Timbal et al., 2003) and amount (Timbal, 2004). During
these applications, the technique was tested on other mid-latitude
geographical areas in both Australia and Europe. More recently, the
early work on temperature and rainfall was extended to the newly
derived high-quality network data for the surface moisture related
variables pan evaporation and dew-point temperature. Therefore
the BoM SDM is currently applied to six surface predictands.

The ability of the SDM to reproduce a shift in the observed
climate, a proxy for its ability to reproduce a shift in a future climate
due to global warming, has been tested for the rainfall decline in
the late 1960s in the Southwest of Western Australia (SWA, Timbal,
2004), and in the mid 1990s in the South East of Australia (SEA,
Timbal and Jones, 2008). These studies demonstrated the ability of
the statistical linkage to reproduce non-stationary climates.
However this addresses only one of the several possible limitations
often cited for SDM (Hewitson and Crane, 2006; Christensen et al.,
2007). Users should be familiar with these issues and possible
limitations in using downscaled outputs (see Timbal, 2006a, for the
particular case of the SDM presented here) as well as being aware of
the important benefits brought by SDMs compared with using
Direct Model Outputs (DMOs). A more complete discussion of the
advantages of the particular SDM described here is given in Timbal
(2006b). In using downscaled projections it is also important to
follow best practice as recommended by the IPCC (Wilby et al.,
2004).

To facilitate access to downscaling projections across a broader
user community, a graphical user interface (GUI) has been devel-
oped, which provides projections across the southern half of the
Australian continent. The GUI is a web-based tool using a mix of
static HTML (HyperText Markup Language) pages and dynamically
generated pages. It provides users with access to projections for
a series of surface predictands at point specific locations. The
locations correspond to the stations included in the high-quality
climate data network maintained by the National Climate Centre
(NCC) of the BoM. This network forms the basis of our current
understanding of long-term trends and variability of the Australian
climate.

The GUI has been developed specifically to be used within
Australia and is particularly directed at impact studies (e.g. agri-
culture, health, ecology and economy). The scope is limited to part
of the Australian continent and the statistical model has been
optimised therefore users can generate data without specific
knowledge of the particular statistical downscaling methodology. It
responds to a growing need for efficient delivery mechanisms of
climate change information.

Currently most available tools rely on DMOs rather than
downscaled projections: e.g. the Ozclim software (http://www.
csiro.au/ozclim/home.do) developed by the CSIRO to provide
regional projections across the Australian continent where various
climate models’ information are interpolated on a high resolution
grid (Ricketts and Page, 2007); or the TETYN software (http://
sourceforge.net/projects/tetyn/) which used global database of
climate indices (Solymosi et al., 2008). Besides tool based on DMOs,
a few attempts have been made to enhance the relevance of the
climate information provided by on-line software for high resolu-
tion impact studies by downscaling climate change information.
The first documented attempt was the UK-based SDSM (www.
sdsm.org.uk), this is a general downscaling methodology that one
can optimise and applied anywhere once the local data needed are
provided (Wilby et al., 2002); Hessami et al. (2008) described
a regional optimisation and application for Canada. More similar in
scope and method to the tool described here is the UK-based
Environment agency Rainfall and Weather Impacts Generator,
EARWIG however relies on a weather generator type of down-
scaling (Kilsby et al., 2007) as does RainSim (Burton et al., 2008)
while the BoM-GUI, described here, relies on a physically based
downscaling method rather than a stochastic weather generator:
namely meteorological analogues, similar to the k-nearest neigh-
bour approach described by Bannayan and Hoogenboom (2008).

After presenting the dataset used in Section 2, results from the
optimisation of the SDM are presented in Section 3 and the skill of
the downscaling model is discussed in Section 4. Finally, the
graphical user interface developed to disseminate the downscaled
projections is briefly described in Section 5, with a case study
showing GUI outputs in Section 6 before a final discussion in
Section 7.

2. Data

The development and validation of the SDM were performed
using the highest quality possible for both surface predictands and
large-scale predictors in order to limit the impact of data quality on
the statistical linkage being developed.

2.1. Predictors: reanalyses

Global reanalyses of the atmosphere were used for the large-
scale predictors. Both the NCEP/NCAR reanalysis datasets (NNR)
(available from 1948 to real-time) (Kalnay et al., 1996) and the
European Centre ERA40 reanalysis datasets (available from 1957 to
2003) (Uppala et al., 2005) were tested. The impact of data quality
on the SDM performance was carefully assessed. It was found that
NNR from 1958 (i.e. not using the earlier decade from 1948 to 1957)
provided the best results and are therefore used as the basis to
search for analogues from the global climate models.

2.2. Predictands

For surface predictands, the best possible stations available for
observed long-term climate purposes are the High-Quality (HQ)
dataset assembled by the NCC of the BoM. Variables used were
daily HQ temperature maximum and minimum (Trewin, 2001) and
daily HQ rainfall amount (Lavery et al., 1992, 1997). Both records
were extended to 2005 by the NCC. More recently, HQ dataset was
developed for surface humidity (dew-point daily maximum and
minimum: dTmin and dTmax) by Lucas (2006) for the period 1957–
2003 and for surface pan evaporation (pE) (Jovanovic et al., 2008)
for the period 1975–2003.

Following on the early work on temperature and rainfall, the
SDM was optimised for the newly formed HQ networks. Therefore
downscaled projections for six surface predictands can be obtained
through the GUI. Analogues are found over the period for which
both reanalyses and surface predictands were deemed suitable:
1958–2003 for all variables, except for pan evaporation between
1975 and 2003. These periods were used to perform the develop-
ment validation and optimisation of the individual SDMs and they
are also the periods over which the analogues are found when the
SDM is applied to climate models.

2.3. Predictors: climate models

As part of the Intergovernmental Panel on Climate Change
(IPCC) 4th assessment of climate change science released in 2007
(Solomon et al., 2007) a new set of global climate model experi-
ments has been produced. This represents a major advance both for
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Table 2
Mean global warming estimates for 2090–2099, relative to 1980–1999, for 6 emis-
sion scenarios, derived from Figure SPM-3 of the IPCC (2007) report

Scenario Mean warming (�C) Uncertainty range (�C)

B1 1.8 1.1–2.9
A1T 2.4 1.4–3.8
B2 2.4 1.4–3.8
A1B 2.8 1.7–4.4
A2 3.4 2.0–5.4
A1FI 4.0 2.4–6.4
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the evaluation of models, and for the generation of climate
projections. The open nature of output availability has resulted in
this set of experiments being subjected to unprecedented levels of
evaluation and analysis: the Coupled Model Intercomparison
Project No. 3 (CMIP3). Model outputs were obtained from the IPCC
Model Output website at http://www-pcmdi.llnl.gov/ipcc/info_for_
analysts.php.

Up to 23 GCMs contributed to the CMIP3 dataset. However
because the SDM relies on daily outputs for the predictors, which
were not provided by every modelling group, only a subset of this
database could be used (Table 1). GCMs are used if the modelling
group provided daily data for both the simulation of the 20th
century and for simulations of the 21st century under different
emission scenarios. The models were ranked according to
a measure of their sensitivity (DT, last column in Table 1), calculated
using the global warming produced by the model using the A1B
scenario when approximated by linear regression over the 21st
century (CSIRO and BoM, 2007).

Up to six future emission scenarios were used by the modelling
groups that contributed to the CMIP3 database. Each emission
scenario leads to a different projected global warming range (Table
2). In order to reduce the amount of data used, only two scenarios
for the 21st century have been downscaled: A2 and B1. The A2
scenario is based on a very heterogeneous world with continuously
increasing population and a technologically fragmented economic
development leading to one of the highest emission scenarios
available. In contrast, in B1 the emphasis is on global solutions to
economic, social and environmental sustainability, and B1 is one of
the lowest emission scenarios available. A simulation of the 20th
century was also used to complement the scenarios. Daily data are
therefore available for three time slices for which daily model
predictors were available and downscaled and can be accessed
through the GUI: 40 years from 1961 to 2000 from the 20th century
simulation and two 20 year periods ranging from 2046 to 2065 in
the middle, and from 2081 to 2100 at the end, of the 21st century,
using either the A2 or B1 scenarios.

3. Optimisation of the SDM

3.1. Regions of interest

In order to apply the BoM SDM to the entire non-tropical half of
the Australian continent (south of 30�S), surface observations were
gathered into six distinct climate entities (Fig. 1), roughly following
the rotated Empirical Orthogonal Functions (EOFs) for rainfall sug-
gested by Drosdowsky (1993): (1) the Southwest of Western Aus-
tralia (SWA), south of a north boundary from Geraldton to Kalgoorlie
Table 1
Global climate models from the CMIP3 database to which the SDM is applied

Originating group Country Acronym Grid size (km) DT (�C)

CSIRO Australia CSIRO w200 2.11
NASA/Goddard Institute for Space

Studies
U.S.A. GISSR w400 2.12

Canadian Climate Centre Canada CCM w300 2.47
Meteorological Research Institute Japan MRI w300 2.52
Geophysical Fluid Dynamics Lab U.S.A. GFDL2 w300 2.53
Meteo-France France CNRM w200 2.81
Geophysical Fluid Dynamics Lab U.S.A. GFDL1 w300 2.98
Institut Pierre Simon Laplace France IPSL w300 3.19
Centre for Climate Research Japan MIROC w300 3.35
Max Planck Institute for

meteorology DKRZ
Germany MPI w200 3.69

The name and country of the originating group, the acronym used in the GUI and the
approximate size of the model horizontal grid box are shown. Models are ranked
according to a measure of their sensitivity (DT, last column) from the lowest climate
sensitivity at the top.
(about 30�S) and west of a line from Kalgoorlie to Esperance (about
122�E), (2) the Nullarbor (NUL) region: a vast region from the SWA
in the west and the Eyre peninsula in South Australia in the east
(about 136�E) and from the coast to 30�S, (3) the Southwest of
Eastern Australia (SEA): southwest of a line from Melbourne (38�S
and 145�E) to Port Augusta (33�S and 138�E), (4) the southern half of
the Murray–Darling Basin (SMD) south of 30�S in the north, limited
in the west by SEA and in the east by the Great Dividing Range
(GDR), (5) the South-East Coast (SEC): a coastal band east of the GDR
from Wilson Promontory in Victoria (39�S and 146�E) in the south
all the way along the coast up to the Queensland Border in the north
(28�S) and (6) the island of Tasmania (TAS) including all the Bass
Strait islands. A summary of the number of surface predictands
available in each climatic region (Table 3) indicates that although
less than half of the Australian continent is covered by these six
climatic regions, together they cover a large proportion of the
available HQ observation sites (between 79% for rainfall and 58% for
pan evaporation). It underlines the fact that these regions are the
most populated in Australia (and hence the relatively denser
network of observations in particular for rainfall) and therefore the
most important for human related activities (e.g. agriculture).

3.2. The optimisation methodology

Each individual SDM (a total of 144: six predictands times six
regions times the four calendar seasons – summer: DJF, autumn:
MAM, winter: JJA and spring: SON) was optimised using a range of
statistics covering the ability of the SDM to reproduce the first two
moments of the observed Probability Density Function (PDF) of the
series (mean and variance), the skill of the model in reproducing
day-to-day variability and inter-annual variability, as well as long-
term linear trends. The optimisation methodology was based on
a subjective analysis of these various metrics. No attempt was made
to develop an objective approach in order to allow for expert
knowledge of the importance of the different predictors and their
inter-dependence. Furthermore, it is generally not the case that
a single combination of predictors gives superior results for all
metrics used and hence a trade-off exists between the importance
of the various predictors and their role. The optimisation was per-
formed in two steps. First the best combination of predictors was
determined, and then three additional parameters were optimised
using the best combination of predictors (second step).

3.3. The choice of predictors

The predictors considered were chosen on the basis of previous
experience while developing the BoM SDM (Timbal and McAvaney,
2001; Timbal et al., 2003; Timbal, 2004), evidence in the literature
from other studies in similar areas (Charles et al., 1999, 2003) and
the availability of variables in the CMIP3 database. In most cases,
the predictors are low level atmospheric fields but in some
instances large-scale rainfall or Tmax or Tmin from the GCMs are used
as predictors for local rainfall or Tmax or Tmin. The optimum
combination of predictors varies across regions, seasons and
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Fig. 1. Location of the high-quality networks across Australia for rainfall (R), temperature (T), dew-point temperature (D) and pan evaporation (E). The boundaries of the six areas of
interest are overlayed: southwest of Australia (SWA), Nullarbor Plain (NUL), the southwest of eastern Australia (SEA), the southern part of the Murray–Darling Basin (SMD), the
south-east coast (SEC) and Tasmania (TAS).

Table 3
Number of high-quality stations available in each climatic region for the four types of
predictand and the sum that the total of these stations in the six regions represent as
a percentage of the respective entire high-quality network (last column)

Predictands SWA NUL SEA SMD SEC TAS HQ network
(%)

Temperature (Tmax and Tmin) 9 5 11 15 16 7 70
Rainfall 34 12 31 24 11 8 79
Pan evaporation 7 2 5 9 7 3 58
Dew-point (dTmax and dTmin) 3 3 3 2 7 1 60
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predictands (Table 4a and b). Statistics on the number of predictors
used in optimised combination reveals that the optimal number is
often three (apart from pan evaporation where most frequently
only two predictors are used). When a different number of
predictors are required for the optimum combination it is often less
than three predictors apart from rainfall. The need for a large
number of predictors for rainfall shows that it is a difficult pre-
dictand to capture from large-scale analogues. Not only does rain-
fall require a large number of atmospheric variables, it is the
predictand for which skill scores are lowest (see details in the next
section). There are only a few cases (for dTmax and dTmin) where no
combinations of predictors were found to improve on the best
performing single predictor.

Mean sea level pressure (MSLP) is the most frequently chosen
predictor (Fig. 2, top left). It is used for all individual SDMs in the
case of rainfall and Tmax but is picked up far less often for pan
evaporation. This feature, combined with the fact that the SDM
shows overall low skill (discussed in the next section) for pan
evaporation, suggests that MSLP is a critical predictor for a synop-
tically driven technique such as the analogue approach, and when it
does not appear as a useful predictor none of the other available
predictors can compensate for the lack of skill coming from MSLP.

Thermal predictors (Fig. 2, top right) are very important, espe-
cially for Tmax and Tmin. In general, T850 is the most important
thermal predictor, although Tmin is more important for dTmin and
dTmax. Dew-point temperature, in most instances, has a weak
diurnal cycle with maximum values in the early morning and
maximal value in the afternoon (Lucas, 2006). Therefore, while the
importance of Tmin for dTmax is logical, its relevance for dTmin is less
intuitive. A total percentage in excess of 100% means that in some
cases more than one thermal predictor is used in the optimised
combination. The additional predictor is usually Tmax for Tmax and
Tmin for Tmin, a clear indication that in these cases lower tropo-
spheric temperature alone is not a sufficient predictor. In these rare
occurrences, with two very similar and highly correlated predictors
being used, the risk of over-fitting the SDM exists. However, in
these instances it was found that the gain in skill for the SDM
warranted this choice. Finally, thermal predictors rarely matter for
rainfall to reproduce current climate however, their importance in
a future warmer world remains possible.

Moisture variables (Fig. 2, bottom left) are also important as
predictors across the board with the notable exception of Tmax.
Specific humidity is almost always picked up apart from pan
evaporation for which relative humidity is more skilful. Rainfall is
often part of the optimised predictor’s combination to downscale



Table 4a
Optimum combination of predictors for each calendar season and the six predictands in three regions: SWA, NUL and SEA

Predictands Season SWA NUL SEA

Tmax Summer MSLP & T850 & V850 MSLP & T850 & V850 MSLP & T850

Autumn MSLP & T850 & V850 MSLP & T850 & V850 MSLP & Tmax

Winter MSLP & T850 & V850 MSLP & T850 & U850 MSLP & T850 & Tmax & U850

Spring MSLP & T850 & V850 MSLP & T850 & V850 MSLP & T850

Tmin Summer MSLP & T850 & Q850 & U850 MSLP & T850 & Q850 MSLP & T850

Autumn MSLP & T850 & Q850 & U850 T850 & Q850 MSLP & T850 & Q850

Winter MSLP & T850 & Q850 MSLP & T850 & Q850 & U850 MSLP & T850 & Q850

Spring MSLP & T850 & Q850 T850 & Q850 MSLP & T850 & Q850

Rain Summer MSLP & PRCP & Q850 & U850 MSLP & PRCP & Q850 & U850 MSLP & PRCP & T850

Autumn MSLP & PRCP & Q850 & U850 MSLP & T850 & Q850 & U850 MSLP & Tmax & Q850 & U850

Winter MSLP & Q850 & U850 MSLP & T850 & Q850 & U850 MSLP & PRCP & V850

Spring MSLP & Q850 & U850 MSLP & Q850 & T850 MSLP & PRCP
pE Summer MSLP & Tmax & R925 T850 & R925 Tmax & R925

Autumn MSLP & T850 & R850 T850 & R925 Tmax & R925

Winter MSLP & Tmax & R925 Tmax & R925 Tmax & R925

Spring MSLP & Tmax & R850 T850 & R925 Tmax & R925

dTmax Summer Q850 & Tmin MSLP & Q925 & Tmin MSLP & Q925

Autumn MSLP & Q925 & Tmin MSLP & Q925 MSLP & Q925 & Tmin & V850

Winter MSLP & Q850 & Tmin MSLP & Q925 & Tmin MSLP & Q925 & Tmin

Spring Q850 & T850 MSLP & Q925 & Tmin MSLP & Q925 & Tmin

dTmin Summer Q925 & Tmin MSLP & Q925 & Tmin MSLP & Q925 & Tmin

Autumn Q925 & Tmin MSLP & Q925 MSLP & Q925 & Tmin

Winter Q925 & Tmin MSLP & Q925 & T850 MSLP & Q925 & Tmin

Spring Q925 & Tmin Q925 MSLP & Q925 & Tmin

The predictors are defined as follows: MSLP is the Mean Sea Level Pressure; Tmax and Tmin are the 2 meter min and max temperature; PRCP is the total rainfall; Q is the specific
humidity; R is the relative humidity; T is the temperature; U and V are the zonal and meridional wind components; and subscript numbers indicates the atmospheric level for
the variable in hPa.
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rainfall. As for temperature, there are instances (about 20% of the
cases) where it is used in combination with another low level
tropospheric moisture fields suggesting a possible over-fitting.

Finally, some measure of the air flow (either the zonal (u) or
meridional (v) component of the wind) is often added to the opti-
mised combination (Fig. 2, bottom right). The fact that it is an
additional predictor to the de-facto combination of synoptic-
thermal-moisture is evident from examining Tables 4a and b. It is
most useful for rainfall and then Tmax, and least useful for dew-point
Table 4b
Optimum combination of predictors for each calendar season and the six predictands in

Predictands Season SMD

Tmax Summer MSLP & Tmax

Autumn MSLP & Tmax

Winter MSLP & T850 & Tmax & U850

Spring MSLP & T850 & U850

Tmin Summer T850 & Q850

Autumn T850 & Q850

Winter MSLP & T850 & Q850

Spring MSLP & T850 & Q850

Rain Summer MSLP & PRCP & V850

Autumn MSLP & PRCP & V850

Winter MSLP & PRCP & V850

Spring MSLP & PRCP & V850

pE Summer Tmax & R850

Autumn Tmax & R850

Winter Tmax & R925

Spring Tmax & R850

dTmax Summer MSLP & Q850 & Tmin & V850

Autumn MSLP & Q850 & Tmin & V850

Winter Tmin

Spring MSLP & Q850

dTmin Summer MSLP & Q850 & T850

Autumn MSLP & Q850 & Tmin & U850

Winter MSLP & Q850 & Tmin & V850

Spring MSLP & Q850 & T850

The predictors are defined as follows: MSLP is the Mean Sea Level Pressure; Tmax and Tmin

humidity; R is the relative humidity; T is the temperature; U and V are the zonal and meri
the variable in hPa.
temperature and pan evaporation. The zonal component is the most
frequently used.

It is worth remembering readers that the selection of the
optimum combination of predictors is solely based on the past
observed climate. The SDMs then rely on the hypothesis that the
chosen predictors will capture the essence of the large-scale
changes in a warmer future climate that will drive the local climate.
This hypothesis has been investigated using discontinuities in our
past climate record in specific cases discussed in Section 1, it will
three regions: SMD, SEC and TAS

SEC TAS

MSLP & Tmax MSLP & T850 & Tmax & U850

MSLP & Tmax MSLP & T850 & Tmax & U850

MSLP & Tmax MSLP & T850 & Q850 & U850

MSLP & T850 & Tmax & U850 MSLP & T850 & Tmax & U850

MSLP & T850 & Q850 MSLP & T850 & Q850

MSLP & T850 & Q850 MSLP & T850 & Q850

MSLP & T850 & Tmin & U850 MSLP & T850 & Tmin & U850

MSLP & T850 & Q850 MSLP & T850 & Tmin & U850

MSLP & Tmax & Q850 & U850 MSLP & Q850 & V850

MSLP & PRCP & Q850 & U850 MSLP & Q850 & V850

MSLP & PRCP & U850 MSLP & PRCP & Q850 & U850

MSLP & PRCP & Q850 & U850 MSLP & PRCP & Q850 & U850

Tmax & R925 MSLP & T850 & R925

Tmax & R925 MSLP & Tmax

MSLP & Tmax & R925 MSLP & Tmax & R925

Tmax & R925 & U850 MSLP & Tmax & R925

MSLP & Q925 & Tmin MSLP & Q850

MSLP & Q925 & Tmin MSLP & Q925

MSLP & Q925 & Tmin Tmin

MSLP & Q925 & Tmin MSLP & Q925 & Tmin

MSLP & Q925 & Tmin MSLP & Q850

MSLP & Q925 & Tmin MSLP & Q925 & Tmin

MSLP & Q925 & Tmin MSLP & Q850 & Tmin

MSLP & Q925 & Tmin MSLP & Q925 & Tmin

are the 2 meter min and max temperature; PRCP is the total rainfall; Q is the specific
dional wind components; and subscript numbers indicates the atmospheric level for
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also be touched on during the evaluation of the skill of the model
in particular the ability of the SDMs to reproduce observed trends.
Fig. 3. Geographical domains (large and small) on which the predictors are used for
the six areas of interest (SWA: plain, NUL: dotted, SEA: dashed, SMD: plain, SEC: dash-
dotted and TAS: dotted).
3.4. Additional parameters

The BoM SDM includes a large number of tuneable parameters;
however previous studies have shown that three parameters are
particularly important (Timbal, 2004). Therefore the following
three parameters were systematically explored as part of the
extension of the technique across the Australian continent:

1. The size of the geographical domain used for the predictors
(latitude and longitude). Only two domain sizes, chosen a-
priori based on previous studies were tested (Fig. 3).

2. The calendar window from which analogues are found. Three
periods were tested: 15, 30 and 60 days prior to and after the
model date.

3. The way the daily anomalies are calculated using either three
monthly values or a single seasonal average.

Overall statistics on the choice of the three additional parame-
ters optimised for each individual SDM show some patterns worth
commenting. The optimum size of the geographical domain that is
used to search for analogues is most often the larger of the two sizes
tested. There is a hint that the need to reduce the size of the
geographical domain is seasonally dependent and use of the
smaller domain is more frequent for the warmer seasons (42% of all
SDMs in summer and 56% in autumn, compared to 33% and 28% in
winter and spring). However, the most important factor appears to
be the dependence on the region. It suggests that although the
original two sizes tested for each region were chosen carefully
based on rules derived from previous studies, there were cases
(such as SWA) where the small domain was too small and hence
seldom chosen (only 6% of the time); whereas in SMD, the small
domain was chosen 50% of the time and between 20% and 30% in
the other regions.

The choice between monthly or seasonal anomalies reveals
a marked preference for using a single seasonal mean in particular
for the transitional seasons (autumn 89% of all cases and spring
83%). This result was expected, as the underlying assumption
behind using monthly mean is to reduce the non-stationarity across
the months when calculating the anomalies, hence reducing the
importance of the annual cycle when choosing an analogue. This
result is particularly marked for temperature (94% of all SDMs for
Tmax and 92% for Tmin) and less for rainfall (72%) as expected since
the annual cycle is more pronounced for temperature than rainfall.

Finally, the calendar window (dTcal) was tested (Fig. 4). This is
the number of days before and after the calendar dates which are
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used to find an analogue. For example, when searching for an
analogue for the 1st of July:

if dTcal¼ 15 than analogues can only be chosen between the
16th of June and the 16th of July;
if dTcal¼ 30, analogue is chosen between the 1st of June and
the 31st of July; and
if dTcal¼ 60, analogue is chosen between the 1st of June (this
remains unchanged as analogues are only searched for within
the same calendar season) and the 30th of August.

The limitation to search for an analogue only during the same
calendar season is arbitrary but responds to a concern that the
large-scale meteorological forcings of the local climate change
during the year (as reflected in the optimum combination of
predictors discussed earlier). Similarly, the size of the calendar
window is used to force the choice of analogue during the same
part of the season. However, a bigger value for the calendar window
provides a potentially larger pool of analogues; hence the choice of
the calendar window is a trade-off between these two effects. As
expected, there is tendency to choose a smaller calendar window
for the transient seasons (Spring and Autumn), when the under-
lying stationarity assumption is less true and a tendency to choose
a large calendar window in winter, and in particular, in summer
where the size of pool of analogue is most important.

4. Skill of the model

The SDM’s skill was evaluated using a range of metrics on
different time scales. First the ability of the technique to reproduce
the observed probability distribution functions (PDFs) was evalu-
ated by looking at the first two moments of the PDFs: the mean and
the variance. The reproduction of the mean values for each of the
predictands (Fig. 5) is very accurate. In each graph, points corre-
spond to a single location for a single season with the observed
mean value on the x-axis and the reconstructed mean along the y-
axis. The number of points in each graph is equal to the total
number of stations captured in one of the six climate regions times
four seasons (between 480 for rainfall and 76 for dew-point
temperature). For all predictands except rainfall, errors in the
reproduction of the mean are negligible and there is no evidence
that the SDMs have a bias toward either higher or lower values,
including at the tails of the distribution (large or small observed
values). However, in the case of rainfall, points are located below
the diagonal, indicating a clear bias toward drier values for recon-
structed series (between 15% in winter and 25% in summer).
Similarly results are shown for the reproduction of the standard
deviation (Fig. 6). Clearly, the technique has a tendency to under-
estimate the observed variance: points are aligned below the
diagonal for all variables. This is a known problem for regression-
based statistical downscaling methods (Von Storch, 1999) and
although the analogue approach is less affected, it appears to be an
issue as well. This variance underestimation is relatively small. In
the case of temperature (min and max), it is of the order of 5–10%,
with the largest underestimations in winter. It is of the same
magnitude for pan evaporation where the largest underestimation
is in summer. The magnitude of the underestimation is slightly
more for dew-point temperature, around 10% for dTmax and
between 10% and 15% for dTmin. The underestimation of the vari-
ance for rainfall is larger than for the other variables: it varies
between 20% in winter and up to 40% in summer.

For all variables, but rainfall as daily values are not normally
distributed, the underestimation of the variance does not have
a flow-on effect on the reproduction of the mean. In the case of
rainfall on the other hand, the reproduction of the mean is
dependent on the ability of the technique to reproduce the
observed variance and results in the dry bias noted earlier (Fig. 5c).

For this reason, Timbal et al. (2006) introduced a correction
factor to adjust the reconstructed rainfall series and enhance the
variance and improve the reproduction of the mean. The rationale
for the applied correction is that the analogue reconstructed rain-
fall is affected by the size of the pool of analogues which becomes
smaller in the case of rare large rainfall events. Therefore, the error
in finding the best matching analogue increases and the chances
are that the best analogue found would describe more frequent but
less intense rainfall events thus underestimating the rainfall in the
reconstructed series. This problem exists across the range of
climate used: from very dry (less than 20 mm per season to very
wet up to 500 mm per season). Across the range of climates, it is
assumed that the size of the pool depends on the ratio of rain days
over dry days. It was decided that a very simple factor should be
applied to limit some of the danger linked to artificially inflating the
variance when using downscaling techniques (Von Storch, 1999).
The following single factor was used, which only depends on the
availability of dry and wet days to find a suitable analogue:

Cfactor ¼ 1:þ 0:10�
Ndry

Nwet
and Cfactor � 1:5

where Ndry and Nwet are the numbers of dry and wet (>0.3 mm)
days observed for the season at an individual location. These
numbers are station and season dependent. They are calculated on
the available observations from which analogues are drawn and are
therefore independent of the series being reconstructed. These
ratios are equally applicable when developing the downscaling
model (and hence evaluating their impact) or when downscaling
climate simulations. The impact of the inflation factor is clear
(Fig. 7). It has dramatically reduced the variance bias and lead to an
unbias reproduction of the mean (as for other predictands) and
unbiased reproduction of the variance (which is not the case for the
other uncorrected reconstructed predictands).

Besides the ability of the technique to reproduce the observed
shape of the PDFs as defined by the first two moments of the series,
it is important to ensure that the technique is skilful in reproducing
day-to-day variability that is driven by large-scale synoptic
changes. A random choice of analogue may reproduce perfectly the
observed mean and variance but may not be a skilful model. The
Pearson correlation between daily observed and reconstructed
series was calculated separately per region, per season and for each
predictand. Each number is an average across all observations
available in each region (Fig. 8). The results show a contrast
between predictands; the SDM appears more successful for Tmax,
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Tmin and dTmax than for pan evaporation and dTmin. For rainfall,
correlations are by far the lowest, although due to the very large
sample considered (about 4500 days); all these correlations are
significant at least at the 95% level (based on rain occurrences only
in the case of rainfall), indicating some level of skill. For most
variables there is a marked seasonal cycle in skill, consistent across
all regions: i.e. the analogue approach is particularly successful in
autumn and spring for temperature predictands Tmax and Tmin

(nearly reaching a correlation of 0.9 for Tmax in autumn in several
regions) and for pan evaporation (albeit with lower values). For
rainfall, although correlations are low across all seasons, they peak
in winter (between 0.3 and 0.4). For dew-point, seasonal variations
of the results are less marked and not consistent across regions.
Finally, there seems to be a high consistency in the performance of
the SDMs across the six regions considered. Overall no particular
region stands out as a climatic entity where the SDM skill in
reproducing day-to-day variability is consistently lower or higher
across all variables and seasons. The fact that the model was
assumed to be applicable in all the extra-tropical part of the
Australian continent where the climate is driven by synoptic
disturbances is vindicated by these results.

The ability of the modelled series to reproduce year-to-year
variability is also important in a climate change context. It is eval-
uated by computing the Pearson correlation between seasonal
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Fig. 6. As per Fig. 5 but for standard deviations (units as for the means).
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means of the observed and reconstructed series (Fig. 9) in the same
way as daily variability. The length of observed record is 1958–2003
for all predictands apart for pan evaporation which is 1975–2003.
The percentage of observed inter-annual range (i.e. the difference
between the highest and lowest seasonal totals in the observed
record) reproduced by the reconstructed series is also evaluated
(Fig. 10). Overall, the SDMs show slightly better correlation on an
inter-annual time-scale compared to a daily time-scale, but results
are very consistent between the two time scales. The lowest
correlation values are obtained for rainfall (albeit much improved
compared to the daily time-scale) and highest for temperature. The
seasonal variations of the results grossly resemble what was noted
on the daily time-scale, but if anything is slightly less obvious:
either differences are smaller or consistency across regions is
not as strong. For rainfall, the model is most able to reproduce
inter-annual variability in winter (as that was the case for daily
variability) and in autumn for dew-point (that was also the case for
daily variability). Although, the correlations suggest that the tech-
nique is able to capture most of the inter-annual variability, it
appears to reproduce only a fraction of the inter-annual range
(Fig. 10). Results are particularly low for pan evaporation (below
50% in most instances) and dTmin. For Tmax, the percentage of
reproduced variance is low in winter (30–60%) but mostly above
50% in other seasons. These seasonal differences are less
pronounced for Tmin. For rainfall (note the different y-axis scale
compared to the other variables), the percentage of observed
variance reproduced is much higher, mostly between 60% and
100%, but exceeds 100% in several instances. Again that is a flow-on
effect of the correction factors applied to the reconstructed series,
as earlier results showed that without correction, the reproduced
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inter-annual variability was underestimated for rainfall as well
(Timbal, 2004).

Finally, an important validation step is to analyse the ability of the
SDMs to capture observed long-term trends. This provides confir-
mation that the large-scale predictors capture the forcing that
explains local trends and hence gives confidence in the ability of the
SDM to reproduce realistic local changes driven by large-scale
changes in future projections. Linear trends were fitted to all stations
and regional averages are compared with similar trends from
reconstructed series calculated for the length of the series: 1958–
2003 for all predictands apart from pan evaporation (1975–2003)
(Fig. 11). Each point on these graphs is a regional average of the
available HQ stations, thus 24 points (four seasons and the six regions)
are shown. On each graph, the line of best fit (constrained to intercept
with 0) between the observed and reconstructed series is shown
(solid line) as well as the slope of the relationship and the correlation
between the two variables (indicated in the bottom right corner of
each graph). In general, the reconstructed series exhibit trends of
a magnitude strongly related to the observed trends: the correlation
varies between percentage 0.87 for rainfall and 0.46 for dTmin, sug-
gesting that the SDMs have skill in reproducing the observed trends.
However, the slope of these relationships is constantly less than
one (between 0.14 and 0.78), pointing to an underestimation of the
observed trend, which is of concern in regard to the ability of the
SDM to reproduce the magnitude of the future changes.

Since the reconstructed series reproduced only part of the inter-
annual range it is expected that this would affect the linear trend
fitted on the reconstructed series. The impact of this underesti-
mation of the inter-annual range can be shown by plotting the
same graph for the normalised linear trend of the reconstructed
series where the trend is divided by the ratio of reproduced inter-
annual range (from Fig. 10) and shown as crosses in Fig. 11.
Although the correlations between series (indicated in the top left
corners of each graph) remain by and large unchanged, the slope of
the relationship (dashed line) in most cases is much closer to one
(usually around 0.88). This is a major improvement, except for
rainfall (but again, rainfall did not have a marked underestimation
of the inter-annual range due to the correction factor applied) and
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dTmin, for which the slope remains very low. This latest finding
enhances the confidence in the model’s ability to reproduce future
climate changes at the local scale, as it is able to do so for the
current on-going climate changes once the underestimation of the
variance on inter-annual scale is factored in. This is an important
caveat and should be noted by users of the downscaled projections
as the currently available projections do not factor in this correc-
tion. The result for dTmin however, casts some doubt on the validity
of future projections for this variable.

Following the evaluation of the SDM’s skill in reproducing the
most important characteristics of the observed local predictands
such as mean, variance, day-to-day and inter-annual variability as
well as long-term trends, the optimised SDMs were found useful
and capable of reproducing valuable information at the local scale.
Optimised SDMs were then applied without further adjustment to
the CMIP3 climate models described earlier. It is worth noting that
the search for analogues is performed on normalised anomalies of
the predictor fields. In the case of climate model simulations, nor-
malised anomalies are calculated for the simulation of the 20th
century, in effect removing model biases in the mean and variance
reproduction of predictor fields. The model mean climatology is
then used as a baseline to calculate anomalies for the predictors in
future projections. This methodology assumes that the same model
biases are affecting future projections and is commonly used in
climate change science. Implicitly, this methodology corrects model
biases both in the mean state and in daily variability and therefore
the traditional evaluation of the GCM performances in reproducing
surface predictands (as used in the Climate Change in Australia
report (CSIRO and BoM, 2007)) is not relevant here. However,
a careful evaluation of the suitability of downscaled models for any
impact study should be performed by any users, using the local
predictands of interest generated by downscaling GCMs’ simulation
of the 20th century (20C3M). Results were gathered in a large
dataset and the tool used to explore this dataset is now presented.

5. The software structure

The GUI to disseminate the downscale projections has been
constructed using three static HTML pages using Java script
(Fig. 12). Additional pages are generated dynamically using Perl.
These output the data as it is extracted from the datasets in
response to user inputs. The last component of the GUI is an
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Fig. 11. Scatter plot of the reconstructed versus observed linear trends fitted on the length of the longest possible record for the six predictands (dots) as well as for the normalised
reconstructed trends (þ signs). For each series, there is one point per seasons and per regional average for all existing stations in that region. The total number of point per series is
24: six regions times four seasons. The line of best fit is shown by the full (dashed) line and its slope as well as the correlation between the two variables in the bottom right (top
left) corner for the (normalised) reconstructed series.
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Interactive Data Language (IDL�) script which starts the calculation
of the SDM itself. The starting point of the GUI displays a large
region around the Australian continent using MapData� powered
by Google. It provides an option to choose the background between
physical maps, satellite images or a combination of both (using
buttons displayed at the top right). The user has a series of four
steps to follow in order to carry out the downscaling process (they
are illustrated in Fig. 13):

1. Select a predictand from the Predictand dropdown list (rainfall,
Tmax, Tmin, pE, dTmax or dTmin) and select one of the austral
calendar seasons from the Season dropdown list: summer,
autumn, winter, spring (in Fig.13, Tmax and summer are chosen).

2. Choose the model(s) from the Model dropdown list (select an
individual CMIP3 model or choose all available models) and
a scenario from the Scenario dropdown list (either the 20th
century simulation, providing daily data from 1961 to 2000, or
future emission scenarios A2 and B1 for the 21st century,
providing daily data for 20-year time slices: 2046–2065 for
A2_50 and B1_50 and 2081–2100 for A2_100 and B1_100). In
Fig. 13, A2_50 and all available models were chosen.

3. Select one of the six climate regions from the Australian map.
This provides a higher resolution map of the region showing
available stations with a mark within the rectangular area that
can be selected individually by a click or as a whole group on
the left. In Fig. 13, the SMD region was selected and the Mildura
station already selected appears in the left station box while
other stations within the SMD regions are still shown by
a marker on the map.

4. Start the downscaling process by enabling the button Run
Downscaling. In Fig. 13, the GUI is ready for the user to enable
that button.
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Fig. 12. Architecture of the graphical user interface used to access results from the
BoM Statistical Downscaling Model.

Fig. 13. View of the GUI once the user has select
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Only a part of the entire SDM code is run on the fly to generate
graphics and data output. It relies on intermediary files pre-calcu-
lated for all possible cases chosen with the GUI. These intermediary
files are labelled Change-Of-Date (COD) files and contains the
optimum analogue (i.e. a single best match) for any model day
chosen amongst the 1958–2003 period in the NNR database (apart
from pan evaporation where it is restricted to 1975–2003). This
optimal analogue depends on all the parameters chosen in the GUI:
the predictand, the season, the region and the individual synoptic
situation produced by the CMIP3 GCM. Upon completion of the
downscaling calculation, a table is generated and appears under-
neath the user interface containing information about the down-
scaled simulation just completed and the outputs available: one
data file per station chosen and some graphical outputs. All files,
graphics and underlying data can be downloaded by the user.

6. Downscaled projections: a case study

To illustrate the benefit of the tool and the usefulness of
obtaining detailed point specific climate change projections, a case
study was completed using the GUI. In this example, maximum
daily temperatures in summer were sought for Mildura, which is an
important regional centre in the northwest of Victoria in particular
for agriculture (located within the SMD region). Additional case
studies for both temperature and rainfall can be found in the
Climate Change in Australia report (CSIRO and BoM, 2007).

The downscaling of all climate models provides a good estimate
of the local PDF for Tmax in summer in Mildura (Fig. 14, top left). The
mean and variance from the downscaling of the GCMs encompass
ed a few options (see main text for details).



Fig. 14. Probability distribution functions of maximum temperature in summer in Mildura (Victoria, located in SMD) for the end of the 20th century (top left) and for the middle of
the 21st century using emission scenario B1 (top right). Similar plots show the scenario A2 for the middle (bottom left) and the end of 21st century (bottom right). Observations are
shown as a thick black line, and the downscaling of each of the 10 individual climate models from the CMIP3 database is shown as red lines. Mean, variance, maximum and
minimum of the series are shown on the graphs as the top line with the range of the same statistics across the 10 downscaled models (note: for the mean the results are expressed
as a difference from the observed mean). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the observed values (observation statistics are shown on the top
line in each diagram, while the model range is given in the
following two lines). It is worth noting that the particular shape of
the PDF with a broad maximum around 28 �C and a secondary
maximum around 35 �C is also captured. The transformation of the
PDF under future projections is shown for 2050 for the B1 (Fig. 14,
top right) and A2 scenarios (Fig. 14, bottom left) and for 2100 for the
A2 scenario (Fig. 14, bottom right). With this order the graphs look
at the details that local warming implies. It is worth noting that the
observed PDFs are not strictly identical (nor are the statistics for the
observations) in the case of the 20th century and for future
projections. This is due to the different baselines: 1960–1999 for
the 20th century and 1970–1989 for future projections.

One of the criticisms often made about downscaled climate
change projections is that it is not possible to validate the under-
lying assumption that the statistical linkage remains valid in
a warmer world (Hewitson and Crane, 2006). Although this point
was partially answered during the model evaluation stage by
showing that the SDMs were able to reproduce the observed
trends. In this case study, it is possible to compare the point specific
projections with direct model projections coming from the CMIP3
models for grid boxes surrounding Mildura (documented in the
Climate Change in Australia report, CSIRO and BoM, 2007 and
available on-line at http://www.climatechangeinaustralia.gov.au/).
Although this comparison is not a perfect match as numbers are
coming from very different methodologies but it provides an
interesting overview of the consistency amongst these different
projections.

For 2050, direct model projections suggest a range for high
emission scenarios between 1 and 1.5 �C at the 10th percentile, 2
and 2.1 �C at the 50th percentile and 2.5–3 �C at the 90th percentile,
and for low emission scenarios, between 0.6 and 1 �C at the 10th
percentile, 1 and 1.5 �C at the 50th percentile and 2–2.5 �C at the
90th percentile. These values are comparable with the suggested
warming of 1.3–2.2 �C shown here for the A2 scenario (a high
emission scenario) and 0.8–2 �C for the B1 scenario (a low emission
scenario). The range is not as large as with the direct model outputs
but in that case the entire CMIP3 database (23 models) was used
compared with only 10 models in our case study. And the low and
high emission scenarios in the CSIRO and BoM (2007) projections
are based on more than the single scenario (B1 or A2) used here.

In addition to the mean local warming and the changes of the
PDF it is possible to take a closer look at the details of the local
warming implies. For example, the length and duration of hot spells
(number of consecutive days above a particular threshold) can be
looked at. The downscaling of the climate models underestimates
the hot spell duration (Fig. 15). For example the probability that hot
spells above 36.7 �C last up to 8 days is observed to be 0.01 in
Mildura, the same probability for downscaled model suggest a spell
length between 5 and 7 days (left graph in Fig. 15) but the
thresholds used (which depends on the mean and variance of the
individual series) matches the observed threshold. Keeping these
results in mind, future projections of hot spell duration show that
much larger thresholds are used (due to the mean warming) but the
probability of spell length is hardly changed. Also, there is a small
hint toward more likely long spell as model curves are slightly more
bunched toward the observed trend then they were in the current
climate case, but that may not be significant as it is likely to be by
less than a day apart for more extreme spells (right graph in Fig. 15).
Of course, if the threshold used for the 20th century was kept,
results would be very different as days above 36.7 �C are projected
to be far more frequent (as implied by the PDFs in Fig. 14). Looking
at hot spell duration using a threshold fitted to the new distribution
implies that the population and the environment would have

http://www.climatechangeinaustralia.gov.au


Fig. 15. Hot spell duration expressed as probability of exceedance above a certain threshold in number of days for Tmax in summer in Mildura for the end of the 20th century (left)
and for the middle of the 21st century using emission scenario A2 (right). Observations from 1960 to 1999 are shown as thick black line on the 20th century diagram and are
repeated for the 21st century using 1970–1989 to provide a reference to compare downscaled model simulation for 2046–2065. The thresholds used depend on the mean and
variance of the series and differs from observations to models and from the 20th century to the 21st century and are shown on the graphs.

B. Timbal et al. / Environmental Modelling & Software 24 (2009) 341–358356
adapted to the mean warming. However, as users can access ASCII
files with the daily values used to construct the PDFs, they can
perform additional analyses on extremes and decide on which
thresholds to use. The graphs generated by the GUI (Figs. 14 and 15)
serve to illustrate the main characteristics of the downscaled
results and the possibility of generating many analyses, as the
locally constructed daily series (in the 20th century climate) are
highly realistic.

When dealing with extremes and using downscaled projections
it is important to keep in mind that the statistical linkage estab-
lished using the data is more likely to be robust for the middle of
the distribution, for which there are more observations, than for the
extremes which are not so extensively sampled. For example, since
the SDM uses an analogue approach, it is not possible to get daily
projected values that have not been observed before (e.g. new
record temperatures). In the case study, the maximum value is tied
to the past record in summer observed at Mildura during the 1958–
2003 period: 46.9 �C. This explains why despite the mean warming
(e.g. for A2_100, bottom right in Fig. 14), the upper tail of the
distribution do not shift right with the rest of the distribution. This
situation can be contrasted with what is happening for record low
temperatures, shifting from 16.2 �C to between 19.5 and 22.7 �C,
a massive increase of up to 6.5 �C by 2100 with the A2 scenario
(compared to the lowest value observed between 1970 and 1989).
Similar shifts might be a reasonable assumption for recording hot
temperatures but it is not possible to infer this from the current set
of results. Therefore, in the case of warm extremes, only the
frequency of occurrences below the local record temperature
would be meaningful for future projections.

7. Concluding remarks and future prospects

The application of the BoM statistical downscaling model,
developed in earlier studies, has been generalized across half of the
Australian continent. This method provides point specific climate
change projections relevant for impact studies across the continent
in locations where high-quality observations of the current climate
are available. Individual SDMs were optimised using the high-
quality BoM network of observations for temperature (daily
extreme: Tmax and Tmin), rainfall, dew-point temperature (daily
extreme: dTmax and dTmin) and pan evaporation. Stations were
lumped into regional climate entities, six in total: five covering the
southern part of the continent from the southwest of Western
Australia to the east coast, and one for the island of Tasmania. Each
individual SDM was optimised in two steps: first the optimal
combination of predictors was determined and then additional
parameters of the statistical model (size of the domain to choose
the predictors, calendar window and method to calculate daily
anomalies) were determined. In total, 144 individual SDMs were
optimised: six predictands times six regions times four seasons.
This extensive work was possible due to the simplicity of the
chosen downscaling method. The analogue approach used here is
one of the simplest existing downscaling methods. Despite its
simplicity which was paramount to be able to perform this work,
this method has been shown to compare well with more advanced
techniques (Zorita and von Storch, 1999). The simplicity, flexibility
and robustness of the technique were important to ensure that
a single technique could be used across a range of variables and
several climatic regions.

A careful evaluation of the skill of the SDM was carried out on
different time scales: daily, inter-annual and long-term trends. The
technique was found to reproduce the main characteristics of the
PDFs of local observed variables. In particular the technique was
found to be unbiased and it was able to reproduce the local means.
However, like most statistical downscaling techniques, it was
shown that the analogue approach does not fully reproduce the
observed variances of the series. That limitation was found to exist
across all variables with a varying degree of severity. This drawback
was found to be particularly important for rainfall; due to the non-
normal distribution of daily rainfall, the reduction of variance leads
to an underestimation of the mean (Timbal et al., 2006). It was
therefore decided to introduce a correction factor for rainfall
applied to the reconstructed series and based on the local observed
climate. It was done so as to reduce the underestimation of the
variance and reproduce an unbiased mean. This correction was kept
to a very simple level and is unchanged across all rainfall stations
and seasons, in order to minimise the risk of over-fitting based on
the current climate.

It was shown that the technique overall was skilful at repro-
ducing the observed PDFs for the right reasons. The daily variability
is well reproduced, as captured by the day-to-day correlation
between the observed and reconstructed series. In addition, the
technique has skill in capturing inter-annual variability as well as
long-term observed climatic trends.

It is notable that although the analogue approach is least skilful
in terms of correlation (on both daily and inter-annual time-scale),
for rainfall, it gives the most reliable reproduction of long-term
trends of all predictands. This suggests that day-to-day variability
of rainfall amount is largely affected by local effects not captured by
large-scale variables. The large-scale variability and long-term
trends, which remove a lot of this small temporal scale variability, is
well tied to large-scale factors.

By contrast, the technique, while is extremely skilful in repro-
ducing temperature series on daily and inter-annual time scales,
appears to consistently underestimate (by a factor of two) observed
long-term warming. It was found that this underestimation is by and
large due to the underestimation of the variance by the reconstructed
series, leading to an underestimation of the magnitude of the trend.

For newly developed moisture variables, the analogue tech-
nique performed relatively consistently with skill displayed across
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all statistics within the range of the two extremes provided by
temperature and rainfall. It was noted however, that for dTmin, the
technique does not appear to reproduce much of the observed
long-term trend, thus casting doubt on the ability of large-scale
predictors to explain local trends for this variable and hence sug-
gesting that the method may not be able to provide meaningful
downscaled projections.

Up to a point, the tendency for the SDMs to reproduce only part
of the observed long-term trend cast doubts on the technique’s
ability to realistically downscale future projections of global
warming. However, some of these doubts were alleviated when, as
a case study, future projection for Tmax in Mildura (Victoria), in the
south-east of Australia were presented in detail. Projected local
warming using the downscaling approach appears comparable to
published projection for the area surrounding this location (CSIRO
and BoM, 2007). This case study illustrates the outputs available
using a newly developed graphical user interface to disseminate
local downscaled climate change projections.

This is a landmark project, offering downscaled climate change
projections across a large part of the Australian continent. It is
worth noting that currently, downscaled predictand series are
constructed independently from one variable to another. This is
possibly a limitation for impact studies that require several pre-
dictands (i.e. rainfall and temperature), although this possible issue
was not investigated as part of this study. Further on-going devel-
opments are underway to maximise the benefits from this work.
Currently the technique is being tested for the tropical part of the
Australian continent in a bid to develop a nation-wide facility.
However, the adaptation of a synoptically driven technique to
tropical areas is not straightforward. Results presented here show
that the technique is less skilful during hot weather (in summer) in
particular for rainfall in northernmost regions of Australia. Previous
attempts to downscale rainfall for tropical regions show the
importance of using direct model outputs, such as rainfall, in order
to reproduce the local rainfall (Robertson et al., 2004).

Additional planned developments concern (1) web access to the
GUI and (2) providing gridded projections. Currently the GUI is only
available internally within the BoM, and is used by regional climate
services to provide tailored climate change projections upon
request. The model is currently being ported on a national
computing facility (the Australian Partnership for Advanced
Computing, APAC) to provide a wider access for the research
community. Furthermore, plans to provide outputs directly to the
general public, as part of a larger climate projection on-line
a central portal providing access to observe climate data and future
projections generated by different methods (OzClim or the BoM
SDM) are being investigated. In addition, the BoM has developed
daily high resolution (0.05 by 0.05 degree) gridded data for rainfall
and temperature (Jones et al., 2007). This is an interesting devel-
opment that could be used in the current framework to provided
downscaled climate change projections on the same grid scale.
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