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ABSTRACT

The consistency between rainfall projections obtained from direct climate model output and statistical
downscaling is evaluated. Results are averaged across an area large enough to overcome the difference in
spatial scale between these two types of projections and thus make the comparison meaningful. Undertak-
ing the comparison using a suite of state-of-the-art coupled climate models for two forcing scenarios
presents a unique opportunity to test whether statistical linkages established between large-scale predictors
and local rainfall under current climate remain valid in future climatic conditions. The study focuses on the
southwest corner of Western Australia, a region that has experienced recent winter rainfall declines and for
which climate models project, with great consistency, further winter rainfall reductions due to global
warming. Results show that as a first approximation the magnitude of the modeled rainfall decline in this
region is linearly related to the model global warming (a reduction of about 9% per degree), thus linking
future rainfall declines to future emission paths. Two statistical downscaling techniques are used to inves-
tigate the influence of the choice of technique on projection consistency. In addition, one of the techniques
was assessed using different large-scale forcings, to investigate the impact of large-scale predictor selection.
Downscaled and direct model projections are consistent across the large number of models and two
scenarios considered; that is, there is no tendency for either to be biased; and only a small hint that large
rainfall declines are reduced in downscaled projections. Among the two techniques, a nonhomogeneous
hidden Markov model provides greater consistency with climate models than an analog approach. Differ-
ences were due to the choice of the optimal combination of predictors. Thus statistically downscaled
projections require careful choice of large-scale predictors in order to be consistent with physically based
rainfall projections. In particular it was noted that a relative humidity moisture predictor, rather than
specific humidity, was needed for downscaled projections to be consistent with direct model output pro-
jections.

1. Introduction

General circulation models (GCMs) are the corner-
stone to generating future projections of climate
change. Their global nature, the computational require-
ments and the challenges in dynamically solving the
complexity of the interactions affecting the climate sys-
tem on small spatial scales mean that direct model out-

puts (DMOs) are often too coarse to satisfy climate
change impact studies (e.g., Wood et al. 2004). Statisti-
cal downscaling, establishing a statistical linkage be-
tween the large-scale features meaningfully captured by
GCMs and the local variables of interest for impact
studies (e.g., rainfall), is often needed to bridge this
scale gap (Wilby and Wigley 1997). The literature is
rich with examples of statistical downscaling models
(SDMs) tested and carefully validated for the current
climate system [see the extensive review in the Inter-
governmental Panel on Climate Change (IPCC) third
assessment reports; Giorgi et al. 2001].
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However, an ongoing issue is the assumption that the
statistical linkage established for the current climate
will remain valid in a future (warmer) climate. It is near
impossible to directly prove the validity of such an as-
sumption as the climate record required (multicentury,
covering different climatic epochs) is not available.
However some attempts have been made by 1) showing
that SDMs are capable of reproducing observed shifts
in the local surface climate, such as rainfall (Charles et
al. 2004; Timbal 2004) or 2) by assessing the validity of
the statistical linkage in the surrogate climate of multi-
century-long coupled climate model simulations (Frías
et al. 2006).

Here we propose to complement previous findings by
examining the consistency between physically based
projections (using DMOs) and statistically based pro-
jections (using two SDM techniques) across a large
number of climate models in order to sample how cli-
mate models relate large-scale atmospheric dynamics to
model rainfall (resulting from the physical parameter-
ization used) and comparing that with the statistical
linkage established for the current climate. This consis-
tency is also tested across a range of external forcings
covering the likely evolution of the climate during the
twenty-first century. There is no a priori expectation
that a point-scale statistically downscaled projection
will give the same signal as the overlying direct model

grid, given that they are fundamentally different (Skelly
and Henderson-Sellers 1996). However, averaging
across a sufficient number of points to account for
within-grid heterogeneities is more directly comparable
to the direct model grid value.

Our case study is the southwest corner of Western
Australia (SWWA: from 30° to 35°S and from 115° to
120°E), where rainfall in winter decreased in the late
1960s to mid-1970s by about 10%; rainfall has not re-
covered since, with arguably a further decline since the
mid-1990s (IOCI 2002; Ryan and Hope 2005, 2006;
Bates et al. 2008). SWWA is a winter rainfall domi-
nated climate, with nearly 75% of annual rainfall falling
during the May–October 6-month period. This small
region exhibits large heterogeneities with a strong rain-
fall gradient from wet coastal areas to dry inland (Fig.
1). The timing of the rainfall decline across the region
also varies, with the west coast experiencing the stron-
gest decline in the mid-1970s whereas the south coast
only recently experiencing a decline (Hope et al. 2006).

2. Data and methods

Gridded daily rainfalls from 1948 onward were ob-
tained from the Australian Bureau of Meteorology’s
National Climate Centre (NCC) on 0.25° latitude by
0.25° longitude grid. The data are interpolated from

FIG. 1. The southwest of Western Australia mean rainfall climatology from May to October
(long-term mean from 1958 to 2003). The position of the 31 grid points from the NCC gridded
rainfall dataset for which statistical downscaling was applied shown as dots. The NCEP–
NCAR reanalyses grid boxes covering the area are shown; as is the “IOCI triangle” (IOCI
2002).
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station data (Jones and Weymouth 1997). Since these
data are interpolated, there is some level of spatial ho-
mogenization inherent in the gridded values that may
minimize the particular local effects at any one station
site; in total 31 key data points, evenly distributed
across the target region, were selected for this study
(Fig. 1). The target region is SWWA, defined as the
Indian Ocean Climate Initiative (IOCI) triangle (IOCI
2002). Since the observed gridded rainfall is obtained
by interpolation between stations it contains a lot of
very small rainfall values. In this study, daily rainfall
below 0.3 mm was discarded. The downscaling calibra-
tion and projection for two techniques was performed
for all 31 grid points and then averaged to obtain a
SWWA spatial average covering the region of high win-
ter rainfall, which is comparable to climate model
DMOs. We do not expect that DMO absolute values
will be correct, as climate models are known to under-
estimate SWWA rainfall (Hope 2006). The statistical
downscaling techniques used here have been shown to
correct this underestimation (Timbal 2004; Charles et
al. 1999b). The expectation is that the 31 grid points
sample the range of local conditions encountered: that
is, coastal locations that face either facing the prevailing
westerlies or the southern coast, high-elevation loca-
tions on ranges, locations on the rain shadow side of

ranges, and inland dry areas. Three hypotheses can be
made where DMOs and spatially averaged downscaled
projections are inconsistent: 1) the spatial averaging
does not sample the subgrid heterogeneities well
enough and so is not representative of the model grid
box, 2) the statistical downscaling is not sufficiently
consistent with the large-scale physical forcing, or 3)
surface heterogeneity results in unrealistic climate
models gridbox averages (e.g., in the vicinity of large
mountains, such at the Andes or of the Himalayas, or
near land or sea ice). The third explanation is unlikely
to be the case for SWWA and the careful selection of
the 31 rainfall grid points rules out the first. Thus we are
assessing hypothesis 2.

In conjunction with IPCC’s Fourth Assessment of
climate change science released in 2007 (Solomon et al.
2007), a new set of global climate model experiments
has been produced: the World Climate Research Pro-
gramme’s (WCRP’s) Coupled Model Intercomparison
Project phase 3 (CMIP3) multimodel dataset. Up to 25
GCMs contributed to the CMIP3 dataset; however, be-
cause the SDMs rely on daily outputs for the predictors,
which were not provided by every modeling group, only
a subset of these dataset could be used (Table 1). The
models are ranked according to a measure of their sen-
sitivity (�T) (last column in Table 1), calculated using

TABLE 1. Global climate models from the CMIP3 database used in this study; the name and country of the originating group, the
acronym used, and the approximate size of the model horizontal grid box are shown. Models are ranked according to a measure of their
climate sensitivity (�T, last column) from the least sensitive at the top to the most sensitive at the bottom (see text for details).

Originating group Country Acronym
Grid size

(km)
�T

(°C)

Commonwealth Scientific and Industrial
Research Organisation (CSIRO)

Australia CSIRO-Mark version 3.0 (Mk3.0) �200 2.11

National Aeronautics and Space
Administration (NASA) Goddard
Institute for Space Studies (GISS)

United States GISS-Model E-R (ER) �400 2.12

Canadian Climate Centre Canada Canadian Centre for Climate Modelling
and Analysis (CCCma) Coupled General
Circulation Model, version 3.1 (CGCM3.1)
(T47)

�300 2.47

Meteorological Research Institute Japan MRI Coupled General Circulation Model,
version 2.3.2 (CGCM2.3.2)

�300 2.52

Geophysical Fluid Dynamics Laboratory United States GFDL Climate Model version 2.1 (CM2.1) �300 2.53
Météo-France France Centre National de Recherches Météorologiques

Coupled Global Climate Model, version 3
(CNRM-CM3)

�200 2.81

Geophysical Fluid Dynamics Laboratory United States GFDL Climate Model version 2.0 (CM2.0) �300 2.98
Institut Pierre-Simon Laplace France IPSL Coupled Model, version 4 (CM4) �300 3.19
Centre for Climate Research Japan Model for Interdisciplinary Research on Climate

3.2, medium-resolution version
[MIROC3.2(medres)]

�300 3.35

Max Planck Institute for Meteorology,
German Climate
Computing Centre [Deutsches
Klimarechenzentrum (DKRZ)]

Germany ECHAM5/Max Planck Institute Ocean Model
(MPI-OM)

�200 3.69
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the global warming produced by the model using the
A1B scenario when approximated by linear regression
over the twenty-first century (CSIRO and the Bureau
of Meteorology 2007). Only two future emission sce-
narios for the twenty-first century are used here (up to
six future emission scenarios are available in the
CMIP3 database): the A2 scenario, a higher-emissions
scenario; and the B1 scenario, a lower emission sce-
nario to encompass the likely range of global change in
the twenty-first century. Corresponding simulations of
the twentieth century were used as a baseline climate.

Daily data were only available for three time slices:
40 yr from 1961 to 2000 for the twentieth century simu-
lation and two 20-yr periods from 2046 to 2065 in the
middle of the twenty-first century (designated A2_50
and B1_50) and from 2081 to 2100 at the end of the
twenty-first century (designated A2_100 and B1_100)
for the A2 and B1 scenarios. All the projections calcu-
lated for the future 20-yr time slices are expressed as
percentage of the mean values from 1961 to 2000 for
both DMOs and downscaled projections. Direct model
rainfall changes were calculated using monthly rainfall
from the same periods for which daily data were avail-
able. Like the observed climatological rainfall distribu-
tion, all models simulated a small area of higher annual
mean rainfall corresponding to the southwest corner of
the Australian landmass compared to dryer inland val-
ues. The land grid point with the highest total rainfall in
the twentieth century simulation was thus chosen to
represent SWWA for each model.

The two statistical techniques used are weather typ-
ing schemes based on the view that atmospheric large-
scale states relate to a set of local climate variables.
They differ from weather generators or transfer func-
tion type techniques. The first downscaling technique
used is based on a nonhomogeneous hidden Markov
model (NHMM). Originally developed to model rain-
fall occurrence patterns (Hughes et al. 1999) and ex-
tended to include amounts (Charles et al. 1999a), the
NHMM simulates multisite daily rainfall as a small
number of “hidden” (i.e., unobserved) states. Daily
transitions between states are conditional on atmo-
spheric predictors. Previous studies for SWWA have
shown that the NHMM can reproduce the observed
mid-1970s step change in winter rainfall (Charles et al.
2004) and generate projections consistent with a pro-
jection from a regional climate model (Charles et al.
1999b). When calibrated to the 31 gridpoint “stations”
for May–October using National Centers for Environ-
mental Prediction–National Center for Atmospheric
Research (NCEP–NCAR) atmospheric reanalyses
(Kalnay et al. 1996) for 1958–2003 the optimal predic-
tor set consisted of mean sea level pressure (MSLP),

north–south gradient of MSLP, and dewpoint tempera-
ture depression at 850 hPa (DTD850). DTD850 is the
difference between the air temperature and dewpoint
temperature at the 850-hPa level, and thus is a measure
of relative humidity in the lower atmosphere that takes
into account the ability of a warming atmosphere to
hold more moisture. This optimum predictor set was
determined by first using local meteorological expert
knowledge to produce a list of “candidate” predictors
over SWWA, keeping in mind the predictors had also
to be available from available climate model output.
These were then evaluated by assessing the perfor-
mance of NHMMs calibrated on various predictor com-
binations using statistical tests (Bayes information cri-
terion), the subjective assessment of the physical real-
ism of the NHMM states (i.e., SWWA rainfall patterns
and associated synoptics), and ability to reproduce at-
site and intersite statistics such as wet-day frequencies,
wet- and dry-spell length distributions, spatial correla-
tions in occurrences and amounts, intensity distribu-
tions, and interannual variability, as outlined in Charles
et al. (1999a, 2004). The selected predictors were cal-
culated for the NCEP–NCAR grid points over the
SWWA landmass, not exactly the same domain was
used for each predictors, the largest domain consider
was for MSLP from 116.25° to 123.75°E and from
38.75° to 31.25°S.

The second downscaling approach used is based on
the idea of meteorological analogs (Timbal and Mc-
Avaney 2001). This is one example of a more general
type of SDM based on weather classification methods
in which predictands are chosen by matching previous
(i.e., analogous situations) to the current weather state.
The analog SDM was first developed for daily tempera-
ture extremes (Timbal and McAvaney 2001) and then
extended to rainfall occurrences (Timbal et al. 2003)
and amount (Timbal 2004). As for the NHMM, it was
tested for the rainfall in SWWA using NCEP–NCAR
reanalyses for 1958–2003 and similar predictors were
examined. The optimal combination of predictors was
found to be: MSLP, the specific humidity at 850 hPa
(Qs_850), and the zonal component of the wind at 850
hPa (U850). The optimal combination of predictors was
chosen by a subjective analysis: first assessing the skill
of various individual predictors (limited to variable best
reproduced by climate model on a large scale) and then
the gain in skill obtained while combining the predic-
tors. A range of statistics was looked at to assess the
skill: reproduction of the mean and variance of the ob-
served series, correlation between the observed and re-
constructed series on daily and interannual time scale.
Only weakly correlated combinations of predictors
were tested to avoid overfitting. Several geographical
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domains for the predictors were tested, the optimized
size was found to be a rectangle centered above
SWWA: from 108.5° to 128.5°E and from 27° to 39°S, a
slightly larger domain than for the NHMM method.

The optimal combination of predictors is notably
similar between the two techniques: a synoptic predic-
tor (MSLP) combined with a measure of the zonal air
flux (zonal wind or north–south pressure gradient) and
a measure of the atmospheric moisture (either specific
humidity or dewpoint depression). The third predictor
however has the potential to lead to very different sig-
nals in a warmer world. Specific humidity has been pro-
jected (Held and Soden 2006) to increase with global
warming because of an increase in the moisture holding
capacity of the warmer atmosphere and strengthening
of the hydrological cycle while the concurrent increase
in the saturation point will limit the increase in of rela-
tive humidity, for example, the dewpoint depression.
The impact of the different moisture predictors is tested
by adding temperature at 850 hPa (T850) to the predic-
tors in the analog model. The combination of T850 and
the specific humidity at 850 hPa is a closer match to the
dewpoint depression at 850 hPa used by the NHMM.
Although not selected as the optimal combination of
predictors for the analog model, adding T850 does not
result in a major change in skill. While the day-to-day
correlation is unchanged and the interannual correla-
tion slightly reduces from 0.55 to 0.48, there is a better
representation of the observed downward trend across
the second half of the twentieth century.

3. Rainfall projections and global warming

Climate model rainfall projections for SWWA ex-
hibit very high consistency across the range of climate
models compared to other areas of the globe (Solomon
et al. 2007). More than 90% of all the CMIP3 climate
models indicate a further rainfall decline in winter
(CSIRO and Bureau of Meteorology 2007). This very
high consistency makes it an interesting case study to
evaluate how downscaled projections compare with di-
rect model outputs. First, we examine how much of this
consistency can be accounted for by the dependency of
the rainfall declines on surface global warming, one of
the most robust features of climate model climate
change projections (Solomon et al. 2007). This hypoth-
esis is in line with previous analysis of future rainfall
projections (Hope 2006) and attribution of the current
SWWA rainfall decline to anthropogenic forcing (Tim-
bal et al. 2006).

Rainfall declines for May to October obtained di-
rectly from the climate models are plotted as a function
of the global warming for each experiment (Fig. 2),
calculated as an anomaly between the future 20-yr pe-
riods and 1981 to 2000 (as summarized in Fig. 5 of the
summary for policy makers of the IPCC; Solomon et al.
2007). The relationship is strong and explains about
half of the variability of the rainfall decline per model
simulation (r2 � 0.46). The slope is 9.0% rainfall de-
cline per degree of warming; for the past 50 yr (1956–
2005), a decline of 9.9% was observed while the global
warming in the same period was of 0.65°C � 0.15°C

FIG. 2. Percentage of rainfall reduction in SWWA projected for the mean May–October
total rainfall as a function of the model global warming using emission scenarios B1 and A2.
The line of best linear fit for all the points is shown (thick line with equation and r 2) as well
as the envelope of the model rainfall declines.
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(Solomon et al. 2007): thus a decline of between 12%
and 25% per degree of global warming. There is also an
uncertainty attached to the calculated rainfall trend, the
figure given here is obtained using monthly gridded
data and the full IOCI (2002) “triangle,” as it is the
most reliable data. However, the same calculation done
on the dataset used here (daily gridded data sampled
using 31 points) gives a decline of 5.3% or a rate of
6.5% to 13.5% per degree of global warming. This dis-
parity in trend probably arises from fewer daily stations
included in the daily gridded data compared to the
monthly network through the 1950s and 1960s. Overall,
it appears that the past rainfall decline per degree of
warming had likely been larger than the number ob-
tained for future projections. It is not obvious that the
larger decline for the current transient climate points
toward an underestimation for future model projec-
tions. Past studies have shown that only a part of the
observed rainfall decline is attributable to anthropo-
genic forcings (Timbal et al. 2006; Cai and Cowan
2006), while natural variability (Cai et al. 2005) and
regional land clearance (Pitman et al. 2004; Timbal and
Arblaster 2006) have likely enhanced the signal in the
past 50 yr (IOCI 2002).

The rainfall decline–temperature increase relation-
ship is driven by the external forcing strength, ranging
from B1_50 (pluses in the top left corner of Fig. 2) to
A2_100 (black squares in the bottom right corner of
Fig. 2). However in most instances, for a given scenario,
there is congruence between the rainfall decline and the
measure of model sensitivity used in Table 1 (with a
slope between 7% and 10% of rainfall reduction per
degree of warming; not shown).

The strength of the relationship between rainfall de-
cline and global warming is of the same magnitude
when downscaled projections are considered (ex-
pressed as correlation in the fourth row in Table 2).
However, most of the linearity comes from the rainfall
decline being commensurate with the external forcing,
as the relationship between rainfall decline and model
sensitivity is weaker for downscaled rainfall projec-
tions. The slope of the relationship (fifth row in Table
2) between downscaled projections and global warming
varies between 6.6% and 9.6% for May–October aver-
age.

4. Consistency between direct and downscaled
rainfall projections

As stated, point-scale climate change projections ob-
tained using a statistical downscaling technique and
grid average DMOs are fundamentally different and
therefore unlikely to be directly comparable. Averag-

ing downscaled results across a large number of points
from a gridded high-resolution dataset, however, pro-
vides the opportunity to aggregate downscaled projec-
tions back up to a scale were they are comparable to
DMO projections. Plotting the downscaled rainfall pro-
jections averaged across SWWA against the direct pro-
jections (Fig. 3a) shows the points are aligned along the
diagonal. For any particular point, however, a large dif-
ference may exist between DMO and downscaled pro-
jections for the given model (up to 20%). Overall the
correlation between downscaled and DMO projections
varies between 0.57 and 0.75 across techniques (Table
2). The slope (in %/%) of the best linear fit, intercept-
ing with (0, 0), is 0.75 in the case of the analog approach
and 0.93 for the NHMM. For the largest projected
changes, the downscaled projections tend to reduce the
dramatic rainfall declines projected by the DMOs.

Comparing the two statistical downscaling tech-
niques, the NHMM approach is overall more consistent
with the DMOs than the analog approach. NHMM cor-
relations are higher (Table 2) and the slope of the
DMO versus downscaled relationship is closer to 1 (Fig.
3). We hypothesize that one reason why the NHMM
provides better consistency with DMOs on a larger
scale is because the predictors (which differ from those
of the analog model) better capture the main large-
scale forcings corresponding to the rainfall generation
mechanisms producing the DMO rainfall decline.

The consistency between downscaled projections is
greatly improved when T850 is added to the optimized
combination of predictors of the analog approach (Fig.
3b). The slope of the best fit line between analog based
downscaled projections and direct model outputs is not
equal to 1, but the differences with the NHMM projec-
tions are negligible. The correlation between individual

TABLE 2. Correlation between various rainfall declines (May–
October average) from DMOs and using statistical downscaling
models: the NHMM; the analog model (Analog); and the analog
model with T850 as an additional predictor (A � T850) (rows 1–3).
Each rainfall decline is also related with the model global warm-
ing (row 4) and the slope of the relationship is given (row 5).
Correlations are based on 10 global climate models and four ex-
periments, and are all significant at the 99% level.

Pearson
correlation (r 2) DMO NHMM Analog A � T850

DMOs 0.75 0.63 0.65
NHMM 0.76 0.75
Analog 0.96
Model global

temperature
�0.68 �0.70 �0.61 �0.69

Slope of rainfall vs
global temperature
relationship

�9.0% �9.6% �6.6% �9.1%
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projections for both techniques remains unchanged
(around 0.7) when T850 is added. This is not surprising
as the correlation between the two analog models is
extremely high (above 0.9 in individual months and up
to 0.96 across the May to October total rainfall). This
suggests that the magnitude of SDM projected rainfall
changes has more to do with the combination of large-
scale predictors used, rather than the statistical tech-
nique itself, providing that the technique has been
found suitable when tested on the current climate. This
result corroborates the earlier findings of Charles et al.
(1999b), where an NHMM using an absolute humidity,
rather than relative humidity, predictor could not pro-
duce rainfall projections consistent with a dynamic re-
gional climate model. Thus predictor selection should
not be based solely on assessing a SDMs performance
for current climate. This point, as initially proposed by
Charles et al. (1999b), has been recently restated by
Vrac et al. (2007) with similar conclusions.

5. Conclusions

Rainfall projections from two statistical downscaling
models, averaged across the southwest of Western Aus-
tralia, were compared with direct model outputs.
Eleven CMIP3 climate models were used for two emis-
sions scenarios. The rainfall declines projected by cli-
mate models for this region are extremely consistent
across models and scenarios, all project further Austral
winter rainfall reductions. The projected declines align
with the global warming projected by the climate mod-
els (about 9% rainfall reduction per degree of global
warming).

On a broad scale (i.e., averaging gridded data across
several hundred square kilometers), the downscaled
projections are highly consistent with the direct model
projections. For any particular GCM the downscaled
and direct model projections can be quite different but
over the large sample of multimodel outputs there is
only a small suggestion that downscaled rainfall projec-
tions are slightly reduced for the largest rainfall de-
clines projected by GCMs. The NHMM produced
better consistency with direct model outputs than the
analog approach. A modified analog model with large-
scale predictors similar to the NHMM produced a level
of consistency equal to the NHMM.

Our results offer additional information on the va-
lidity of the statistical linkage used to relate large-scale
predictors and local rainfall in a different climate. This
is complementary to 1) the validation of these statistical
techniques across observed climate change (Timbal
2004; Charles et al. 2004) and 2) the evaluation of the
consistency of statistical techniques in the surrogate cli-
mates of coupled model simulations (Frías et al. 2006).
Our results confirm that statistical linkages based on
sound predictor selection, which have a physical basis
to drive the local predictands, provide downscaled pro-
jections comparable to dynamical model projections.
The choice of the large-scale predictors was shown to
be critical to make this linkage resilient to climate
change and far more important than the choice of sta-
tistical downscaling technique.
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