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ABSTRACT: We present results from a 15-year 10-member warm season (March–September) hindcast ensemble of
maximum and minimum surface air temperatures and precipitation in southeast USA. The hindcasts are derived from the
Florida State University/Center for Ocean-Atmospheric Prediction Studies Global Spectral Model (FSU/COAPS GSM) and
downscaled using both the FSU/COAPS Nested Regional Spectral Model (NRSM) and a statistical downscaling method
based on stochastic weather generator techniques. We additionally consider statistical bias correction of the dynamical
model output. Basic descriptive statistics indicate that the bias-corrected and statistically downscaled data reduce the
FSU/COAPS GSM bias considerably in terms of basic climatology. Statistics describing the daily precipitation process
are improved by both downscaling techniques relative to the bias-corrected GSM. Improvement in monthly and seasonal
hindcasts relative to FSU/COAPS GSM is spatially and temporally varying. Precipitation hindcasts are generally less skillful
than those for temperature, although useful precipitation predictability exists at many locations. Hindcast improvements
due to downscaling are greatest over peninsular Florida. The smallest root mean square errors (RMSE) for temperature
hindcasts are found in the southern part of the study region during the spring months of March, April and May (MAM) for
maximum surface air temperature, and in the summer, June, July and August (JJA), for minimum surface air temperature.
Overall, there is no indication that either downscaling method has a direct advantage over the other. Copyright  2008
Royal Meteorological Society
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1. Introduction

Seasonal climate forecasts provide useful information for
many applications, ranging from agricultural and hydro-
logical modelling (e.g. Shin et al., 2006) to prediction
of disease (e.g. Morse et al., 2005). While global cli-
mate models (or general circulation models, GCMs) are
currently capable of providing qualitative seasonal fore-
casts, informing the end-user of either below normal, near
normal, or above normal conditions, many applications
require climate information at much finer spatial and/or
temporal scales than those provided by global models. In
order to make the GCM output useful for applications, it
is necessary to downscale the model output, using either
dynamical or statistical methods.

Dynamical downscaling consists of running a high-
resolution regional climate model (RCM) using the GCM
output for initial and lateral boundary conditions. The
RCM is therefore used to account for forcings at spa-
tial scales finer than those offered by the parent GCM.
Although more computationally expensive, dynamical
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downscaling methods have the potential to outperform
statistical techniques, particularly because the resulting
downscaled climates are necessarily physically consis-
tent with the GCM output from which they are derived.
However, this also means that biases can be passed from
the GCM to the RCM resulting in biased regional cli-
mate estimates (Giorgi et al., 2001). RCMs can exhibit
additional bias resulting from parameterization or incon-
sistencies with the parent GCM.

Statistical methods of downscaling rely on established
relationships between GCM output and a variable of
interest at some scale finer than that of the GCM. Statis-
tical downscaling can, therefore, be carried out inexpen-
sively using any number of available methods ranging
in complexity from simple interpolation methods and
regression models to stochastic weather generators and
artificial neural networks. The primary shortcoming of the
statistical approach is the assumption that the relationship
between the predictors and predictand(s) is stationary,
which cannot be proven in advance. However, because
statistical downscaling methods are based on observed
relationships, they have the potential to incorporate local
or regional environmental factors that are not resolved by
even the finest RCMs.

Copyright  2008 Royal Meteorological Society



244 J. T. SCHOOF ET AL.

Studies comparing dynamically and statistically down-
scaled GCM (e.g. Hanssen-Bauer et al., 2003; Busuioc
et al., 2006) output have generally found similar skill
resulting from the two methods. However, these studies
have generally focussed on climate change simulations.
Here, we extend the comparison to the seasonal timescale
and examine the skill associated with the direct model
output, as well as dynamically and statistically down-
scaled seasonal climate hindcasts, for southeastern USA
(Figure 1) as part of a larger project aimed at provid-
ing seasonal climate information for applications in agri-
culture, forestry and water resources management (see
http://secc.coaps.fsu.edu). It is acknowledged that pre-
dictability in this region is greatest during the winter
season, primarily via the ENSO teleconnection (Quan
et al., 2006; Cocke et al., 2007). However, for applica-
tions in the agricultural sector (e.g. Shin et al., 2006), it
is imperative to assess the quality of warm season fore-
casts. This article, therefore, focusses on the evaluation
of temperature and precipitation hindcasts from a global
climate model and downscaled using dynamical and sta-
tistical methods.

In Section 2, we describe the data used in the
analysis, which includes the FSU/COAPS GSM, the
European Centre for Medium-Range Weather Forecasting
(ECMWF) reanalysis data, and the gridded surface cli-
mate information provided by the Florida Climate Center.

Figure 1. Map of the study area showing various data sources: surface
grid points (ž), ECMWF grid points (◊), and GSM grid points (�).
The vertical and horizontal lines depict the grid boxes associated with

the ECMWF (solid) and GSM (dash-dotted) grids.

In Section 3, we describe the downscaling methodology,
including the details of the FSU/COAPS Nested Regional
Spectral Model (NRSM) and the statistical downscaling
methods. The results of the analysis are presented in Sec-
tion 4 and summarized and discussed in Section 5.

2. Data
2.1. The Florida State University/Center for
Ocean–Atmospheric Prediction Studies Global Spectral
Model (FSU/COAPS GSM)

Both the dynamically and statistically downscaled data
are driven by the Florida State University/Center for
Ocean Atmospheric Studies Global Spectral Model
(FSU/COAPS GSM)(Cocke and LaRow, 2000), hereafter
referred to as the GSM. The horizontal model reso-
lution is T63, corresponding to a model resolution of
approximately 1.875° × 1.875° in the tropics, with 27
vertical levels. The model has recently been upgraded by
including the National Center for Atmospheric Research
(NCAR) Community Land Model (CLM2) for the land
surface component (see Bonan et al., 2002; Shin et al.,
2005). The results described here employ the Simpli-
fied Arakawa-Schubert (SAS) convective scheme (Pan
and Wu, 1995). In this study, we employ a 10-member
ensemble from the GSM obtained by starting the simula-
tions on 10 consecutive days using initial conditions from
ECMWF reanalysis data provided by NCAR. The model
is then run for the period of interest, until 30 September,
using prescribed sea surface temperatures (SSTs), which
are updated weekly to provide information regarding the
ocean state to the atmospheric model. The simulations
here, therefore, provide an upper limit to model-based
predictability since, in a predictive mode, SSTs would
also be simulated, introducing additional error. The GSM
grid points used in this study are shown in Figure 1.
Additional details regarding the GSM are provided by
Cocke and LaRow (2000) and Shin et al., (2005).

2.2. ECMWF reanalysis (ERA-40)

The ECMWF reanalysis dataset (Uppala et al., 2005)
is used with the gridded surface data to develop sta-
tistical relationships, which are then applied to output
from the GSM. The data are gridded atmospheric fields
with 2.5° × 2.5° resolution and were obtained from the
ECMWF data server. A large suite of potential predictor
variables, including sea-level pressure, specific humidity,
temperature, geopotential height, zonal and meridional
wind speed, and relative vorticity were evaluated for use
in the statistical downscaling (Table I). The ECMWF
reanalysis grid points used in this study are shown in
Figure 1.

2.3. Surface station data

The surface data used in this study consists of grid-
ded data derived from the National Weather Service
(NWS) Cooperative Observing Program network (see
http://www.nws.noaa.gov/climate) and provided by the
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Table I. Predictor variables used for statistical downscaling.

Variable
name

Pressure levels
(hPa)

Symbol

Specific humidity 500, 700, 850 Q500, Q700, Q850

Relative vorticity 500, 700, 850 RV500, RV700, RV850

Sea-level pressure SLP
Air temperature 500, 700, 850 T500, T700, T850

Zonal wind speed 500, 700, 850 U500, U700, U850

Meridional wind speed 500, 700, 850 V500, V700, V850

Geopotential height 500, 700, 850 Z500, Z700, Z850

Florida Climate Center (http://www.coaps.fsu.edu/climate
center). The data consists of maximum and minimum

daily surface air temperatures (Tmax, Tmin) and total daily
precipitation (P ), which have been objectively interpo-
lated to a 20 × 20 km grid using the Cressman objective
analysis scheme (Cressman, 1959). The grid point loca-
tions are depicted in Figure 1.

3. Methodology

3.1. The Florida State University/Center for
Ocean–Atmospheric Prediction Studies Nested Regional
Spectral Model (FSU/COAPS NRSM)

The RCM used in this study is the FSU Nested Regional
Spectral Model, hereafter referred to as the NRSM. The
NRSM can be run at any horizontal resolution using base
fields from the global model for boundary conditions.
The regional model forecasts perturbations to the global
model solution, and the perturbations, which need not be
small, are represented spectrally by double Fourier series.
The regional model employs a lateral boundary relax-
ation of the perturbations that has an effective width of
about 4 grid points. While the utility of regional models is
often tested using base fields from reanalysis products for
boundary conditions, problems can result from differing
parameterizations (e.g. convective schemes) being used
in the reanalysis and RCM. Therefore, in this study, a 6-
h nesting interval is used, and the regional model uses the
same physics and physical parameterizations as the GSM,
including the SAS convection scheme and NCAR CLM2
land model. The GSM and NRSM includes options for
six different convection schemes, and tests indicate that
the SAS scheme generally performs better than mass flux
schemes for the domain and season of this study. By uti-
lizing the same physical parameterizations (save for some
resolution-dependent parameters) and dynamical core, we
ensure a high degree of compatibility between the global
and regional model solution. As a result, the large-scale
features of the regional model solution are very consistent
with that of the global model solution. A full description
of the NRSM, along with an evaluation of its simula-
tions, is given in Cocke (1998) and Cocke and LaRow
(2000). For the experiment presented here, the NRSM
was run at 20 km resolution. The simulations consist of
a 10-member ensemble consistent with the parent GCM

described in Section 2.1. The integrations are performed
for 15 years (1987–2001) and for seven months, begin-
ning on 1 March and ending on 30 September of each
year. The NRSM has recently been applied to the pre-
diction of cold season precipitation (Cocke et al., 2007)
and warm season maximum surface air temperature (Lim
et al., 2007). Here, we extend the analysis to include
warm season predictions of precipitation and both maxi-
mum and minimum surface air temperatures.

3.2. Statistical downscaling

Statistical downscaling can be performed using a wide
variety of methods, ranging from simple interpolation,
regression and analog techniques, to more complex meth-
ods, including stochastic weather generators and artifi-
cial neural networks. In this study, a hybrid approach
was used in which weather generator parameters were
downscaled using multiple regression techniques. Most
weather generators are variants of the autoregressive
approach introduced by Matalas (1967) and refined by
Richardson and Wright (1984). Such models have sepa-
rate components for precipitation and non-precipitation
variables. After precipitation has been generated, the
remaining variables are generated with dependence on
wet/dry status.

3.2.1. Precipitation

The precipitation component of the statistical model has
two parts: a binary occurrence process (i.e. it either rains
or does not rain) and an intensity process (i.e. the amount
of precipitation given on a wet day).

3.2.2. Precipitation occurrence

The occurrence process has historically been addressed
using Markov chain models or spell length approaches
while wet day amounts have been chosen from a number
of statistical probability distributions. Here, precipitation
occurrence is downscaled using a logistic regression
model of the form:

p = 1 − 1

1 + e(β0+β1x1+β2x2+....+βkxk)
(1)

where p is the probability of precipitation, β0 is the
regression constant, and β1...k are the slope coefficients
for the explanatory variables (x1...k). A uniform random
number on the interval [0 1], u, is then generated. If p is
less than u, then the daily precipitation amount is zero. If
p is greater than or equal to u, a non-zero precipitation
amount, P , must be determined.

For model construction, predictor variables are ex-
tracted from the ECMWF reanalysis (Table I). The
variables were chosen a priori based on their expected
influence on regional surface precipitation and air temper-
ature variations. The optimal model is found by testing
each model on the GSM data using a cross-validation
framework and by cycling through the potential predictor
variables and years. For example, to downscale the
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GSM data from 1987, a model like that in Equation (1)
would be constructed for each potential predictor vari-
able using ECMWF reanalysis data and station data (for
1988–2001). In this way, the optimal model can be deter-
mined by examining overall performance based on this
cross-validation. Here, the criterion tested is the wet-day
probability. The best model is the one that, when aver-
aged over all years (as constructed above), minimizes the
difference in observed and downscaled wet-day proba-
bility. This approach also limits the variable selection
to those variables that perform well when the model is
driven by output from the GSM. The primary variables
included in the final models were 850 mb geopotential
height and mid-troposphere (700 mb) winds.

3.2.3. Precipitation intensity

The non-zero precipitation amounts are chosen randomly
from the gamma distribution:

f (x) =

(
x

β

)α−1

e

[−x
β

]

β�(α)
, x, α, β > 0 (2)

where x is the daily precipitation amount, α and β, are
the gamma distribution parameters (the shape and scale
parameters, respectively), and �(α) is the gamma func-
tion evaluated at α. The gamma distribution has been
used by a large number of studies (e.g. Richardson,
1981; Wilks, 1992). Application of this distribution to the
downscaling problem requires identifying statistical rela-
tionships between the parameters, α and β, and the large-
scale variables. For each year (1987–2001), α and β, are
estimated from observations. Anomalies of α and β are
then regressed (separately) against anomalies of ECWMF
variables (Table I) using a cross-validation framework
similar to that described in Section 3.2.2. The best model
is the model that maximizes the variance explained when
GSM anomalies replace the ECMWF data used to con-
struct the model. Additional variables are added if they
increase variance explanation by 1.5%. The anomalies
that are produced by the model are then added to the
mean values of α and β. The primary predictor chosen
for α was mid-troposphere (500 mb) temperature, with
zonal wind and 850 mb and 500 mb chosen as secondary
predictors at some stations. The primary predictors for
β were 500 mb specific humidity and 500 mb tempera-
ture with 500 mb zonal wind and geopotential height as
secondary predictors at some stations.

3.2.4. Maximum and minimum daily air temperatures
(Tmax and Tmin)

The autoregressive weather generator models Tmax and
Tmin using:

Xi = AXi−1 + Bε (3)

where Xi is a vector containing the current day’s stan-
dardized values of Tmax and Tmin, Xi−1 is a vector con-
taining the previous day’s standardized values of Tmax

and Tmin, ε is a vector of independent standard Gaussian
values, and A and B are matrices given by:

A = M1M
−1
0 (4)

BBT = M0 − M1M
−1
0 MT

1 (5)

where M0 is the matrix of lag-0 cross correlations
and M1 is the matrix of lag-1 cross correlations. A

can be computed directly, while B requires the use
of an eigenvalue decomposition technique (see Greene,
2000). After generation of the standardized values using
Equation (3), properly dimensioned values are obtained
by multiplying a standard deviation and adding a mean
value. In this study, we employ monthly means and
standard deviations for this purpose.

Previous studies (e.g. Schoof and Robeson, 2003; Qian
et al., 2005; Schoof et al., 2007) have shown that M0

and M1 vary considerable over space and on a seasonal
basis, but report only small changes in M0 and M1

through time. We therefore use monthly values of M0

and M1 estimated from the observed data for the period
1987–2001, leaving out the year that is being hindcast.
These data are used to determine values of A and B.
The temperature downscaling problem is then reduced to
determining values for the monthly means and standard
deviations of Tmax and Tmin.

For each year in the historical data (1987–2001), the
monthly means and standard deviations of Tmax and Tmin

are estimated from observations. Anomalies of each of
these predictands are then regressed (separately) against
anomalies of ECWMF variables (Table I) using a cross-
validation framework similar to that described in Sections
3.2.2 and 3.2.3. The best model is the model that
maximizes the variance explained when GSM anomalies
replace the ECMWF data used to construct the model.
Additional variables are added if they increase variance
explanation by 1.5%. The anomalies that are produced by
the model are then added to the mean values of the means
and standard deviations of Tmax and Tmin estimated using
the 1987–2001 data (again leaving out the current year).

The primary predictor chosen for both the monthly
mean Tmax and monthly mean Tmin is mid-troposphere
(500 mb, 700 mb) temperature. At a few stations, geopo-
tential height at mid-troposphere levels is chosen. For the
standard deviation of Tmax, the primary variable chosen is
geopotential height, but the optimal vertical level varies
among stations. Geopotential height is also chosen as the
primary predictor for the standard deviation of Tmin at
some stations, while at other stations 850 mb temperature
and 500 mb zonal wind are chosen.

3.3. Evaluation tools

Because there is no a priori expectation that the daily
downscaled data should exhibit a one-to-one correspon-
dence with the daily observed data, we focus on the
statistical properties of the daily data, which reflect the
long-term climatological agreement between observations
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and simulations, and the errors associated with the hind-
casts at the monthly and seasonal timescales. For the for-
mer, we examine precipitation occurrence statistics and
means and variances of the daily temperatures and precip-
itation amounts. For the latter, we evaluate the hindcasts
in terms of root mean square errors (RMSEs).

4. Results

4.1. Climatological statistics

Initial examination of the daily GSM data indicated
substantial bias in the temperature and precipitation data
for some parts of the region. Through the nesting process,
this bias can be passed down to the NRSM. The sources
of the bias are currently under investigation. To ensure
a fair comparison to the statistically downscaled data,
which are derived using observed statistics, a simple bias
correction was applied to both the GSM and NRSM
output. The correction applied here is described by
Wood et al., (2002) and consists of re-mapping the
cumulative distribution function (CDF) of the predicted
data to that of the observed data. For example, if a
minimum temperature value of 285 K corresponds to the
60th percentile in the GSM or NRSM output, then the
bias-corrected value would be the 60th percentile value
from the observations. Specifically, for each year and
month, the simulated CDF is corrected by re-mapping
the CDF simulated for the month in the other years to
the observed CDF for all the other years. With respect to
precipitation, the GSM and NRSM were found to produce
too many wet days relative to observations in accordance
with results from previous studies (e.g. Mavromatis
and Jones (1999)). The bias correction simultaneously
addresses overestimation of precipitation occurrence and
precipitation amount by the GSM and NRSM by re-
mapping trace precipitation amounts to zero. The GSM
is bias corrected and evaluated by re-sampling the coarse
resolution GSM grid point data at the resolution of the
surface data and NRSM output.

4.1.1. Precipitation occurrence

The bias correction described above greatly improves the
agreement between the GSM and NRSM and observa-
tions with respect to the wet-day probability, and the post-
bias-correction GSM and NRSM provide a similar level
of agreement with observations as the statistically down-
scaled data. Averaged over all ensemble members, the
coefficients of determination (R2) for the bias-corrected
GSM and NRSM are both 0.98 (compared to 0.26 and
0.31 for the raw GSM and NRSM output, respectively).
The variance explained by the statistically downscaled
results is 0.99. These results indicate that the overall wet-
day probability in the GSM and in both the dynamically
and statistically downscaled hindcasts exhibits a high
level of agreement with observations during the hindcast
period.

The overall wet-day probability is useful as a summary
statistic, but day-to-day (e.g. high frequency) variability

may be more important for some applications. Transition
probabilities were, therefore, computed for each dataset
(GSM, NRSM, and statistically downscaled, hereafter
referred to as STAT) to assess the realism of the occur-
rence process in the simulated and downscaled daily
precipitation. Here, we limit the assessment to first-order
transition probabilities: p01 (the probability of a wet day
following a dry day) and p11 (the probability of a wet
day following a wet day). These transition probabilities
fully describe the first-order precipitation process since
p00 = 1 − p01 and p10 = 1 − p11.

Prior to bias correction, the GSM and NRSM both pro-
duce too many wet days. The bias-corrected data exhibit
good agreement with observations (Figure 2). As shown,
the persistence of the daily precipitation process is too
strong in the GSM data, with the probability of a wet day
following a dry-day low relative to observations, and the
probability of a wet day following a wet-day high rel-
ative to observations. After being downscaled, the level
of agreement with observations, as determined by the
R2, value is much larger (p01 : R2 = 0.81 for NRSM and
0.82 for STAT; p11 : R2 = 0.85 for NRSM and 0.88 for
STAT relative to values of 0.66 and 0.74 for p01 and p11

from the GSM respectively.). The bias-corrected dynam-
ical results are a substantial improvement over the raw
GSM and NRSM output, which explained only 10–30%
of the variance in these transition probabilities. Like the
bias-corrected GSM, the transition probabilities derived
from the statistically downscaled data exhibit systematic
error, with the likelihood of a wet day following a dry day
too high relative to observations, and the likelihood of a
wet day following a wet day too low relative to obser-
vations (Figure 2). This result suggests that the statistical
model employed underestimates the temporal autocor-
relation in the precipitation process. The dynamically
downscaled precipitation data, with transition probabil-
ities in the same range as those observed, may be more
attractive to end users due to better representation of
the temporal autocorrelation, and hence, high frequency
information, in the observed precipitation series.

4.1.2. Precipitation intensity
To assess the simulated precipitation intensity, mean wet-
day precipitation amounts were computed from the obser-
vations, GSM, and data downscaled using the NRSM
and the statistical method. For the bias-corrected GSM
and NRSM and the statistically downscaled data, there
is a high-level agreement between observed and simu-
lated mean wet-day precipitation amounts (R2 > 0.95,
Figure 3). These results and those presented in Sec-
tion 4.1.1 suggest that the bias will correct GSM and
NRSM, and statistically downscaled precipitation data
exhibit good agreement with observations. Hindcast per-
formance at longer timescales will be assessed in Sections
4.2 and 4.3.

4.1.3. Maximum surface air temperature (Tmax )
The GSM and NRSM exhibit considerable bias in
maximum surface air temperature (Tmax) (Figures 4
and 5). Spatial examination of the results presented in
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Figure 2. Observed and hindcast values of the transition probabilities for dry day to wet day (p01, top 3 panels) and wet day to wet day (p11,
bottom 3 panels). The three columns correspond to GSM, NRSM, and statistically downscaled hindcasts. Each point represents an ensemble

average for a single grid point.

Figure 3. Observed and predicted values of the mean daily precipitation amount for (from left to right) direct (GSM) and dynamically (NRSM)
and statistically (STAT) downscaled GSM output. Each point represents an ensemble average for a single grid point.

Figure 4. Observed and simulated mean values of daily maximum (°) and minimum (×) surface air temperature. Results are shown for the
GSM (left), NRSM (center), and statistically downscaled (STAT, right) data. The second row shows the GSM and NRSM results after statistical

bias correction.
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Figure 5. Observed and simulated standard deviations of daily maximum (°) and minimum (×) surface air temperature. Results are shown
for the GSM (left), NRSM (center), and statistically downscaled (STAT, right) data. The second row shows the GSM and NRSM results after

statistical bias correction.

Figure 6. Root mean square errors (RMSE; mm) for monthly total precipitation hindcasts derived from (a) direct GSM output, (b) direct NRSM
output, (c) bias-corrected GSM output, (d) bias-corrected NRSM output, and (e) statistically downscaled GSM output.

Figure 4 indicates that both the GSM and NRSM exhibit
cold bias over the Florida peninsula and warm bias
over the remaining parts of the study region. Appli-
cation of the bias correction to the GSM and NRSM
data improves the relationship between the observed and
simulated values of Tmax (Figures 4 and 5). The statis-
tically downscaled data likewise exhibits a high level
of agreement with observations in terms of the overall

mean and standard deviation. The GSM and NRSM also
suffer from overestimation of variance (Figure 5), par-
ticularly, at northern stations where temporal variability
is greater, while the downscaled data exhibit excellent
agreement with observations (R2 > 0.96). This short-
coming in the GSM and NRSM data is also improved
through application of the bias correction (Figures 4
and 5).

Copyright  2008 Royal Meteorological Society Int. J. Climatol. 29: 243–257 (2009)
DOI: 10.1002/joc



250 J. T. SCHOOF ET AL.

4.1.4. Daily minimum surface air temperature (Tmin)

Although the GSM also exhibits bias with respect to
Tmin, the simulations exhibit slightly better agreement
than that described for Tmax (Figure 4). As shown in
Figure 4, the GSM has a warm Tmin bias at most stations.
As with Tmax, the downscaled data result in considerable
improvement over those directly simulated by the GSM.
Application of the bias correction results in excellent
agreement between the GSM, downscaled and observed
daily Tmin. The variance characteristics of Tmin are very
similar to those described for Tmax in the previous section
(Figure 5).

4.2. Monthly and seasonal hindcast assessment

The results presented in Section 4.1 reflect the most
basic properties of the simulated data – reproduction of
the basic statistical properties of the data. For use in
climate-based applications, it must also be demonstrated
that the downscaled data exhibit skill on timescales that
would allow the results to be used to assist decision
makers. The 15 years of hindcasts from 10-ensemble
members allow a reasonable assessment of the hindcast
skill (including spatial variations) associated with the
model simulations. Here, we explore the skill associated
with the ensemble mean. The results are presented in
three sections corresponding to total precipitation, mean
Tmax, and mean Tmin. For each variable, results are
presented for monthly, spring (March, April and May;

MAM), and summer (June, July and August; JJA) total
precipitation and mean Tmax and Tmin.

4.2.1. Total precipitation

Table II shows the RMSE for monthly and seasonal pre-
cipitation totals averaged over all stations and for each
state. Figures 6–8 show the spatial distribution of the
RMSE for monthly, MAM, and summer JJA precipita-
tion totals. The observed mean monthly total precipitation
averages 122.5 mm over the domain, with larger totals
over Florida (140.5 mm) than over the northern states
(119.6 and 109.8 mm for Alabama and Georgia, respec-
tively). During spring, the mean precipitation amount is
309.7 mm, with the lowest total precipitations amounts in
Florida (268.4 mm). During summer, the sea breeze front
often triggers afternoon thunderstorms along the exten-
sive Florida coast, leading to larger precipitation amounts
(545.8 mm on average for all Florida grid points).

At the monthly timescale, the lowest errors in the
precipitation hindcasts occur in the northern part of the
domain (Figure 6, Table II), where RMSE values range
from 50–75 mm/month. The bias-correction procedure
results in only minor improvement to the raw GSM
results. Additionally, the NRSM appears to introduce
additional error to the GSM results, which is reduced
through application of the bias correction. The bias-
corrected dynamical hindcasts (both GSM and NRSM)

Figure 7. Root mean square errors (RMSE; mm) for spring (MAM) total precipitation hindcasts derived from (a) direct GSM output, (b) direct
NRSM output, (c) bias-corrected GSM output, (d) bias-corrected NRSM output, and (e) statistically downscaled GSM output.
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Figure 8. Root mean square errors (RMSE; mm) for summer (JJA) total precipitation hindcasts derived from (a) direct GSM output, (b) direct
NRSM output, (c) bias-corrected GSM output, (d) bias-corrected NRSM output, and (e) statistically downscaled GSM output.

Table II. Root mean square errors (mm) for monthly and
seasonal total precipitation hindcasts. Results are shown for
all stations (Figure 1) and for the individual states, and for
the direct and bias-corrected GSM output, the direct and
bias-corrected NRSM output, and the statistically (STAT)

downscaled data.

GSM GSMBC NRSM NRSMBC STAT

Monthly (all
stations)

84.6 81.9 100.2 82.3 82.0

Monthly AL 84.6 81.5 87.9 81.6 77.4
Monthly GA 72.9 70.9 86.1 73.6 72.9
Monthly FL 98.4 95.4 129.9 93.4 97.7
MAM (all
stations)

117.9 114.1 135.6 124.4 154.5

MAM AL 131.1 129.4 126.2 138.9 138.5
MAM GA 96.9 96.9 110.3 107.3 126.9
MAM FL 128.6 118.2 175.8 129.0 204.5
JJA (all
stations)

190.7 162.9 250.4 162.2 164.3

JJA AL 184.6 140.7 201.5 141.6 141.5
JJA GA 160.4 143.3 209.8 149.1 158.0
JJA FL 233.3 210.0 350.9 199.7 196.0

and the statistically downscaled hindcasts generally pro-
vide a similar level of skill, although minor differences
exist. When averaged over all stations, the RMSEs differ
by less than 0.5 mm. For northeast grid points (Georgia),

the bias-corrected GSM has a slight advantage. For north-
west grid points (Alabama), the statistically downscaled
data exhibits smaller errors. For southern grid points
(Florida), the bias-corrected NRSM exhibits the lowest
errors.

The GSM hindcasts for total MAM precipitation
exhibit much smaller relative errors than their monthly
counterparts, although large errors remain for some parts
of the region (Figure 7, Table II). Spatially, the best
hindcasts have similar error structure, with the smallest
errors in the northern states and slightly larger errors for
southern grid points. The bias-corrected GSM generally
performs better than the downscaled data although the
NRSM results in a slight improvement for grid points in
Alabama.

The application of both downscaling techniques to JJA
total precipitation results in considerable improvement for
grid points in Florida relative to the bias-corrected GSM
(Figure 8, Table II). When averaged over all stations, the
bias-corrected dynamical results and statistical results are
very similar, while the bias-corrected GSM bears a slight
advantage over the downscaled results in Georgia.

Simulation of precipitation is strongly dependent on
issues related to scale. Individual thunderstorms are not
resolved by any of the methods employed. However,
it is conceivable that the dynamically and statistically
downscaled GSM output may be more reflective of
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Figure 9. Root mean square errors (RMSE; K) for monthly mean maximum surface air temperature (Tmax) hindcasts derived from (a) direct
GSM output, (b) direct NRSM output, (c) bias-corrected GSM output, (d) bias-corrected NRSM output, and (e) statistically downscaled GSM

output. Note that different scales are used for (a) and (b) compared to (c), (d), and (e).

Figure 10. Root mean square errors (RMSE; K) for spring (MAM) mean maximum surface air temperature (Tmax) hindcasts derived from (a) direct
GSM output, (b) direct NRSM output, (c) bias-corrected GSM output, (d) bias-corrected NRSM output, and (e) statistically downscaled GSM

output. Note that different scales are used for (a) and (b) compared to (c), (d), and (e).
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mesoscale events such as squall lines triggered by thermal
boundaries associated with sea breezes. While it is
not possible to prove this link without more rigorous
analyses, previous studies by Pielke et al., (1999) and
Marshall et al., (2004) have simulated the Florida sea
breeze using a RCM. The seasonally and spatially varying
nature of the precipitation hindcast skill reported here is
also consistent with the results of previous precipitation
downscaling studies, as is the similar level of dynamical
and statistical hindcast skill (e.g. Diez et al., 2005).

4.2.2. Maximum surface air temperature (Tmax )

Maximum temperature hindcasts exhibit lower relative
errors than those described for precipitation in the previ-
ous section. Like their daily counterparts, monthly mean
maximum surface air temperature hindcasts from the raw
GSM and NRSM exhibit considerable bias (Table III,
Figure 9). Application of the bias-correction procedure
results in very similar hindcast skill for the GSM, NRSM,
and statistical downscaling method (Table III, Figure 9).
In regions where model resolution issues exist (e.g. with
grid boxes that cover land and water, as in the Florida
peninsula), the downscaled results exhibit slightly lower
RMSEs then the GSM.

MAM and JJA mean maximum air temperature errors
are smaller than those for the monthly data (Table III,
Figures 10, 11). The bias correction again improves
the GSM and NRSM simulations, and the downscaling
methods result in slight improvement over the course
resolution GSM, particular for the NRSM hindcasts for
Florida. Averaged over all stations and over the three
individual states, the spring RMSEs from the bias-
corrected dynamical methods and statistical method are
all less than or equal to 1 K, while those for summer

Table III. Root mean square errors (K) for monthly and sea-
sonal mean maximum surface air temperature hindcasts. Results
are shown for all stations (Figure 1) and for the individual
states, and for the direct and bias-corrected GSM output, the
direct and bias-corrected NRSM output, and the statistically

(STAT) downscaled data.

GSM GSMBC NRSM NRSMBC STAT

Monthly (all
stations)

3.0 1.4 2.7 1.4 1.5

Monthly AL 2.9 1.5 2.2 1.5 1.6
Monthly GA 2.6 1.5 2.4 1.5 1.6
Monthly FL 3.6 1.3 3.7 1.1 1.2
MAM (all
stations)

2.4 1.0 2.6 0.9 0.9

MAM AL 1.3 1.0 1.6 0.9 0.9
MAM GA 2.0 1.0 2.3 0.9 0.9
MAM FL 4.0 1.0 4.1 0.8 0.9
JJA (all
stations)

3.0 1.1 2.3 1.1 1.1

JJA AL 3.4 1.2 2.0 1.2 1.3
JJA GA 2.5 1.2 1.8 1.2 1.3
JJA FL 3.2 0.9 3.2 0.8 0.8

are less than or equal to 1.3 K. For select grid points,
spring and summer mean errors are less than 0.5 K
(Figures 10, 11).

4.2.3. Minimum surface air temperature (Tmin )

Errors in the monthly mean minimum surface air tem-
perature are of similar magnitude to those reported in
Section 4.2.2 for Tmax. While the GSM exhibits bias in
Tmin, the spatial variation of the bias is lower than that
for Tmax, in accordance with the daily data described
in Section 4.1.4. It is particularly noteworthy that the
NRSM does not inherit this bias from GSM and the bias
correction, therefore, results in less improvement for the
NRSM than it does for the GSM (Table IV, Figure 12).
This improvement in Tmin by the NRSM is somewhat
expected since, as shown by Shin et al., (2006), Tmin is
more sensitive to land surface model features than Tmax.
As with the Tmax hindcasts, the lowest errors are produced
by the bias-corrected NRSM results, followed closely
by the bias-corrected GSM and statistically downscaled
GSM hindcasts (Table IV, Figure 12). Improvement from
downscaling is primarily found in Florida.

MAM mean minimum temperature hindcast errors are
of similar magnitude to those for the monthly mean,
although those for the statistically downscaled data are
smaller for northern grid points (Table IV, Figure 13).
The JJA mean minimum temperatures exhibit the small-
est errors among all the temperature hindcasts, particu-
larly for the bias-corrected and statistically downscaled
data (Table IV, Figure 14). Errors for many stations are
less than 0.5 K, and domain-wide averages are far less
than 1 K for the bias-corrected GSM and NRSM, as well
as the statistically downscaled data.

Table IV. Root mean square errors (K) for monthly and sea-
sonal mean minimum surface air temperature hindcasts. Results
are shown for all stations (Figure 1) and for the individual
states, and for the direct and bias-corrected GSM output, the
direct and bias-corrected NRSM output, and the statistically

(STAT) downscaled data.

GSM GSMBC NRSM NRSMBC STAT

Monthly (all
stations)

3.2 1.5 1.9 1.4 1.5

Monthly AL 2.7 1.5 1.9 1.5 1.6
Monthly GA 2.9 1.4 1.9 1.4 1.5
Monthly FL 4.3 1.5 1.8 1.2 1.3
MAM (all
stations)

3.1 1.4 1.6 1.3 1.3

MAM AL 2.3 1.5 1.8 1.4 1.3
MAM GA 2.6 1.4 1.7 1.4 1.2
MAM FL 4.4 1.5 1.4 1.2 1.2
JJA (all
stations)

2.9 0.6 1.2 0.6 0.6

JJA AL 2.5 0.7 1.1 0.7 0.7
JJA GA 2.4 0.6 1.1 0.6 0.6
JJA FL 3.9 0.6 1.3 0.5 0.6
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Figure 11. Root mean square errors (RMSE; K) for summer (JJA) mean maximum surface air temperature (Tmax) hindcasts derived from (a) direct
GSM output, (b) direct NRSM output, (c) bias-corrected GSM output, (d) bias-corrected NRSM output, and (e) statistically downscaled GSM

output. Note that different scales are used for (a) and (b) compared to (c), (d), and (e).

Figure 12. Root mean square errors (RMSE; K) for monthly mean minimum surface air temperature (Tmin) hindcasts derived from (a) direct
GSM output, (b) direct NRSM output, (c) bias-corrected GSM output, (d) bias-corrected NRSM output, and (e) statistically downscaled GSM

output. Note that different scales are used for (a) and (b) compared to (c), (d), and (e).
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Figure 13. Root mean square errors (RMSE; K) for spring (MAM) mean minimum surface air temperature (Tmin) hindcasts derived from (a) direct
GSM output, (b) direct NRSM output, (c) bias-corrected GSM output, (d) bias-corrected NRSM output, and (e) statistically downscaled GSM

output. Note that different scales are used for (a) and (b) compared to (c), (d), and (e).

Figure 14. Root mean square errors (RMSEs; K) for summer (JJA) mean minimum surface air temperature (Tmin) hindcasts derived from (a) direct
GSM output, (b) direct NRSM output, (c) bias-corrected GSM output, (d) bias-corrected NRSM output, and (e) statistically downscaled GSM

output. Note that different scales are used for (a) and (b) compared to (c), (d), and (e).
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5. Summary and conclusion

In this study, we have presented the results of an ensem-
ble temperature and precipitation hindcast experiment for
the southeastern USA. A 10-member ensemble of 15-year
warm season (March–September) FSU/COAPS GSM
experiments has been downscaled using the FSU/COAPS
NRSM and a statistical downscaling method based on a
stochastic weather generator.

The results indicate that the precipitation errors are
generally large, although there are regions and times
of year in which precipitation is simulated with skill
that may be useful for some applications (e.g. northern
locations and select southern locations during spring
and summer). The GSM and NRSM produce too many
wet days with small precipitation amounts on each day.
Application of a bias-correction technique improves the
daily data over the entire study region and also improves
the monthly and seasonal precipitation total hindcasts of
the NRSM over Florida. Improvement from downscaling
of the GSM output is generally limited to peninsular
Florida during summer and may be due to improved
simulation of mesoscale phenomena, such as sea breezes,
which link local precipitation to large-scale processes that
may be resolved by the NRSM. Both the NRSM and
statistical downscaling result in better characterization of
the statistics describing the daily precipitation occurrence
process.

The maximum and minimum surface air temperatures
from the GSM and NRSM also exhibit bias, which is
corrected using a bias-correction procedure. The bias-
corrected GSM, NRSM, and statistically downscaled
daily data exhibit excellent agreement with observations
in terms of climatological means and standard deviations
of the daily data. Improvements based on downscaling for
temperature are primarily found over Florida, in accord
with the Tmax results reported by Lim et al., (2007), but
also in other regions for specific cases (e.g. the slight
improvement of spring Tmax in Georgia by statistical
downscaling in Figure 9).

The results of the analyses presented here are consis-
tent with the results of recent studies (e.g. Castro et al.,
2005), which suggest that RCMs do not improve GCMs
in terms of large-scale spatial structure, but could add
additional skill by improving the spatial representation
of weather systems. The errors reported here are simi-
lar to other seasonal climate hindcast studies (e.g. Diez
et al., 2005), and low errors for each variable within some
part of the study area suggest that there is potential for
seasonal predictability in the region. A greater under-
standing of situations in which downscaling adds skill to
coarse model output should be a focus of further work
in this arena. Given the lack of a strong ENSO signal in
the study region during the warm season, further under-
standing of the source of forecast skill and its spatial
and temporal variation will also be an avenue for further
investigation.
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