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ABSTRACT

A hidden Markov model (HMM) is used to describe daily rainfall occurrence at 10 gauge stations in the state
of Ceará in northeast Brazil during the February–April wet season 1975–2002. The model assumes that rainfall
occurrence is governed by a few discrete states, with Markovian daily transitions between them. Four ‘‘hidden’’
rainfall states are identified. One pair of the states represents wet-versus-dry conditions at all stations, while a
second pair of states represents north–south gradients in rainfall occurrence. The estimated daily state-sequence
is characterized by a systematic seasonal evolution, together with considerable variability on intraseasonal,
interannual, and longer time scales. The first pair of states are shown to be associated with large-scale displace-
ments of the tropical convergence zones, and with teleconnections typical of the El Niño–Southern Oscillation
and the North Atlantic Oscillation.

A nonhomogeneous HMM (NHMM) is then used to downscale daily precipitation occurrence at the 10 stations,
using general circulation model (GCM) simulations of seasonal-mean large-scale precipitation, obtained with
historical sea surface temperatures prescribed globally. Interannual variability of the GCM’s large-scale precip-
itation simulation is well correlated with seasonal- and spatial-averaged station rainfall-occurrence data. Sim-
ulations from the NHMM are found to be able to reproduce this relationship. The GCM-NHMM simulations
are also able to capture quite well interannual changes in daily rainfall occurrence and 10-day dry spell frequencies
at some individual stations. It is suggested that the NHMM provides a useful tool (a) to understand the statistics
of daily rainfall occurrence at the station level in terms of large-scale atmospheric patterns, and (b) to produce
station-scale daily rainfall sequence scenarios for input into crop models, etc.

1. Introduction

One of the major challenges in tailoring seasonal cli-
mate forecasts to meet societal needs, is that the poten-
tial users of climate information are often concerned
with the characteristics of high-frequency weather at a
particular location. Unfortunately, the statistics of local
weather are generally poorly represented in the coarse-
resolution general circulation models (GCMs) that are
typically used to make seasonal climate forecasts. More-
over, the seasonal predictability of high-frequency local
information is often in serious doubt. As part of the
endeavor to produce useful seasonal climate forecasts,
an important task is to understand, on a regional basis,
just what aspects of the daily ‘‘weather-within-climate’’
can be obtained from GCM simulations made with pre-
scribed historical or predicted sea surface temperature
(SST) distributions (Wilks 2002). While the determin-

Corresponding author address: Andrew W. Robertson, IRI–Monell
230, 61 Route 9W, Palisades, NY 10964.
E-mail: awr@iri.columbia.edu

istic predictability limit of weather is on the order of
10 days, some boundary-forced longer-term predict-
ability of weather statistics may often exist—termed
predictability of the ‘‘second kind’’ by Lorenz (1963).

Northeast (NE) Brazil is a region with a high potential
for seasonal rainfall predictability during the February–
April rainy season, due to strong teleconnections with
the El Niño–Southern Oscillation (ENSO) and with var-
iability of the tropical Atlantic Ocean (Hastenrath and
Heller 1977; Moura and Shukla 1981; Nobre and Shukla
1996). At the seasonal-mean scale, some of this forecast
potential has been realized in the seasonal forecasts
made at the International Research Institute for Climate
Prediction (IRI) during the 1998–2001 period (Goddard
et al. 2003). Some of the highest rainfall skills on the
globe occurred over NE Brazil during this short time
interval since the advent of routine IRI seasonal fore-
casts. The state of Ceará in NE Brazil is also the target
of a water-resource management project1 whose goal is

1 Information can be found online at http://iri.columbia.edu/america/.
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to incorporate climate forecast information into sectorial
decision making, for which the ‘‘downscaling’’ potential
from GCM simulations to local daily rainfall is an im-
portant issue.

The first goal of this paper is to examine the prob-
ability distribution of local daily rainfall occurrence in
the state of Ceará on time scales of intraseasonal to
interannual, and to identify relationships with large-
scale atmospheric circulation patterns. Our approach is
based on fitting a hidden Markov model (HMM) to rain-
fall records on a network of 10 rain gauge stations for
the period 1975–2002. The HMM is a doubly stochastic
model in which the daily probability of local rainfall
occurrence (typically on a spatial network of stations)
is conditioned on a small number of discrete (‘‘hidden’’)
weather states, with Markovian daily transitions be-
tween them. It is a data-driven model, in which the
parameters defining each state and the estimated daily
sequence of states are derived from a historical record
of daily rainfall occurrence. The concept of discrete
weather states has a long history in synoptic (Bauer
1951) as well as theoretical midlatitude meteorology
(Charney and DeVore 1979). No such literature exists
for the Tropics, however. We seek to establish a physical
basis for the predictability of local daily rainfall statis-
tics over NE Brazil by constructing relationships be-
tween the HMM’s hidden rainfall states and the large-
scale modes of atmosphere–ocean variability associated
with ENSO and tropical Atlantic variability (TAV).

For the downscaling of rainfall, Hughes and Guttorp
(1994a) pioneered the use of the nonhomogeneous
HMM (NHMM) in which the transition probabilities
between states are not held fixed, as they are in the
classical ‘‘homogeneous’’ HMM, but are allowed to
evolve in time according to a small number of large-
scale atmospheric exogenous predictor variables. The
NHMM links the local rainfall at a network of stations
to large-scale atmospheric variables, using the hidden
weather states as intermediaries. In the context of down-
scaling of seasonal forecasts, it may be most meaningful
to allow the daily transition probabilities between states
to be a function of the GCM’s seasonal-average simu-
lations. This would be tantamount to assuming that the
information content of the GCM is limited to the sea-
sonal average; it provides a benchmark against which
more complex hypotheses can be tested involving at-
mospheric forcing variables derived from the GCM’s
daily output. A related downscaling approach has been
taken by Wilks (2002), in which the parameters of a
weather generator are conditioned on the seasonal fore-
cast.

Northeast Brazil is located near the boundary between
two large-scale tropical convergence zones—the Atlan-
tic intertropical convergence zone (ITCZ) to the north,
and the South American monsoon system (SAMS) cen-
tered to the west—and the influence of the South At-
lantic subtropical anticyclone situated to the southeast.
The rainfall over NE Brazil is highly seasonal and is

sensitive to anomalies in the extent of any one of these
three phenomena (Hastenrath and Heller 1977). It is
semiarid for much of the year, falling under the influence
of the western fringe of the South Atlantic subtropical
anticyclone. The principal rainfall season occurs in Feb-
ruary–March–April (FMA), when the Atlantic ITCZ
reaches its southernmost position and directly overlies
NE Brazil, merging with the SAMS near the mouth of
the Amazon, as the SAMS (which peaks in austral sum-
mer) retreats northward. The time lag in the seasonal
migration of the maritime ITCZ is caused by the large
thermal heat capacity of the underlying ocean, together
with the impact of the continental convection associated
with the SAMS which tends to weaken the ITCZ during
FMA.

Interannual variability of rainfall is large, and takes
the form of droughts that occur when the usual south-
ward seasonal migration of the ITCZ fails to occur, and
large rainfall when the latter is amplified. The inter-
annual behavior of the Atlantic ITCZ during boreal
spring is closely tied to two interrelated factors: (a)
anomalies in the Walker circulation associated with
ENSO events over the tropical Pacific, and (b) changes
in the meridional SST gradient in the equatorial Atlan-
tic—the so-called Atlantic meridional mode—that may
or may not be associated with ENSO (Chiang et al.
2002). The largest ITCZ displacements occur in ENSO
years in which preexisting Atlantic SST anomalies are
such that they amplify the direct impact of ENSO (Gi-
annini et al. 2004). The North Atlantic Oscillation
(NAO)—which peaks in boreal winter—is another fac-
tor that influences the tropical Atlantic meridional mode.
The NAO is an intrinsic mode of the atmosphere with
a time scale of about a week (Feldstein 2000). The in-
fluence of North Atlantic SST anomalies on the NAO
is generally found to be small (Hurrell et al. 2002),
although some seasonal NAO predictability may arise
from stratospheric coupling (Thompson et al. 2002) or
antecedent autumn snow cover (Gong et al. 2003). The
meridional mode is influenced from the south as well,
and Rossby wave energy on submonthly time scales
emanating from the South Pacific storm track can reach
NE Brazil even during the austral summer (Liebmann
et al. 1999).

GCM forecasts of the seasonal-average precipitation
and near-surface temperature are currently made on a
routine basis at IRI and at other centers, issued as 3-
month seasonal averages on the grid-scale of the at-
mospheric GCMs (typically about 300 km). Experi-
mental downscaled seasonal forecasts are now also be-
ing made on an ongoing basis for NE Brazil using high-
resolution regional dynamical models (60-km grid; Sun
et al. 2005). Preliminary results are encouraging. How-
ever, these high-resolution dynamical models also suffer
from model biases and are computationally expensive,
motivating the use of statistical approaches.

Having established that certain HMM rainfall states
are strongly tied to the large-scale atmospheric circu-
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FIG. 1. Rainfall station locations with topographic contours (m).
Circle radius denotes the Feb–Apr climatological daily rainfall prob-
ability 1975–2002. The stations are (1) Acopiara (317 m), (2) Ara-
coiaba (107 m), (3) Barbalha (405 m), (4) Boa Viagem (276 m), (5)
Camocim (5 m), (6) Campos Sales (551 m), (7) Caninde (15 m), (8)
Crateus (275 m), (9) Guaraciaba Do Norte (902 m), and (10) Ibiapina
(878 m). One degree of lon/lat corresponds to about 110 km at the
equator.

lation, the paper’s second goal is to determine to what
extent the nonhomogeneous HMM (NHMM) can be
used to downscale atmospheric GCM simulations, with
prescribed historical SSTs, over Ceará. The remainder
of the paper is laid out as follows. Section 2 describes
the observed daily rainfall dataset and the GCM used
in the downscaling experiment. The homogeneous
HMM is described briefly in section 3. The hidden states
of rainfall occurrence derived from the HMM are pre-
sented in section 4 and discussed in terms of concurrent
atmospheric conditions. The results of the GCM down-
scaling experiment using an NHMM are described in
section 5. A summary and conclusions are presented in
section 6.

2. Observed rainfall data and GCM

We use daily rainfall data collected at 10 stations from
the state of Ceará in NE Brazil over the years 1975–
2002, provided by Fundaco Cearense de Meteorologia
(FUNCEME; Fig. 1). These 10 stations have the longest
and most complete reliable records. A wet day is defined
as having nonzero rainfall. The mean seasonal cycle of
rainfall occurrence is plotted in Fig. 2. We select the

90-day period beginning 1 February (FMA), corre-
sponding to the peak rainy season over NE Brazil, and
retain the seasonal cycle of rainfall occurrence within
the FMA season. The years 1976, 1978, 1984, and 1986
were omitted because of missing data for certain months
at one or more stations, yielding 24 complete 90-day
seasons (2160 days).

The climatological values of daily rainfall occurrence
probability are plotted at each station on a map of to-
pography in Fig. 1. The largest values occur in the north-
west decreasing southward, consistent with the large-
scale rainfall pattern associated with the ITCZ and the
SAMS. Local topography also appears to play a role in
the large probabilities at stations 9 and 10, and perhaps
3 and 6.

The GCM is the ECHAM 4.5 model (Roeckner et al.
1996), for which an ensemble of 24 integrations was
available, with historical SSTs prescribed at the lower
boundary from the National Centers for Environmental
Prediction–National Center for Atmospheric Research
(NCEP–NCAR) reanalysis dataset (Kalnay et al. 1996).
Each ensemble member uses the identical version of the
GCM, and differs only in its initial condition.

3. The homogeneous hidden Markov model
(HMM)

Adopting similar notation to that in Hughes et al.
(1999), let Rt 5 ( , . . . , ) be a multivariate random1 MR Rt t

vector of rainfall occurrences for a network of M rain
stations. Let the observed value 5 1 if rain is observedirt

on day t at station i and 5 0 if it is dry. Let St beirt

the hidden rainfall state for day t, taking on one of the
K values from 1 to K. By R1:T and S1:T we will denote
daily sequences of precipitation occurrences and hidden
rainfall states. An HMM for rainfall data makes two
conditional independence assumptions (e.g., see Hughes
and Guttorp 1994a). The first assumption is that the
multivariate precipitation observations R t at time t are
independent of all other variables in the model up to
time t, conditional on the weather state St at time t, that
is,

P(R | S , R ) 5 P(R | S ).t 1:t 1:t21 t t (1)

The second assumption is that the hidden state process,
S1:T, is first-order Markov:

P(S | S ) 5 P(S | S ),t 1:t21 t t21 (2)

and that this first-order Markov process is homogeneous
in time, that is, the K 3 K transition probability matrix
for Eq. (2) does not change with time. Later in the paper
we develop a nonhomogeneous extension of this model
where the transition probabilities are allowed to vary
over time. The conditional independence assumptions
are easily visualized as edges in a directed graph of the
HMM, as shown in Fig. 3.

For P(R t | St), we make the simplifying assumption
that the rainfall observation at each station at time t is
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FIG. 2. The mean seasonal cycle of daily rainfall occurrence frequency at
each station over Ceará.

FIG. 3. Graphical model representation of a hidden Markov model.

independent from observations at other stations at time
t, conditional on the hidden state:

M M

mP(R 5 r | S 5 s) 5 P(R 5 r | S 5 s) 5 p ,P Pt t t t smr
m51 m51

where r ∈ {0, 1}, each psmr ∈ [0, 1], and psm0 1 psm1

5 1. Note that this conditional independence assump-
tion given the states does not imply spatial independence
of the rainfall process (which would be unreasonable).
Spatial dependence is captured implicitly via the state
variable, as we will see later in the paper.

Techniques for parameter fitting and prediction using
homogeneous HMMs are well known in the statistical
literature and, thus, need not be elaborated on here—
the reader is referred to standard references such as
Rabiner (1989) and MacDonald and Zucchini (1997)
for details.

4. Hidden states of daily rainfall occurrence

a. Model performance

In this section, we use the homogeneous HMM to
construct states of daily rainfall occurrence from the 10-

gauge daily record. As a baseline we also evaluate the
performance of a model with no hidden states, where
independent Markov chains were fit to the historical data
from each station using maximum likelihood. The state-
less model is equivalent to the classical single-station
‘‘weather generator,’’ commonly used to used to model
daily rainfall occurrence (e.g., Wilks and Wilby 1999).
However, more sophisticated multistation weather gen-
erators have also been developed (e.g., Wilks 1998),
and the stateless model should be interpreted as a very
basic benchmark.

We used cross-validation to evaluate the quality of
the fitted HMMs as a function of K the number of states.
HMMs for different values of K were fit to the training
data leaving out different one-fourths (six consecutive
years) of the data at a time and then calculating the log-
probability of the observed data for the left-out years.
The resulting normalized out-of-sample values of the
cross-validated log-likelihood for each model are given
in Table 1 for K 5 2, 3, 4, 5, 6, together with a nor-
malized Bayes information criterion (BIC) for each
model (see Appendix).

The normalized cross-validated log-likelihood is de-
fined to be the negative of the original total (not av-
eraged over years) cross-validated log-likelihood divid-
ed by the total number N of binary events used in eval-
uating the model. Here N 5 24 3 90 3 10, the number
of individual rainfall events across all years, days, and
stations. Scaled in this fashion the normalized log-like-
lihood corresponds to a form of predictive entropy or
uncertainty of the model in bits (for base-2 logarithms).
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TABLE 1. Performance of HMMs with different numbers of states K compared to a model with independent Markov chains.

Model
Out-of-sample normalized

cross-validated log-likelihood Normalized BIC score

Out-of-sample average
absolute difference in spatial
correlation (per station pair)

Out-of-sample average
absolute difference in

rainfall persistence

Markov chains
K 5 2
K 5 3
K 5 4
K 5 5
K 5 6

0.6314
0.5856
0.5743
0.5709
0.5687
0.5684

0.6325
0.5844
0.5743
0.5723
0.5725
0.5737

0.2453
0.0627
0.0511
0.0465
0.0460
0.0450

0.0641
0.0793
0.0678
0.0635
0.0644
0.0651

FIG. 4. Observed correlations between stations 1 and 8 for all 24
yr of data compared with correlations between the same stations from
the data simulated 10 times (plotted stacked above each other) from
the four-state HMM trained on all 24 yr. The histogram of the sim-
ulated distribution was computed from 12 000 90-day seasons.

The resulting normalized scores are somewhat more in-
terpretable than unnormalized log-likelihood scores
since they lie on a scale between 0 and 1. The BIC
scores in Table 1 are scaled in a similar manner (Ap-
pendix).

Not surprisingly in Table 1 the HMMs have lower
predictive uncertainty and lower normalized BIC scores
than the independent chains model (where lower scores
correspond to better predictive ability). The cross-val-
idated out-of-sample normalized log-likelihood decreas-
es substantially from K 5 2 to K 5 4, and then levels
off. The normalized BIC score reaches its minimum at
K 5 4. Given that both scores indicate that K 5 4 is a
reasonable choice for K, this is the value we chose in
the following.

Measures of the models’ ability to reproduce both (a)
observed spatial correlations between stations and (b)
rainfall persistence (the probability of rain given rain
the previous day for a particular station) are also in-
cluded in the table. Each number corresponds to the
average (over the six cross-validation runs) of the ab-
solute difference between the statistic calculated from
(a) 3000 yr of simulated data from a model trained on

18 yr of data, and (b) actual data from the remaining
six out-of-sample years. In this manner the numbers in
Table 1 indicate the out-of-sample predictive power of
the model in terms of both spatial correlation and rainfall
persistence. The spatial correlation between a pair of
stations is computed as Pearson’s correlation coefficient
of their respective daily rainfall binary occurrence time
series; its average value over the observations is 0.2479.
Rainfall persistence is defined by the ratio of number
of pairs of consecutive rainy days to the total number
of rainy days, with a station-averaged observed value
of 0.5556.

As a benchmark, the average absolute error for a mod-
el which has no spatial correlation is 0.2453, which is
also the error of the independent chains model since this
model has (by definition) zero spatial correlation in its
simulations (over the long run). All of the HMMs reduce
this error by roughly a factor of 4, or equivalently can
model roughly 80% of the total daily spatial correlation
in the data. The HMM models achieve this via the hid-
den states which can implicitly capture marginal spatial
dependence. In practice, an appropriate operational
comparison of spatial dependence would be with a spa-
tially coherent set of independent Markov models, from
which sophisticated weather generators have been con-
structed (Wilks 1998).

There is less difference between the HMMs and the
independent chains model in terms of persistence. We
might expect the independent Markov chains model to
outperform any HMM since wet and dry spells in daily
rainfall data are often well-modeled as first-order Mar-
kov (Wilks and Wilby 1999). Empirically, in Table 1
the HMMs provide similar persistence numbers to that
of the independent chains, out-of-sample. The specific
value of K for the HMMs does not seem to have a large
impact on the spatial correlation or persistence error
numbers, apart from a slight flattening out in error after
K 5 4.

The correlation and persistence numbers in Table 1
summarize the difference in expected values for the sta-
tistics over multiple years. We find that the HMM
trained on the data can also recover most of the year-
to-year variability of the statistics. Figures 4 and 5 show
for a selected pair of stations (for correlation) and for
one station (for persistence) the observed 24 yearly val-
ues of the statistic. Also shown for comparison are 10
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FIG. 5. Observed persistence for station 5 for all 24 yr of data
compared with persistence for the same station from the data sim-
ulated from the four-state HMM trained on all 24 yr. Details of sim-
ulations as in Fig. 4.

HMM simulations of 24 seasonal values of the same
statistic produced from an HMM trained on the observed
data. Statistics from the simulated data appear to be
similar to the ones calculated from the observed data.
Moreover, the variability in statistics for the observed
years generally agrees with the empirical probability
distribution of simulated statistics (using 12 000 se-
quences or years). Other choices of station yield similar
results.

In general, the distributions of wet- and dry-spell
lengths are captured quite well by the HMM, as illus-
trated in Fig. 6. The spell-length distributions (both sim-
ulated and observed) follow approximately geometric
distributions (near-straight lines on the semilog plots in
Fig. 6), while the HMM tends to underestimate the spell
durations at some stations. The geometric distribution
is a characteristic of the Markov model. However, the
HMM treats the state sequence as a Markov chain, rather
than the rainfall. Thus, while the states in data simulated
from an HMM will have run lengths whose distribution
is geometric, the observed precipitation may be more
‘‘bursty,’’ leading (for example) to possible underesti-
mation of rainfall persistence. The within-state proba-
bility of precipitation is constant.

The state transition-probability matrix is given in Ta-
ble 2. The self-transitions are relatively large indicating
that the states are persistent, with states 1 and 2 being
the most so, and state 4 being the least persistent. Direct
transitions between states 1 and 2 are rare, with states
3 and (especially) 4 playing the role of intermediaries.
There are no very clear transition directions, though
state 1 tends to follow state 4 ( p 5 0.22) rather than
precede it ( p 5 0.11).

The rainfall probabilities for each state are plotted in
Fig. 7, along with the number of days assigned to each

state. The four states fall roughly into two pairs with
states 1–2 characterized by wet or dry conditions at all
stations and states 3–4 describing anomalous north–
south gradients (see also Fig. 10 which shows the prob-
abilities as anomalies from climatology). State 1 (state
2) is characterized by increased (decreased) probability
of rain at all stations, compared to the climatological
probabilities in Fig. 1; state 2 has near-zero probability
of rain everywhere except on the coast. State 3 (state
4) has anomalously small (large) probabilities in the
south and slightly increased (reduced) probabilities in
the north, with near-climatological probabilities in the
center of the domain. It is notable that the rainfall prob-
abilities for states 1 and 2 are more spatially uniform
than in the climatology, while the opposite is true of
states 3 and 4 which are characterized by larger merid-
ional gradients.

The most likely state sequences, calculated using the
Viterbi algorithm (e.g., Rabiner 1989), are shown in Fig.
8. The sequence exhibits considerable variability on in-
traseasonal, as well as interannual time scales. We now
examine systematic seasonal and interannual variability.

b. Physical interpretation

The mean seasonality of state occurrence is shown in
Fig. 9. The frequency of state 2 decreases from early
February to mid-March, while the prevalence of state 1
maximizes in March, indicating the peak of the wet
season at all stations. State 4 decreases in prevalence
toward the end of the rainy season, while state 3 tends
to become more frequent, indicating a contraction of
the wet season northward. The ratios of minimum/max-
imum frequencies (from 24-yr averages of 10-day run-
ning means) plotted in Fig. 9 are 0.32, 0.25, 0.36, and
0.28 for states 1–4, respectively; that is, the state fre-
quency varies by a factor of 3–4 within the season. This
substantial seasonality represents an implicit nonhom-
ogeneity in the HMM.

We now examine the meteorological characteristics
associated with each rainfall state, by compositing
anomalies of National Oceanic and Atmospheric Ad-
ministration (NOAA)-interpolated outgoing longwave
radiation (OLR) and NCEP–NCAR reanalysis winds
over the days assigned to each state. Figure 10 shows
anomaly composites of OLR and 850-hPa winds for the
tropical South American–Atlantic sector, along with the
state rainfall probabilities displayed as anomalies from
the FMA-mean climatology. Note that the anomalies in
winds and OLR are computed here as deviations from
the mean seasonal cycle. States 1 and 2 are clearly as-
sociated with strongly contrasting large-scale anomalies
in OLR and the cross-equatorial flow. Together these
represent north–south displacements in the Atlantic
ITCZ, as well as zonal contractions or expansions of
the SAMS core region over Amazonia.

State 1 represents an anomalously southward-dis-
placed ITCZ, together with an eastward expansion of
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FIG. 6. Distribution of spell lengths for wet (thin) and dry (thick) spells at each station. Solid
lines are computed from the four-state HMM simulations, with the observed data shown as
dashed lines. Plotted is the probability of a spell exceeding a particular duration. A geometric
distribution would plot as a straight line on these semilog plots.

TABLE 2. Transition probabilities for four-state HMM.

To state

1 2 3 4

From state
1
2
3
4

0.70
0.02
0.18
0.20

0.01
0.68
0.14
0.20

0.18
0.16
0.61
0.12

0.11
0.13
0.08
0.48

SAMS. Thus, the ITCZ and SAMS merge to a greater
extent than in the FMA climatology, consistent with
state 1 tending to correspond to the peak of the seasonal
evolution (Fig. 9). In this configuration, Ceará comes
entirely under the influence of the large-scale convection
zones, and rainfall probabilities are high at all 10 sta-
tions. The contrasting situation characterizes state 2, in
which SAMS and the ITCZ become more separated,
reminiscent of the DJF climatology, with Ceará largely
dry. It is worth emphasizing that states 1 and 2 are
associated with sizeable atmospheric anomalies with re-
spect to the mean seasonal cycle (i.e., those plotted in
Fig. 10), so that these states are not merely aspects of
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FIG. 7. Four-state HMM rainfall probabilities (circle radius) together with topographic
contours. The number of days in each state is given in brackets.

the latter. Indeed the anomalous winds associated with
states 1 and 2, plotted in Fig. 10, change little if anom-
alies are computed with respect to the FMA long-term
mean.

States 3 and 4 are associated with smaller anomalies
in rainfall probability, and this is reflected in much
smaller anomalies in OLR and wind. The north–south
gradients in the OLR anomalies are consistent with those
in the gauge–rainfall HMM probabilities. However, the
wind anomalies are not very coherent.

In order to identify any large-scale atmospheric tele-
connections, Fig. 11 shows composites of 850- and 200-
hPa wind anomalies of states 1 and 2 over a larger
domain. Over NE Brazil, the direction of the wind
anomalies reverses with height, typical of the first baro-
clinic mode of tropical atmospheric dynamics. Over the
tropical Pacific, states 1 and 2 are characterized by
anomalous Walker circulations, and these are consistent
with OLR anomalies over the equatorial Pacific (not
shown). Over the Atlantic, they suggest opposite po-
larities of the Atlantic meridional mode, with NAO-like
wind anomalies and anomalies in the NE winds. These

are recognized to be the two mechanisms that influence
NE Brazil rainfall on interannual time scales, and both
leave their imprint on the daily rainfall states.

Similar pictures for states 3 and 4 (not shown) do not
highlight any coherent circulation patterns that might
be remotely forcing these rainfall states. However, there
is a hint, especially for state 3, that Rossby wave activity
propagating from the South Pacific may be a contrib-
uting factor (cf. Liebmann et al. 1999).

Interannual variability of state occurrence is plotted
in Fig. 12 in terms of the number of days assigned into
each state. Large interannual variations do occur, es-
pecially in states 1 and 2, which vary in opposition to
each other consistent with their rainfall and meteoro-
logical characteristics seen in Figs. 10 and 11. The oc-
currence frequency of state 3 appears to show an upward
trend from the 1980s onward, while state 4 shows little
interannual variation. La Niña (El Niño) years tend to
be associated with more (less) of state 1 compared to
state 2.

To probe the interannual variability further, compos-
ites of seasonal-mean SST anomalies are shown in Fig.
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FIG. 8. The estimated state sequence.

FIG. 9. Mean seasonal variation of four HMM daily state occurrence,
smoothed with a 10-day running mean prior to averaging.

13 for FMA seasons in which the interannual state-
frequency (Fig. 12) is in the top 15% of years (i.e., 4
or 5 yr). The shading depicts local significance at the
90% level. A clear ENSO SST anomaly signature is

present for years in which states 1 or 2 are highly prev-
alent, but statistical significance is only high for state
1 (La Niña). States 1 and 2 are also associated with
Atlantic SST anomalies characteristic of the Atlantic
meridional mode, but these are weak. States 3 and 4 are
not associated with appreciable SST anomalies.

Finally, to check whether these four specific states
might be sensitive to our choice of model (i.e., the
HMM), we also ran the well-known K-means clustering
algorithm (e.g., Jain and Dubes 1988) on the data with
K 5 4 clusters. Here the input was a set of 10-dimen-
sional vectors with binary components corresponding
to the daily rainfall occurrence measurements. The four
K-means clusters were found to match closely those
derived from the HMM. Specifically, the 10-dimen-
sional means for each cluster from K means (real-valued
numbers between 0 and 1) were compared to the con-
ditional probability vectors for each state from the
HMM, and the composite wind and OLR maps resulting
from the most likely assignments of each day to each
cluster (for both K means and HMMs) were also visually
compared. The means and maps obtained from the two
different methods were found to be quite similar (not
shown). The fact that an alternative clustering meth-
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FIG. 10. HMM state anomaly composites of 850-hPa wind (vectors)
and OLR (contours), together with rainfall anomaly-probabilities at
each station (circles). The wind and OLR anomalies are deviations
from the mean seasonal cycle; the latter was computed by 10-day
low-pass filtering and then averaging all years together. The com-
posites are defined on the days assigned to each state, with the number
of days given in the caption. Contour interval: 2 W m22, with negative
contours dashed.

odology such as K means, that uses no information about
temporal ordering of the rainfall measurements, pro-
duces state descriptions that are qualitatively similar to
those produced by the HMM, suggests that these states
are an inherent property of the data and insensitive to
the particular modeling methodology being used.

In summary, daily rainfall states 1 and 2 identified
by the HMM are associated with well-known patterns
of interannual variability in winds, OLR, and SST. These
associations provide a basis for the downscaling of sea-
sonal GCM simulations, and this is pursued in the fol-
lowing section.

5. A nonhomogeneous HMM downscaling
prototype

The NHMM generalizes the homogeneous HMM in
that the transition probabilities in Eq. (2) are allowed
to vary with time. In particular, for downscaling appli-
cations the transition probabilities between states are
allowed to vary as a function of external inputs. Hughes
and Guttorp (1994a) introduced this model in the con-
text of modeling rainfall occurrence. The NHMM used
in this paper is based on this original work of Hughes
and Guttorp, with some minor modifications.

In this section we illustrate the ability of an NHMM
to downscale atmospheric GCM simulations over NE
Brazil. It is found that introducing atmospheric input
variables does not visibly change the appearance of the
state composites, nor appreciably change the rainfall
probabilities. Thus, a four-state model is chosen for con-
sistency with the HMM in the previous section.

For demonstration purposes and for consistency with
IRI’s current seasonal-forecast scheme, we define the
inputs to the NHMM from the GCM’s simulated sea-
sonal-mean rainfall anomaly. The daily values needed
as inputs to the NHMM are derived by simply repeating
the seasonal-mean input value for each day within the
FMA season.

a. The nonhomogeneous hidden Markov model

Let X t be a D-dimensional column vector of predic-
tors for day t, derived, for example, from a GCM. By
X1:T we will denote the sequence X1, . . . , XT. We now
replace Eq. (2) in the homogeneous HMM with:

P(S | S , X ) 5 P(S | S , X ),t 1:t21 1:T t t21 t (3)

so that the hidden state on day t depends both on the
predictor vector X t for day t and the value of the hidden
rainfall state St21 on day t 2 1. Because X t can vary in
time, this results in transition probabilities between
states that can vary in time in response to changes in
X, that is, an inhomogeneous model. The role of X t is
clearly visualized in the corresponding graphical model,
shown in Fig. 14.

The hidden state transitions in Eq. (3) are modeled
by a polytomous (or multinomial) logistic regression:

exp(s 1 r9x)j i iP(S 5 i | S 5 j, X 5 x) 5 . (4)t t21 t K

exp(s 1 r9x)O jk k
k51

For the specific case of S1, the first hidden state in the
sequence,

exp(l 1 r9x)i iP(S 5 i | X 5 x) 5 . (5)1 1 K

exp(l 1 r9x)O k k
k51

All s s and ls are real-valued parameters while the rs
are D-dimensional real-valued parameter vectors, where
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FIG. 11. HMM state anomaly composites of wind over a larger domain for states 1 and 2: (a)–(b) 200-hPa winds, (c)–(d) 850-hPa winds.
Details as in Fig. 10.

FIG. 12. Interannual variability of HMM state-occurrence frequen-
cy. The letters E and L denote El Niño and La Niña years, respectively,
defined as an anomaly of SST $ 0.68C over the Niño-3.4 region
during FMA in the NOAA Extended Reconstructed SST dataset
(Smith et al. 1996).

the prime denotes the vector transpose. This parameter-
ization can be shown to be equivalent to the one defined
in Hughes and Guttorp (1994a) and in Hughes et al.
(1999) in which the baseline transition matrix is multi-
plied by a function of the atmospheric predictors:

P(S 5 i | S 5 j, X )t t21 t

} P(S 5 i | S 5 j)P(X | S 5 j, S 5 i)t t21 t t21 t

1
215 g exp 2 (X 2 m )9V (X 2 m )j i t j i t j i[ ]2

1
21 21} exp lng 2 m9 V m 1 m9 V X . (6)j i j i j i j i t1 2[ ]2

Here, m ji is the mean of the atmospheric predictor-vector
associated with transitions from state j at day t 2 1 to
state i at day t. If we make the simplification that
P(X t | St, St21) 5 P(Xt | St), then m ji 5 mi, and the pa-
rameterization in Eq. (6) becomes equivalent to the one
in Eq. (4). This can be shown by setting li 5 ln g ji 2
(1/2) V21m ji and ri 5 V21m ji. The parameters l1, s j1,m9ji
and r1 are set to zero to guarantee the identifiability of
the transition parameters. Note that the homogeneous
transition matrix [(Eq. (2)] can be viewed as a special
case where r i 5 0 for all i 5 1, . . . , K.

An example of the transition probabilities obtained
with this parameterization for a four-state model with a
univariate normalized input is shown in Fig. 15. This
case corresponds approximately to the downscaling ex-
ample to be presented later, and demonstrates how the
transition probabilities from state 2 to states 1–4 are
modulated by the value of a univariate Xt. Each curve
can be intrepreted as part of a logistic ‘‘S-shaped’’
curve, with the value of X 5 0 corresponding to the
homogeneous HMM, and the central portion of the plot
being the most relevant.

Given a fixed number of hidden states K, we learn
the parameters Q of the NHMM by searching for pa-
rameters that best fit the observed data. To do this, we
employ the commonly used maximum likelihood prin-
ciple. Specifically, we search for Q that maximizes the
conditional probability of the observed data as a func-
tion of Q—this conditional probability function is re-
ferred to as the likelihood:
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FIG. 13. Composites of anomalous SST for years (Feb–Apr) when HMM states are most prevalent, defined as years in the upper 15% of
the interannual distribution of state frequency. The number of years in each composite is given in brackets. Shading represents 90% statistical
significance according to a two-sided Student t test. Negative contours are dashed, and the zero contour is omitted. Contour interval: 0.28C.

FIG. 14. Graphical model representation of a nonhomogeneous
hidden Markov model.

FIG. 15. Transition probabilities into each state from state 2
(‘‘dry’’), as a function of a univariate input variable for a four-state
NHMM. The input variable is defined by the ensemble-average GCM
simulation of seasonal-average precipitation, averaged spatially over
the region of NE Brazil (centered and normalized by its standard
deviation). The values of Xt used to train the model are plotted along
the abscissa.

L(Q) 5 P(R | X , Q)1:T 1:T

T T

5 P(S | X ) P(S | S , X ) P(R | S ).O P P1 1 t t21 t t t
S t52 t511:T

(7)

The set of parameters Q that maximize L(Q) can be
obtained using the well-known Baum–Welch algorithm
(e.g., Rabiner 1989), a variation of an iterative expec-
tation–maximization (EM) algorithm (Dempster et al.
1977) for obtaining maximum likelihood parameter es-
timates for models with hidden variables and/or missing
data. In all the HMM and NHMM results in this paper
we start the EM algorithm 10 times from different ran-
dom starting positions in parameter space, run EM to
convergence for each starting point, and choose as our
solution the parameter vector Q that has the maximum
likelihood over all 10 runs (this helps avoid poor local
maxima that EM can sometimes converge to). Full de-
tails on the specific EM procedure used in this paper
for NHMM parameter estimation can be found in Rob-
ertson et al. (2003).

b. Predictor selection: Canonical correlation analysis

The choice of input (‘‘predictor’’) variables is non-
trivial. Here, canonical correlation analysis (CCA) be-
tween historical seasonally averaged rainfall occur-
rence probabilities at each of the 10 stations, and the
GCM’s simulated ensemble-mean seasonal-mean rain-
fall amount at grid points within the region (218S–78N,
808W–08W) was used to define the input variables. This
domain was chosen so as to include the large-scale
South American monsoon over the continent, and the
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FIG. 16. Canonical correlation analysis of GCM gridded seasonal-
mean precipitation amount (contours) and Ceará station daily rainfall
probability (circles) for concurrent seasons. The leading CCA mode
is shown, computed from each half of the dataset in turn: (a) 1975–
90, (b) 1991–2002. The amplitudes correspond to a one standard
deviation anomaly, with contours every 0.2 mm day21. All station-
rainfall anomalies are positive. Details of the CCA: the optimal PCA
truncations are (a) 2 GCM PCs, 3 station PCs, and (b) 5 GCM PCs
and 1 station PC, for the two halves of the dataset, respectively. The
associated time series correlations are (a) 0.95 and (b) 0.79.

FIG. 17. Interannual variability of candidate GCM predictor vari-
ables, together with the observed daily rainfall occurrence, averaged
over the 10 stations (circles), with the error bars representing the
standard error. All curves have been normalized by their standard
deviation. Key: Leading cross-validated CCA mode (thin solid, r 5
0.73); leading CCA mode without cross-validation (dashed, r 5
0.86); GCM NE Brazil area-average precipitation (dotted, r 5 0.66);
NCEP–NCAR reanalysis area-average precipitation (dash–dotted, r
5 0.62). The reported correlation values are with the observed.

intertropical convergence zone over the Atlantic, whose
mean position is close to the equator in February–April.
The CCA yields a calibration of the GCM’s simulation
of rainfall amount with respect to observed rainfall oc-
currence probabilities. It is used as a preprocessing step,
independent of the NHMM, to define the most appro-
priate GCM predictors. The 24-member ensemble mean
of the GCM’s normalized precipitation field was used,
driven by historical estimates of SSTs. The analysis pro-
ceeds by first expanding each field into principal com-
ponents (PCs), and then performing the CCA in the
reduced subspace of the two sets of PCs. The GCM
precipitation was normalized by its local interannual
standard deviation prior to the CCA. The optimal trun-
cations for each PC subspace, as well as the optimal
number of CCA modes were determined by 1) com-
puting the CCA for a given choice of truncation and 2)
summing the out-of-sample correlations exceeding 0.3
between (a) the GCM predictor(s) so identified and (b)
the station rainfall (Tippett et al. 2003).

Since CCA is susceptible to overfitting, a simple but
severe cross-validation procedure was employed, con-
sisting of dividing the dataset into two contiguous 12-
yr training and validation parts. The CCA modes and
NHMM model are derived from the training part of the
dataset, using the ensemble-mean of the 24 GCM sim-
ulations together with the observed data. The resulting
NHMM is then used to simulate rainfall occurrences for
the validation part of the dataset, using the input time

series derived by projecting the GCM ensemble-mean
simulation from the validation part onto the CCA modes
derived from the training part. The procedure is then
repeated switching the training and validation parts of
the dataset. Thus, two models are fitted and used to
simulate the complementary part of the series.

In both cases the CCA yields one statistically sig-
nificant mode, characterized by correlations between the
canonical variate time series of 0.95 and 0.79, for the
first and second half of the dataset respectively. Figure
16 shows the structure of the CCA mode for each part
of the dataset, in terms of homogeneous covariance
maps formed by regressing each field with its respective
(normalized) canonical variate time series. Both halves
of the dataset are characterized by a correspondence
between the GCM’s simulated broad-scale precipitation
on the southern flank of the Atlantic ITCZ and the ob-
served station rainfall occurrence frequency over Ceará,
with the relationship being stronger from 1975–90 than
for 1991–2002.

The resulting (cross-validated) GCM predictor time
series is plotted in Fig. 17, together with the station-
averaged observed rainfall probability and its standard
error; their linear correlation is 0.73. An alternative to
using the CCA calibration, is to use a spatial average
of the GCM’s seasonal-mean rainfall amount simula-
tions over the region of NE Brazil, obviating the need
for cross-validation. Figure 17 also shows these (nor-
malized) spatial averages of NE Brazil rainfall (ap-
proximately 88S–08N, 448–358W) from both the GCM’s
ensemble mean (r 5 0.66) as well as the NCEP–NCAR
reanalysis (r 5 0.62). It is encouraging that the GCM’s
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FIG. 18. Interannual variability of NHMM-simulated rainfall oc-
currence versus the observed (dashed) averaged over all 10 stations.
Plotted is the median of 24 NHMM simulations (solid). The number
of rain days per season were summed across the the 10 stations, and
then divided by 10. The error bars indicate the entire range of the
24 simulations, with the interquartile range given by the inner ticks.

24-member ensemble mean performs about as well as
the reanalysis. The gain achieved by calibrating the
GCM with CCA is relatively small in this case. A pre-
dictor time series derived using CCA but without cross-
validation is also plotted to illustrate the serious problem
of overfitting that results (r 5 0.86).

c. NHMM simulations

The generalized EM algorithm was then used to learn
the parameters of the four-state NHMM with 10 binary
(rainfall) outputs and 1 real-valued (GCM) input, for
each half of the dataset separately.

Twenty-four simulations of daily rainfall occurrence
were then made in each case, using the GCM ensemble
mean input repeated 24 times; use of the individual
GCM ensemble members was found to degrade the sim-
ulations. Figure 18 shows the median number of rain
days per season resulting from the 24 simulations, using
the number of rain days averaged over all 10 stations.
The linear correlation with the observed value is r 5
0.67, which is similar to the performance of the sea-
sonal-mean input variable in Fig. 17. Thus, the NHMM
simulations recover the predictive value of the input
variable in this seasonal and station average quantity.
Also plotted are the quartiles and extremes of the sim-
ulated distribution. The observed curve is inside the
simulated interquartile range about 50% of years, in-
dicating that the simulated distribution has a consistent
variance. The 24-member simulated distribution also
brackets the observed one during all years (but one),
and is thus consistent with the NHMM. In other words,
the NHMM is capable of generating the station-aver-
aged observed rainfall occurrence time series under

strict cross-validation, except during the 1985 La Niña
event.

The interannual performance of the median simulated
daily rainfall sequence is plotted for each station indi-
vidually in Fig. 19. Stations 8 and 10 have correlations
with the observed that equal or exceed 0.7, while sta-
tions 5 and 6 have near-zero correlation. Stations 7–10
in the north-central part of the domain exhibit the more
successful interannual simulations (r $ 0.50).

The distribution of dry spells is a parameter that is
of particular importance to agriculture. Figure 20 shows
the interannual variability of NHMM-simulated dry-
spell frequency at each station, in terms of the median
of the simulated distribution for each year. Here we
define dry spells to be runs of dry days of at least 10
days, with no more than one intervening wet day, and
such that the identified dry spells do not overlap. Again,
rainfall amount is not considered. The GCM-NHMM is
able to simulate interannual variability in dry-spell fre-
quency reasonably well at three stations, with anomaly
correlations (between observed and median simulated)
equal to or exceeding 0.5. Other studies suggest that
rainfall absence is more predictable than occurrence, for
example, Wilby (2001).

6. Summary and conclusions

We have used a hidden Markov model (HMM) to
analyze daily rainfall occurrence at 10 gauge stations
over the state of Ceará in NE Brazil during the rainy
season (FMA) 1975–2002. A four-state model is chosen
from inspection of the cross-validated log-likelihood of
the rainfall data given the model and the Bayes Infor-
mation Criterion (Table 1), as well as from subjective
considerations. Unlike the BIC, the log-likelihood does
not reach a peak at K 5 4 using the leave-six-year-out
cross-validation. It may be preferable to omit more
years, but the dataset of only 24 complete FMA seasons
is a limiting factor.

The HMM is used to estimate the hidden state se-
quence underlying the observed data, from which sea-
sonal and interannual variability is analyzed. Accom-
panying meteorological conditions are examined
through composites of NCEP–NCAR reanalysis data
and NOAA interpolated OLR.

Two of the states are found to correspond to wet or
dry conditions at all stations respectively, with similar
relative frequencies (Fig. 7). However, the wet state
(state 1) tends to be more prevalent during March, with
the dry state (state 2) being more prevalent at the be-
ginning of the FMA season (Figs. 8 and 9). Thus, on
average, states 1 and 2 describe the seasonal cycle of
the ‘‘monsoon’’ over NE Brazil, and this is brought out
in the composites of anomalous OLR and low-level
winds (Fig. 10). State 1 represents an anomalously
southward-displaced ITCZ and an eastward expansion
of the SAMS; both convergence zones merge to a great-
er extent than in the FMA climatology, and Ceará comes
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FIG. 19. Interannual variability of NHMM-simulated rainfall occurrence frequency at each
station. The median of the 24 simulations is plotted for each year (solid) together with the
observed (dashed). The number of rain days per season is plotted on the ordinate.

entirely under their influence. States 3 and 4 are char-
acterized by meridional gradients of rainfall probability
that have increased prevalence late in the season as the
ITCZ retreats northward. However, the meteorological
associations are relatively weak (cf. Fig. 10).

The state-based description of the monsoon over NE
Brazil deserves some comment. Daily rainfall occur-
rence at a single station is binary, and thus it is natural
to characterize it by a discrete Markov process. This is
the basis of ‘‘weather generator’’ models of rainfall oc-
currence. The statistics in Table 1 demonstrate that the
HMM outperforms a stateless model consisting of in-
dependent Markov chains fit to each station. The tem-

poral evolution of the monsoon may actually be better
described in terms of a discontinuous weather-state pro-
cess, than by a continuous one. The state-based model
provides a probabilistic description of the onset and end
of the rainy season (Fig. 8), together with an average
seasonal evolution (Fig. 9). Further work is needed to
address this issue, using rain gauge networks covering
larger geographical areas that enable the spatial struc-
tures of the weather states to be better defined.

Despite the lack of any built-in rainfall persistence
in the HMM, the distribution of wet- and dry-spell
lengths is generally reproduced surprisingly accurately.
Nonetheless, a tendency to underestimate the spell
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FIG. 20. Interannual variability of NHMM-simulated 10-day dry-spell frequency at each station.
The median of the 24 simulations is plotted for each year (solid) together with the observed
(dashed). The number of dry spells per season is plotted on the ordinate.

lengths at certain stations is clear. An autoregressive
HMM (e.g., Juang and Rabiner 1985) may provide a
solution to this defect, by explicity including arrows
between the outputs in Figs. 3 and 14.

The atmospheric composites of states 1 and 2 (Fig.
11) exhibit some well-known characteristics of intra-
seasonal (NAO) and interannual (ENSO) teleconnec-
tions. These teleconnection patterns influence the NE
trade winds in the tropical Atlantic and the position of
the ITCZ, with similar characteristics to the mean sea-
sonal evolution. It is not surprising that we find indi-
cations of variability on different time scales in the rain-

fall states, because the atmospheric spatial structures are
similar. From a regional perspective, several mecha-
nisms can influence the probability of occurrence of the
states, and thus the rainfall occurrence. Thus, the hidden
states of observed rainfall occurrence appear to corre-
spond to intrinsic weather states, which allow a natural
description of rainfall variability across many different
time scales.

There are large interannual variations in state fre-
quency, particularly of states 1 and 2, together with
some decadal-scale changes (also in state 3) (Fig. 12).
The SST anomalies during the years of large anomalies
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in state frequency (Fig. 13) bear the hallmarks of ENSO.
The La Niña relationship is more statistically significant
than for El Niño. This is consistent with the findings of
Giannini et al. (2004) who show evidence that the re-
lationship between NE Brazil rainfall and La Niña has
been stronger than for El Niño during recent decades,
due to preconditioning by tropical Atlantic SST anom-
alies. From our short 24-yr dataset, we find the rela-
tionship between the latter and state frequency to be
relatively weak compared to that identified in other stud-
ies (e.g., Moura and Shukla 1981).

The second goal of the paper was to utilize GCM
simulations of the large-scale circulation to make down-
scaled simulations of station-scale rainfall. Based on
historical SST forcing, the 24-member ECHAM 4.5
GCM ensemble-mean precipitation is found to have
considerable cross-validated skill at reproducing inter-
annual variations in 10-station average rainfall occur-
rence. We find a cross-validated linear correlation of
0.66 with the GCM’s precipitation averaged over the
NE Brazil region (Fig. 17). This value rises to 0.73 if
a canonical correlation analysis is used to find the
GCM’s pattern of precipitation that is best correlated
(under cross validation) with Ceará seasonally averaged
rainfall occurrence frequency (Fig. 16).

The GCM’s ensemble-mean simulation of seasonal-
mean precipitation is used as a univariate input into the
NHMM, from which multiple daily sequences of rainfall
are then generated at the 10 stations. Validating sea-
sonal-mean rainfall frequency simulated by the NHMM
integrated across the 10 stations yields an anomaly cor-
relation skill of 0.67. Thus, the NHMM conveys most
of the GCM’s large-scale interannual simulation skill to
the daily rainfall sequences. At the individual station
level, the maximum interannual correlation found be-
tween simulation and observed is 0.76, using the median
of a 24-member NHMM ensemble of simulations (Fig.
19). Attempting to use the individual GCM ensemble
members to make the NHMM ensemble produced an
inferior result to that obtained by repeating the GCM’s
ensemble mean 24 times. Ten-day dry-spell frequency
is also hindcast fairly well at certain stations by the
GCM-NHMM, with a maximum anomaly correlation
skill of 0.62 at station 8 (Fig. 20, Crateus).

In terms of downscaling, we have shown that the
HMM is able to quite accurately capture the character-
istics of daily rainfall occurrence in terms of spell
lengths (Fig. 6) and (to some extent) spatial interstation
correlations (Table 1). The spatial model used in this
study assumes that the rainfall stations are conditionally
independent of each other, given the rainfall state. More
sophisticated spatial models can been used with HMMs,
such as the autologistic model (Hughes and Guttorp
1994b), and the Chow-Liu tree model that is the subject
of current work (Kirshner et al. 2004).

It is also able to convey an interannual GCM simu-
lations to the local scale. The method thus shows prom-
ise as a technique for generating downscaled daily rain-

fall-sequence scenarios for input into crop models that
require such inputs, and may be competitive with so-
phisticated weather-generator models designed for this
purpose (Wilks 2002). Seasonally varying predictors
could be used to simulate the average seasonality of
rainfall, and to investigate the downscalability of the
onset of the rainy season. Daily rainfall amounts can be
incorporated into the NHMM in a consistent manner
(Charles et al. 1999; Bellone et al. 2000). A topic of
future research concerns the seasonal predictability of
daily rainfall intensity versus occurrence, which will
involve extension of the present work to use predictions
of SST or antecedent-lagged predictors.
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APPENDIX

BIC Scores

The BIC score for an HMM or NHMM model with
K states is defined as

BIC 5 2L(Q*) 2 p logT,K K

where is the estimated maximum likelihood param-Q*K
eter vector as found by EM on the training data for a
model with K states, L( ) is the likelihood of the mod-Q*K
el evaluated at as in Eq. (7), p is the number ofQ*K
parameters in the K-state model (linear in K), and T is
the total number of days of observed data used to train
the model. The second term in the BIC expression 2p
logT ‘‘penalizes’’ more complex models. BIC can be
viewed as a practical approximation to the more ideal
(but intractable to compute) Bayes factor for model se-
lection (e.g., see Kass and Raftery 1995). Although not
fully justified theoretically for model selection in the
context of HMMs and NHMMs [e.g., see Titterington
(1990) and Hughes et al. (1999) for further comments],
the BIC score can nonetheless provide a useful indi-
cation of which models are supported by the data (e.g.,
Hughes and Guttorp 1994a).

To obtain normalized BIC scores (as in Table 1) that
are on roughly the same scale as the normalized log-
likelihoods, we replace BICK above with 2BICK/2N,
where N is the total number of binary predictions made
(here N 5 24 3 90 3 10).
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