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1.  INTRODUCTION

A key challenge of communicating the likely effects
of climate change (CC) to decision makers is in pre-
senting CC effects in relation to spatial or organisa-
tional units that are within their experience, i.e. farms,
conurbations or water catchments (Droogers & Aerts
2005, Rivington et al. 2007). A further challenge lies
in helping them to understand the various sources of
uncertainty in the climate scenarios so that they have
appropriate levels of confidence in those projections
(Maurer & Duffy 2005). The first challenge (above) re-
quires the development of downscaling methods that

result in regional climate model (RCM) estimates
that are both appropriate in a site-specific context and
to the processes of concern within CC impact studies
(Zhang 2005). The second challenge requires the
assessment, quantification and attribution of the vari-
ous sources of uncertainty. Without this information, it
is difficult to ascertain whether the additional error
introduced by the change of scale is small enough to
avoid invalidating the conclusions of the study in
question. The degree of uncertainty introduced to
site-specific studies through the use of different cli-
mate data sources can be substantial (Rivington et
al. 2006).
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RCMs produce estimates for grid cells that are typi-
cally for both historical (hindcast) and future time
periods on a grid-box scale in the order of 50 × 50 km.
However, CC impact, mitigation and adaptation stud-
ies increasingly consider spatial scales with a finer res-
olution than this. Hindcast data from RCMs permits
observed and estimated data to be compared for the
locations where the observations were made. The
quality of estimates and, thus, the utility of future-
scenario data for particular applications, can therefore
be assessed (Moberg & Jones 2004). We assume that
RCM hindcast data for a particular grid cell will be
‘characteristic’ of observed data from individual sites
within the cell (i.e. having variables with similar tem-
poral distribution patterns and value ranges), where
the site has topographical and elevation features that
are similar to the mean of the cell. 

The differences between RCM estimates and obser-
vations from a particular site arise from 2 sources.
The first is the difference in geographical factors
(e.g. topography, elevation, distance to the sea, land
cover—particularly for coastal sites and where a sig-
nificant proportion of a RCM cell consists of water)
between the site and the cell average. The second is
related to the adequacy of the RCM in representing
the climate processes that result in spatial variability. 

There are obviously micro-and meso-climatic effects
that an RCM cannot be expected to represent, such as
frost hollows or coastal fog. It is likely, however, that
there will also be systematic differences due to the
RCM structure and a parameterisation intended to
achieve the best fit across the whole RCM area. Since
the RCM spatial-attribute representation, structure
and parameterisation are common to both the hindcast
and future scenarios, then downscaling factors (DFs)
found by comparing observed with hindcast data may
be used to downscale estimates of future climate for
particular sites. This will improve the reliability of site-
specific CC studies by reducing the likelihood that the
estimated CC impacts are an artefact of the differences
between site characteristics and their representation
within the RCM.

In the present study we compare precipitation, max-
imum and minimum air temperature (Tmax and Tmin),
and solar radiation hindcast data produced by the
Hadley Centre HadRM3 RCM with observed data for
15 locations within the UK, for the period 1960 to 1990.
The aim was to develop a protocol for identifying sys-
tematic errors in RCM estimates for a range of loca-
tions, and thus develop site-specific DFs to reduce the
discrepancy between observed and modelled hindcast
data. The overall purpose was that the resulting DFs
can then be used to adjust future estimates to correct
for biases in the modelling of climate processes within
the RCM—i.e. ‘modelling uncertainty’ (Murphy et al.

2004)—and to correct for differences between the
characteristics of the RCM grid and the specific loca-
tion—i.e. ‘representation uncertainty’. This procedure
does not deal with ‘scenario uncertainty’ (Jenkins &
Lowe 2003)—i.e. the estimates of future greenhouse
gas (GHG) emissions, and depends on the availability
of appropriate hindcast data for any GHG scenario.

2.  RELATED RESEARCH

2.1.  Background

CC data from RCMs are increasingly being made
available to the wider research community. Much of
the testing of such data has been conducted with the
aim of improving the predictive performance of the
models themselves (e.g. Peng et al. 2002, Antic et al.
2006), with rather less testing of the utility of esti-
mates as part of particular impact assessments. Exam-
ples of the latter type of study include Bell et al.
(2004), who compared a model with observed data as
part of a larger study of growing season length and
temperature and precipitation extremes in California.
Studies that have compared estimates with observed
data tend to focus on individual weather variables at
regional scales (e.g. Achberger et al. 2003), though
some consider site-specific data, e.g. Fowler et al.
2005, who tested HadRM3H RCM for extreme rainfall
events at 204 sites in the UK. Moberg & Jones (2004)
tested the HadRM3P model estimates of daily near-
surface Tmax and Tmin for the period 1961 to 1990
for 185 meteorological stations across Europe. Their
analysis was primarily based on the model-minus-
observed values for mean annual and seasonal tem-
perature differences, though results for daily differ-
ences (forming the annual temperature cycle) were
given for 6 locations. They found large spatial varia-
tions in the ability of the model to reproduce historical
weather effectively. It performed well in the UK and
some other locations between 50 and 55° N, with dif-
ferences generally being ± 0.5°C, but other regions
showed differences of up to ± 15°C. Whilst this study
provided valuable information about the degree of
spatial variability in the accuracy of temperature esti-
mates, it was insufficiently detailed to show the spa-
tial pattern of daily differences. For a single site (Flo-
rence, Italy) Moriondo & Bindi (2006) concluded that
the HadCM3 Global Circulation Model (GCM) and
HadRM3P RCM were not able to recreate the Tmax
and Tmin patterns for most of the year, with both
(particularly the GCM) failing to make projections
that were close to the seasonal means. Differences
have not only been found for temperature and precip-
itation. Kim & Lee (2003) found that surface insolation
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was generally overestimated in an 8 yr hindcast simu-
lation for the Western United States, with differences
smaller over land than over sea.

Whilst examples exist of downscaling from global to
regional scales (e.g. Widmann et al. 2003), and of
statistical methods from regional to local scales (e.g.
Wilby et al. 2002, Maurer & Duffy 2005), there is little
evidence in the literature of non-statistical based
methods for regional to specific sites. Exceptions in-
clude the method developed by Ines & Hansen (2006)
to interpolate the frequency and intensity distribution
of daily precipitation from a GCM to a specific site in
Kenya. Similarly Zhang (2005) downscaled monthly
GCM precipitation and temperature data using trans-
fer functions for one site in Oklahoma, USA. Kleinn et
al. (2005) used correction factors to adjust RCM precip-
itation and temperature data used within a model
chain for assessing stream flows within the catch-
ment of the River Rhine. Similarly, Hay et al. (2002)—
in applying magnitude-based bias corrections to the
RegCM2 model—found that estimates improved the
overall output from a basin scale hydrological model,
but corrected data did not contain sufficient daily vari-
ability to match observed weather data. Wood et al.
(2004) conducted a detailed assessment of simple sta-
tistical downscaling methods (linear interpolation; spa-
tial disaggregation; bias-correction and spatial dis-
aggregation) applied to a Parallel Climate Model (PCM)
and an RCM, but compared to a gridded climatology
of precipitation and temperature. The bias-correction
and spatial disaggregation approach gave the best
results when the adjusted climate estimates were used
within a hydrological model.

2.2.  Data used in impact studies

Part of the rationale for this paper is to better
understand how biases in RCM estimates will affect
CC impact studies. A primary approach in investigat-
ing and communicating the effects of CC is through
the use of simulation models. It is therefore essential
to understand how uncertainties introduced to such
models will manifest themselves when estimated cli-
mate data is used as input. The uncertainty intro-
duced into biophysical systems models due to the
input weather data can be significant (Rivington et
al. 2006). For example, Nonhebel (1994a) showed
that the use of mean monthly instead of daily data in
a crop simulation model resulted in an overestima-
tion of potential production by 5 to 15%, and up to
50% in water-limited production in dry conditions.
Nonhebel (1994b) found that inaccuracies in solar
radiation of 10% and of daily temperature of 1°C
resulted in errors in grain yield estimates of up to 1 t

ha–1, and up to 10 d difference in the duration of the
vegetative period (crop emergence to flowering) in
cereals.

Maintaining meteorologically appropriate, corre-
lated relationships between individual weather vari-
ables is essential for models that represent entities
with non-linear responses to the driving variables
often encountered within biological systems (Non-
hebel 1994a) and hydro-chemical processes (Soulsby
1995). Thermal-time accumulation, which depends on
the difference between daily Tmax and Tmin, is the
key driver of plant and insect phenological develop-
ment. Systematic errors in the estimation of values of
either Tmax or Tmin and their temporal synchronisa-
tion will result in predictions of either faster (earlier) or
slower (later) development, with corresponding impacts
on associated management (i.e. crop) or behavioural
(i.e. plant–insect–predator) responses.

When using climate projections to formulate adapta-
tion and mitigation strategies, the uncertainties in
RCM estimates, and the lack of quantification of the
effect of these uncertainties on CC studies, hinders
evidence-based decision making. Introduced system-
atic biases may lead to erroneous decisions being
made and inappropriate actions being taken. Hindcast
RCM data provide a unique opportunity to assess the
nature of the uncertainty that would be introduced into
systems models’ predictions by the use of RCM rather
than site specific information. Whilst the daily data
from GCM and RCM can only be indicative of future
conditions, with potentially large changes in data
resulting from small changes in model structure or
parameters, impact studies will, nevertheless, use such
data. By identifying any systematic biases and min-
imising them for particular locations through the use of
downscaling methods, the robustness of any decisions
based on RCM estimates for future climates will be
significantly improved.

3.  MATERIALS AND METHODS

3.1.  Data sources

The British Atmospheric Data Centre (http://badc.
nerc.ac.uk/home/index.html) provided observed daily
precipitation (mm), Tmax and Tmin (°C) and total
downward surface shortwave flux (direct and diffuse
solar radiation, SR, MJ m2 d–1) data for 1960 to 1990 for
15 meteorological stations in the UK (Fig. 1). Observed
data were compiled within an Oracle database, where
errors, duplicates and anomalies in the original data
were identified and corrected. Missing observed val-
ues were filled using a search and optimisation method
(LADSS 2005).
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Modelled data originates from the Hadley Centre
HadRM3 RCM archive for 50 × 50 km grid cells (the
extent of each RCM cell used is shown in Fig. 1). As
an initial condition ensemble, 5 hindcast simulations
(starting from 1860) were produced by the HadRM3 in
order to establish 1960 to 1990 climate-normal period
‘baselines’ to be used for comparisons with future pro-
jections. Each hindcast simulation had slight variations
in their initialisation conditions, but atmospheric CO2

and other GHG concentrations were varied to match
the historical concentrations up until 1990. Future
projections of GHGs, as per the Special Report on
Emissions Scenarios (SRES) (IPCC 2000) were not
applied until after 1990. The present study used the

SRES A2 (medium-high GHG emissions)
initial realisation hindcast (based on ob-
served historical GHG concentrations). As
such, this paper assesses only one example
of the hindcast configurations of the
HadRM3.

A meteorological station was matched
with its corresponding cell. Selection crite-
ria for sites with observed data were the
completeness of their data record, and
their location in relation to an idealised
uniform spatial distribution across the UK.
The number of sites available for assess-
ment was limited by the availability of SR
data. Carnwath in southwest Scotland,
despite not having SR data, was included
as it is a site of on-going CC impacts
modelling. In 2 cases, stations were within
2 km of the cell boundary (Auchincruive
and Eskdalemuir), so the opportunity was
taken to use the closest neighbouring
RCM cells for comparison as well.

The hindcast data produced by the RCM
do not attempt to recreate synoptic condi-
tions for specific locations or years. Instead
they aim to provide a time series of data
with the correct statistical properties, in-
cluding correlations between variables.
The RCM outputs represent the 50 × 50 km
grid cell as a whole, rather than any
specific site within the cell, and are time-
(year-) independent. Therefore direct
day-to-day or year-with-year comparisons
between the observed and RCM data
are not possible. Instead, mean daily,
annual totals or maximum and minimum
values were used for comparisons. As the
HadRM3 model treats a year as having
360 d (i.e. 12 mo of 30 d), the last 5 d of the
observed data for each year were omitted
from the analyses, though this risks the

exclusion of significant extreme weather events in this
time period.

Based on the findings of Moberg & Jones (2004), no
a priori adjustments to the modelled data were made to
take account of differences in elevation or other clima-
tologically significant topographic differences between
the meteorological station and the mean for the grid
cell. The mean elevation for each grid cell and meteo-
rological station is given in Fig. 1.

This study consisted of 4 stages: (1) assessment of
the quality of the hindcast estimates against observed
data; (2) development of DFs; (3) re-assessment of
downscaled hindcasts against observed data; and
(4) application of DFs to future projections.
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3.2.  Data quality assessment

The first stage of the work compared modelled and
observed data for the period 1960 to 1990 for each
weather variable at the 15 locations (17 cells).

3.2.1. Precipitation. Histograms were plotted to illus-
trate the frequency distribution of the magnitude of
precipitation events (>0 mm). For each precipitation
event the probability of excedence (Pe) (%) was calcu-
lated following Weibull (1961):

Pe = m/(n+1) × 100 (1)

where m is the rank order of each precipitation event,
with m = 1 as the largest event and m = n for the lowest,
with n being the number of observations (in this case n =
360 d × 30 yr). Where precipitation amounts are equal,
they have the same m value. This method enables differ-
ences in the probability of occurrence of precipitation
events of the same magnitude to be identified and avoids
the problem of asynchronicity in the timing of precipita-
tion. As such the method does not take into account the
day of year that each data value represents (i.e. observed
and modelled data of the same Pe may have occurred on
different days). Using the ranked decreasing order of
precipitation event, the difference (modelled – observed)
and proportional difference, compared with the ob-
served event magnitude [(modelled – observed) / ob-
served] was calculated. The mean annual precipitation,
magnitude of largest event and the mean number of
days with no precipitation (dry days) were calculated. To
assess the temporal distribution of events, plots of the 7 d
(weekly) means were made.

3.2.2. Temperature. The mean daily values for Tmax
and Tmin were calculated and plotted for the observed
and estimated data. This enabled the magnitude of dif-
ferences and their temporal distribution within a year
to be visually assessed. The root mean square error
(RMSE) and 2-tailed paired Student’s t-test of the prob-
ability of equal means (p) were estimated for compari-
son of observed and hindcast mean daily, and highest
and lowest values, of Tmax and Tmin for a set of exam-
ple locations. Mean daily Tmax – Tmin was calculated
and plotted, in order to assess the model’s ability to
represent the daily temperature range. The highest
and lowest daily values of Tmax and Tmin were plot-
ted to examine how well the model was able to repre-
sent daily variability and extreme ranges. The mean
annual Tmax and Tmin and highest and lowest tem-
peratures were calculated, along with the mean num-
ber of days when temperature exceeded 3 thresholds:
Tmax > 15°C, Tmin < 0°C and Tmin < –5°C.

3.2.3. Solar radiation. Observed SR data records are
often incomplete for the 1960–1990 period; hence,
analysis was limited to graphical representations using
the difference between mean daily observed and esti-

mated solar radiation. This difference in daily means
helps to illustrate the temporal distribution of mean
daily errors (over- and underestimations) over the
period of a year, indicating systematic model behav-
iour. This approach was taken to allow direct compari-
son of results with a previous study of the performance
of 3 solar radiation models carried out by Rivington et
al. (2005). Observed and modelled SR data were also
smoothed by calculating a 7 d running mean (mean of
Days 1 to 7, mean of Days 2 to 8 etc.) and then plotted
to emphasise the annual distribution pattern.

3.3.  Development of downscaling factors

DFs were developed after completion of the data
quality analysis to minimise the difference in means be-
tween the observed and RCM hindcast values for each
weather variable. The DFs were applied to the daily
data. For Tmax, Tmin and SR, 3 temporal intervals were
tested for the application of the DF: annual (1 DF for the
entire year); growing season and non-growing season
(2 DFs, one for each season); and monthly (1 DF for
each month). Further tests applied the DF by multipli-
cation and addition. Initial investigation showed that
the annual time period and the multiplication applica-
tion methods were unsatisfactory. The seasonal time
period (2 DFs) improved the match between modelled
and observed data, but contained unrealistic ‘steps’ at
the day of change between seasons. The following
details the best method, i.e. the application of monthly
values of DF by addition (where the DF can be positive
or negative) to Tmax, Tmin and SR.

3.3.1. Precipitation. Precipitation DFs were handled
differently from the other weather variables in that a
2-stage approach was used. Firstly, a single value
(DFd) was subtracted from the value of every event to
correct the number of days with no precipitation (0 mm)
and reduce the difference in distribution of low precip-
itation events seen in Fig. 2. The value of DFd was
found by the implementation of an iterative loop,
whereby an optimal value was found to subtract from
each event value such that it minimises the mean num-
ber of observed – estimated dry days difference. If the
event value – DFd became <0, then the value was set to
0. Hence DFd is effectively a single optimal value of a
precipitation event amount below which all data val-
ues > 0 ≤ DFd can be removed. A significant number of
very small (generally <0.3 mm) modelled precipitation
events are removed, which then requires the applica-
tion of a second DF (DFMAT; mean annual total) to cor-
rect for both the model’s original error in estimating
mean annual total (MAT) and the new reduced value.
Here, DFMAT is applied as a percentage increase to
non-zero values, where the increase is proportional to
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the size of the modelled value, i.e. value + (value ×
DFMAT). The objective for DFMAT was to minimise the
difference (DMAT) between the mean of the observed
annual totals (OMAT) and the estimated MATs (EMAT),
where (DMAT) was found by:

(2)

Precipitation DFs do not take into account seasonal-
ity, as the distribution of the excessive number of small
events was even throughout the year, and the DFMAT

values are applied proportionally to the magnitude of
each event.

3.3.2. Air temperature and solar radiation. DFs 
(DFTmax, DFTmin and DFSR) were developed for Tmax,
Tmin and SR, respectively, where the minimised value
was the difference between the observed and mod-
elled sum of daily means per month:

(3)
and

(4)

and

(5)

where OTmax ji is the observed Tmax in the year j and
day i per month (30 d) and ETmax ji is the modelled
Tmax in the year j and day i per month (and the
same, correspondingly, for Tmin and SR). Hence 12
individual DF were developed for each weather vari-
able for each month for all years (i.e. one DFTmax

applied to hindcast January 1960 to 1990 data, one
for February, etc.).

3.4.  Application of downscaling factors to future
estimates

On the assumption that uncertainties in RCM esti-
mates for the hindcast period are systematic, and
therefore exist in future projections, DF were applied
to projected future CC data. The same assessments
made of the hindcast estimates were repeated for the
future projections. Plots were made for each weather
variable at each location for observed and the down-
scaled A2 future projection.
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Fig. 2. Observed and modelled precipitation at 3 selected sites: (A–D) Carnwath, (E–H) Aberporth, and (I–L) Rothamstead.
(A,E,I) HadRM3 modelled hindcast estimates, (B,F,J) observed data, and (C,G,K) downscaled HadRM3 hindcast estimates 

(1960–1990). (D,H,L) Downscaled HadRM3 A2 scenario projection (2070–2100)
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4.  RESULTS

4.1.  Model estimate evaluation

Additional results material referred to here but not
illustrated are available from LADSS (2006).

4.1.1. Precipitation. The model produces an excess
of small (<0.3 mm) precipitation events (Fig. 2), result-
ing in a large underestimate of the number of dry days
(Table 1). The mean number of dry days for all sites
was 67 compared with 163 for observed data. For the
MAT, the model was able to produce very good esti-
mates at some sites (i.e. Cawood, underestimated by
only 1 mm), but also poor estimates (e.g. Auchincruive,
Cell 4694, overestimated by 662 mm; Eskdalemuir,
Cell 4801, underestimated by 854 mm), underestimat-
ing for 10 of the 17 cells assessed (Table 1). Despite
overestimating the number of dry days, the model
underestimated the number of rainfall events in the
range of 2 to 30 mm (Fig. 3B). The differences between
observed and modelled data for larger rainfall events
are proportionally smaller and have a less significant
effect on overall totals than the more frequent small
to mid-range events.

Where the model overestimates the MAT, the over-
estimation of precipitation events increased asymptoti-
cally to a maximum of 10 mm at 23 mm and then
decreased towards 0 mm at 50 mm (beyond 50 mm

there were insufficient events to discern a consistent
pattern). In contrast, where the model underestimated
the MAT, there was a near-linear increase in the
underestimation, to a maximum of 22 mm at 50 mm.
Where the model performed well, differences were
due to the larger observed events.

The model underestimated the largest single pre-
cipitation event at 14 of the 17 cells (observed mean
maximum event for all sites was 72 mm compared with
a modelled mean of 58 mm). However, only at Mylne-
field did the model overestimate by >10 mm (Table 1).
The largest single observed event was at Aberdeen
(109.2 mm) where the model estimated 50 mm.
The largest modelled event was 73 mm. The pat-
terns of mean weekly precipitation (Fig. 4) were
replicated well, e.g. Carnwath, Rothamsted, Sutton
Bonington.

4.1.2. Temperature. The model estimates Tmax well
for some times in the year, particularly the spring
period (e.g. Auchincruive, Cell 4693, Fig. 5), but over-
estimates Tmin (e.g. Carnwath and Rothamsted, Fig. 6,
and East Malling, see Fig. 10A), although this was not
true of all sites. This resulted in a daily range (Tmax –
Tmin, Fig. 7) that was too narrow, particularly in the
spring and summer. The main discrepancies in Tmax
are underestimates in the autumn and overestimates in
mid-summer (i.e. Everton, Fig. 6) and at the beginning
of the year (i.e. Carnwath, Fig. 6). At Aldergrove, how-
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Table 1. Comparison between observed and HadRM3 hindcast (1960–1990) precipitation (mm) for mean annual total, maximum (largest) sin-
gle event and mean number of days (n) per year without precipitation (dry days, 0 mm), for before and after application of downscaling factors
and downscaled A2 HadRM3 scenario projections (2070–2100). Obs: observed; Model: HadRM3 hindcast; Diff: difference (before or after 

downscaling-observed); ↑ increase; ↓ decrease; ≈ approximately the same

Stn Cell Mean annual total (mm) Maximum single event (mm) Dry days (0 mm)
OBS Before After Downscaled Obs Model Downscaled Obs Model Downscaled

Model Diff Model Diff Projection Before After Projection Before After Projection

Aberdeen 4273 761 604 –157 731 –30 733 ≈ 109 50 67 79 173 57 167 195
Aberporth 5434 870 838 –31 858 –12 921 ↑ 85 66 72 57 163 76 159 165
Aldergrove 4797 845 814 –31 833 –12 818 ≈ 66 49 53 60 130 64 131 153
Auchincruive 4693 936 10740 138 929 –7 395 ↓ 72 59 54 34 156 48 148 220
Auchincruive 4694 936 15970 662 928 –8 1006 ↑ 72 73 47 47 152 47 147 159
Bracknell 5757 663 761 98 658 –5 626 ↓ 71 56 55 50 193 78 190 217
Carnwath 4589 832 723 –109 817 –15 835 ≈ 59 64 75 74 135 63 133 159
Cawood 5121 536 535 –1 550 14 594 ↑ 66 60 69 45 183 83 193 211
East Malling 5759 650 547 –103 642 –8 595 ↓ 82 63 81 66 193 95 190 220
Eskdalemuir 4695 15340 12150 –319 1514 –21 1552 ↑ 95 66 87 86 127 48 125 148
Eskdalemuir 4801 15340 681 –854 1514 –20 1580 ↑ 95 48 1080 1210 127 77 125 149
Everton 5862 738 777 40 732 –6 716 ↓ 56 55 58 56 203 63 201 224
Lerwick 3639 12010 10570 –144 1186 –15 1279 ↑ 59 42 54 74 96 23 103 103
Mylnefield 4484 692 500 –192 659 –33 665 ≈ 49 73 1020 1080 175 79 167 193
Rothamsted 5652 674 619 –55 666 –7 622 ↓ 64 50 59 61 178 79 176 210
Sutton Bonnington 5333 601 711 110 598 –3 555 ↓ 59 50 48 62 191 70 189 215
Wallingford 5650 577 693 116 574 –3 549 ↓ 65 61 59 57 204 79 200 225

Mean (all sites) 858 809 –49 846 –11 826 ↓ 72 58 68 67 163 67 161 186
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ever, the modelled Tmin matched the observed values
well, but Tmax was underestimated, except in January
and February.

Annual mean Tmax is generally underestimated by a
small amount (0.30°C), while mean Tmin is over-
estimated by an average of 0.72°C. The model tends
to underestimate annual mean Tmax (except at
higher elevation sites) by a mean absolute difference

of 0.48°C, whilst overestimating Tmin
(except at most coastal sites) by a mean
absolute difference of 1.06°C (Table 2).

The highest Tmax values were over-
estimated at 14 of the 17 cells (observed
mean for all sites was 30.7°C compared
with the modelled mean of 34.2°C),
though at some, e.g. Aldergrove, the
estimates were very close. For the low-
est estimates of Tmax, the model under-
estimated by an average of 1.7°C, but
did not manage to replicate the lower
Tmax values, i.e. at Carnwath (Table 3).
It also underestimated the mean number
of days when the Tmax was >15°C by an
average of 14 d yr–1 compared with
observed data, and for some locations by
as much as 35 d (Auchincruive, Cell
4694). At Bracknell (Fig. 8A), the model
overestimated the highest values of
Tmax during the summer but underesti-
mated them in the early spring, whilst
there is a very good match for the lowest
Tmax values.

For Tmin, the highest values were
overestimated by an average of 3.6°C,
but for some locations, e.g. Rothamsted,
by as much as 7.5°C whilst for Aberdeen
it was exactly right (Table 4). The model
did not estimate the lowest observed
values of Tmin well (Fig. 8), being on
average 5.9°C higher (warmer) than
the observed values (Table 4). Gener-
ally, Tmin did not match those of the
observed mean daily temperatures in
the winter period. An exception (sur-
prisingly, as it contains some area of sea
within the cell) is Everton (Fig. 6), where
the lowest model estimate was 3.5°C
too low. The lowest observed Tmin
value of –24.8°C was at Carnwath,
where the model estimated –12.0°C.
The model underestimated the total
number of days below 0°C in some
locations and overestimated in others.
Deviations ranged from 38 d too few
(Carnwath) to 31 d too many (Everton).

A similar pattern is seen in the estimates of days be-
low –5°C, with under- and overestimates of –19 d
(Carnwath) and +17 d (Everton).

For the highest Tmin values, the model overesti-
mated in the summer but showed a good match
throughout the rest of the year. The modelled lowest
Tmin values did not effectively represent the extreme
observed lows at many sites, e.g. Bracknell (Fig. 8) and
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the spring and summer values were generally over-
estimated.

Generally the temporal distribution of mean daily
Tmax and Tmin is modelled adequately, based on the
synchronisation of temporal distributions (see Figs. 6 &
10A). Data from meteorological stations on the bound-
ary between 2 cells (Auchincruive and Eskdalemuir)
show contrasting results in data from their 2 corre-
sponding modelled cells. For example, Auchincruive
(Cells 4693 and 4694) showed similar temperature
results (Tables 2, 3 & 4), but a marked difference in
precipitation (Table 1). Hence care has to be taken in
deciding which cell data are most representative of
sites on cell boundaries.

4.1.3. Solar radiation. The model systematically
overestimated SR (i.e. Aberporth, Figs. 5 & 9). It does,
however, perform very well at some locations, e.g.
Aberdeen, where the distribution of estimate errors is
similar to that from data derived from specialist radia-
tion estimation models. Estimates at sites such as
Aberdeen were only about ± 1 MJ m–2 d–1 larger than
those from specialist models, but are much larger at
other locations, e.g. Eskdalemuir (Cell 4801), where
the mean error was 2.02 MJ m–2 d–1 and the largest
single error was 11.2 MJ m–2 d–1. The model overesti-
mated SR particularly in the late summer to autumn
period, when actual values are likely to be high, but

there is a shift back towards either accuracy or under-
estimation in the spring to early summer period (e.g.
East Malling, Everton, Rothamsted and Sutton Boning-
ton, Fig. 9). This indicates a possible systematic model
bias.

4.2.  Model estimate downscaling

4.2.1. Precipitation. The DFd and DFMAT produced
downscaled hindcast model data that visually match
the observed data very well. The many low-magnitude
(generally <0.3 mm) modelled precipitation events
were removed (Figs. 2 & 3B), resulting in better agree-
ment in the number of dry days (Table 1), with the
modelled mean for all sites being 161 (was 67) com-
pared with the observed 163. The largest difference in
the number of dry days was only 10, at Cawood. The
MAT match was improved at all locations, except
Cawood, where the model’s original estimates were
already very good (Table 1). DFd and DFMAT resulted in
the modelled estimates of mean annual precipitation
(except Cawood) being underestimated, but by a mean
across all sites of only 11 mm. At Eskdalemuir (Cell
4801) the model originally underestimated by 854 mm,
but after downscaling the difference was only 20 mm
with an error of 2 dry days, whilst also seeing a sub-
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stantial improvement in the largest single event esti-
mate (observed = 95 mm, hindcast = 48 mm, down-
scaled projection = 108 mm). However, at only 9 of the
17 cells did the DFd and DFMAT improve the estimates
of the largest precipitation events. The worst case for
this is found at Mylnefield, where the model origi-
nally overestimated the largest precipitation amount

(observed = 49 mm, hindcast = 73 mm,
downscaled projection = 102 mm).

The difference (ranked observed –
modelled) shows that the DF maintains
a closer match for the more frequent
low to mid-range precipitation events
(Fig. 3C), whilst minimising the propor-
tional difference (Fig. 3B). There was a
mixed response of the 7 d mean precip-
itation (Fig. 4), where the DF appear to
improve the match at some locations
(i.e. Rothamsted and Auchincruive,
Cell 4693), but not at others (i.e. Aber-
porth).

4.2.2. Temperature. Application of
monthly DFTmax and DFTmin resulted in
substantial improvements in the match
between observed and downscaled
model mean daily Tmax and Tmin
(Fig. 6). Most notable is the improve-
ment in Tmin, illustrated by Carnwath,
giving a better representation of daily
temperature range (Tmax – Tmin)
(Fig. 7), although still not ideal in the
growing season. However, the down-
scaled data still did not represent the
extreme cold events well, or reduce
enough the model’s overestimation of
the highest values of Tmax in summer
(Fig. 8B).

The estimates of annual means of
Tmax and Tmin were improved at all
sites (Table 2), with Tmin being seen
to improve the most (the mean differ-
ence in [observed – hindcast] data for
all sites was 0.3°C for Tmax, and
0.72°C for Tmin, with both becoming
0°C after downscaling). For Tmax, the
downscaled model data still showed
an overestimation of the highest single
event (Table 3), actually worsening by
0.8°C from the hindcast for the mean
for all sites, and multiple high events
in the summer (Fig. 8B). There was an
improvement in the number of d yr–1

estimated to be >15°C (observed mean
for all sites = 116, downscaled mod-
elled mean = 115). For Tmin, there

was little change in the estimates of the lowest
temperature events, but a slight improvement in the
highest events (Table 4). Generally the downscaled
data better represent the no. of d <0°C, but are
noticeably better for d <–5°C (i.e. Carnwath observed
= 28 d, original model = 9 d, downscaled modelled
data = 26 d).
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4.2.3. Solar radiation. DFSR greatly improved the
quality of estimates (Figs. 5B & 9), but while not elimi-
nating the errors, resulted in them being evenly dis-
tributed about a more realistic mean value. In crop
modelling, for example, getting the mean value correct
is more important than tracking the day-to-day
changes, as compensating errors can result in a bal-

ance about the mean. DFSR does,
however, reduce the seasonal bias
seen in the hindcast estimates (under-
estimating in late spring to early
summer, i.e. Everton and Sutton
Bonington, Fig. 9), giving a more
even temporal distribution of over-
and underestimations. The magni-
tude of the errors, approximately
4 MJ m2 d–1, is comparable with those
associated with specialised solar radi-
ation estimation models. Therefore,
the downscaled estimates for SR can
be seen as being of good quality.

4.3.  Downscaled future estimates

The differences between observed
conditions and future projections can
be better evaluated given knowledge
of the performance of the model in
making the hindcast estimates (i.e.
identifying systematic errors), and
interpreting the impacts (improve-
ments and continuing inadequacies)
of using the DFs.

4.3.1. Precipitation. Downscaled fu-
ture projections for the A2 scenario
show a substantial increase in the
number of dry days (mean of 23 d) at
all locations, but a varied response in
the change in MAT (Table 1). In 6
cells the annual total is projected to
rise, in 4 there is little change, but
in 7 a decrease is projected. The de-
creases are predominantly in drier
locations. Fig. 2 indicates that where
decreases in MAT are projected, this
would be due to a reduction in the
number of lower magnitude (<4 mm)
precipitation events.

4.3.2. Temperature. Downscaled es-
timates indicate a substantial warm-
ing at all locations tested (Figs. 10
& 11) where mean annual Tmax for
all sites rises by 3.52°C, from the ob-
served 12.28 to a projected 15.80°C

(Table 2). For Tmin, the mean annual value rises by
3.22°C, from 5.14 to 8.36°C, for all sites. Projections for
Tmin approach what is approximately the current
difference between observed Tmax – Tmin (Fig. 11).
However, the evidence presented here shows the
model overestimates the higher ranges of Tmax and
Tmin in the summer period by an average of 3°C
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Table 2. Mean annual observed and HadRM3 hindcast (1960–1990) maximum and minimum temperature (Tmax and Tmin, °C) before and
after application of downscaling factors and downscaled HadRM3 A2 scenario projections (2070–2100). Obs: observed; Model: HadRM3 

hindcast; Diff: difference (before downscaling – observed)

Stn Cell Mean annual Tmax (°C) Mean annual Tmin (°C)
Obs Model Downscaled Obs Model Downscaled

Before After Diff Projection Before After Diff Projection

Aberdeen 4273 11.12 10.46 11.12 –0.66 14.07 4.83 4.95 4.83 0.12 7.60

Aberporth 5434 12.16 12.12 12.16 –0.05 14.57 6.92 10.31 6.92 3.39 9.41

Aldergrove 4797 12.38 11.70 12.38 –0.68 15.17 5.57 5.75 5.57 0.18 8.17

Auchincruive 4693 11.99 11.22 11.99 –0.77 16.93 5.55 4.66 5.55 –0.90– 9.57

Auchincruive 4694 11.99 10.52 11.99 –1.47 15.00 5.55 4.57 5.55 –0.99– 8.47

Bracknell 5757 13.88 13.55 13.88 –0.33 18.28 5.44 6.19 5.44 0.75 9.12

Carnwath 4589 11.12 11.19 11.12 0.07 14.31 2.87 4.95 2.87 2.08 5.85

Cawood 5121 13.01 12.42 13.01 –0.58 16.52 5.21 5.34 5.21 0.13 8.90

East Malling 5759 14.09 13.99 14.09 –0.09 18.28 6.05 6.97 6.05 0.92 9.79

Eskdalemuir 4695 10.79 10.46 10.79 –0.34 13.98 3.38 4.52 3.38 1.14 6.30

Eskdalemuir 4801 10.79 11.53 10.79 0.74 14.08 3.38 4.40 3.38 1.02 6.66

Everton 5862 13.81 13.72 13.81 –0.09 18.10 6.81 5.80 6.81 –1.01– 10.76

Lerwick 3639 9.22 9.49 9.22 0.27 11.13 4.71 8.28 4.71 3.56 6.68

Mylnefield 4484 11.84 11.41 11.84 –0.43 15.05 5.03 5.01 5.03 –0.02– 8.05

Rothamsted 5652 13.21 13.66 13.21 0.45 17.50 5.32 6.21 5.32 0.89 8.97

Sutton Bonnington 5333 13.32 12.65 13.32 –0.67 17.31 5.48 5.59 5.48 0.11 8.85

Wallingford 5650 14.03 13.53 14.03 –0.50 18.33 5.28 6.11 5.28 0.82 8.89

Mean 12.28 11.98 12.28 –0.30 15.80 5.14 5.86 5.14 0.72 8.36

Absolute difference 5.13 12.22–

Mean absolute difference 0.48 1.06

Table 3. Comparison between observed and HadRM3 hindcast (1960–1990) Tmax (°C) for highest and lowest single value, and the no.
of d >15°C before and after application of DF, and downscaled HadRM3 A2 scenario projection (2070–2100). Obs: observed; Model: 

HadRM3 hindcast

Stn Cell Tmax highest single value (°C) Tmax lowest single value (°C) Mean d >15°C (n)

Obs Model Downscaled Obs Model Downscaled Obs Model Downscaled

Before After Projection Before After Projection Before After Projection

Aberdeen 4273 26.4 33.7 34.3 36.6 –3.4 –5.6 –5.3 1.3 86 70 72 155

Aberporth 5434 31.5 22.7 24.1 27.4 –5.2 1.1 –0.4 3.2 106 82 97 170

Aldergrove 4797 24.9 23.9 33.3 38.8 0.5 1.3 –2.1 1.2 121 93 123 180

Auchincruive 4693 29.4 32.1 32.8 46.8 –3.2 –8.4 –6.9 1.8 107 88 105 202

Auchincruive 4694 29.4 31.5 32.7 39.1 –3.2 –6.5 –5.7 0.6 107 72 110 176

Bracknell 5757 35.3 40.2 40.6 47.1 –7.0 –5.5 –4.8 0.8 156 138– 153 213

Carnwath 4589 29.7 35.5 35.5 41.5 –11.7– –2.9 –4.3 –0.2– 96 94 101 166

Cawood 5121 33.9 38.7 39.2 45.6 –5.0 –4.2 –4.5 2.1 141 121 142 198

East Malling 5759 34.6 41.1 40.8 47.1 –5.9 –5.7 –5.3 2.3 160 146– 158 219

Eskdalemuir 4695 29.5 33.6 34.0 42.1 –9.9 –6.2 –7.0 –1.3– 85 76 89 157

Eskdalemuir 4801 29.5 35.1 34.1 42.3 –9.9 –5.8 –5.6 –1.5– 85 104– 86 157

Everton 5862 33.5 39.5 38.0 47.2 –4.8 –7.3 –7.7 0.5 151 141– 151 219

Lerwick 3639 21.5 16.0 17.3 20.1 –3.4 –1.3 –3.1 1.4 17 1 8 54

Mylnefield 4484 28.5 36.3 36.5 40.6 –9.0 –3.1 –3.3 0.4 112 101– 112 176

Rothamsted 5652 33.8 40.6 40.0 46.5 –7.2 –5.6 –5.7 0.5 145 141– 142 204

Sutton Bonington 5333 34.8 40.0 40.9 47.7 –6.7 –5.1 –4.1 1.1 144 125– 145 206

Wallingford 5650 35.1 40.8 41.5 47.3 –9.2 –4.9 –4.2 0.6 158 137– 156 215

Mean 30.7 34.2 35.0 41.4 –6.1 –4.4 –4.7 0.9 116 102– 115 180
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across all sites before downscaling, and 4°C afterwards
(Fig. 8B). Hence the values for the highest single val-
ues of Tmax and Tmin given in Tables 3 & 4 and shown
in Fig. 8C should be regarded with caution. The
increase in both Tmax and Tmin appears to be similar,
given the downscaled Tmax – Tmin (Fig. 7), and con-
sidering that the mean daily Tmax estimates (Fig. 11)
may be too high due to distortion arising from the
model’s overestimation of the higher Tmax values.
Allowing for this, the downscaled Tmax does increase
more than Tmin in the summer. The projected data
show a substantial increase in the number of days on
which Tmax < 15°C (observed = 116 d, downscaled
hindcast = 115, projection = 180) (Table 3).

The model is unable to represent the more extreme
cold conditions at some locations, hence the projected
values given for the lowest Tmin in Table 4 are also
questionable. That said, the application of the DF
does improve the quality of estimates in terms of the
no. d <0°C and <–5°C. Therefore greater confidence
can be found in the projected number of days below
these values, showing there is a substantial decrease in
the expected number of cold days.

4.3.3. Solar radiation. Change may occur to SR
only in spring to early autumn (May to September), as
there is little difference from the observed data out-
side this period (Figs. 12 & 13). Aberdeen, Aberporth
and Aldergrove show very little change in SR, at whilst
Lerwick may decrease from mid-summer into winter.
Sites in the southern UK show the greatest increase in

SR in the summer (i.e. Everton, Rothamsted, Walling-
ford). The application of DFSR produces a characteristic
‘spike and dip’ in the plots of mean daily SR (Fig. 13)
between Days 149 and 151 (the transition from May to
June). This is due to the model estimating the May SR
well, giving small values for May DFSR, but overesti-
mating the June SR giving a higher June  DFSR, which
is compounded by the smoothing method used to
display the results in Fig. 13.

5.  DISCUSSION

5.1.  Model evaluation

The evaluation of the quality of estimates for the
period 1960–1990 has implications for the interpreta-
tion of future projections of CC. Assuming that the sys-
tematic differences between modelled and observed
data occurring within the hindcast estimates are pre-
sent in the future estimates, then future unadjusted
projections, as currently published, of precipitation,
extreme summer Tmax, mean Tmin, lowest Tmin and
SR are, at some locations, potentially misleading. How-
ever, testing also indicated that mean Tmax, the lowest
Tmax and highest Tmin estimates are reliable, requir-
ing minimal downscaling. On balance, there is there-
fore a need for more comparisons between RCM esti-
mates and observed data, to systematically identify
cases where the model performs poorly with the aim of
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apportioning the cause of differences to model struc-
ture (within the RCM), process representation (the dif-
ference between the 50 km cell and the site attributes),
RCM input data or parameterisation.

The many modelled small precipitation events
(<0.3 mm), without downscaling, may be significant in
terms of adversely affecting derived estimates, i.e.
evapotranspiration (and therefore soil water balance)
and crop canopy temperatures, due to increased cool-
ing. They are, however, less likely to impact on hydro-
logical studies, given the relatively low volume of
water input into hydrological systems. These many
small events occur due to the model being originally
calibrated and validated against spatially aggregated
observed data, resulting in a ‘drizzle’ effect. The fact
that the model did not estimate the largest single
events does not indicate a failure of the model, but that
the 30 yr coverage of the hindcast may not be sufficient
to capture the more rare extreme events with longer
return periods. In conjunction with this, the aim of the
model is to represent the mean conditions for a grid
cell, rather than specific extreme events recorded at
individual stations. However, the consistency with
which the model underestimated the largest single
event across all sites does indicate a limitation.

The models’ tendency to overestimate Tmin, whilst
performing well for Tmax, implies that without down-

scaling the data will be unsuitable (dependent on loca-
tion) for many CC impact and adaptation studies.
Errors will be introduced to estimates of an entity’s
temperature response, i.e. due to thermal time accu-
mulation, diurnal ranges, biophysical processes etc.
However, the results presented here for mean daily
Tmax and Tmin and their highest and lowest values,
indicate that the model is capable—after downscal-
ing—of performing well in producing data that rep-
resent the natural temperature variability on a daily
basis.

The overestimation of SR at many locations sug-
gests that the model data without downscaling are
unsuitable for use in impacts studies where SR is a
key input. Even where mean values match the sea-
sonal distribution of differences between observed
and modelled data, the timing of errors can be impor-
tant. For example, if the data are used within a crop
model, overestimation of SR in the spring and summer
will result in too high a rate of biomass accumulation
(more intercepted radiation). The authors’ experience
is that data containing compensating errors of the
type found in the downscaled SR estimates can still
result in reasonable derived estimations of modelled
yield (Rivington et al. 2002). The overestimation of
SR could indicate a weakness in the way the RCM
represents cloud cover.
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5.2.  Downscaling factor method

Given that both over- and underestimation of
weather variables can occur at the same location, there
is a risk of introducing significant errors for applica-
tions where estimates, e.g. of soil water deficit, are
derived from several weather variables. The use of DFs
greatly improves the quality of hindcast estimates
compared with observed data, hence there will be an
associated improvement in estimates derived from the
variables. However, DFMAT does introduce additional
errors in the largest precipitation events. This is due to
the DFMAT being applied proportionally to the magni-
tude of the event, hence the largest 3 to 4 modelled
events can become excessively large. Care would be
needed if the data is used in hydrological modelling of
flood risk assessment. The trade-off with the DFd and
DFMAT methods is that they do correct well for the vast
majority of small to medium sized precipitation events.
Also, the temperature DFs, whilst improving the repre-
sentation of means, do not eradicate model biases
for extreme low and high temperatures. Practitioners
using any form of downscaling technique need to be
aware of how remaining or exacerbated biases, such as
those above, will manifest themselves when used in
CC impact studies.

Greater confidence can be gained in the future projec-
tions of derived estimates (e.g. soil water deficit) after ad-
justment of the input weather variables by the DFs.
However, further development potential exists, to relate
the DFs to the future atmospheric physical properties
and role of radiative forcing, i.e. relationship with air
temperature and cloud formation. The current assump-
tion that the hindcast dry-days bias will persist into the
future projections may be misleading, due to changing
atmospheric dynamics, hence DFd may over-correct.

The methods developed are simple to calibrate and
implement, requiring just observed and hindcast data,
raising the potential for rapid recalibration of newly
generated RCM data for specific sites. These DFs are,
however, applied to individual weather variables inde-
pendently and do not take into account the correlation
between variables. The model appears to represent the
cross correlation between variables well, and the DFs
only strongly affect the mean and variance per vari-
able, hence their impact on cross correlation should be
minor. Also, the DFs can be applied separately, e.g.
when the model is found to perform well for tempera-
ture, but not precipitation or solar radiation.

The ability of the DFs to improve the quality of esti-
mates appears to be spatially and temporally uniform.
However, they may be inappropriate for temperature
where there are large sea areas within a cell, e.g.
Aberporth and Lerwick. Therefore thresholds need to
be set on the results of the evaluation of the original

model estimates, in order to decide when it is inappro-
priate to downscale.

6.  CONCLUSIONS

This research has shown the value of appraising the
ability of RCM to replicate the historical climate in
order to better evaluate the quality of future projec-
tions. The evaluation of the HadRM3 RCM has shown
that it produces estimates of the historical climate that
will introduce additional uncertainty when used in CC
impact and adaptation studies. The model produces an
excess of small precipitation events (<0.3 mm), whilst
giving either accurate or large over- and underestima-
tions of MAT, variable with location. Estimate quality is
better for Tmax than Tmin, the latter tends to be over-
estimated by the model. Generally, the lower values of
Tmax and higher values of Tmin are estimated well.
The model systematically overestimates solar radia-
tion, but does produce good quality estimates at a few
sites. The combination of these errors implies that the
original estimates are unsuitable for use in detailed CC
impact and adaptation studies, e.g. those concerned
with daily time steps. However, the hindcast model
estimates are sufficiently similar to observed data in
many cases to raise the potential for downscaling.

Where there are significant differences between ob-
served and RCM hindcast data, this paper has shown
that simple, non-statistically based DFs can be applied
that result in a considerably closer match between ob-
served and modelled hindcast data. Improvements in
data quality are spatially and temporally uniform. With
the assumption that the type and approximate magni-
tude of errors occurring in the hindcast estimates are
repeated in the modelled future climate, then the appli-
cation of DF means that greater confidence can be
placed in RCM projections for particular locations that
may be of interest to decision makers. Given the sim-
plicity of the downscaling method there is potential for
using this approach to adjust newly generated RCM
data as it becomes available. This does, however, de-
pend on the archiving and publishing of the hindcast
data associated with each RCM scenario, which is not
always done currently. There is potential for consider-
able refinement and further testing of the precipitation
and temperature DFs, since there are many more mete-
orological stations in the UK, and elsewhere, with suit-
able data available (this study being restricted to those
sites with available solar radiation data).

Without the use of a suitable downscaling approach,
or until RCMs improve and better represent the his-
torical climate, then site-specific climate impacts and
adaptation studies using original RCM data are likely
to have significant introduced uncertainty.
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