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Precipitation downscaling improves the coarse res-
olution and poor representation of precipitation in
global climate models, and helps end users to as-
sess the likely hydrological impacts of climate change.
This paper integrates perspectives from meteorolo-
gists, climatologists, statisticians and hydrologists, to
identify generic end user (in particular impact mod-
eler) needs, and to discuss downscaling capabilities
and gaps. End users need a reliable representation
of precipitation intensities, temporal and spatial vari-
ability, as well as physical consistency, independent
of region and season. In addition to presenting dy-
namical downscaling, we review perfect prog statisti-

cal downscaling, model output statistics and weather
generators, focussing on recent developments to im-
prove the representation of space time variability.
Furthermore, evaluation techniques to assess down-
scaling skill are presented. Downscaling adds consid-
erable value to projections from global climate mod-
els. Remaining gaps are uncertainties arising from
sparse data; representation of extreme summer pre-
cipitation, sub-daily precipitation, and full precipita-
tion fields on fine scales; capturing changes in small-
scale processes and their feedback on large scales;
and errors inherited from the driving global climate
model.
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1. INTRODUCTION

Global climate models (GCMs) are the pri-
mary tool for understanding how the global cli-
mate may change in the future. However, these
currently do not provide reliable information on
scales below about 200 km [Meehl et al., 2007, for
an illustration, see Figure 1]. Hydrological pro-
cesses typically occur on finer scales [Kundzewicz
et al., 2007]. In particular, GCMs cannot resolve
circulation patterns leading to hydrological ex-
treme events [Christensen and Christensen, 2003].
Hence, to reliably assess hydrological impacts of
climate change, higher resolution scenarios are re-
quired for the most relevant meteorological vari-
ables.

Downscaling attempts to resolve the scale dis-
crepancy between climate change scenarios and the
resolution required for impact assessment. It is
based on the assumption that large-scale weather
exhibits a strong influence on local-scale weather,
but - in general - disregards any reverse effects from
local scales upon global scales. Two approaches to
downscaling exist. Dynamical downscaling nests a
regional climate model (RCM) into the GCM to
represent the atmospheric physics with a higher

Copyright 2010 by the American Geophysical Union. Reviews of Geophysics, ???, /
pages 1–38

8755-1209/10/£15.00 Paper number
• 1 •



2 • MARAUN ET AL.: PRECIPITATION DOWNSCALING UNDER CLIMATE CHANGE

Figure 1. Average UK winter precipitation (mm/day) for 1961-2000 simulated by the Hadley Centre
global climate model (GCM) HadCM3 and the regional climate model (RCM) HadRM3 at 50 km and 25
km resolutions, compared with gridded observations (E. Buonomo, D. Hassell, R. Jones, and G. Jenkins,
unpublished). The GCM does not provide regional precipitation information. The RCM reproduces basic
regional structure, but is limited in mountain areas (Western UK); also, this particular RCM exaggerates
the rain shadow effect (East Scotland).

grid-box resolution within a limited area of inter-
est. Statistical downscaling establishes statistical
links between large(r) scale weather and observed
local-scale weather.

During the last two decades, extensive research
on downscaling methods and applications has been
carried out. For a comprehensive overview of ap-
plications, see Christensen et al. [2007]; and Prud-
homme et al. [2002] and Fowler et al. [2007a] with
a focus on hydrology. Several reviews of down-
scaling methods have been published [e.g., Hewit-
son and Crane, 1996; Zorita and von Storch, 1997;
Wilby and Wigley , 1997; Xu, 1999a; Hanssen-
Bauer et al., 2005]. In addition to updating these
methodological reviews, this paper aims to inte-
grate different perspectives on precipitation down-
scaling, in particular from meteorologists, clima-
tologists, statisticians and impact modelers such
as hydrologists. As such, we focus on laying out
concepts and discussing methodological advances.

In general, the most relevant meteorological vari-
ables for hydrological impact studies are precip-
itation and temperature [Xu, 1999b; Bronstert
et al., 2007]. For freshwater resources in partic-
ular, precipitation is the most important driver
[Kundzewicz et al., 2007], though it is considerably
more difficult to model than temperature, mostly
due to its high spatial and temporal variability and
its nonlinear nature. The overall objective of this
paper is to define a set of generic end user needs

(in particular of impact modelers) for downscaled
precipitation, and then to discuss how these needs
are met by various downscaling approaches, and
what gaps are remaining.

Statistical downscaling has received considerable
attention from statisticians. Their contributions
have however largely been unrecognized by the cli-
mate community, although they attempt to ad-
dress important end user needs. An essential part
of this paper is therefore to review recent statistical
models that have been developed to improve the
representation of spatial-temporal variability and
extremes. We attempt to bring together these re-
cent approaches with classical statistical downscal-
ing methods, and discuss differences and similari-
ties between individual methods and approaches,
as well as their advantages and drawbacks.

Traditionally, statistical downscaling has been
seen as an alternative to dynamical downscaling.
With the increasing reliability and availability of
RCM scenarios, recent work on statistical down-
scaling has aimed to combine the benefits of these
two approaches. Under the name model out-
put statistics (MOS), gridded RCM simulations
are statistically corrected and downscaled to point
scales. We describe MOS approaches in detail, and
discuss their relation to other statistical downscal-
ing approaches.

To seriously evaluate the skill of downscaling ap-
proaches to meet the end user needs, a quantitative
evaluation is necessary. Therefore, an important
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part of the paper is a review of validation tech-
niques.

In section 2 we identify a set of generic end user
needs. The state-of-the-art in dynamical and sta-
tistical downscaling is presented in sections 3 and
4, respectively, and in section 5, validation tech-
niques are introduced. Finally, in section 6 we
discuss how the approaches presented in sections
3 and 4 meet the specific needs identified in sec-
tion 2. In particular, this section seeks to ad-
dress the following questions: How does dynamical
downscaling address a particular end user need?
How can MOS improve the RCM simulations and
close potential gaps? How does statistical down-
scaling perform as alternative to dynamical down-
scaling? What are the remaining gaps? Sections
3, 4 and 5 are quite technical in nature, while sec-
tions 2 and 6 are written to be accessible to the
non-expert.

2. NEEDS OF THE END USER

Downscaling precipitation, in most cases, is not
an end in itself but provides a product (in the form
of data or information) to an “end user”. Their
goal may be, for example, to understand and po-
tentially act upon the impacts that are likely to
be caused by a localized climate extreme or by
a future change in the climate. End users range
from policy makers, through planners and engi-
neers, to impact modelers. As well as the prod-
uct, the end user also might require: a clear state-
ment of the assumptions involved and limitations
of the downscaling procedure; a transparent expla-
nation of the method; a description of the driving
variables used in the downscaling procedure, and
their source; a clear statement of the validation
method and performance; and some characteriza-
tion of the uncertainty or reliability of the sup-
plied data. Fowler et al. [2007a] note that very
few downscaling studies consider hydrological im-
pacts, and those that do seldom provide any con-
sideration of how results might enable end users
to make informed, robust decisions on adaptation
in the face of deep uncertainty about the future.
To be able to successfully make such a decision,
non-specialist end users (e.g., the policy maker)
might benefit from including social scientists with
experience in translating between non-specialists
and natural scientists [Changnon, 2004; Gigerenzer
et al., 2005; Pennesi , 2007]. This communication
process can ensure that the downscaled product
can in fact be used as intended and is understood
correctly. This paper mainly addresses the hydro-
logical impact modeler, but sections 6 and 7, espe-

cially, provide useful information for other types of
end user.

In hydrological impact studies, whether using
observed or simulated precipitation, assumptions
about the spatial and temporal distribution of pre-
cipitation are required, and the pertinent question
is what assumptions are appropriate given the na-
ture of the specific problem being addressed. Hy-
drological impact analyses can have different ob-
jectives and hence focus on different components
of the hydrological cycle. They are applied in dif-
fering environments (e.g., different climates, land
use, geology, etc.), and it is essential that the pro-
cesses and pathways involved in a particular study
area are well understood and represented in the
model. Furthermore, they employ models of vary-
ing complexity and temporal resolution, depending
on their purpose and model availability [e.g., em-
pirical models on an annual base, “water-balance
models” on a monthly base, “conceptual lumped-
parameter models” on a daily base and “process-
based distributed-parameter models” on an hourly
or finer base Xu, 1999a]. Therefore, the objec-
tive, study area characteristics and type of model
used will determine the sensitivity of the system to
different precipitation characteristics (spatial and
temporal distribution) and the form of the precip-
itation required (e.g., continuous time series, sea-
sonal averages, annual extremes).

It is well established that the minimum stan-
dard for any useful downscaling procedure is that
the historic (observed) conditions must be repro-
ducible [Wood et al., 1997], but it is also neces-
sary that the simulated conditions are appropriate
for the particular hydrological problem being ad-
dressed. This can be achieved using a hydrolog-
ical evaluation step in the downscaling procedure
[Bronstert et al., 2007], whereby the usefulness of
the climatic data to the hydrological impact anal-
ysis is assessed. Fowler et al. [2007a] suggest using
a sensitivity study to define the climatic variables
that need to be accurately downscaled for each dif-
ferent impact application. This should apply not
only to different variables, but also to different
characteristics of particular variables, i.e., differ-
ent precipitation indices.

Below, a set of generic end user needs is identi-
fied, giving specific examples, and the skill of the
various downscaling methods to meet these needs
is described in section 6.

Regional and seasonal needs: The needs
of the end user will vary regionally and season-
ally as a function of socioeconomic needs and pres-
sures, land use and the climatological context. De-
pending on the particular end user, in some regions
it may therefore be important to provide reliable
precipitation characteristics for a particular sea-
son. In monsoonal climates, such as the Indian
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sub-continent [Zehe et al., 2006] and West Africa
[Laux et al., 2008] the prediction of the onset and
strength of monsoon rainfall is critical for manage-
ment of water resources and agriculture. In tem-
perate climates there is much less of a seasonal
pattern in rainfall, though seasonal evaporation
can significantly impact the water cycle. For in-
stance, groundwater resources in south east Eng-
land are recharged primarily in the winter months
when precipitation exceeds evaporation, whereas
during the summer much of the precipitation is
lost to evaporation. Therefore, under current cli-
mate conditions, resource availability is considered
primarily a function of winter precipitation [see,
e.g., the recharge models discussed by Ragab et al.,
1997]. Herrera-Pantoja and Hiscock [2008] have
suggested that under climate change potential win-
ter recharge will increase, while summer recharge
will reduce (reflecting changes in both precipita-
tion and potential evaporation). Therefore, the
impact in terms of flood or drought risk will de-
pend on a more complicated balance of these two
seasonal components. Mean summer rainfall is an
important control on agricultural yield, while ex-
treme rainfall events, especially during the sum-
mer, can damage crops, reduce pesticide efficiency,
erode soil and cause flooding, all of which have a
negative impact on crop yield [Rosenzweig et al.,
2001]. Therefore, agricultural impacts require re-
liable predictions of summer average and extreme
rainfall conditions.

Event intensity: Many hydrological appli-
cations require continuous simulation, and as such
have a requirement for reliable precipitation inten-
sities, from light through to heavy events. Inten-
sities are often characterized by their return level
and return period. The return level is defined as
the event magnitude which, in a stationary climate,
would be expected to occur on average once within
the return period. In this paper we refer to heavy
precipitation as events having a return period of
the order of months or a few years. The inten-
sities of events with return periods of decades or
centuries are rarely observed and probably exceed
the range of observed intensities. To correctly as-
sess such rare events, extreme value theory [e.g.,
Coles, 2001; Katz et al., 2002; Naveau et al., 2005]
is necessary. We will refer to such events as ex-
treme precipitation. In particular, extreme precip-
itation intensities are required for the design of ur-
ban drainage networks. The UK Department for
Environment, Food and Rural Affairs (DEFRA)
sets a target of a 100 year return period protection
for urban areas, prioritized on cost/benefit grounds
[Wheater , 2006].

Temporal variability and time scales:
Different temporal characteristics of precipitation
are important depending on the catchment char-

acteristics. The flooding in Boscastle, southwest
England, in August 2004 was caused by 181 mm of
rain which fell in 5 hours [Wheater , 2006]. By con-
trast, groundwater flooding in Chalk catchments in
Hampshire and Berkshire, south England, in 2001
was caused by the highest eight month total pre-
cipitation in a record from 1883 [Marsh and Dale,
2002]. Daily precipitation totals during this period
were unexceptional, and not in themselves “flood
producing” [DEFRA, 2001]. These are both ex-
amples of different types of extreme precipitation.
In the case of Hampshire/Berkshire, it is neces-
sary that the statistics of extreme long duration
(up to 8 month) precipitation totals are projected
reliably, while daily precipitation totals are much
less important. In order to project the statistics
of future flood events similar to the 2004 Boscastle
flood, the downscaler should be able to supply re-
liable estimates of daily, or even sub-daily extreme
precipitation. Another example where rainfall in-
tensity over short durations is highly important is
urban flooding [Cowpertwait et al., 2007].

Spatial coherence and event size: In
principle, downscaling can provide point scale,
areal average, or spatially distributed precipitation
fields, though the latter is challenging. Which of
these is required by the end-user will depend on
the extent to which the spatial structure of pre-
cipitation is likely to affect the response of a sys-
tem under study. For example, in the context of
rainfall-runoff modeling there is evidence that spa-
tial structure is important for small, rapidly re-
sponding catchments and for catchments that are
larger than the scale of typical precipitation events
[Ngirane Katashaya and Wheater , 1985; Michaud
and Sorooshian, 1994; Singh, 1997; Segond et al.,
2007; Wheater , 2008]; but other factors, such as
catchment geology, may serve to damp out the ef-
fects [Naden, 1992].

Physical consistency: Many hydrological
responses are affected by variables other than pre-
cipitation, notably evaporation and snowmelt (ex-
ceptions are short time scale responses to large
rainfall events). Ignoring the coherence of these
variables, i.e., treating them as though they were
independent, may in some circumstances be inap-
propriate. In certain regions warmer winters might
mean that precipitation falls as rainfall rather than
snowfall, leading to lower snow melt, lower spring-
summer runoff and hence potential drought risk
[Rosenzweig et al., 2001].

Downscaling for future climate change:
End user needs for future scenarios fall into two
categories: projections of the long term (several
decades to 100 years) trend and predictions of vari-
ability over the next one or two decades. The long
term trend is important for design of flood de-
fenses and general infrastructure, as well as strate-
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gic planning regarding agriculture, water resources
and water related hazards. The prediction of
shorter term climate variability has more imme-
diate applications, such as predicting crop yields.

3. HOW FAR HAVE RCMS COME?

Regional climate models (RCMs) contain the
same representations of atmospheric dynamical
and physical processes as global climate models
(GCMs). They have a higher resolution (50 km or
less) but cover a sub-global domain (e.g., Europe).
Due to their higher resolution RCMs typically re-
quire a reduced model time step (5 minutes or less)
compared to GCMs (typically 30 minute time step)
to maintain numerical stability, although semi-
Lagrangian semi-implicit RCMs such as the Cana-
dian Regional Climate Model are able to use time
steps as large as GCMs. RCMs are driven by
winds, temperature and humidity imposed at the
boundaries of the domain and sea surface tempera-
tures, supplied by the global model, which usually
leads to large-scale fields in the RCM being consis-
tent with the driving GCM.

In general, the larger the domain size the more
the RCM is able to diverge from the driving model
[Jones et al., 1995]. The consistency of large-scale
features can be further increased by forcing the
large-scale circulation within the RCM domain to
be in close agreement with the global model [von
Storch et al., 2000]. In these one-way nesting ap-
proaches there is no feedback from the RCM to the
driving GCM [Jones et al., 1995].

Due to their higher spatial resolution, RCMs
provide a better description of orographic effects,
land-sea contrast and land-surface characteristics
[Jones et al., 1995; Christensen and Christensen,
2007]. They also give an improved treatment of
fine scale physical and dynamical processes, and
are able to generate realistic mesoscale circulation
patterns which are absent from GCMs [Buonomo
et al., 2007]. They provide data that are coherent
both spatially and temporally, and across multiple
climate variables, consistent with the passage of
weather systems. The fact that RCMs can credi-
bly reproduce a broad range of climates around the
world [Christensen et al., 2007], further increases
our confidence in their ability to realistically down-
scale future climates.

Climate models need to represent processes at
scales below those that they can explicitly resolve,
such as radiation, convection, cloud microphysics
and land surface processes. This is done using
parametrization schemes, which represent a simpli-
fication of the real world and hence lead to inher-
ent modeling uncertainty. For example, the simu-
lation of precipitation in an RCM is divided into

a large-scale scheme, accounting for clouds and
precipitation which result from atmospheric pro-
cesses resolved by the models (e.g., cyclones and
frontal systems), and a convection scheme describ-
ing clouds and precipitation resulting from sub-
grid scale convective processes. For example, a
convection scheme may model convective clouds in
a grid box as a single updraught, with the amount
of convection determined by the rate of uplift at
the cloud base. Convective activity is restricted to
a single time step, and thus there is no memory
of convection in previous time steps. In addition,
there is no horizontal exchange regarding convec-
tive activity in neighboring grid boxes.

There are many different RCMs currently avail-
able, for various regions, developed at different
modeling centers around the world. The differ-
ent RCMs produce different high resolution sce-
narios for a given boundary forcing [e.g., Buonomo
et al., 2007], due to differences in model formula-
tion, but also due to small-scale internal variability
generated by the RCM. There has been consider-
able international effort recently to quantify un-
certainty in regional climate change through the
inter-comparison of multiple RCMs, for example
the PRUDENCE (Prediction of Regional scenar-
ios and Uncertainties for Defining EuropeaN Cli-
mate change risks and Effects) [Christensen and
Christensen, 2007] and ENSEMBLES [Hewitt and
Griggs, 2004; van der Linden and Mitchell , 2009]
projects for Europe, and the NARCCAP (North
American Regional Climate Change Assessment
Program) project [Mearns et al., 2009] for North
America. The recent CORDEX (Coordinated Re-
gional Climate Downscaling Experiment) initiative
from the World Climate Research Program pro-
motes running multiple RCM simulations at 50 km
resolution for multiple regions.

The typical grid size of RCM simulations to date
has been 25 km or 50 km. However, recently a
few RCM simulations with grid scales below 20
km have become available for Europe: the REMO-
UBA (10 km) and the CLM (18 km) simulations
of the Max Planck Institute for Meteorology, and
the HIRHAM (12 km) simulations of the Danish
Meteorological Institute [Dankers et al., 2007; Früh
et al., 2009; Hollweg et al., 2008; Tomassini and Ja-
cob, 2009]; and RCMs with grid sizes of 5 km or less
are being developed at several modeling centers.
For example a 5 km RCM has been developed over
Japan [Kanada et al., 2008]. Also preliminary re-
sults using cloud resolving models on climate time
scales spanning small domains are becoming avail-
able, e.g., for the Alpine region at a grid scale of
2.2 km [Hohenegger et al., 2008].
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3.1. Skill of RCMs to downscale precipitation
Precipitation is one of the climate variables most

sensitive to model formulation, being strongly de-
pendent on several parametrization schemes and
their interplay with the resolved model dynamics.
For this variable, it has been shown that RCMs
are able to contribute significant added value com-
pared to the driving GCMs [e.g., Durman et al.,
2001; Frei et al., 2006; Buonomo et al., 2007].

Compared to the driving GCM, RCMs produce
an intensification of precipitation [Durman et al.,
2001], leading to an improved representation of the
daily precipitation distribution, including extreme
events [Christensen and Christensen, 2007]. Also
RCMs can reproduce many features of the precip-
itation distribution over regions of complex topog-
raphy, not resolved in the GCM [Frei et al., 2006].
Significant biases in the simulation of mean pre-
cipitation on large-scales can be inherited from the
driving GCM [Durman et al., 2001]. To provide a
clearer assessment of the performance of an RCM
it can be driven by reanalysis data (see also sec-
tion 5). These provide quasi-observed boundary
conditions and allow RCM downscaling skill to be
isolated [Frei et al., 2003]. Reanalysis-driven RCM
simulations not only exclude systematic biases in
the large-scale climate, but, in contrast to standard
simulations, are able to reproduce the actual day-
to-day sequence of weather events, which allows for
a more comprehensive and exact assessment of the
downscaling skill. For instance, the ENSEMBLES
project provides a set of ERA40 (Reanalysis of
the European Centre for Medium-Range Weather
Forecasts) driven RCMs. Recent work within this
project has shown that 25 km RCMs driven by
ERA40 boundary conditions give a good repre-
sentation of rainfall extremes over the UK, with
model biases of a similar order to the differences
between the 25 km ENSEMBLES and 5 km Met
Office gridded observational data-sets (Buonomo
et al., manuscript in preparation).

There is evidence that RCM skill in simulating
the spatial pattern and temporal characteristics of
precipitation increases with increasing model res-
olution. Improved skill may result from the im-
proved representation of complex topography, the
resolution of fine scale dynamical and physical pro-
cesses, and also through the sensitivity of physi-
cal parametrization to model grid size [Giorgi and
Marinucci , 1996]. A recent study by Rauscher
et al. [2009] compared the downscaling skill of
RCMs at 25 km and 50 km grid spacings over Eu-
rope. They found improved skill at higher reso-
lution during summer, although not in winter in
some regions. However, this apparent geographic
dependence in the sensitivity to model resolution

may in part reflect regional variations in observa-
tional station density.

For a given RCM, downscaling skill has been
shown to depend on the region, season, intensity
and duration of the precipitation event considered.
In general, RCMs show better downscaling skill in
winter than summer and for moderate compared
to very heavy precipitation. We will discuss these
issues in detail in Section 6, where we compare
the skill of RCMs with statistical downscaling ap-
proaches.

We note that in the context of climate change
projections, the effects of model biases may be re-
duced. In particular biases in RCM precipitation
may in part cancel out on taking differences be-
tween the control and future scenarios. For exam-
ple, Buonomo et al. [2007] find two RCMs give sim-
ilar precipitation changes, despite significant differ-
ences in model biases for the present day. However,
recent work by Christensen et al. [2008] suggests
that biases may not be invariant in a warming cli-
mate. In particular, models tend to show a greater
warm bias in those regions that are hot and dry;
while wet (dry) months tend to show a greater dry
(wet) bias.

3.2. Limitations of RCMs
RCMs only provide meaningful information on

precipitation extremes on the scale of a few grid
cells, with considerable noise on the grid cell scale
[Fowler and Ekström, 2009]. Thus for RCMs with
a typical grid spacing of 25-50 km, this equates to
providing information on scales of ∼100 km (al-
though this also depends on other factors such as
season and topography). Spatial pooling, whereby
daily precipitation data from neighboring grid cells
are concatenated to give one long time series, is ef-
fective at improving the signal to noise ratio and
thus provides improved statistics of local heavy
precipitation [Kendon et al., 2008]. We note, how-
ever, that this technique is only applicable where
neighboring grid cells are effectively sampling from
the same precipitation distribution ,and also spa-
tial dependence needs to be accounted for when
assessing uncertainties. As RCMs with grid scales
of less than 20 km become available [e.g., Dankers
et al., 2007; Hollweg et al., 2008], the spatial scale
on which meaningful information is provided will
decrease. Nevertheless, a discrepancy will remain
between the spatial scale of RCM precipitation,
which should be interpreted as areal average values
[Chen and Knutson, 2008], and site-specific data
needed for many impacts studies.

Linked to the spatial resolution of RCMs, there
is also a minimum temporal scale on which RCMs
can provide meaningful information. In particu-
lar current RCMs show skill in capturing statistics
of the daily precipitation distribution, but do not
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well represent sub-daily precipitation and the di-
urnal cycle of convection [Brockhaus et al., 2008;
Lenderink and van Meijgaard , 2008]. As the spa-
tial resolution of RCMs increases, and in particu-
lar convection-resolving scales are achieved, mod-
els give an improved representation of the diurnal
cycle [Hohenegger et al., 2008] and may provide
meaningful information on hourly time scales. It
should be noted, however, that a 30 year RCM in-
tegration just represents one possible 30 year real-
ization of the climate, and not the actual sequence
of weather events. In particular natural variability
on daily to decadal time scales is a key source of un-
certainty when estimating precipitation extremes.

A key source of model deficiencies in the simula-
tion of precipitation is the convective parametriza-
tion. In particular, many of the parametriza-
tion schemes used in RCMs may not be appro-
priate, having been developed for coarser resolu-
tion GCMs and tropical regions [Hohenegger et al.,
2008]. This is particularly likely to be an issue in
summer, when rainfall is predominantly convective
in nature, and on sub-daily time scales, when the
highest precipitation intensities are usually related
to convective showers [Lenderink and van Meij-
gaard , 2008].

Moreover the simulation of precipitation in
RCMs is also highly sensitive to other aspects of
the model formulation, including the grid reso-
lution, the numerical scheme and other physical
parametrizations [Fowler and Ekström, 2009]. A
number of parameters in the model physics are
not well constrained, and varying these parameters
within reasonable bounds leads to differences in
the simulated precipitation [Bachner et al., 2008;
Murphy et al., 2009]. RCMs developed at different
modeling centers around the world use different
formulations, leading to differences in downscal-
ing skill. There is some evidence that regions and
seasons showing the greatest model biases in the
simulation of precipitation, are also those with the
greatest inter-model differences [Frei et al., 2006;
Fowler et al., 2007b]. Past experience has shown
that no single RCM is best for all climate vari-
ables and statistics considered [Jacob et al., 2007;
Christensen and Christensen, 2007], and it is not
trivial to develop an objective scheme for weighting
different RCMs. Indeed, it has been argued that
when using multiple outputs from climate models,
it is necessary to develop methodologies that ex-
ploit each model predominantly for those aspects
where it performs competitively [Leith and Chan-
dler , 2010].

4. METHODS TO BRIDGE THE GAP:
STATISTICAL DOWNSCALING

There are many statistical approaches to bridge
the gap between GCM or RCM outputs and local-
scale weather required to assess impacts. In the
simplest form, the idea of statistical downscaling
comprises some kind of mapping between a large
(or larger) scale predictor X and the expected
value of a local-scale predictand Y ,

E(Y |X) = f(X,β) (1)

where β represents a vector of unknown parame-
ters that must be estimated to calibrate the down-
scaling scheme. More advanced downscaling ap-
proaches may also explicitly model variability that
is not explained by the dependence of Y upon X,
as a random variable η.

Wilby and Wigley [1997] classified statistical
downscaling into regression methods, weather type
approaches, and stochastic weather generators
(WGs). As an alternative classification, Rum-
mukainen [1997] suggested a categorization based
on the nature of the chosen predictors, which dis-
tinguished between perfect prog(nosis) (PP) and
model output statistics (MOS). To integrate these
suggestions, we classify statistical downscaling ap-
proaches into PP, MOS and WGs. This classifi-
cation should only be seen as a means to sensibly
structure the following sections.

Classical statistical downscaling approaches,
which include regression models and weather pat-
tern based approaches, establish a relationship be-
tween observed large-scale predictors and observed
local-scale predictands (see Figure 2 (a)). . Ap-
plying these relationships to predictors from nu-
merical models in a weather forecasting context
is justified if the predictors are realistically simu-
lated, and thus these methods are known as Perfect
Prog(nosis) downscaling [e.g., Klein et al., 1959;
Kalnay , 2003; Wilks, 2006]. In the context of cli-
mate change projections PP methods are based on
the assumption that the simulated large-scale pre-
dictors represent a physically plausible realization
of the future climate. Common to these downscal-
ing approaches, the weather sequences of the pre-
dictors and predictands can directly be related to
each other event by event.

PP approaches establish statistical relationships
between variables at large (synoptic) scales and
local-scales. Physical processes on intermediate
scales are usually ignored. With the increasing
skill of RCMs and the availability of RCM scenarios
(see section 3), alternative statistical downscaling
approaches are becoming popular that make use
of simulated mesoscale weather. These approaches
are known as Model Output Statistics (MOS). The
idea of MOS is to establish statistical relationships
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Figure 2. Statistical downscaling approaches; ↔ refers to a calibration, → to a downscaling step. (a)
Perfect prog (PP) is calibrated on large-scale and local-scale observations. For the projection, large-scale
predictors are simulated by a GCM or RCM. Model output statistics (MOS) calibrates model output
against observations. In (b), the whole model (GCM+RCM) is corrected. Therefore, the same GCM
and RCM have to be used in the projection. In this setting, the calibration is based on the distributions
of model output and observations only. In (c), only the RCM output is corrected. In the projection,
an arbitrary GCM can be used (this is a PP step). This setting allows for a calibration based on the
whole time series of model output and observations. MOS can also be applied directly to GCMs, e.g., in
a forecasting situation. Here, the GCM is forced to closely follow observational data for the calibration.
Conditional weather generators can either be used in a PP setting (a) by using large-scale predictors, or
in a MOS setting (b) by using change factors.

between variables simulated by the RCM and local-
scale observations to correct RCM errors (see Fig-
ure 2 (b) and (c)).

WGs are statistical models that generate local-
scale weather time series resembling the statistical
properties of observed weather. In their most ba-
sic unconditional form, WGs are calibrated against
observations on local scales only, and are hence
not downscaling approaches. Historically, the most
common way of using such unconditional WGs in
conjunction with climate change scenarios was to
apply so-called change factors, derived from re-
gional climate models [e.g., Kilsby et al., 2007].
This approach can be considered as simple MOS
(see Figure 2 (b)). Other WGs condition their pa-
rameters on large-scale weather [Wilks and Wilby ,
1999]. Such weather generators are thus hybrids
between unconditional weather generators and PP
statistical downscaling (Figure 2 (a)).

4.1. Perfect prog statistical downscaling
This section reviews statistical downscaling ap-

proaches that establish links between observed
large-scale predictors and observed local-scale pre-
dictands. The large-scale observations are often

replaced by surrogate observational data such as
those obtained from reanalysis products. For a dis-
cussion of problems related to observational data,
refer to section 5. Many state-of-the-art PP ap-
proaches are used in a weather generator context.
These specific applications will then be discussed
in section 4.3.

In a PP framework, equation (1) defines a re-
lationship between a large-scale predictor X and
the expected value of a local-scale predictand Y
for times t, with some noise η not explained by
the predictor. This is often achieved by regression
related methods, in which case the predictors X
are also called covariates. Since, for every observed
large-scale event, there is a corresponding observed
local-scale event, the calibration can be done event
wise, i.e., relating the time series of predictors and
predictands to each other in sequence rather than
only relating the distribution of predictors and pre-
dictands to each other.

The model equation (1) can be used to gen-
erate local-scale time series, by predicting Y (t)
from observed or simulated predictors X(t) =
(X1(t), X2(t), ...). Simple PP approaches disregard
any residual noise term ηi, whereas state-of-the-art
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PP approaches explicitly provide a noise model to
represent variability and extremes. The former are
often called deterministic, the latter stochastic.

The construction of the actual downscaling
scheme can be divided into two steps: first, the
selection of informative large-scale predictors, and
second the development of a statistical model for
the link between large-scale predictors and local-
scale predictand (i.e., the f(.) in equation (1)).
Often, the first step also requires transformation
of the raw predictors into a useful form. To avoid
both overfitting or ignoring valuable information,
a model selection according to statistical criteria
should be carried out.
4.1.1. Predictor selection

The selection of suitable predictors is crucial
when developing a statistical downscaling model.
The most basic requirement for a predictor is that
it is informative, i.e., it has a high predictive power.
Informative predictors can be identified by statisti-
cal analyses, typically by correlating possible pre-
dictors with the predictands. Various predictors
representing the atmospheric circulation, humidity
and temperature have been used to downscale pre-
cipitation. According to Charles et al. [1999], mea-
sures of relative humidity (e.g., dewpoint tempera-
ture depression) are more useful than measures for
specific humidity. In general, the predictor choice
depends on the region and season under consider-
ation [Huth, 1996, 1999; Timbal et al., 2008].

In a climate change context, predictors are nec-
essary that capture the effect of global warming
[Wilby et al., 1998]. In particular measures of
humidity are necessary to capture changes in the
water holding capacity of the atmosphere under
global warming [Wilby and Wigley , 1997], whereas
temperature adds little predictive power to predict
long term changes in precipitation. Suitable pre-
dictors need to be reasonably well simulated by
the driving dynamical models (PP assumption),
and the relationship between predictors and pre-
dictands needs to be stationary, i.e., temporally
stable.

These requirements are summarized in the
STARDEX project [Goodess et al., 2010]. A list
of predictors used for precipitation downscaling is
given by Wilby and Wigley [2000], along with a
comparison of observed and simulated predictors
and a stationarity assessment. A comparison of
predictors for different regions is given by Cavazos
and Hewitson [2005].
4.1.2. Predictor transformation

Raw predictors are generally high dimensional
fields of grid based values. Moreover, the informa-
tion at neighboring grid points is not independent.
It is thus common to reduce the dimensionality of

the predictor field, and to decompose it into modes
of variability.

Principal component analysis (PCA) [Preisendor-
fer , 1988; Hannachi et al., 2007] is the most promi-
nent method for dimensionality reduction. It pro-
vides a set of orthogonal basis vectors (empirical
orthogonal functions, EOFs) allowing for a low-
dimensional representation of a large fraction of
the variability of the original predictor field [e.g.,
Huth, 1999]. PCA, however, does not account for
any information about the predictands, and the
predictor/predictand correlation might thus not
be optimal. Different in this respect is canon-
ical correlation analysis (CCA) or maximum co-
variance analysis (MCA). These methods simulta-
neously seek modes of both the predictor and the
predictand field (e.g., a set of rain gages), such that
their temporal correlation or covariance is maximal
[Bretherton et al., 1992; Huth, 1999; Widmann,
2005; Tippett et al., 2008].

Physically motivated transformations of the raw
predictor field can provide predictors that are eas-
ily interpretable, and influence the predictands in
a straightforward way. For instance, Wilby and
Wigley [2000] have used airflow strength and di-
rection instead of the zonal and meridional com-
ponents of the wind field. In a similar manner,
air-flow indices (strength, direction and vorticity),
derived from sea level pressure [Jenkinson and Col-
lison, 1977; Jones et al., 1993], have been used to
downscale and model UK precipitation [Conway
and Jones, 1998; Maraun et al., 2010b]. Also the
NAO index is a transformation of the North At-
lantic pressure field.

Weather types (circulation patterns/regimes)
can be considered as another meteorologically mo-
tivated predictor transformation. The large-scale
atmospheric circulation is mapped to a usually
small and discrete set of categories [Michelangeli
et al., 1995; Stephenson et al., 2004; Philipp et al.,
2007]. Weather types are a straightforward way
to allow for nonlinear relations between the raw
predictors and predictands; the price paid is a po-
tential loss of information due to the coarse dis-
cretization of the predictor field. Typical exam-
ples are patterns defined for geopotential heights
[Vautard , 1990], sea-level pressure [Plaut and Si-
monnet , 2001; Philipp et al., 2007] or wind fields
[Moron et al., 2008a]. The number of types can
range from small values [e.g., 4 in the case of North
Atlantic circulation patterns, Vautard , 1990; Plaut
and Simonnet , 2001] to almost 30 [Großwetterla-
gen, Hess and Brezowsky , 1977]). A European co-
operation in science and technology (COST) action
has been initiated to compare different weather
types (http://www.cost733.org).

Weather types can be defined subjectively by vi-
sually classifying synoptic situations, or objectively
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using clustering and classification algorithms. The
latter can be based on ad-hoc or heuristic methods
such as k-means [MacQueen, 1967; Plaut and Si-
monnet , 2001], hierarchical clustering [Ward , 1963;
Casola and Wallace, 2007], fuzzy rules [Bárdossy
et al., 2005] or self-organized maps (SOMs) [Ko-
honen, 1998; Wehrens and Buydens, 2007; Leloup
et al., 2008]. Also a variant of PCA, the T-mode
PCA can be used for weather typing [e.g., Ja-
cobeit et al., 2003]. A relatively new and promising
approach is model based clustering, such as mix-
tures of Gaussian distributions to model the state
space probability density function [Bock , 1996;
Fraley and Raftery , 2002; Vrac et al., 2007a, and
H. W. Rust, M. Vrac, M. Lengaigne, and B. Sul-
tan, Quantifying differences in circulation patterns
based on probabilistic models, submitted to Jour-
nal of Climate, 2010]. Many of these approaches
have been compared with respect to circulation
clustering by Huth [1996].
4.1.3. Statistical models for PP

In the following, we will describe a range of sta-
tistical models that are commonly used for PP sta-
tistical downscaling.

Linear models: One of the most widely used
methods for statistical downscaling is linear regres-
sion. Here, the relationship equation (1) between
the predictor X and the mean µ of the predictand
Y , e.g., local-scale precipitation, is written as a lin-
ear model

µ = β0 + β1X1 + β2X2 + ... (2)

where βi represents the strength of the influence
of Xi. In general, the predictors X explain only
part of the variability of the predictands Y ; thus
early downscaling approaches, which modeled the
predictands according to equation (2), generally
under-represented the local-scale variance. Karl
et al. [1990] suggested to “inflate” (i.e., to scale)
the modeled variance to match the observed. As
noted by von Storch [1999] however, inflation fails
to acknowledge that local-scale variation is not
completely explained by the predictors; instead it
is preferable to randomize the predictand i.e., to
add an explicit noise term η, as in the methods
that follow. In a standard linear regression frame-
work, the unexplained variability η is assumed to
be Gaussian distributed. Thus the predictand Y
is itself Gaussian, with mean µ and some variance
representing the unexplained variability.

Generalized linear and additive models:
The Gaussian assumption might be feasible for pre-
cipitation accumulated to annual totals. However,
on shorter time scales, precipitation intensities be-
come more and more skewed, and daily precipita-
tion is commonly modeled with a Gamma distri-
bution [e.g., Katz , 1977]. A framework that ex-

tends linear regression to handle such situations is
the generalized linear model [GLM, e.g., Dobson,
2001]. Here, the predictand Y is no longer assumed
to be Gaussian distributed, but may follow a wide
range of distributions, e.g. a gamma distribution.
The conditional mean µ of the chosen distribution,
i.e. the expected value of Y , is still modeled as a
linear function of a set of predictors, but by con-
trast to a linear model, µ may be transformed by
a link function g(.) to a scale where the influence
of the predictors X on µ can be considered linear:

g(µ) = β0 + β1X1 + β2X2 + ... (3)

Simulation of downscaled time series is achieved by
drawing random numbers from the modelled dis-
tribution of Y , thus intrinsically representing the
unexplained variability.

In the context of precipitation downscaling, most
applications of GLMs are effectively weather gener-
ators; see section 4.3 below. An extension of GLMs
are generalized additive models [GAMs, Hastie and
Tibshirani , 1990], where the linear dependence is
replaced by nonparametric smooth functions. The
nonparametric framework generally requires more
data for accurate estimation of relationships, how-
ever. GAMs have been employed, in a paleoclimate
context, with large-scale data and geographical
characteristics as predictors to downscale clima-
tological monthly temperature and precipitation
representative of the Last Glacial Maximum [Vrac
et al., 2007b]. GAMs in the context of weather
generators will be discussed in section 4.3.

Vector generalized linear models: GLMs
are capable of describing the mean of a wide class of
distributions conditional on a set of predictors. In
some situations, especially when studying the be-
havior of extreme events, one is additionally inter-
ested in the dependence of the variance or the ex-
treme tail on a set of predictors. For instance, Ma-
raun et al. [2009] and Rust et al. [2009] have shown
that the annual cycles of location and scale param-
eters of monthly maxima of daily precipitation in
the UK are slightly out of phase and are better
modeled independently. For this purpose, vector
generalized linear models (VGLMs) have been de-
veloped [Yee and Wild , 1996; Yee and Stephenson,
2007]. Instead of the conditional mean of a distri-
bution only, a vector of parameters p = (p1, p2, ...)
of a distribution is predicted:

gi(pi) = βi,0 + βi,1X1 + βi,2X2 + ... (4)

The vector p could for instance include the mean
p1 = µ and the variance p2 = σ of a distribu-
tion. In extreme value statistics, these models have
long been used when modeling the extreme value
parameters dependent on covariates [Coles, 2001].
VGLMs have recently been applied to downscale
precipitation occurrence in the US [Vrac et al.,



MARAUN ET AL.: PRECIPITATION DOWNSCALING UNDER CLIMATE CHANGE • 11

2007d], and a VGLM developed to model UK pre-
cipitation extremes [Maraun et al., 2010a] could
easily be adopted to downscaling.

Weather type based downscaling: The
popular approach to condition local-scale precip-
itation on weather types can be thought of as a
special case of a linear model. Instead of a con-
tinuous predictor field, a set of categorical weather
types Xk are used to predict the mean of local pre-
cipitation:

µ = µ(Xk) (5)

where k gives the index of the actual weather
type and µ(Xk) the mean rainfall in this weather
type. As in the case of standard linear regression,
weather type approaches can in principle be ex-
tended to model an additional noise term ηi, such
as generalized linear models and vector general-
ized linear models do. Weather types are mostly
applied to condition weather generators; for exam-
ples see section 4.3.

Nonlinear regression: There are also mod-
els available that aim to capture nonlinear and non-
additive relationships between the predictors and
predictands. For instance, Biau et al. [1999] basi-
cally used a nonlinear regression to model the link
between North Atlantic sea level pressure in winter
and precipitation across the Iberian peninsula. An-
other nonlinear regression technique that has been
applied in statistical downscaling are artificial neu-
ral networks (ANNs). ANNs have, for instance,
been used to downscale precipitation over South
Africa [Hewitson and Crane, 1996], Japan[Olsson
et al., 2001] and the UK [Haylock et al., 2006].

Analog Method: The analog method has
been developed for short term weather forecast-
ing [Lorenz , 1969]. In statistical downscaling, the
large-scale weather situation is compared with the
observational record. According to a selected met-
ric (e.g., Euclidean distance), the most similar
large-scale weather situation in the past is identi-
fied, and the corresponding local-scale observations
are selected as prediction for the desired local-scale
weather [Zorita and von Storch, 1999]:

Yi = Y (analog(Xi)) (6)

Lall and Sharma [1996] proposed not to select the
most similar historic situation, but to randomly
choose between the k most similar ones. Potential
limitations of the resampling scheme have been ex-
tensively discussed in the literature [e.g., Young ,
1994; Yates et al., 2003; Beersma and Buishand ,
2003]. In particular, the standard analog method
does not produce precipitation amounts that have
not been observed in the past. Therefore, Young
[1994] proposed a perturbation of observed values
to overcome this problem. It is also pointed out

that daily standard deviations of variables are un-
derestimated due to the so called ’selection effect’,
a systematic under-selection of certain days.
4.1.4. Model selection

In general, a range of physically plausible models
exist for a given model structure (e.g., linear regres-
sion, GLM, etc.). For example, multiple variables
exist that can be employed as predictors, but in
many cases it is a priori not clear which of these
are informative, and which predictor transforma-
tion best conveys the information for the predic-
tion. Taking too many predictors into account
would lead to overfitting, and decrease the predic-
tive power. Considering too few predictors would
ignore valuable information. To objectively select
a model, various statistical criteria have been de-
veloped. They are based on the likelihood of the
model, and assess whether an improvement in like-
lihood justifies an increased model complexity. Ex-
amples are likelihood ratio statistics and informa-
tion criteria, such as the Bayes and Akaike informa-
tion criteria [BIC, AIC, see, e.g., Davison, 2003].
Once an appropriate model has been selected, a
model validation (Section 5) assesses the skill of
this model to predict certain desired properties of
the process under consideration.

4.2. Model output statistics
As precipitation simulated in RCMs and GCMs

is partly unrealistic (Section 3, see also Figure 1)
and represents areal means at the model resolu-
tion rather than local values, it can not be directly
used in many impact studies. The potential devi-
ations from real precipitation make it unsuitable
as a predictor in a PP context because it does not
satisfy the crucial ’perfect prognosis’ assumption.
However, despite potential errors, simulated pre-
cipitation may contain valuable information about
the real precipitation.

Statistical models that link simulated precipi-
tation to local-scale, real precipitation have been
developed recently for applications to RCMs, and
there are also some feasibility studies for GCMs.
Such methods are a form of so-called MOS mod-
els, which have been applied in numerical weather
forecasting for a long time [e.g., Glahn and Lowry ,
1972; Klein and Glahn, 1974; Carter et al., 1989;
Kalnay , 2003; Wilks, 2006]. In contrast to PP
methods, the statistical relationship between pre-
dictors and predictands is not calibrated using ob-
served predictors and predictands, but using sim-
ulated predictors and observed predictands. In
principle predictors and predictands can be on the
same spatial scale, in which case MOS would con-
stitute a mere correction for a numerical model,
but in most applications the predictand is local-
scale precipitation, which means that MOS com-
bines a correction and a downscaling step. The
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MOS corrections are specific to the numerical
model for which they have been developed and can
not be used with other numerical models.

Depending on the type of simulations used for
MOS calibration the predictors can either be sim-
ulated precipitation time series or properties of
the simulated intensity distribution (see Figure 2).
Similarly predictands can either be local precipi-
tation series or properties of the local-scale inten-
sity distribution. MOS can be used to transform
deterministic predictors into probabilistic predic-
tands (which is also possible with PP, see sec-
tion 4.1.3). More general versions of MOS that link
simulated and observed variables of different types
are also conceivable (e.g., M. Themeßl, A. Gob-
iet, and A. Leuprecht, Empirical-statistical down-
scaling and error correction of daily precipitation
from regional climate models, submitted to Inter-
national Journal of Climatology, 2010); for such
versions, the model structure should carefully be
selected according to statistical criteria (see sec-
tion 4.1.4). However, most examples in climate
applications employ simulated precipitation to pre-
dict precipitation.

If the MOS calibration is based on an RCM
driven by a standard GCM simulation for the re-
cent climate, in which the link to the real climate is
established only via the external forcings (such as
insolation and concentrations of greenhouse gases
and aerosols) the observed and simulated day-to-
day weather sequences are not related, and thus
MOS can only be used to link distributions of sim-
ulated and observed precipitation. The same is
true when using standard GCM-simulated precipi-
tation as predictors. In such a setting there is a risk
that differences in simulated and observed distri-
butions, for instance biases, are falsely attributed
to model errors and thus falsely modified by the
MOS approach, when they are actually caused by
the random differences in the simulated and ob-
served distribution of large-scale weather states on
long time scales.

If, however, the RCM is driven by an atmo-
spheric reanalysis [Kalnay et al., 1996; Kistler
et al., 2001; Uppala et al., 2005], or GCMs forced
towards observations are used, there is a direct
correspondence between simulated and observed
weather states, and thus simulated and observed
precipitation time series can be directly related, for
instance through regression techniques as discussed
in section 4.1.3. Regional or global short-range
weather forecast simulations also fall in this cate-
gory as the synoptic-scale meteorological situation
is usually well predicted and thus simulated and
observed precipitation for individual days can be
statistically linked. This setting does not apply for
standard GCM simulations. This fact explains why
MOS has first been developed in weather forecast-

ing, has recently seen increasing popularity applied
to RCMs, and is only in the development phase for
GCMs.
4.2.1. Methods for MOS

Most of the examples of MOS applied to RCMs
are based on reanalysis-driven RCMs. The sim-
plest method assumes that the scenario precipita-
tion yfi+T at a time i+ T in the future can be rep-
resented by (observed) precipitation [or corrected
RCM simulations, see Lenderink et al., 2007] xpobs,i
at time i in the observational record, corrected by
the ratio of the mean simulated future precipita-
tion ȳfmod and the mean control run (or reanalysis
driven run) precipitation x̄pmod:

yfi+T = xpobs,i

ȳfmod

x̄pmod

(7)

This method is sometimes misleadingly called the
delta method, because it was developed for tem-
perature, where the change is additive rather than
multiplicative. A mathematically similar, but con-
ceptually different approach is the so-called scal-
ing method [e.g., Widmann and Bretherton, 2000;
Widmann et al., 2003]. Here, the corrected sce-
nario precipitation yfi at a time i in the future is
represented by the (modeled) future scenario xfmod,i
at time i, scaled with the ratio of the mean ob-
served precipitation ȳpobs and the mean control run
(or reanalysis driven) precipitation x̄pmod:

yfi = xfmod,i

ȳpobs

x̄pmod

(8)

This method is sometimes called the direct ap-
proach [e.g., Lenderink et al., 2007], and has been
applied to GCMs [Widmann and Bretherton, 2000;
Widmann et al., 2003] and RCMs [e.g., Leander
and Buishand , 2007; Graham et al., 2007b; Engen-
Skaugen, 2007]. Schmidli et al. [2006] further ex-
tended the approach by using a separate correction
for precipitation occurrence and precipitation in-
tensity. The aforementioned methods correct mean
and variance by the same factor, such that the co-
efficient of variation (the ratio of the two) is un-
changed.

A generalized approach is quantile mapping,
which considers different intensities individually
[e.g., Panofsky and Brier , 1968; Hay and Clark ,
2003; Dettinger et al., 2004; Wood et al., 1997; Ines
and Hansen, 2006; Déqué, 2007; Piani et al., 2009].
For the calibration period, the cumulative distri-
bution function of simulated precipitation is ad-
justed to match the cumulative distribution func-
tion of observed precipitation. The mapping is
usually done between empirical quantiles or quan-
tiles of gamma distributions fitted to the observed
and modeled precipitation. For modeling of values
beyond the observed range, Boé et al. [2007] ex-
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trapolated the correction function by using a con-
stant correction, using the correction of the high-
est quantile from the control simulation. This as-
sumption, however, is in general not valid for the
extreme tail of the precipitation distribution. A
possible solution could be to adapt the mixture
model by Vrac and Naveau [2007] (first developed
by Frigessi et al. [2002] for temperature data), to
shift between a gamma distribution for the core,
and an extreme value distribution for the tail.

All of these methods can account for the annual
cycle, for example by applying them to individual
months or seasons separately. As they calibrate
only distributions, but disregard any pairwise re-
lationships between predictor and predictand, we
refer to these methods as distribution-wise.
4.2.2. MOS for GCMs

Most publications using MOS in a climate
change context are related to correcting RCM out-
put, while MOS for GCM-simulated precipitation
is still in the development stage. MOS on GCMs
might be very useful in areas where no RCM out-
put is available. The potential usefulness of MOS
corrections for GCMs was demonstrated by Wid-
mann et al. [2003], who used the National Centers
for Environmental Prediction and National Center
for Atmospheric Research (NCEP/NCAR) reanal-
ysis [Kalnay et al., 1996] as an example for a GCM
in which the synoptic-scale circulation is in agree-
ment with reality due to the assimilation of mete-
orological data such as pressure, wind speeds and
temperature, but in which the precipitation is still
calculated according to model physics.

The corrections for the NCEP/NCAR reanaly-
sis model can not be transferred to other GCMs
and thus the development of MOS corrections for
GCMs used for climate change experiments is diffi-
cult. The GCM simulations for the 20th and 21th
century do not represent the real temporal evolu-
tion of large-scale weather states in the past. As
a consequence only distribution-wise MOS would
be possible, but it is difficult to assess whether the
simulated precipitation is actually a skillful pre-
dictor. For this reason, MOS has been applied
so far to non-reanalysis GCMs only in the con-
text of seasonal prediction [Landmann and God-
dard , 2002; Feddersen and Andersen, 2005; Shon-
gwe et al., 2006], where the simulated and true
atmospheric circulation partly match, and in the
simple form of climatology-based local debiasing
of precipitation over the Alps for climate change
simulations [Schmidli et al., 2007].

In order to provide the foundation for compre-
hensive MOS for future precipitation, J. Eden,
M. Widmann, D. Grawe, and S. Rast (Reassess-
ing the skill of GCM-simulated precipitation, sub-
mitted to Journal of Climate, 2010) nudged the
ECHAM5 GCM towards the circulation and tem-

perature in the ERA40 reanalysis and showed that
the correlation of simulated and observed monthly
mean precipitation over large parts of the Earth is
larger than 0.8, which suggests that MOS correc-
tions would provide precipitation estimates with
small errors.

4.3. Weather generators
Weather generators, such as WGEN [Richard-

son, 1981; Richardson and Wright , 1984] and
EARWIG [Kilsby et al., 2007], are statistical mod-
els that generate random weather sequences that
resemble the statistical properties of observed
weather. The general motivation for using weather
generators are their capacity to provide synthetic
series of unlimited length [Hulme et al., 2002], the
possibility of infilling missing values by imputation
[i.e., sampling missing observations from their con-
ditional distribution given the available observa-
tions; see Yang et al., 2005], and their computa-
tional efficiency [Semenov et al., 1998] that allows
for multi-model probabilistic projections or other
impact assessments [Jones et al., 2009]. The early
weather generators (e.g., WGEN) were originally
developed for providing surrogate climate time se-
ries to agricultural and hydrological models in case
weather observations are too short or have quality
deficiencies.

In previous studies [e.g., Fowler et al., 2007a;
Wilks and Wilby , 1999; Semenov et al., 1998],
weather generators are distinguished on the basis
of the implemented parametrization, the assumed
distributions and the suitability for particular ap-
plication. Here however, because of the impor-
tance of a proper representation of spatial rainfall
[Segond et al., 2007] and the limitations of spatial
consistency associated with many weather gener-
ators [e.g., Jones et al., 2009], we distinguish two
groups of precipitation generators: single-station
and multi-station. In addition, weather genera-
tors have been developed that attempt to model
a full precipitation field in continuous space. How-
ever, these methods have only recently been ex-
tended into a downscaling context. We will there-
fore present these methods as a brief outlook.

Pure PP and MOS approaches do not explicitly
model either temporal or spatial correlations; any
structure is imposed by correlations present in the
predictors. Weather generators explicitly aim to
generate time series or spatial fields with the ob-
served temporal or spatial structure.
4.3.1. Single-station

Unconditional weather generators:
Unconditional weather generators are calibrated

to local observations only, i.e they do not directly
use large-scale conditions from RCMs or GCMs.
As discussed in section 4.1.3, at finer (e.g., daily)
time scales, the distribution of precipitation tends
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to be strongly skewed towards low values, with a
generally high number of zero values representing
dry intervals. Moreover, precipitation sequences
usually exhibit temporal dependence, particularly
in the sequence of wet and dry intervals. Early
weather generators treated single-site precipitation
as a two-component process, describing precipita-
tion occurrence and precipitation intensity sepa-
rately. In the simplest case, introduced by Gabriel
and Neumann [1962], the wet day occurrence is
modeled as a two-state first-order Markov process.
This structure implies that the occurrence or non-
occurrence of precipitation is only conditioned on
the occurrence of precipitation on the previous day.
Letting I(t) denote the binary occurrence event
(wet or dry) on day t, the transition probabilities
pij(t) are defined as

pij(t) = Pr(I(t) = j|I(t− 1) = i), i, j = 0, 1 (9)

The first-order Markov chain has been widely used
as a simple model for rainfall occurrence [Katz ,
1977; Wilks, 1998; Wilks and Wilby , 1999]. How-
ever, first-order models usually under-represent
long dry spells and this has led to the use of more
complex higher-order models [Mason, 2004; Stern
and Coe, 1984].

To model the skewed distribution of rainfall in-
tensities, the two-parameter gamma distribution
is often used [Katz , 1977; Vrac et al., 2007d], al-
though this is not the only choice; for example,
Wilks [1998] uses a mixture of two exponential
distributions. In the simplest daily weather gen-
erators, non-zero intensities are sampled indepen-
dently for each wet day. To incorporate season-
ality in these weather generators, parameters are
typically estimated separately for each month or
season.

As an alternative to the separate modeling of
precipitation occurrence and intensity, some au-
thors have proposed modeling the two components
together. The most common way of achieving this
is using a power-transformed and truncated nor-
mal distribution [e.g., Bárdossy and Plate, 1992].
For example, if Yt is the rainfall at time t then a
common family of transformations is

Yt =

{
Zβt Zt > 0
0 otherwise

(10)

where Zt is a Gaussian random variable and β is
a transformation parameter. Glasbey and Nevison
[1997] and Allcroft and Glasbey [2003] use a more
complex transformation in an attempt to repro-
duce the rainfall distribution more closely, but the
power transformation equation (10) is by far the
most widely used. More recently, innovative distri-
butions such as those in the Tweedie family have

been suggested as an alternative to transformed
Gaussian variables [Dunn, 2004].

The weather generators reviewed above take as
their starting point a distribution of precipitation
in each time interval. An alternative starting point
is to consider explicitly the temporal structure of
precipitation within a time interval: this forms the
basis of cascade models, which are used for sub-
daily downscaling because they are able to model
correlated rain [Olsson, 1998; Marani and Zanetti ,
2007]. As with other weather generators, the sim-
plest way to incorporate seasonality is to calibrate
the models separately for each month or season
[e.g., Furrer and Naveau, 2007].

A final class of precipitation generators is based
on Poisson cluster processes [e.g., Rodriguez-Iturbe
et al., 1987, 1988; Cowpertwait , 1991]. This class
again attempts to characterize the temporal struc-
ture of precipitation sequences, but now by explic-
itly considering the mechanisms of precipitation
generation in a simplified stochastic framework: a
precipitation time series is considered as a sequence
of ‘storms’ (rain events), each consisting of a col-
lection of ‘rain cells’ with random intensity and du-
ration. The models are parametrized using physi-
cally interpretable quantities such as storm arrival
rate, mean cell intensity and mean number of cells
per storm, and have been found to provide use-
ful simulations of precipitation sequences at time
scales down to hourly. For reviews of these models,
see Onof et al. [2000] and Wheater et al. [2005].

Weather generators and downscaling:
A simple way to use unconditional weather gen-

erators for climate change scenarios is to perturb
the parameters by so-called change factors [e.g.,
Kilsby et al., 2007]: in a pair of RCM simula-
tions, one of present day and one of the future
climate, the change of the weather generator pa-
rameters (e.g., mean temperature or precipitation)
from present to future is calculated for the grid-
box containing the location of the weather station
of interest. These so-called change factors (usually
differences for temperature and ratios for precipita-
tion) are then used to modify the observed parame-
ters for a future climate. Once these change factors
are calculated, no large scale drivers are needed to
generate weather time series. A prominent exam-
ple for change factor conditioned weather genera-
tors are the regional scenarios from the UK climate
projections UKCP09 [Jones et al., 2009]. Deriv-
ing change factors for the statistical properties be-
tween the RCM control and scenario runs, and ap-
plying these change factors to the statistical prop-
erties of the weather generator is mathematically
equivalent to deriving a correction factor between
the statistical properties of the RCM control run
and the weather generator, and then applying this
correction factor to correct the statistical proper-
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ties in the RCM scenario run. In that sense, change
factor conditioned weather generators can be seen
as a simple MOS (Section 4.2).

However, such weather generators often underes-
timate the interannual variability (overdispersion)
and the frequency of extremes [e.g., Katz and Par-
lange, 1998], because the climatic processes influ-
encing local weather exhibit longer term variabil-
ity, which is not captured by stationary low order
Markov models. A possible solution to the overdis-
persion problem is to condition specific parame-
ters on covariates [Katz and Parlange, 1993; Wilks,
1989] controlling the low frequency variability of
the local weather, e.g., the large-scale atmospheric
circulation. Such weather generators can be con-
sidered as PP (Section 4.1). Besides large-scale
weather predictors, also transformations of lagged
rainfall values, representations of seasonality and
topographic controls may be used as covariates.
Interaction terms can also be used, in situations
where one covariate modulates the effect of another
[e.g., Chandler , 2005].

One way to incorporate covariates into stochas-
tic weather generators is based on GLMs (Section
4.1.3). GLMs for rainfall usually use logistic re-
gression to model the changing probability of rain-
fall occurrence, and then consider non-zero rainfall
intensities to be drawn from gamma distributions
with means that are related (usually via a log link
function) to linear combinations of covariates. In
their simplest form, such GLMs can be regarded
as extensions of the Markov Chain; see Coe and
Stern [1982] and Grunwald and Jones [2000], for
example. GLMs are being used increasingly for
the analysis and downscaling of precipitation se-
quences [e.g., Fealy and Sweeney , 2007; Furrer and
Katz , 2007], as are GAMS [e.g., Hyndman and
Grunwald , 2000; Beckmann and Buishand , 2002;
Underwood , 2009]. For parameter estimation of
these models software routines are freely available,
for example in the stats package of the R software
environment [R Development Core Team, 2008].

Another way of incorporating large-scale infor-
mation is via weather typing (see section 4.1.3).
For example, Hewitson and Crane [2002] used self-
organizing maps (SOMs) to define a collection of
weather states based on January sea-level pressure
spatial fields for the northeast United States and,
for each state, determined the mean and variance
of daily rainfall for a gage in the center of the re-
gion. As another example of this kind of approach,
Fowler et al. [2000] present a Poisson cluster model
(see above) in which the parameters for each day
are conditional on the particular weather state ob-
served on that day.
4.3.2. Multi-station

Multi-site generation is challenging, essentially
because of the need to model the joint (i.e., mul-

Figure 3. State of the art weather generator using
weather states (after Vrac and Naveau [2007]). Weather
time series are generated as follows: at each time step, the
weather jumps into a specific weather state (red dots, spa-
tial rain pattern); the transition probability from state to
state is given by the state at the previous time step (red
arrows, hidden Markov model) and depends on the large-
scale atmospheric circulation at the particular time step
(magenta arrows, this makes the Markov model nonho-
mogeneous). Furthermore, the atmospheric circulation
determines the probability of having a dry or a wet day
(blue arrows, logistic regression). If a wet day is gen-
erated, the actual amount of rain is generated from a
distribution dependent on the weather state.

tivariate) distribution of precipitation simultane-
ously at all sites. Relatively few tractable models
are available for multivariate distributions, hence
many approaches to multi-site precipitation gener-
ation are based, at some level, on transformations
of the multivariate Gaussian distribution. The
use of transformed and truncated Gaussian dis-
tributions to model single-site precipitation has
been discussed in section 4.3.1; the extension to
the multi-site setting is accomplished by specifying
an inter-site correlation structure for the Gaussian
variables at each location. Generation of a multi-
site rainfall sequence therefore proceeds at each
time instant by sampling a correlated vector of
Gaussian variables (there is a standard algorithm
for this; see Monahan 2001, Section 11.3, for exam-
ple) and back-transforming according to equation
(10). The multi-site generator of Wilks [1998] op-
erates on a similar principle, except that here the
transformation to Gaussianity is determined by an
assumption that the non-zero rainfall amounts at
each site follow mixed exponential distributions.

In a downscaling context, dependence on pre-
dictors can be incorporated into such models as
discussed in section 4.1, either in a regression-like
framework as by Sansó and Guenni [2000] or in
conjunction with a weather typing scheme whereby
different sets of model parameters are used at
each time instant, depending on the underlying
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sequence of weather states [Bárdossy and Plate,
1992; Stehĺık and Bárdossy , 2002; Ailliot et al.,
2009; Moron et al., 2008b]. In early applications
of this type of methodology, weather types were
typically defined solely in terms of the predictor
variables.

However, the more recent literature tends to fo-
cus on model variants employing so-called weather
states: here, precipitation patterns themselves are
allowed to influence the weather state definitions,
so that the resulting weather classifications can
be interpreted as corresponding to distinct rain-
fall regimes. This includes a growing body of work
based on nonhomogeneous and hidden Markov
models, in which the link between weather states
and predictors is probabilistic rather than deter-
ministic [e.g., Hughes et al., 1999; Bellone et al.,
2000; Charles et al., 2004; Vrac and Naveau, 2007;
Vrac et al., 2007d]. For a schematic of such a
weather generator, see Figure 3. In early ver-
sions of this type of model, the underlying weather
states were considered to be entirely responsible
for inter-site dependence so that precipitation can
be sampled independently at each site given the
weather state. However, this may be inadequate
at smaller spatial scales in particular, and this
has led to the development of more complex mod-
els [e.g., Ailliot et al., 2009; Vrac et al., 2007c].
Bayesian hierarchical models also open a promis-
ing way forward here [e.g., Cooley et al., 2007]. For
all of the approaches outlined above, model cal-
ibration can be a challenging task that is nowa-
days accomplished most easily using computation-
ally intensive Bayesian methods (available software
packages are WinBUGS [Lunn et al., 2000], Open-
BUGS [Thomas et al., 2006] and BayesX [Belitz
et al., 2009]). The appropriate use of such methods
can require considerable technical expertise, how-
ever. Thus, there is arguably a market for simpler
methods that are suitable for routine implementa-
tion.

One such method uses GLMs to model precip-
itation sequences at individual sites (see sections
4.1.3 and 4.3.1), in conjunction with appropriately-
defined spatial dependence structures that enable
the simulation of multi-site sequences with realis-
tic joint distributional properties. The potential
for dependence between sites raises statistical is-
sues when fitting models, however; for a review
of these, and straightforward ways of overcoming
them, see Chandler [2005] and Chandler and Bate
[2007]. The GLIMCLIM software package [Chan-
dler , 2002] incorporates all of these features, as
well as the possibility to include large-scale atmo-
spheric variables as predictors and to handle miss-
ing data. These ideas are illustrated in the appli-

cations of GLMs to multisite rainfall simulation by
Yang et al. [2005].

A further approach to generate multi-site
weather is to apply the analog method (See sec-
tion 4.1.3) in a weather generator context. For
instance, Buishand and Brandsma [2001] proposed
a nearest-neighbor resampling scheme conditioned
on current large-scale atmospheric circulation pat-
terns in order to derive local weather observations.
To improve the temporal structure, some imple-
mentations of the analog method not only compare
the large-scale weather situation at one point in
time with historical weather, but also the weather
on preceding days. For a more realistic chronol-
ogy of events, Orlowsky et al. [2008] suggested to
resample time blocks instead of single events. Be-
cause multi-site time series are sampled simulta-
neously, spatial correlations between stations are
preserved and physically consistent. In this context
no assumptions about the distribution and spatial
correlations are necessary. However, in addition to
the resampling of intensities, as discussed in sec-
tion 4.1.3, also spatial patterns are resampled as a
whole, and no unobserved patterns are generated.

Most of the papers cited above focus on the gen-
eration of rainfall sequences at a daily time scale,
which is considered adequate for many climate im-
pact studies. However, in some specialized appli-
cations (for example, urban flooding studies and
radio telecommunication links), data may be re-
quired at finer time scales. Models for the gener-
ation of single-site subdaily rainfall have been re-
viewed in section 4.3.1. At present, there are few
extensions of these that provide for the generation
of multi-site subdaily sequences in a downscaling
context. Fowler et al. [2005] describe one pos-
sibility in which a spatial-temporal Poisson clus-
ter model is used as the basic multisite generator,
with different parameters corresponding to distinct
weather states. By contrast, Segond et al. [2006]
suggested that subdaily sequences could be gener-
ated by first generating multisite daily sequences
using one of the many available methods, and then
disaggregating the daily totals to the time scale of
interest.
4.3.3. Full field

An important area of investigation in rainfall
modeling is the development of models able to sim-
ulate a field of precipitation at any required fine
scale, and thereby provide inputs to distributed
hydrological models. Currently, a number of tech-
niques are available for such unconditional full
field simulation. They generally fall into one of
the following three categories [see Ferraris et al.,
2003, for a comparison]. These are: models based
upon transformed Gaussian processes [Guillot and
Lebel , 1999], point process models [Wheater et al.,
2005; Cowpertwait et al., 2002; Northrop, 1998],
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Figure 4. Rain gages used in the monthly dxCRU TS
data set [e.g., Mitchell and Jones, 2005], which have been
in situ for at least 40 years.

and spatial-temporal implementations of multi-
fractal cascade models [Lovejoy and Schertzer ,
2006; Marsan et al., 1996; Over and Gupta, 1996].

Currently, aside from the simple scaling model
of spatial rainfall fluctuations by Perica and
Foufoula-Georgiou [1996], there are, in the liter-
ature, no implementations of such approaches for
the downscaling of climate model output. But
the potential of the existing methodologies is very
clear. Multifractal representations of rainfall fields
are well suited to downscaling implementations as
they are simulated through cascade models [Dei-
dda, 2000]. Similar, but also allowing for non-
fractal subgrid-scale structures is a downscaling
algorithm based on spectral methods, for which
an implementation for cloud fields already exists
[Venema et al., 2009]. Disaggregation methods us-
ing point process approaches [Koutsoyiannis and
Onof , 2001] could, in principle, be extended to
the spatial dimension. Transformed Gaussian pro-
cesses can be conditioned by the average areal rain-
fall [Onibon et al., 2004].

5. EVALUATION TECHNIQUES FOR
DOWNSCALING METHODS

Here, we review methods which can be used
to validate the performance of downscaling ap-
proaches to simulate specific characteristics of pre-
cipitation. These are often called metrics, and are
related to the end user needs, which we have intro-
duced in section 2, and in principle form the basis
of the discussion of downscaling skill to meet these
end user needs in section 6.

Any validation method ultimately relies upon
the quality and quantity of observational data.
Typical quality problems are inhomogeneities, out-
liers and biases due to wind-induced undercatch
(i. e. precipitation is under-estimated by the
rain gage because a non-negligible amount of rain is

blown over the gage). Inhomogeneities may induce
spurious trends [e.g., Yang et al., 2006], increase
uncertainty and may potentially weaken predic-
tor/predictand relationships. Estimates of extreme
events are particularly sensitive to outliers and in-
homogeneities. For an appropriate signal to noise
ratio, sufficiently long time series are needed, in
particular to reliably estimate extremes and infer
trends. The validation of how natural variability
is represented is limited by the length of observa-
tional records, typically a few decades. Further-
more, a sparse rain gage network limits the pos-
sibility for validation, or may even render it im-
possible. For this reason, high resolution data sets
have been developed in some regions [e.g., Haylock
et al., 2008]. For an impression of the global rain
gage network, see Figure 4. Data are particularly
sparse in the high latitudes, deserts, central Asian
mountain ranges and large parts of South America.

Reanalysis data, such as NCEP/NCAR [Kalnay
et al., 1996] or ERA40 [Uppala et al., 2005], are fre-
quently used as surrogates for observational data
for validation of large-scale processes. Such data
are basically interpolations of observational data
based on a dynamical model (so called data as-
similation), and are therefore complete and phys-
ically consistent. However, they are subject to
model biases and can significantly deviate from
real weather. Precipitation is a variable which
is generally not assimilated but completely gener-
ated by the parametrizations in the model, which
may induce considerable biases in some locations
[Zolina et al., 2004]. Furthermore, the resolution
of reanalysis data is too low to resolve local-scale
precipitation. Therefore, NCEP/NCAR has de-
veloped the North American Regional Reanaly-
sis [NARR Mesinger et al., 2006] that assimilates,
among other variables, precipitation in order to
provide a more realistic regional hydroclimatology.

Reanalysis data are used to drive RCMs for val-
idation purposes. First, this setting isolates the
RCM model bias from any possible GCM bias [e.g.,
Sanchez-Gomez et al., 2009; Prömmel et al., 2009;
Vidale et al., 2003; Jaeger et al., 2008]. Second,
this setting accounts for natural variability. As
discussed in the context of MOS calibration (Sec-
tion 4.2), the output of a GCM driven RCM rep-
resents just one possible realization of the climate.
Discrepancies might simply result from differences
between the realization and the observed weather
on long time scales rather than model errors. In a
reanalysis driven RCM, however, the sequence of
synoptic weather in the RCM will be the same as
observed. A remaining issue, though, is small-scale
variability generated by the RCM that might be
different from observed variability. In particular if
validating precipitation extremes these may differ
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between the RCM and observations just because of
natural variability.

5.1. Evaluated metrics
Depending on the application of the impact

study, different metrics, or indices, of the down-
scaled precipitation may be of interest, including
intensity metrics, temporal and spatial characteris-
tics as well as metrics characterizing relevant phys-
ical processes.

Metrics regarding precipitation intensity are
mean, variance and quantiles [i.e., return levels
Frei et al., 2006; Halenka et al., 2006; May , 2007;
Friederichs and Hense, 2007; Fowler and Ekström,
2009; Maraun et al., 2010a] or parameters of the
precipitation distribution. A typical measure for
heavy precipitation is the 90th percentile of pre-
cipitation on wet days [Goodess et al., 2010; Hay-
lock et al., 2006]. Validation of extreme precipita-
tion intensities (e.g., 50 or 100 year return levels),
which are perhaps beyond the range of observed
values, should be carried out based on extreme
value theory [e.g., Coles, 2001; Katz et al., 2002;
Naveau et al., 2005]. Studies applying this frame-
work are still rare, for some notable exceptions in
a model intercomparison context, see Frei et al.
[2006], Beniston et al. [2007] and Kendon et al.
[2008].

Temporal metrics are the autocorrelation func-
tion, the annual cycle, interannual and decadal
variability [Maraun et al., 2010b] and trends, or
measures focusing on the precipitation occurrence
such as wet day probabilities, transition probabili-
ties (wet-wet) and the length of wet and dry spells
[e.g., May , 2007; Semenov et al., 1998]. Extremal
measures for temporal metrics are, e.g., the max-
imum number of consecutive dry days. Spatial
characteristics are spatial correlations [Rauscher
et al., 2009; Achberger et al., 2003], cluster sizes,
or spatial patterns [Bachner et al., 2008].

In addition it is important to assess whether the
processes leading to long term changes in local pre-
cipitation are well captured by the models, in order
for their projections of future change to be reli-
able [e.g., Kendon et al., 2009, and Maraun et al.,
manuscript in preparation]. This may be examined
through the validation of process based metrics,
for example relationships of precipitation with the
large-scale circulation or with temperature [e.g.,
Lenderink and van Meijgaard , 2008, and Maraun
et al., manuscript in preparation] or the mecha-
nisms of soil-precipitation feedback [Schär et al.,
1999].

There have been several attempts to standard-
ize indices, see the ”Expert Team on Climate
Change Detection and Indices” (ETCCDI) [e.g.,
Peterson et al., 2001; Nicholls and Murray , 1999]

Figure 5. Taylor diagram showing the performance of 18
RCMs to simulate annual precipitation over the Thames
catchment, UK. The 18 RCMs are driven with ERA40
reanalysis data, such that observed and simulated time
series represent the same weather sequence and can be
directly compared. The angle is given by the correlation
between simulated and observed times series, the norm
by the ratio of simulated and observed standard devia-
tion. The distance between the observation point (1,1)
and a model point gives the root mean squared error
between observed and modelled time series, normalised
with the observed standard deviation (F. Wetterhall, un-
published).

and STARDEX project [Goodess et al., 2010] for
a full overview. Furthermore, a set of metrics
and criteria has been defined in the ENSEMBLES
project [van der Linden and Mitchell , 2009] in or-
der to evaluate different aspects of the downscaling
model. These aspects are 1) large-scale circulation
and weather regimes, 2) temperature and precipi-
tation mesoscale signal, 3) probability distribution
functions of daily precipitation and temperature,
4) temperature and precipitation extremes, 5) tem-
perature trends, and 6) temperature and precipi-
tation annual cycle for RCMs, and additionally of
the stability of the predictor-predictand relation-
ships for SDS (see a forthcoming special issue in
Climate Research, Kjellström et al., manuscript in
preparation).

The simulated and observed characteristics need
to enter the validation procedure on comparable
spatial scales, i.e., point observations may need
to be averaged to represent areal means. Scale
mismatches, typically occurring when comparing
areal model outputs with point measurements,
might induce representativeness errors due to the
lower variance of averaged values [Ballester and
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Moré, 2007; Tustison et al., 2001; Ivanov and Pala-
marchuk , 2007]. This is especially important for
RCMs, since the grid point average is not only
smoothed over a large area, but neighboring grid
points are also more correlated than in reality
[Déqué, 2007].

5.2. Validation measures
Downscaling models (either dynamical or statis-

tical) might be driven by GCM simulations or by
observational data (often reanalysis data as surro-
gates). Validation for these two settings is funda-
mentally different. In the former case, simulated
and observed weather are independent. Therefore,
validation is limited to evaluate the distribution
of precipitation over long periods in a particular
gridbox, or the spatial structure of the climatol-
ogy (Section 5.2.2). In the latter case (called “per-
fect boundary conditions” in the case of dynami-
cal downscaling), simulated and observed weather
events can directly be related to each other. Here,
in addition to validating the simulated distribu-
tions, validation techniques which have been devel-
oped for forecast verification can be applied. These
techniques use the simulated time series as a pre-
diction of the observed time series, and assess the
quality of the prediction (Section 5.2.3). First, we
will present measures that can be applied for the
evaluation of both settings.
5.2.1. General performance measures

Simple performance measures that can be ap-
plied to time series as well as to distributions
and spatial patterns are bias, correlation, mean
absolute error and (root-) mean-squared error
((R)MSE). To visualize pattern correlation, root-
mean-squared error and ratio of standard devia-
tions simultaneously, Taylor diagrams have been
introduced [Taylor , 2001, see Figure 5 for an exam-
ple where time series are compared]. To assess the
significance of discrepancies, statistical tests such
as Student’s t test may be carried out. For pre-
cipitation, non-parametric alternatives based on
bootstrap resampling [Efron and Tibshirani , 1993;
Davison and Hinkley , 1997] might prove useful
[e.g., Bachner et al., 2008]. A complex validation
diagnostic for spatial characteristics is SAL, which
considers aspects of structure (S), amplitude (A)
and location (L) of precipitation in a certain re-
gion [Wernli et al., 2008].
5.2.2. Measures to validate distributions

A framework to compare the distributions of
simulated and observed precipitation characteris-
tics are statistical tests, such as the χ2 test or
the Kolmogorov-Smirnov test [e.g., Semenov et al.,
1998; Bachner et al., 2008]. Another more graphi-
cal technique, especially for the validation of the
extreme tail, are (quantile-)quantile plots [e.g.,
Déqué, 2007; Coles, 2001], where observed and pre-

dicted quantiles are plotted against each other. For
simple validation methods based on quantiles, see
Ferro et al. [2005]. Validation of extremal proper-
ties (such as return levels) may be done paramet-
rically, i.e., by fitting a generalized extreme value
distribution to block maxima, or by fitting a gen-
eralized Pareto distribution to threshold excesses
[Coles, 2001].
5.2.3. Measures to validate time series

Typical measures to compare simulated binary
events (e.g., wet/dry) with the actually observed
outcome are hit rate, false alarm rate, frequency
bias and log odds ratio [e.g., Jolliffe and Stephen-
son, 2003; Wilks, 2006; Stephenson, 2000]. For
these measures, the simulated weather sequence
needs to correspond to the observed weather se-
quence; therefore the downscaling model needs to
be driven by observed (or surrogate) large-scale
weather. Continuous events can be considered,
e.g., by defining a threshold. These measures
can be displayed in 2x2 contingency tables. A
powerful tool to evaluate them graphically is the
two-dimensional relative operating characteristics
(ROC) diagram, which displays the hit rate against
the false alarm rate.

Some of the downscaling approaches discussed
in section 4 predict distributions rather than indi-
vidual values. Here, classical measures comparing
actual values are not directly applicable. Perfor-
mance measures for such purpose are probability
scores. The classical probability score to validate
binary events, e.g., precipitation occurrence, is the
Brier score [Brier , 1950]. To validate continuous
events (e.g., precipitation amount) the (continu-
ous) ranked probability score [Hersbach, 2000; Jol-
liffe and Stephenson, 2003] and the quantile verifi-
cation score [see Friederichs and Hense, 2007; Ma-
raun et al., 2010a, for examples] have been devel-
oped.

Absolute values of performance measures are of-
ten not meaningful, and are therefore compared
with scores of reference predictions, such as the
climatological mean. When developing a new
downscaling method, a sensible reference predic-
tion would be the best previously available down-
scaling. When assessing the predictive power of a
certain predictor, a reference prediction would be
the statistical model without this particular pre-
dictor. A relative measure of performance are skill
scores, which can be derived from all of the afore-
mentioned performance measures. Further skill
scores are the Heidke skill score or the equitable
threat score. [See, e.g., Jolliffe and Stephenson,
2003; Wilks, 2006; Stephenson, 2000].

To assess the performance of a downscaling ap-
proach on different time scales, Maraun et al.
[2010b] applied the squared coherence [Brockwell
and Davis, 1991]. They have investigated the per-
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formance of a statistical downscaling model on sub-
annual, interannual and decadal scales.

To ensure robust results, any meaningful vali-
dation of time series needs to be carried out as
cross validation, i.e., the data used for the valida-
tion need to be independent of the data used for
the model calibration. To this end, the data set
is divided into a training subset, and a validation
subset. Splitting can be done either in time, by
leaving out a certain time period for the valida-
tion, or in space, i.e., by leaving out a certain rain
gage. Often, all disjunct subsets are successively
left out.

5.3. Pseudo realities for validation
To overcome limitations in observational data,

and to better isolate different sources of error, val-
idation in a pseudo reality has been suggested.
Often, RCM validation is limited because of too
sparse an observational network. Furthermore, it
is difficult to isolate the contribution of the dif-
ferent components in the whole simulation to dis-
crepancies between simulated and observed local
variables. This problem can partly be overcome
by driving the RCM with reanalysis data. How-
ever, even in this setting, errors caused by the
nesting (i.e., the actual downscaling step) and the
imperfection in the RCM itself cannot be discrim-
inated. To address these issues, Denis et al. [2002]
suggested what they call the “Big-Brother Exper-
iment”: a model world is created by a high resolu-
tion large area RCM simulation (“Big Brother”).
A perfect prog large-scale representation of this
pseudo reality is then created by spatially filter-
ing the high resolution field, which is then used
as boundary conditions for the same RCM, but on
a smaller domain (“Little Brother”). Because of
the perfect prog construction, the discrepancies be-
tween the Big brother (pseudo observed) and Little
brother (modeled) variables can exclusively be at-
tributed to errors in the downscaling itself.

Given the limited availability of long observa-
tional time series, each validation is limited by
the simple fact that the time scales of interest are
longer than the maximum available calibration pe-
riod. This is crucial especially for statistical down-
scaling because stationarity issues are potentially
more serious for statistical models than for mod-
els based on physical relationships. To address
this potentially serious disadvantage, Vrac et al.
[2007e] proposed a general method to validate sta-
tistical downscaling for future climate change in a
model world. In addition to validating the statisti-
cal downscaling method against observations, they
suggest to evaluate whether the GCM driven sta-
tistical method is able to simulate realistic statis-
tics. Furthermore they suggest to calibrate the
statistical downscaling method on pseudo observa-

Figure 6. Mean blocking frequency. Black: ERA40
reanalysis; color: GCMs from the DEMETER project
(Development of a European multi-model ensemble sys-
tem for seasonal to interannual prediction). The dots
indicate longitudes where the model climatology is not
significantly different from the verification data. The un-
derestimation in blocking frequency would in turn under-
estimate the occurrence of, e.g., heat waves or wet spells.
Reproduced from Palmer et al. [2008], Figure 3.

tions from an RCM, driven by a GCM control run,
and to evaluate whether this calibrated statistical
downscaling model performs well in a future sce-
nario simulated with the same GCM and RCM.

6. SKILL OF DOWNSCALING APPROACHES
TO MEET THE END USER’S NEEDS

In the previous sections, we have presented the
state-of-the-art in regional climate modeling and
statistical downscaling. Here we discuss the extent
to which the different approaches are able to meet
the end user needs defined in section 2. In each
case, we first present the performance of RCMs
and then discuss MOS as a method of closing po-
tential gaps between RCM output and the end user
need. We then consider the skill of PP approaches
and weather generators as stand alone alternatives
to dynamical downscaling.

A recurring element in the discussion of down-
scaling skill is the difference between frontal and
summer time convective precipitation. The former
usually is quite homogeneous over large spatial and
temporal scales, with moderate intensities. The
latter is of a fine spatial-temporal structure, often
with very high intensities. For an illustration, see
Figure 7.

In this section we first discuss the performance
of downscaling approaches for different regions and
seasons. We then discuss skill to simulate partic-
ular characteristics of precipitation related to the
end user needs defined in section 2. We finally
address the need for approaches to function in a
changed climate.

6.1. Dependence of downscaling on region
and season
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Figure 7. Radar images of the region around Bonn, Germany. White: no rain, green: light rain, red:
heavy rain. Left: 10 Feb 2000, 4:16 pm; a cold front crosses and causes a wide band of rain of moder-
ate intensity. Right: 22 Jun 1999, 10:43 am; many small convective cells, some of high intensity, cross
the Rhineland. With kind permission from the Meteorological Institute, University of Bonn, Germany;
http://www.meteo.uni-bonn.de/forschung/gruppen/radar/index en.htm

6.1.1. Regional dependence of downscaling
skill

When assessing the potential to downscale pre-
cipitation it is important to first assess the per-
formance of GCMs over the region of interest. For
example, the GCMs in the latest IPCC report have
biases in important large-scale circulation patterns
like the El Niño Southern Oscillation (ENSO) [e.g.,
Latif et al., 2001; Leloup et al., 2008], blocking
[blocking occurs when large scale high pressure sys-
tems persist in a stable state for several days, ef-
fectively “blocking” or redirecting cyclones, e.g.,
Hinton et al., 2009, see also Figure 6], monsoonal
circulation and tropical and extratropical cyclones
[Meehl et al., 2007]. These deficiencies will affect
the ability to downscale precipitation locally. How-
ever, even in these areas the value added by down-
scaling in comparison with precipitation directly
taken from GCMs is still substantial [e.g., Chris-
tensen et al., 2007; Schmidli et al., 2006]. Global
maps of correlations between gridded observations
and seasonal precipitation in a GCM (ECHAM5)
in which the large-scale atmospheric states have
been nudged towards a reanalysis indicate for all
seasons a high skill of rescaled (i.e., MOS cor-
rected) GCM precipitation over most parts of the
northern hemisphere mid-latitudes, relatively low
skill over Africa and parts of South America, and
moderate or seasonally dependent skill elsewhere

(J. Eden, M. Widmann, D. Grawe, and S. Rast,
Reassessing the skill of GCM-simulated precipita-
tion, submitted to Journal of Climate, 2010).

RCMs have been developed for many regions of
the world, and in principle are transferable to other
regions. However, when transferring RCMs to very
different climates, parametrizations may have to
be adapted and the validation might be limited by
data sparsity. Statistical downscaling can techni-
cally be performed at any part of the world, limited
only by the requirement for sufficient data to cali-
brate and validate the model (see Figure 4)

The number of downscaling studies varies re-
gionally; a rough estimate from a search on the
Web of Science (20 March 2010, keywords: “Sta-
tistical Downscaling” AND region, and (“Dynam-
ical Downscaling” OR “Regional Climate Model”)
AND region) indicates that most studies have been
carried out in Europe and North America. There
is also a difference in the relative number of studies
applying dynamical and (in general PP) statistical
downscaling. In Europe, North and South America
there are roughly four times as many studies using
RCMs than PP, whereas in Africa and Asia there
are over 10 times as many, and in Australia the ra-
tio is nearly one. These differences can mainly be
explained by large initiatives such as PRUDENCE
or ENSEMBLES (which also provides simulations
for Northern Africa), and the availability of reliable
and dense observational data.
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An objective assessment of the downscaling skill
depending on region is therefore not possible, but
we will point out some general conclusions. We
will mainly draw on results from the PRUDENCE
[Jacob et al., 2007; Graham et al., 2007a] and EN-
SEMBLES [van der Linden and Mitchell , 2009]
model intercomparison projects for Europe, and
the STARDEX project [Goodess et al., 2010; Hay-
lock et al., 2006; Schmidli et al., 2007] that com-
pared several downscaling techniques in terms of
their ability to downscale high precipitation events.

Results over Europe show that the skill of RCMs
is generally higher in the northern and western,
wetter regions than in the drier, southern and east-
ern regions, but this varies from model to model
[Murphy , 1999; Jacob et al., 2007]. MOS tech-
niques have the potential to increase the skill of
RCM precipitation across Europe [e.g., Boé et al.,
2007; Déqué et al., 2007; Lenderink et al., 2007;
Yang et al., 2009; Piani et al., 2009]. Results from
the STARDEX project [Goodess et al., 2010] indi-
cate similar results for PP statistical downscaling
as for RCMs: higher skill over Northern Europe
than Southern Europe, although the skill strongly
depends on the method used.

Over regions with high terrain, RCMs consid-
erably reduce the precipitation bias compared to
GCM simulated precipitation [e.g., Fowler et al.,
2005; Buonomo et al., 2007]. Although some of the
remaining bias may be inherited from the lateral
boundary conditions, a large fraction is likely to
be attributable to RCM downscaling error. RCMs
over the Alpine region are able to reproduce the
most prominent features of the spatial pattern
of precipitation, but they show a wet bias along
the northwestern windward slopes, and a dry bias
along the southeastern leeward slopes; precipita-
tion intensity and the frequency of heavy events
are underestimated [Frei et al., 2003, 2006].

Salathe [2003] has shown that to reduce the
bias to a level that allows a reliable simulation of
monthly flow in mountainous catchments, a reso-
lution of 0.125◦ is needed. Studies by Piani et al.
[2009] and M. Themeßl, A. Gobiet, and A. Le-
uprecht (Empirical-statistical downscaling and er-
ror correction of daily precipitation from regional
climate models, submitted to International Jour-
nal of Climatology, 2010) suggest that MOS could
correct bias in high elevation regions in Europe,
including the Alpine region. Following an idea by
Widmann et al. [2003], Schmidli et al. [2006] ap-
plied MOS directly to ERA40 precipitation, and
showed the potential of directly correcting GCM
simulated precipitation.

Regarding the representation of spatial precip-
itation variability in mountainous terrain, Hell-
strom et al. [2001] and Hanssen-Bauer et al. [2003]
concluded that PP statistical downscaling outper-

forms RCMs (with a spatial resolution of ∼50 km).
However, in a study of the Alps Schmidli et al.
[2007] found that RCMs in general outperformed
PP in winter but were on a par regarding the sum-
mer precipitation.

With respect to the regional dependency of
downscaling, the two major gaps are (1) limited
representation of local-scale precipitation in areas
where the large-scale modes of variability are insuf-
ficiently represented by GCMs, and (2) the limited
availability and/or accuracy of downscaled precip-
itation in data sparse regions.
6.1.2. Seasonal dependence of downscaling
skill

The assessment of 50 km resolution RCMs from
the PRUDENCE project has shown that downscal-
ing skill is generally better in winter than sum-
mer across Europe [Frei et al., 2006; Jacob et al.,
2007; Fowler and Ekström, 2009]. In winter, mod-
els tend to be too wet in northern Europe [Chris-
tensen et al., 2007], and in summer, models tend to
be too dry over southern and eastern Europe [Jacob
et al., 2007]. In the Alpine domain, biases of up to
several tens of percent have been reported both for
mean and particularly extreme precipitation [e.g.,
Frei et al., 2003, 2006]. Recent work within the
ENSEMBLES project, however, has shown that 25
km RCMs driven by ERA40 boundary conditions
give a good representation of rainfall extremes over
the UK both in winter and summer, indicating that
higher model resolution might improve the repre-
sentation of summer extremes (Buonomo et al.,
manuscript in preparation). By applying MOS on
a seasonal basis, the representation of the annual
cycle can be improved [Boé et al., 2007; Leander
and Buishand , 2007].

Like dynamical downscaling, statistical down-
scaling of precipitation shows greater skill in winter
than in summer [for Sweden see, e.g., Wetterhall
et al., 2007]. Results from the STARDEX project
[Goodess et al., 2010; Haylock et al., 2006] indi-
cate the same seasonality in the skill to downscale
heavy precipitation. However, for the UK Maraun
et al. [2010a] found no seasonality in the skill to
model the magnitude of monthly maxima of daily
precipitation.

Both dynamical and statistical downscaling ap-
proaches show less skill in downscaling precipita-
tion in summer, which may relate to the difficulty
in modeling convective precipitation. As such, pro-
viding accurate downscaled projections of precipi-
tation in this season remains a challenge, and po-
tentially represents a remaining gap in meeting end
user needs.

6.2. Downscaling skill to model precipitation
characteristics

6.2.1. Event Intensity
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Figure 8. Distribution of daily winter precipitation
for Cambridge, Botanical Garden, 2 Jan 1898 - 31 Dec
2006. Grey: histogram of all observed wet day amounts.
Red: histogram of amounts predicted by a simple mul-
tiple linear regression using airflow strength, direction
and vorticity as predictors. The variability is greatly
underestimated and not skewed. Blue: gamma distri-
bution, providing a suitable model for the core of the
distribution. The first inlay shows the tail (>20mm).
Blue: gamma distribution, considerably underestimates
the tail of the distribution. Orange: exponential tail (or
short/light tail), green: Generalized Pareto (GP) distri-
bution with a shape parameter of approx. 0.2 (heavy
tail). For the plot, both extreme value distributions are
rescaled to match the scale of the full distribution. The
extreme value distributions suitably model the observed
threshold exceedances, although further diagnostic plots
(not shown) reveal a better fit of the GP distribution.
Second inlay: the exponential tail considerably underes-
timates the occurrence of extremes beyond the observed
values.

Analysis of the PRUDENCE RCMs showed
models generally perform well for moderate pre-
cipitation intensities, with the greatest discrep-
ancies for days with either light precipitation
(<5 mm/day) or very heavy precipitation (> 80
mm/day) [Boberg et al., 2009]. Most RCMs tend
to overestimate the occurrence of wet days (“driz-
zle effect”), but underestimate heavy precipitation
[Murphy , 1999; Fowler et al., 2007b]. There is ev-
idence that this tendency is not region specific,
although to some extent varies between different
RCMs [Fowler et al., 2007b]. This tendency is also
found to extend to RCMs with grid scales less than
20 km [Früh et al., 2009].

Over the UK, for which there is a dense rain
gage network, RCMs have been shown to realisti-
cally simulate extreme precipitation on an annual
basis for return periods of up to 50 years [Fowler
et al., 2005; Buonomo et al., 2007]. However, there

is evidence that RCMs tend to underestimate ex-
treme precipitation in particular where rainfall is
heaviest [Fowler et al., 2007b, and Buonomo et
al., manuscript in preparation] and for more in-
tense events [Buonomo et al., 2007]. On the 50 km
grid scale model biases are highly spatially vari-
able, ranging from -50 to +50% for 5-year return
period events [Fowler et al., 2005; Buonomo et al.,
2007], and also model dependent.

In general, high precipitation intensities occur
in association with mesoscale convection or due to
orographic enhancement. Thus the tendency for
RCMs to underestimate high intensity events may
be due to inadequate representation of convective
processes. While over high terrain, model biases
may be explained by inadequate resolution of the
topography at the RCM grid scale.

The main rationale for using MOS is to cor-
rect RCM precipitation intensities, in particular
the drizzle effect and underestimation of heavy pre-
cipitation. A simple approach to correct the drizzle
effect is to set all modeled precipitation values be-
low a certain threshold to zero [e.g., Hay and Clark ,
2003; Schmidli et al., 2006; Piani et al., 2009]. To
improve the representation of precipitation intensi-
ties, different methods have been proposed (see sec-
tion 4.2). Scaling precipitation corrects the mean
and variance of precipitation by the same factor.
This is generally a reasonable assumption for the
core of the intensity distribution, but scaled precip-
itation might be biased for light and heavy precip-
itation. A more flexible tool is quantile-mapping,
which considers the whole frequency distribution of
observed values. However, this approach does not
explicitly consider the tail of the distribution, and
extreme events might be misrepresented. A solu-
tion - which to our knowledge has not been applied
in this context - might be the mixture model sug-
gested by Vrac and Naveau [2007].

Early attempts at PP statistical downscaling
have long been recognized to be oversimplistic in
terms of representing the observed intensities: they
ignored random variability (either completely, or
by using inflation, see section 4.1.3) and were gen-
erally unsuitable for modeling extremes (see Fig-
ure 8). von Storch [1999] therefore suggested to
randomize the downscaled time series by adding
noise realizations. Haylock et al. [2006] and Good-
ess et al. [2010] compared the performance of sev-
eral downscaling approaches regarding the repre-
sentation of different measures of precipitation in-
tensity, and found no single approach to perform
systematically better than others. Not included
in these intercomparison studies have been ap-
proaches based on GLMs. These models, in a
simple PP setting (Section 4.1) or incorporated
into a stochastic weather generator (Section 4.3),
elegantly model the unexplained variability, com-
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Figure 9. Intensity-duration plot; 5-year return period
of precipitation intensities for sub-daily durations, from
Stockholm, Sweden. Black: observed, blue: regional cli-
mate model RCA driven by ERA40 reanalysis data.

monly using a gamma distribution to generate ran-
dom variability [e.g., Yang et al., 2005; Furrer and
Naveau, 2007, see also Figure 8].

Evaluation studies so far focused on moderately
heavy rain. For example, in their study on heavy
precipitation over the United Kingdom, Haylock
et al. [2006] choose the 90th percentile on wet days,
roughly corresponding to sub-annual return lev-
els. For many impact studies and design settings,
however, much higher return levels of the order of
decades or centuries are relevant. In general, there
is no guarantee that statistical models for the core
of the distribution will provide an adequate rep-
resentation of extremes [Wilks and Wilby , 1999,
and Figure 8]. The distribution of precipitation
tends to be heavy tailed [Katz , 1977] and statistical
downscaling schemes that do not account for this
are likely to be heavily biased for high extremes.
Recently, statistical models based on extreme value
theory have been developed for precipitation [Ma-
raun et al., 2010a, b], which can easily be extended
for downscaling. However, as these approaches
only model the extreme tail but not the core of
moderate precipitation, they are limited in their
applicability. Yang et al. [2005] demonstrated that
it is possible to obtain heavy-tailed distributions
by incorporating nonlinear dependence structures
into GLMs based on gamma distributions; how-
ever, at present the conditions under which heavy-
tailed distributions can be obtained from this kind
of model are poorly understood. A possible alter-
native solution could be mixture models as the one
suggested by Vrac and Naveau [2007]. Here, the

authors combine a gamma distribution to model
moderate precipitation, and a generalized Pareto
distribution to model extremes. The performance
of these approaches has not yet been compared
with standard statistical downscaling schemes. To
summarize, downscaling has the potential to reli-
ably simulate event intensities, in particular when
correcting RCM output by MOS, or using PP
methods to predict full distributions.
6.2.2. Temporal variability and time scales

Studies for the UK have shown that the ex-
tent to which model biases increase or decrease for
longer duration events depends on the region and
the RCM [Fowler et al., 2007b; Fowler and Ek-
ström, 2009]. For Hadley Centre RCMs, Buonomo
et al. [2007] find greater biases for longer dura-
tion (30-day accumulation) extremes compared to
1-day events in regions of heavy precipitation, but
quite different behavior where long duration ex-
tremes are strongly influenced by lighter precipita-
tion events.

There are relatively few studies to date exam-
ining RCM skill in simulating sub-daily precipita-
tion. A recent study by Lenderink and van Meij-
gaard [2008] however shows deficiencies in the abil-
ity of the 25 km RACMO RCM to capture hourly
precipitation for temperatures above 20◦C. This
deficiency is likely to be particularly important in
summer months where convective processes may
dominate and temperatures are high. Hohenegger
et al. [2008] have shown that very high resolution
(grid scale ≤5 km) climate modeling improves the
diurnal cycle of convection. The representation of
short duration precipitation extremes is also sig-
nificantly improved at high resolution [Wakazuki
et al., 2008]. These resolutions are now common
practice in numerical weather prediction [Roberts
and Lean, 2008], but are computationally very ex-
pensive and thus are currently limited to either
short time periods or small spatial domains. For
an illustration of model deficiencies in simulating
sub-daily precipitation, see Figure 9.

As MOS is designed to correct precipitation in-
tensities, it does not improve the temporal struc-
ture. Even the adjustment of the number of wet
days does not guarantee an improved representa-
tion of the lengths of dry and wet spells. However,
the representation of seasonality can be improved
by applying MOS to different seasons [Boé et al.,
2007] or months separately, or even shorter parts
of the year [e.g., 5-day periods Leander and Buis-
hand , 2007]. If precipitation sums over longer time
periods such as monthly totals are of interest, MOS
could be applied to time aggregated precipitation.

In PP statistical downscaling the temporal struc-
ture is not explicitly modeled. However, the large-
scale predictors impose their time structure on
the local-scale precipitation. For instance, Hay-
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lock et al. [2006] and Goodess et al. [2010] have
shown that the maximum number of consecutive
dry days is generally better modeled than the in-
tensity of heavy rainfall, indicating that a reason-
able fraction of the time dependency is captured
by the predictors. Maraun et al. [2010b] found
that predictors representing the large-scale atmo-
spheric circulation explain a significant fraction of
the monthly, interannual and decadal variability
of high precipitation intensities. Weather gener-
ators explicitly model the short term day-to-day
variability (see section 4.3), but require large-scale
predictors to correctly simulate long term variabil-
ity [Wilks and Wilby , 1999].

Weather generators, such as Poisson cluster
models, can provide sub-daily precipitation. They
can, in principle, be implemented without sub-
daily data, but perform better when calibrated
against sub-daily data [Cowpertwait et al., 1996].
For a reasonable calibration, at least 10 years of
data are required; to calibrate the models for sub-
daily extreme precipitation, even longer time se-
ries. Furthermore, they are generally conditioned
on daily RCM change factors, and can thus not
provide sub-daily information on climate change
[Jones et al., 2009].

In summary, deficiencies remain in the ability
of downscaling methods to generate local precipi-
tation time series with the correct temporal vari-
ability. Many of these deficiencies are inherited
from the driving GCMs, with deficiencies in the
representation of blocking and tropical modes of
variability [e.g., Ringer et al., 2006, see also sec-
tion 6.1]. RCMs and PP weather generators can
“add value” in terms of the representation of short
temporal variability.
6.2.3. Spatial coherence and event size

In terms of spatial variability, two potential
problems need to be considered: misrepresenta-
tion of event size, structure and spatial coher-
ence, e.g., by overestimating the extent of con-
vective cells; and misplacement of precipitation
events, e.g., due to orographic effects. RCMs tend
to overestimate the spatial coherence of precipita-
tion events. As discussed earlier, convective events
are difficult to model, and therefore these events
are often too low in intensity and extend over too
large an area. This problem might be solved in
the future with higher resolution and improved
numerical schemes. Large-scale frontal precipita-
tion is generally well simulated by RCMs, although
the coarse orography, especially in mountainous
regions, can cause erroneous spatial distributions
of precipitation [Frei et al., 2003]. In addition to
improving sub-daily precipitation representation,
very high resolution climate modeling ensures more
accurate localization of rainfall maxima over re-

gions of complex topography [Hohenegger et al.,
2008].

Most MOS approaches are not designed for cor-
recting errors in spatial correlations since the pre-
dictand still inherits much of the spatial correlation
structure of the simulated precipitation [Boé et al.,
2007]. However, Widmann et al. [2003] suggested
a non-local MOS: they applied singular value de-
composition to derive coupled spatial patterns of
simulated and observed precipitation. These pat-
terns can have a different structure with high val-
ues over different locations, such that this approach
in principle can correct unrealistic aspects in the
location and spatial structure of the simulated pre-
cipitation, which may be caused for instance by an
unrealistic topography in a numerical model.

Within individual grid boxes, He et al. [2009]
have attempted to account for sub-grid orography
by distributing the simulated precipitation accord-
ing to observed patterns. There are examples of
MOS weather generators (using change factors de-
rived from RCMs to represent climate change) that
have been extended to a high resolution grid [e.g., 5
km, Jones et al., 2009], but these are run indepen-
dently for each grid point.

Standard PP statistical downscaling is facing a
dilemma: in a “deterministic” context, i.e., with-
out explicitly adding noise to the downscaled vari-
ables, the predictors impose a strong spatial co-
herence. Yet randomization in the form of adding
uncorrelated noise might weaken the spatial co-
herence too much. The same holds for weather
generators based on weather states, which them-
selves induce inter-site correlations. At large spa-
tial scales, it may be reasonable to consider that
all of the inter-site dependence is captured. Often
however, and particularly at smaller spatial scales,
the induced dependence is weaker than that found
in observations. A way out is the explicit modeling
of spatial dependence, i.e., using multi-site weather
generators (Section 4.3.2) or full field weather gen-
erators (Section 4.3.3). The analog method, ei-
ther in a simple PP setting (Section 4.1.3) or ex-
tended to a weather generator (Section 4.3.2), pro-
vides an easy way to simulate spatially coherent
and realistic fields. However, this method cannot
simulate unobserved weather patterns which might
emerge due to changes in the atmospheric circula-
tion. Therefore, its use for climate change pro-
jections is limited, especially to simulate fields of
extreme precipitation. All PP methods, including
PP weather generators, can in principle correctly
represent orographic influences, as their calibration
intrinsically accounts for the interplay between the
large-scale atmospheric circulation and the orogra-
phy, such as lee and rain shadow effects.

The representation of spatial variability is lim-
ited by the density of the rain gage network. Still
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unresolved is the issue of full field precipitation,
i.e., the provision of downscaled precipitation be-
tween rain gages. Often, this problem is addressed
by interpolation from neighboring sites. However,
such techniques are a form of smoothing that leads
to underestimation of rainfall variability, especially
on short time scales and for extremes [e.g., Hofstra
et al., 2008]. This is particularly serious in moun-
tain areas, where the relationships between orog-
raphy and precipitation are very complex, and the
rain gage network is generally sparse compared to
the high spatial variability [for a notable exception,
see Frei and Schär , 1998].
6.2.4. Physical consistency

RCMs model the full atmospheric state, and
therefore intrinsically address physical coherence.
However, small temperature biases might lead to
considerable biases in impact models, when tem-
perature and precipitation are required. Yang
et al. [2009] showed that a MOS correction of tem-
perature and precipitation bias could improve the
simulation of river discharge in spring. In general,
however, it should be noted that MOS may disrupt
internal consistency between weather variables, es-
pecially between temperature and precipitation.

Pure PP statistical downscaling does in general
not explicitly model physical coherence between
variables, unless for example large-scale temper-
ature is used as predictor for precipitation [e.g.,
Chun et al., 2009]. This is, however, problematic,
since high summer temperatures may be a conse-
quence of dry conditions (i.e., due to clear skies) or
a cause of convective wet conditions, so the corre-
lations are difficult to interpret [Wilby and Wigley ,
2000]. Unlike other PP approaches, the analog
method intrinsically captures physical coherence.

Most weather generators attempt to model the
relationships between relevant variables, mostly by
regressing other variables on the generated pre-
cipitation [Kilsby et al., 2007; Jones et al., 2009].
An advancement of this approach based on GLMs
was developed by Furrer and Naveau [2007]. In
these methods, the other variables are derived from
the downscaled precipitation without referencing
to the actual variable (e.g., temperature) in the
driving GCM.

6.3. Downscaling for future climate change
Downscaling of climate change scenarios requires

the chosen methodology to function in a perturbed
climate, i.e., under conditions different to those for
which it was developed [Huth and Kyselỳ , 2000].
Therefore, skill for the present day climate, al-
though necessary, may not be a sufficient indicator
of skill for the future climate [e.g., Charles et al.,
1999; Christensen and Christensen, 2007]. It is

also difficult to objectively quantify model skill, as
different models perform better for different vari-
ables and processes.

When discussing skill to downscale future cli-
mate scenarios, two points affecting the skill have
to be addressed, both for dynamical and statistical
downscaling. First, stationarity of the physical and
statistical relationships has to be established, and
second, the driving GCM simulation needs to be
informative for the downscaled variable. Closely
connected with downscaling of future scenarios is
the question of predictability and uncertainty. Of-
ten, model consensus is taken as evidence for ro-
bust skill. This assumption will be critically re-
viewed.
6.3.1. Model consensus as a measure of skill

Model consensus does not imply reliability since
there may be missing processes or deficiencies com-
mon to all models. An understanding of the un-
derlying processes and mechanisms of change, and
their evaluation in models, is key to assessing reli-
ability. Modeling, theory and observational stud-
ies suggest increases in extreme precipitation are
reliable, at least on large-scales, since they are
dominated by increases in atmospheric moisture
with warming [Allen and Ingram, 2002; Allan and
Soden, 2008; Kendon et al., 2009]. However, for
local precipitation extremes, small-scale dynamics
of clouds and the sub-cloud layer and cloud mi-
crophysics may play an important role as well as
changes in precipitable water [Lenderink and van
Meijgaard , 2008]. These small-scale processes are
not well represented in current RCMs, as evident
from deficiencies in the simulation of high precipi-
tation intensities for the present-day climate.

The same holds for statistical downscaling, as
predictors used in different approaches are often
similar, if not identical, and all approaches ulti-
mately rely on a small number of driving GCMs.

Some degree of confidence might be gained
from comparing dynamical and statistical down-
scaling techniques [e.g., Murphy , 1999; Haylock
et al., 2006]. For other model comparison exam-
ples, see Semenov et al. [1998]; Zorita and von
Storch [1999]; Schmidli et al. [2007]; Timbal et al.
[2008b]. In fact, dynamical downscaling and statis-
tical downscaling can be used to mutually validate
one another. For instance, an RCM pseudo real-
ity can be used to validate statistical downscaling
approaches [Section 5.3, and Vrac et al., 2007e],
and statistical downscaling can be used to validate
physical relationships in the RCM [Section 5.1, and
Kendon et al., 2009, and Maraun et al., manuscript
in preparation].
6.3.2. Stationarity

In the case of dynamical downscaling, assump-
tions need to be made for RCM parametrizations
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to be valid in a perturbed climate. This may
be a significant issue for RCMs that have been
developed for a specific region. For RCMs that
have been shown to perform well for multiple re-
gions, there is greater confidence in the applica-
bility of the parametrization schemes in future cli-
mates [Christensen et al., 2007].

When correcting the RCM output, the station-
arity issue might become more serious. Most MOS
methods described in section 4.2 correct the distri-
bution of modeled precipitation, estimated over a
long time interval. However, this distribution is in
fact a mixture of various other distributions, de-
pending on the different weather conditions. Since
the relative frequency of different weather condi-
tions might change in a future climate, also the
resulting mixed distribution might change, such
that the correction function is potentially not valid
under climate change. For instance, Christensen
et al. [2008] suggest that biases may not be invari-
ant in a warming climate. This argument holds
in particular for methods that scale observed or
control run precipitation, which do not account for
possible dynamic changes in temporal variability,
for instance in the frequency of circulation patterns
[e.g., Lenderink et al., 2007].

The stationarity issue is also significant for PP
statistical downscaling. The more heuristic and
less physical the predictor/predictand relationship,
the less confident one can be that the relationship
might remain stable under climate change. A way
to gage the transferability of statistical relation-
ships into the future is to use a sensitivity analysis
when calibrating a statistical downscaling method
[Frıas et al., 2006]. One way is to build the model
on data from the coldest (driest) years, and then
validate it on the warmest (wettest) years, thus
testing the scheme on two different climate situa-
tions. The model can also be tested against ex-
treme years in order to test the stability [Wilby ,
1994]. If the time series used for calibration are
long enough it is reasonable to believe that they
are representative of those situations that will be
more frequent in a future climate [Zorita and von
Storch, 1999]. Confidence in the approach is high-
est if it can model such situations, and if the range
of variability of the large-scale variable in a future
climate is of the same order as today.

Sometimes, non-stationarity in the relationships
is only an artifact, because the chosen predic-
tors do not convey enough information about long
term variability. Wilby and Wigley [1997] showed
that certain changes in the relationship between
weather types and precipitation in the UK could
be explained by a modulating effect of the Central
England Temperature. Therefore, it is necessary
to identify all predictors informative for climate

change, and to incorporate them in a multivariate
approach. A similar issue is discussed by Wilby
et al. [2004], regarding non-dynamical shifts of pre-
dictors due to climate change. Spurious effects on
rainfall could be corrected by subtracting the mean
shift from the predictors.
6.3.3. Capturing climate change

For reliable simulations of future climate, the
mechanisms of future change in precipitation need
to be represented [e.g., Kendon et al., 2009]. Thus,
it is important that the processes leading to long
term changes in local precipitation are well cap-
tured by the models, such as relationships of pre-
cipitation with the large-scale circulation or with
temperature [e.g., Lenderink and van Meijgaard ,
2008] or the mechanisms of soil-precipitation feed-
back [Schär et al., 1999].

Biases in the GCM simulated large-scale at-
mospheric circulation might considerably bias the
RCM simulation. For instance, Leander et al.
[2008] noted that the representation of extreme
precipitation events is potentially sensitive to the
driving GCM, limiting the overall possibility to
correctly downscale high intensity rainfall.

A similar argument holds for MOS applications,
only on smaller scales. Any correction yields only
meaningful results if the temporal variability or
the long-term changes in the simulated precipita-
tion are good predictors for the changes in the real
world. In the case of MOS calibrated based on
reanalysis-driven RCMs or GCMs nudged towards
reanalyses this can be assessed directly by com-
paring the simulated and observed changes in the
past, whereas in control run calibrated set-ups that
allow only distribution-wise MOS it is difficult to
judge whether the application of MOS corrections
is justified. Where the simulated precipitation has
simply no skill the application of distribution-wise
MOS would not be justified, even if the corrected
and observed precipitation intensity distributions
could be brought into perfect agreement.

In PP statistical downscaling, the choice of pre-
dictors is crucial to capture climate change (see
section 4.1). Predictors that are informative on
relatively short time scales might not capture long
term variability, and in particular trends induced
by global warming. PP statistical downscaling
approaches also rely on the skill of the driving
GCM to correctly simulate the relevant predictors.
A predictor that is characterized as informative
might be of little use if it cannot be assumed to
be reliably modeled in the GCM/RCM [in partic-
ular moisture related quantities are generally con-
sidered problematic, Cavazos and Hewitson, 2005].
6.3.4. Uncertainty and Predictability

An important aspect in assessing predictability
is the quantification of the total uncertainty of
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the downscaled result and the sources that con-
tribute to it. For predictability, the main sources
of uncertainty are model formulation, uncertainty
in anthropogenic climate forcing factors, and nat-
ural variability [Palmer , 1999; Hawkins and Sut-
ton, 2009]. The former includes the numerical
schemes, parametrizations and resolution; the lat-
ter includes internal variability of the chaotic cli-
mate system dependent on initial conditions, and
natural forced variability due to, e.g., solar forcing.

The range of uncertainty due to model formu-
lation in general, parametrizations in particular,
and natural variability can be assessed by ensemble
simulations based on different GCMs and RCMs
(multi-model ensembles), perturbed parametriza-
tions (perturbed physics ensembles) and different
initial conditions. Notable initiatives are the PRU-
DENCE, ENSEMBLES and CORDEX projects,
which study the uncertainty due to structural er-
rors of different GCMs and/or RCMs. For the de-
velopment of the probabilistic UKCP09 national
climate change projections, a large GCM ensemble
with perturbed physics parametrizations was used
to drive the Hadley Centre regional climate model
HadRM3 [Murphy et al., 2009].

The relative roles of these different sources of un-
certainty depend on the time scales under consider-
ation. On decadal time scales, the climate change
signal is small compared to natural variability, such
that uncertainty caused by initial conditions and
natural forcing dominates. Memory - and thus
predictability - of natural variability on decadal
time scales is generated by the oceans. However,
due to limited availability of (deep) ocean data to
initialize the prediction, predictability is in prac-
tice limited. Research on decadal climate predic-
tions is just emerging [e.g., Collins et al., 2006;
Smith et al., 2007; Keenlyside et al., 2008], and no
regional climate predictions on decadal scales ex-
ist. As natural decadal variability increases with
decreasing spatial scale, the extent to which re-
gional decadal predictions are possible is largely
unknown.

On longer time scales, the signal to noise ratio
between climate change signal and natural vari-
ability increases, and uncertainty due to model for-
mulation becomes dominant. For instance, results
from the PRUDENCE project suggest that GCM
uncertainty dominates in the case of changes in
seasonal mean climate [Rowell , 2006; Déqué et al.,
2007], and variations in RCM formulation are im-
portant at fine-scales and for changes in precipita-
tion extremes particularly in summer [Frei et al.,
2006]. However, recent studies [Kendon et al.,
2009, and E. J. Kendon, R. G. Jones, E. Kjell-
ström, and J. M. Murphy, Using and designing
GCM-RCM ensemble regional climate projections,

submitted to Journal of Climate, 2010] suggest a
still dominant role of natural variability for sum-
mertime precipitation and precipitation extremes,
such that a single 30 year climate projection is not
robust. It should be noted that a climate projec-
tion represents just one possible realization of the
future climate, conditional on a given scenario of
natural and anthropogenic forcing.

7. CONCLUSIONS AND OUTLOOK

Reliable downscaling for precipitation is needed,
independent of region and season. Depending on
the application, generic needs are the correct rep-
resentation of (1) intensities, (2) temporal variabil-
ity, (3) spatial variability, and (4) consistency be-
tween different local-scale variables, and these are
required for future scenarios.

To meet these specific needs, there have been
considerable efforts to further develop dynamical
and statistical downscaling. We reviewed sev-
eral recent developments in statistical downscal-
ing, which have not yet received much attention in
the climate community. These developments focus
on capturing intensities, especially extremes, and
the representation of spatial-temporal variability.
However, there are still major gaps which currently
are not resolved by downscaling:
• Downscaling in regions with sparse data is

still highly uncertain, mainly in remote areas or
developing countries (See Figure 4). RCMs can in
principle be set up in these regions, but may not
correctly represent region-specific processes. With
data sparcity, their validation is limited. Statis-
tical downscaling is even more restricted in such
regions, especially to assess precipitation extremes
and spatial variability. This problem will make it
harder for end users operating in these countries to
make optimal planning decisions in all areas, e.g.,
from water resources, to flood risk management, to
urban design, to agricultural activities.
• The performance of both dynamical and sta-

tistical downscaling schemes is currently better for
synoptic and frontal systems than for convective
precipitation. End users that are adversely af-
fected by this limitation would be the flood risk
manager in arid regions subject to flash flooding
or in temperate regions subject to summer flood-
ing. In these cases, improvements in the represen-
tation of heavy, localized convective precipitation
are needed (see also Figure 7).
• Representation of sub-daily rainfall is still

poor, especially for extremes, both by RCMs and
by statistical downscaling. Furthermore, few sta-
tistical models are currently available that attempt
to capture subdaily information on climate change.
The end user community most seriously impacted
by this limitation are urban planners, since runoff
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generation from largely impermeable urban areas
occurs rapidly and is highly sensitive to the fine
temporal scale distribution of precipitation (see
also Figures 7 and 9).
• Downscaling to a fully distributed spatial field

at scales smaller than RCM grid size is still unre-
solved. Full field weather generators are under de-
velopment, but have not yet been implemented for
downscaling. One end user affected by this limi-
tation is the hydrological impact modeler using a
spatially distributed model for areas sensitive to
the spatial distribution of precipitation, such as
small catchments or catchments with an imperme-
able underlying geology (see also Figure 7).
• Changes in small-scale processes (on sub

RCM grid scales) and their feedback on the large-
scale are not adequately captured in projections
of precipitation change. Currently it is difficult to
identify how significant this shortcoming may be,
and indeed which end users may be more affected.
For instance, the importance is likely to be season-
ally and regionally dependent. This shortcoming
remains a challenge for climate modelers.
• All downscaling approaches inherit errors in

the representation of temporal variability from the
driving GCM. Examples are blocking over Europe
(see Figure 6), and tropical modes of variability.
Especially the former example is relevant for agri-
culture, as blocking strongly influences the length
of dry spells. Summer drought often comes along
with heat waves, and thus affects health authorities
as well.

These gaps are caused by poor data availability,
process understanding and quality of the GCMs,
and limitations with the downscaling procedure it-
self. In the following, we lay out directions in re-
search to address the remaining gaps.

In regions with sparse rain gage networks, the in-
stallation of new gages will improve the situation
in the long run. However, in many regions net-
works do exist, but the data have not been made
available by the responsible institutions such as na-
tional weather services. Here, efforts should be un-
dertaken to make these data readily available, and
to assemble high resolution gridded datasets as in-
put for hydrological models (where these require
spatially averaged rainfall inputs) or for climate
model validation; see Haylock et al. [2008] for an
example in Europe. Furthermore, digitizing hand-
written reports can help to extend the daily data
base [Moberg and Jones, 2005]. Especially in ur-
ban areas, denser networks of sub-daily data need
to be set up.

The quality of GCM climate projections is con-
stantly improving, and the latest generation of

models show better representation of climate vari-
ability [Shaffrey et al., 2009].

In terms of future RCM development there are
two competing strands. The first concentrates
on developing multi-model ensemble systems, in-
cluding multiple RCMs as well as multiple GCMs,
to quantify modeling uncertainty. Performance
based weighting of different RCMs could add value
[e.g., Fowler and Ekström, 2009], although model
weighting is a non-trivial task. The second aims to
improve the simulation of local processes through
the development of RCMs of increasing resolution
(which includes improvements in the parametriza-
tions). This is expected to lead to improvements
not only in terms of the spatial scale on which
meaningful information is provided, but also the
accuracy of sub-daily precipitation.

A key feature of statistical downscaling is the
ability to generate complete distributions. They
can be used to randomize the downscaled result
and thus better represent local variability and ex-
tremes. These techniques should be used by de-
fault, in particular when downscaling of extremes
is required. However, these methods mostly in-
volve a considerable statistical and computational
knowledge; therefore, especially for multi-station
downscaling, accessible implementations suitable
for routine use by researchers and practitioners are
needed.

Due to the still limited understanding of multi-
variate extreme value statistics [e.g., Coles, 2001],
multi-station weather generators have not yet been
extended to explicitly capture extremes. The char-
acterization and modeling of spatial extremes is
currently an active area of statistical research.

A promising direction of research is the appli-
cation of MOS to correct climate model output.
Currently, the proposed methods almost exclu-
sively use modeled precipitation as predictors, and
mostly correct distributions only. None of the ap-
proaches explicitly account for extremes. It has
been shown that MOS could be applied to directly
correct GCM simulations [Widmann et al., 2003].
This approach might prove useful for regions where
no RCM simulations are available.

We presented the potential usefulness of full-field
weather generators for hydrological modeling. The
complexity of existing full-field spatial-temporal
models may suggest it is not currently a realistic
research aim. However, rather than add complex-
ity to a spatial-temporal model, conditioning upon
climate model outputs may provide useful infor-
mation for the difficult task of representing advec-
tion. Research into linking parameter models with
climatological information should be seen as a first
step in this direction.

Providing probabilistic climate projections is a
key challenge. Initiatives such as PRUDENCE,
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ENSEMBLES, CORDEX, UKCP09 and CLI-
MATE PREDICTION NET provide a first step
towards probabilistic climate projections. They
have generated a wealth of information about un-
certainty in model formulation, but they still do
not cover the full plausible range of model uncer-
tainty and do not sufficiently address uncertainty
due to natural variability. In particular on decadal
time scales, probabilistic predictions are needed,
because the anthropogenic climate change signal
is still low compared to natural variability. We
note that while GCM and downscaling uncertain-
ties can partly be reduced in the future, the inter-
nal variability leads to fundamental limitations of
predictability, which can be expected to strongly
depend on the location and on the precipitation
properties under consideration.

In almost all forms of downscaling today, the
coarse-scale conditions given by the GCM are
taken as fixed. However, this does not reflect the
reality of the real climate system in which there are
feedbacks between coarse and fine scales. This has
been noted by Wilby et al. [2004] as a limitation
of statistical downscaling schemes, but of course it
applies equally to RCMs. To represent these feed-
backs in any climate simulation will require cou-
pled runs of the coarse- and fine-scale models and,
although the implications for impacts applications
are unknown at present, this represents an excit-
ing challenge for a future generation of downscaling
techniques.

GLOSSARY

Climate Prediction Net: initiative to en-
able probabilistic predictions of future climate con-
ditional on a scenario [Stainforth et al., 2005]. A
GCM is run on thousands of home computers to
create a large ensemble of future projections, each
of which is given a certain likelihood given obser-
vational data. http://climateprediction.net/

CORDEX: Coordinated Regional Climate
Downscaling Experiment. Recent initiative from
the World Climate Research Program for running
multiple RCM simulations at 50 km resolution for
multiple regions. http://wcrp.ipsl.jussieu.fr/
RCD Projects/CORDEX/CORDEX.html

Dynamical Downscaling: nests a high res-
olution regional climate model into a lower resolu-
tion global climate model to represent the atmo-
spheric physics with a higher grid-box resolution
within a limited area of interest.

ENSEMBLES: project of the European
Union 6th framework program. The project
created ensembles of general circulation mod-
els and regional climate models for Europe
and North Africa, developed statistical down-

scaling models and tools, and constructed a
high resolution gridded validation data set.
http://ensembles-eu.metoffice.com, RCM data
available at http://ensemblesrt3.dmi.dk/

ERA40: six hourly reanalysis of the Eu-
ropean Centre for Medium-Range Weather Fore-
casts, September 1957 to August 2002. Basic res-
olution of 2.5◦ x 2.5◦, full resolution of 1.125◦ x
1.125◦. http://www.ecmwf.int/research/era/

General Circulation Model and Global
Climate Model (GCM): A general circula-
tion model is a dynamical model that numerically
integrates the Navier-Stokes equations for either
atmosphere or ocean across the globe. Typically
of a resolution of 100 km. Atmosphere and ocean
general circulation models are key components of
global climate models, which in general addition-
ally include sea-ice and land-surface components.

Model Output Statistics (MOS): a statis-
tical downscaling approach that corrects dynami-
cal model simulations. The statistical model is cal-
ibrated against simulated predictors and observed
predictands. Therefore, the statistical model is
only valid for the dynamical model it was cali-
brated with.

NARCCAP: North American Regional Cli-
mate Change Assessment Program.
http://www.narccap.ucar.edu/

NCEP/NCAR Reanalysis: six hourly re-
analysis of the National Centers for Environmental
Prediction (NCEP) and the National Center for
Atmospheric Research (NCAR), 1948 to present.
Available at 2.5◦ x 2.5◦ and 1.875◦ x 1.875◦.
http://www.esrl.noaa.gov/psd/data/reanalysis/
reanalysis.shtml

Perfect Prognosis (PP): a statistical down-
scaling approach that assumes that the predictor
variables are perfectly modeled by the dynamical
model used. The statistical model is calibrated
against large-scale and local-scale observed data,
and then transferred to an arbitrary dynamical
model that is assumed to fulfill the PP assump-
tion.

Prediction: an estimate of a future climate
state (or a range of states) that is assigned a cer-
tain probability (which might be low or subjective)
to occur. Climate predictions are possible only for
relatively short time scales (seasons to decades),
because beyond these time scales the influence of
different emission scenarios begins to dominate (see
Projection).

Projection: a simulation of the response of
the future climate to a forcing scenario that is
not assigned a certain probability. A projection
is therefore only a plausible state of the future cli-
mate.

PRUDENCE: Prediction of Regional sce-
narios and Uncertainties for Defining EuropeaN
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Climate change risks and Effects. Project of
the European Union 5th framework program.
http://prudence.dmi.dk/

Reanalysis data: Combination of observa-
tional data and the forecast of a high resolution
global climate model to build a best estimate of a
consistent global weather state. They fill gaps in
observational data and provide estimates of non-
observed variables.

Regional Climate Model (RCM): high
resolution dynamical climate model, typically of
a resolution of 25 km-50 km, though some recent
models provide a resolution of 10 km or less. Usu-
ally a limited area model nested into a GCM over
a specific region.

Statistical Downscaling: establishes sta-
tistical links between large-scale weather and ob-
served local-scale weather. Either perfect progno-
sis (PP) or Model Output Statistics (MOS).

STARDEX: Statistical and Regional dy-
namical Downscaling of Extremes for European
regions. Project of the European Union 5th frame-
work program. http://www.cru.uea.ac.uk/projects/stardex/

UKCP09: United Kingdom Climate Projec-
tions. A project funded by the Department for En-
vironment, Food and Rural Affairs (Defra) to cre-
ate regional probabilistic climate projections and a
weather generator for the United Kingdom.
http://ukclimateprojections.defra.gov.uk/

Weather Generator: a stochastic model
to create random time series which resemble the
observed weather statistics (marginal distribution,
short term temporal variability, and sometimes
spatial dependence between multiple sites) at a cer-
tain point. To account for variability on longer
time scales, weather generators can be run in a
downscaling context, either PP or MOS.
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Bárdossy, A., and E. Plate, Space-time model for daily rain-
fall using atmospheric circulation patterns, Wat. Resour.
Res., 28, 1247–1259, 1992.
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