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Abstract Seasonally predicted precipitation at a resolu-

tion of 2.5� was statistically downscaled to a fine spatial

scale of *20 km over the southeastern United States. The

downscaling was conducted for spring and summer, when

the fine-scale prediction of precipitation is typically very

challenging in this region. We obtained the global model

precipitation for downscaling from the National Center

for Environmental Prediction/Climate Forecast System

(NCEP/CFS) retrospective forecasts. Ten member integra-

tion data with time-lagged initial conditions centered on

mid- or late February each year were used for downscaling,

covering the period from 1987 to 2005. The primary tech-

niques involved in downscaling are Cyclostationary

Empirical Orthogonal Function (CSEOF) analysis, multiple

regression, and stochastic time series generation. Trained

with observations and CFS data, CSEOF and multiple

regression facilitated the identification of the statistical

relationship between coarse-scale and fine-scale climate

variability, leading to improved prediction of climate at a

fine resolution. Downscaled precipitation produced sea-

sonal and annual patterns that closely resemble the fine

resolution observations. Prediction of long-term variation

within two decades was improved by the downscaling in

terms of variance, root mean square error, and correlation.

Relative to the coarsely resolved unskillful CFS forecasts,

the proposed downscaling drove a significant reduction in

wet biases, and correlation increased by 0.1–0.5. Categori-

cal predictability of seasonal precipitation and extremes

(frequency of heavy rainfall days), measured with the

Heidke skill score (HSS), was also improved by the

downscaling. For instance, domain averaged HSS for two

category predictability by the downscaling are at least 0.20,

while the scores by the CFS are near zero and never exceed

0.1. On the other hand, prediction of the frequency of

subseasonal dry spells showed limited improvement over

half of the Georgia and Alabama region.
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1 Introduction

Fine-scale seasonal climate prediction has been a very

important issue in recent years as near-surface local climate

has a considerable effect on many natural systems and

human activities. Many studies have therefore developed

numerical regional models and statistical models for fine-

scale climate prediction over specific geographical areas,

including North America (Giorgi 1990; Wilby and Wigley

1997; Wilby et al. 1998; Hong and Leetma 1999; Wilks

1999; Fennessy and Shukla 2000; Widmann et al. 2003;

Coulibaly et al. 2005; Salathé 2005; Liang et al. 2006),

Europe (Fuentes and Heimann 2000; Huth and Kysely

2000; Huth 2002; Schmidli et al. 2007), Asia (Ji and

Vernekar 1997; Kim and Hong 2007), South Africa

(Hewitson and Crane 1996), South America (Misra et al.

2003; Robertson et al. 2004; Sun et al. 2006), and Australia

(Feddersen and Andersen 2005). The widely accepted basis

for regional climate prediction in those studies is to take

coarsely resolved information from general circulation
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models (GCMs) and downscale the information to local-

scale. Downscaling is expected to improve GCM output

through enhancement of the spatial resolution. Relative to

the GCM, detailed local characteristics of dynamics,

physics, and geography can be better incorporated in the

downscaling model. Inference of fine-scale climate using

direct or interpolated GCM is a questionable practice and

may lead to inaccurate regional climate characteristics (von

Storch et al. 1993). Therefore, application of downscaling

techniques is the most appropriate means of producing

fine-scale climate information and providing the best

information on local climate.

Many studies have noted that downscaling of precipi-

tation is much more challenging than temperature (Murphy

1999; Schoof and Pryor 2001; Schmidli et al. 2007),

because local-scale rainfall by convection is difficult to

resolve using only the coarse-scale model simulation. Since

this local convection is more vigorous over the low-lati-

tudinal wet region, downscaling over those regions for

summer may be even more difficult than other regions and

seasons (Murphy 1999; Pandey et al. 2000; Widmann et al.

2003; Feddersen and Andersen 2005). Because of this,

many regional precipitation prediction studies over the

United States (US) region have focused on the western US

(Kim et al. 2000; Leung et al. 2003; Wood et al. 2005;

Duffy et al. 2006), where predictive skill is generally

higher than the southeastern US, where precipitation is

predominantly convective in nature. This study is moti-

vated by the need for regional climate information for crop

growing seasons (MAM and JJA) in the southeastern US.

This region is a challenging area for successful regional

climate simulation but closely linked with natural systems

and the human environment, including agriculture, for-

estry, water management, vegetation, tourism, and urban

development.

Fine-scale prediction of precipitation for growing sea-

sons over the southeastern US is urgently needed for sev-

eral reasons. Local areas within this region frequently

experience extremely heavy rainfall and drought. Below or

above normal precipitation due to variations in local con-

vection and tropical storms has considerable societal

impact. Development of accurate seasonal rainfall predic-

tion tools with high spatial resolution is essential for

mitigation of impacts. Also, the southeastern US has large

agricultural areas with a variety of products, including

peaches, tomatoes, corn, tangerines, peanuts, citrus,

strawberries, blueberries, cotton, and dairy. Baigorria et al.

(2008) reported that annual variations in yields are highly

sensitive to precipitation amounts and the frequency of

heavy rainfall and dry spells during these growing seasons.

Improved forecasts of seasonal precipitation with high

spatial resolution could potentially increase agricultural

profits and reduce production risks (Robertson et al. 2007).

Therefore, this study aims to predict the fine-scale seasonal

precipitation using a downscaling approach for growing

seasons (MAM and JJA) over the southeastern US. This

work is also part of ongoing downscaling research per-

formed by Lim et al. (2007), which dealt with surface

temperature.

In this study, statistical downscaling will be applied to

the National Center for Environmental Prediction/Climate

Forecast System (NCEP/CFS) retrospective forecasts at

2.5� resolution (Saha et al. 2006) to produce fine-scale

seasonal precipitation. The statistical techniques applied

are Cyclostationary EOF (CSEOF) (Kim and North 1997),

multiple regression, and time series generation. CSEOF is

used instead of conventional eigentechniques, such as

regular EOF and Canonical Correlation Analysis (CCA),

because CSEOF is very useful in extracting the complete

spatio-temporal evolution of the significant climate sig-

nals (e.g., the seasonal cycle, prominent intraseasonal

oscillations, and ENSO-related evolution) over a cyclic

period (Kim and Wu 1999). We expect that data decom-

position in this way enables the subsequent regression

method to better extract the NCEP/CFS evolution patterns

physically consistent with evolutions of the observational

climate signals. CSEOF and multiple regression are

trained with lower mode Principal Components (PCs) of

the observations and the NCEP/CFS to determine their

statistical relationship. This regression approach is con-

sistent with Widmann et al. (2003) in that the numerical

global model precipitation is used as a predictor. Their

study reported improved predictive skill over conven-

tional approaches, which obtain large-scale predictors

from other variables.

Once the large-scale evolution patterns associated with

the fine-scale observational climate signals are found, we

need to generate the PC time series for the prediction

period. While conventional PC time series often exhibit

high-frequency fluctuations, the CSEOF PCs vary slowly

with time. Lim and Kim (2006) found that this character-

istic facilitates the generation of the PC time series for the

prediction period more reliably. As a result, improved

localized climate information from coarsely resolved

model forecasts is expected. Using the fine-scale climate

forecasts, our study will discuss the current quality of

downscaled spring and summer precipitation over the

southeastern US. We expect this study to contribute sub-

stantially to the improvement of fine-scale climate pre-

diction for the southeastern US, since few studies have

critically attempted to downscale spring and summer pre-

cipitation for this region.

The remainder of this paper is organized as follows. The

NCEP/CFS data and the observational data are described in

Sect. 2. Downscaling methods including experimental

design are addressed in Sect. 3. Section 4 describes the
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downscaled precipitation and its predictive skill, followed

by concluding remarks and discussion in Sect. 5.

2 The CFS model data and observation

2.1 The NCEP/CFS retrospective forecasts

The CFS, the fully coupled model representing the inter-

action between oceans, land and atmosphere, was deve-

loped for the purpose of dynamical seasonal prediction at

the Environmental Modeling Center (EMC) at NCEP. The

CFS provides daily atmospheric variables at 2.5� lat/lon

resolution from the retrospective forecasts. Seasonal inte-

grations initialized in each calendar month of the year

simulate global atmospheric fields out to 9 months into the

future, covering a period of 26 years from 1981 to 2006. In

this study, we used ten member integration data (March

through August each year) with lagged initial conditions

centered in February. The initial dates from the last date of

February, in descending order, are 28, 27, 23, 22, 21, 20,

19, 13, 12, and 11. These initial dates are based on the

pentad ocean initial condition in the CFS (Saha et al. 2006).

The period used for downscaling was, however, limited to

19 years from 1987 to 2005 because the gridded observa-

tion data verified by the Florida Climate Center was

available for this 19-year period. Since these observational

data are used for statistical training with the CFS data, the

temporal lengths of these two data sets need to be identical.

The atmospheric initial conditions of the CFS were given

from the NCEP/DOE Atmospheric Model Inercomparison

Project (AMIP) II Reanalysis (Kanamitsu et al. 2002) and

the ocean initial conditions were given from the NCEP

Global Ocean Data Assimilation (GODAS). The atmo-

spheric component of the CFS is a lower-resolution version

of the Global Forecast System that was the operational

weather prediction model at NCEP. The ocean component

is the GFDL Modular Ocean Model version 3. For the land

surface hydrology, the two-layer model described in Mahrt

and Pan (1984) was used. More details on the CFS

reforecasts are found in Saha et al. (2006).

2.2 Observed precipitation

The origin of the observed precipitation in this study is the

National Weather Service (NWS) Cooperative Observer

Program (COOP). The COOP has more than 100 years of

observational data which help define the climate of the US

and measure long-term climate change. COOP weather

stations are densely distributed over the entire US territory

and record daily weather observations (http://www.nws.

noaa.gov/climate/). The gridded dataset for the southeast-

ern US region was provided by the Florida Climate Center

(http://www.coaps.fsu.edu/climate_center/). The data per-

iod in this study covers the period of 1987 to 2005 with a

daily time interval.

The original station data (Fig. 1 lower panel) were

converted to 20 km 9 20 km grids using the Cressman

objective analysis (OA) scheme (Cressman 1959). As a

result, each county has one grid point on average in

Georgia, where the area of each county is relatively smaller

than in other states. Florida and Alabama have one or two

local grid points in most counties. The conceptual basis of

this OA scheme is the same as the method described in

Sect. 3.2. The gridded dataset has 1,252 grid points with

20 km resolution, covering Florida, Georgia, and Alabama.

Gridded spatial fields are compared with those from the

station data and we confirmed that the fields are nearly

consistent.

3 Methodology

3.1 Statistical downscaling model

Statistical downscaling encompasses a large number of

methods, ranging in complexity from simple interpolation

to eigentechniques, regression methods, stochastic time

series models, and artificial neural networks (Trigo and

Palutikof 2001; Reusch and Alley 2002; Ramı́rez et al.

2006). The statistical downscaling framework in this study

comprises Cyclostationary EOF (CSEOF) technique (Kim

and North 1997), multiple regression, and the time series

generation. As briefly introduced in Sect. 1, CSEOF (Kim

and North 1997) is an analysis technique for extracting the

spatio-temporal evolution of the significant climate signals

(e.g., seasonal cycle, ENSO, and dominant intraseasonal

oscillations, etc.), which we call physical modes, and their

seasonal to interannual amplitude variations. CSEOF

analysis is conducted on the basis of a cyclostationary

process in which the statistical properties vary cyclically

with time. Thus, space-time data (P) in CSEOF analysis are

represented as:

Poðro; tÞ ¼
X

n

So
nðtÞBo

nðro; tÞ ð1Þ

Pgðrg; tÞ ¼
X

n

Sg
nðtÞBg

nðrg; tÞ ð2Þ

where Bo
nðro; tÞ and Bg

nðrg; tÞare time-dependent cyclosta-

tionary eigenfunctions from observation and large-scale

CFS, respectively. So
nðtÞ and Sg

nðtÞare their principal com-

ponent (PC) time series. Parameters, superscripts, and

subscripts here represent o: observation, g: global, n: mode

number, r: spatial grid point, and t: time. The purpose of

applying CSEOF analysis is to extract the spatio-temporal

evolution of prominent climate signals and their amplitude
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variations from the observation and the CFS data, respec-

tively. Therefore, CSEOF analysis, as the first step of this

downscaling, was applied to the daily observation and the

CFS data, respectively, for the 18-year training period

(March through August each year). The remaining year

was regarded as the prediction period during which we

perform the fine-scale prediction. Therefore, application of

CSEOF for the training period was carried out a total of

19 times by leaving out each of the years from 1987 to

2005 in turn under a cross-validation basis. The spatial

domain for applying CSEOF to the CFS data is 90�W–

75�W and 25�N–40�N, which is large enough to recognize

the large-scale characteristic patterns encompassing the

southeastern US.

The next step is to use multiple regression to find the

statistical relationship between the prominent climate sig-

nals of the observations and the CFS. Multiple regression

was applied to the extracted climate signals and the cor-

responding PC time series obtained from both observation

and the CFS. To find the regressed evolution patterns, the

observed CSEOF mode was declared as a target (predict-

and) followed by regression of the CFS CSEOF mode

(predictor) onto the target. For this regression, the PC time

series of the first ten modes of a predictor, which explain

approximately 70% of the total precipitation variance, were

regressed onto a particular PC time series of the target

(observed CSEOF PC) by multiple regression. This indi-

cates that we use the modeled precipitation as a predictor,

similar to an approach addressed in Widmann et al. (2003).

Variance by the first ten modes contributes substantially to

the overall variance. The remaining several tens of modes

accounted individually for a smaller fraction of total vari-

ability and contributed relatively little to overall predict-

ability. Therefore,

So
nðtÞ ¼

X10

i¼1

aniS
g
i ðtÞ þ eðtÞ; i ¼ 1; 2; . . .; 9; 10 ð3Þ

where So
nðtÞ are the nth mode target PC time series, ani are

the regression coefficients, and Sg
i ðtÞ are the predictor PC

time series. Regression coefficients were determined such

that the variance of regression error, eðtÞ, is minimized.

Once regression coefficients were computed, they were

weighted for each mode (i ¼ 1; . . .; 10) of predictor

eigenfunctions to construct the regressed large-scale CFS

patterns (Bregg
nðrg; tÞ ¼

P
i aniB

g
i ðrg; tÞ), which we assume

are physically consistent with the nth mode of predictand

eigenfunctions. Figure 2 is the example representing the

1st CSEOF modal patterns from observation (Bo
1ðro; tÞ)

(left two columns) and the regressed CSEOF patterns of the

CFS (Breg
g
1ðrg; tÞ) (right two columns) onto the 1st

observational mode via multiple regression. Since CSEOF

was applied to the daily data, CSEOF modes were pro-

duced at daily time steps. In Fig. 2, we took the temporal

average of the 1st CSEOF modal patterns over *30 days

and showed them for each season (MAM and JJA). Spatial

Fig. 1 Upper Geographical areas of three states (FL Florida, GA

Georgia, AL Alabama) in the southeastern United States where the

CFS precipitation is localized by downscaling methods. Blue lines
over the domain represent the spatial grid cells of the CFS whereas

red lines represent the local grid points applied in the statistical

downscaling model. Eight dots with numbers represent locations of

cities, 1 Tallahassee, 2 Jacksonville, 3 Orlando, 4 Miami, 5 Atlanta, 6
Tifton, 7 Birmingham, and 8 Montgomery. Lower A map showing the

station locations used for gridded observation data
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patterns show how certain biased CFS anomalies have been

regressed onto the observed 1st CSEOF patterns. On the

basis of this relationship, the downscaling procedure can

correct biases contained in the CFS data.

Based on the statistical relationship between the

observed climate signals and the CFS data identified from

18-year training, CSEOF PC time series were generated for

the prediction period (the remaining year) (Fig. 3). The

equation for the PC time series generation is given as

Sg
nðtpÞ ¼ Pgðrg; tpÞ � Bregg

nðrg; tÞ; ð4Þ

where Sg
nðtpÞ are the generated nth mode PC time series,

Bregg
nðrg; tÞ are the regressed eigenfunctions of the CFS for

the nth mode obtained from training, rg is the CFS grid

point, and Pgðrg; tpÞ are the CFS anomalies in the predic-

tion period. The anomaly value is the departure from the

mean over the training period.

The downscaled data were constructed using the gene-

rated PC time series and observed eigenfunctions identified

from training (Fig. 3). This is the process of fitting the CFS

anomalies represented by PC to the observed statistics only

Fig. 2 Left two columns (a–f) The 1st mode CSEOF patterns for

observation. Right two columns (g–l) CSEOF patterns for the GSM,

which are obtained by regression onto the first observed CSEOF

mode. CSEOF patterns originally at daily time step have been

averaged over each month to produce the maps shown

Y-K. Lim et al.: Downscaling large-scale NCEP CFS
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for the training period. The downscaled data were finally

constructed by

Dðro; tpÞ ¼
X

n

Sg
nðtpÞ � Bo

nðro; tÞ; ð5Þ

where Sg
nðtpÞ are the generated PCs obtained from Eq. 4,

Bo
nðro; tÞ are the CSEOF eigenfunctions of the observation

for the training period (Eq. 1), and Dðro; tpÞ is the down-

scaled precipitation at local grid point ro over the predic-

tion period tp.

The downscaling procedure delineated in this section was

repeated under cross-validation by leaving out each year

from 1987 to 2005. The remaining 18 years were used to

develop a downscaling model for prediction of the omitted

year. As a result, downscaled daily precipitation for the

entire 19 years has been constructed. The overall down-

scaling procedure is illustrated by the flow chart in Fig. 3.

3.2 Localization of the CFS data via objective analysis

and bias correction

OA in conjunction with bias correction was applied to each

member of CFS data as a simple localization. This was

conducted for comparison with downscaled precipitation

and its frequency of extremes in terms of categorical pre-

dictability. For the OA of the CFS precipitation, we applied

the Cressman OA scheme (Cressman 1959), which makes

successive corrections to an initial guess. Therefore, mul-

tiple steps were made through the grid with increasingly

smaller radii of influence. At each step, the correction

factor based on a distance weighted formula was applied to

errors in order to minimize them. An error is defined as the

difference between the value at the CFS grid point and the

interpolated value at the fine-scale grid point.

Once OA was completed, bias correction was applied to

this interpolated CFS data. The conceptual basis of this

bias correction is equivalent to that described in Wood

et al. (2002). This method consists of remapping the

exceedence probabilities (percentiles) of the objectively

analyzed CFS data to those of the observed data so that

both datasets have identical climatological mean and

probability distribution. Schoof et al. (2009) found that this

bias correction is also useful for removing the systematic

error of the model data.

The basic rationale for the method is that we replace the

OA outputs with values that have the same percentiles as

those seen in observations. For example, if an OA value of

precipitation lies at the 70th percentile of the OA precipi-

tation distribution (that is, not to be exceeded more than

30% of the time), the bias-corrected value would be

the 70th percentile of the observed precipitation distribu-

tion. For this bias-correction, we estimated the proba-

bility distribution for each month at each grid cell

(20 km 9 20 km) using daily OA values and observations,

respectively. From the percentile value of the OA preci-

pitation, we calculated the associated value having the

same exceedence probability in the observed probability

distribution in order to switch the OA value to the asso-

ciated value. We repeated the above correction for each

month such that it is treated independently and seasonal

variations in bias can be considered.

3.3 Categorical predictability evaluation by Heidke

Skill Score

Categorical predictability of the seasonal precipitation

anomalies and the subseasonal extreme events (e.g., fre-

quency of heavy rainfall days and subseasonal dry spells)

Fig. 3 Schematic diagram of

downscaling procedure in the

present study. Downscaling has

been conducted using

Cyclostationary EOF, multiple

regression, and the time series

generation techniques.

Downscaled data are produced

over 19 years (1987–2005)

under the cross-validation

framework
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was assessed at individual grid points in terms of the

Heidke skill score (HSS) (Heidke 1926; Jolliffe and

Stephenson 2003). The HSS is a commonly used categorical

verification score which measures categorical matches

between forecasts and observations (Barnston 1992). Two

category (above/below climatological average), and three

category (above/near/below average) classification meth-

ods have been considered, respectively, for HSS calcula-

tion in this study. The threshold values for three category

classification are ±0.5 standard deviation, or ±1 standard

deviation from the climatological mean. Based on the HSS

formula (Heidke 1926), positive and negative HSS values

indicate, respectively, skill above and below that of random

chance.

3.4 Definition of heavy rainfall days and dry spell

In order to evaluate the performance of the downscaling in

producing the interannual variation of the frequency of

subseasonal extreme events, we investigated the frequency

(MAMJJA) of heavy rainfall days and subseasonal dry

spells each year. We counted the frequency of those events

each year in each member run and averaged the resulting

frequencies over ten members. Then we compared the

performances between downscaling and the objectively

analyzed CFS with bias correction.

A heavy rainfall day is defined as a rainy day with the

rainfall amount exceeding the certain standard deviation

value (e.g., 0.5, 1, and 2) above observational daily cli-

matology. A dry spell is a period of precipitation below a

specific amount. The specific period and amount of pre-

cipitation used for the definition of a dry spell can vary

depending on the particular consideration. In this study, a

dry spell is defined as a 1 week period (or 10 day period)

with the accumulated rainfall less than 0.1 mm/day

(Robertson et al. 2004).

4 Results

4.1 Downscaled fields and long-term variation

The daily CFS precipitation to be downscaled in this study

has been summed for each season and the resulting sea-

sonal patterns are shown in the top panel of Fig. 4 [mm] for

a preliminary comparison with the observed data. In this

figure, the seasonal precipitation amount for each year has

been averaged over 19 years. Observations are shown on

the middle panel. Observation data originally at 20 km

resolution were objectively analyzed to the CFS grid

resolution (2.5 lon.-lat. degree) using the Cressman OA

scheme (Cressman 1959). The observed field shows that

more precipitation is found in the continental area than the

southern coastal region (e.g., Florida) in MAM (Fig. 4b),

whereas the reversed characteristic feature is found in JJA

(Fig. 4e). This feature is reasonably reproduced by the CFS

to a certain extent. However, the CFS data over most grid

points exhibit overestimation, which could be associated

with positive biases of the CFS precipitation on wet days

(Higgins et al. 2008). Exceptions are found over the

northwestern tip of Florida and southwestern Alabama

(Fig. 4a, b, d, e). Overestimation is more distinct over

Georgia, resulting in a precipitation amount comparable to

Florida in JJA (Fig. 4d). The observed precipitation over

Georgia is less than Florida, where the precipitation

amount reaches the maximum (Fig. 4e). Overestimation by

the CFS in MAM is also prominent in Georgia. The pre-

cipitation amount in Georgia is comparable to that over

Alabama (Fig. 4a), where more observed precipitation is

recorded than Georgia (Fig. 4b). Additionally, in the CFS

precipitation, the eastern domain tends to have more pre-

cipitation than the western domain. Observed fields, how-

ever, do not exhibit these east-west differences in either

season.

The CFS skills in the southeast US were reported as very

low in previous studies (Saha et al. 2006). Particularly, the

CFS precipitation for spring and summer has been much

harder to predict than for winter. As shown in the bottom

panel of Fig. 4, the majority of grid points exhibit near zero

correlations (-0.1–0.2) between observation and the CFS

summer precipitation (Fig. 4f). The correlations are rela-

tively higher in spring but they lie in the 0.0–0.3 range

(Fig. 4c).

Approximately 150 local-scale grid cells have been

created within the single CFS grid cell as a result of

downscaling (Fig. 1a), and the downscaled data produce

fine-scale distribution of precipitation with significant

reduction in biases (Figs. 5, 6). The capability of the

downscaling to reproduce both long-term and short-term

precipitation characteristics was investigated. First, in

order to investigate the reproduction of long-term

(*5 years) variation as shown by the running averaged

time series in Fig. 7a (green solid), downscaled daily pre-

cipitation was summed over 6 months (MAMJJA) each

year at individual grid points. Then, the accumulated pre-

cipitations for each year were averaged for the period of

1987–1990 and the following 5 years (1991–1995),

respectively; resulting distributions are shown in Fig. 5.

Additional 5 year mean distributions for the remaining

period (e.g., 1996–2000 and 2001–2005) are presented in

Fig. 6. Figures 5 and 6 illustrate the capability of this

downscaling model in producing fine-scale climate infor-

mation on an interannual time scale from the coarsely

resolved model data. Downscaled fields were plotted in the

middle panel, along with their comparison with observa-

tions (bottom panel) and CFS data (top panel). Figure 5
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reveals that observed rainfall change between two periods

is reasonably reproduced by the downscaling. Also, the

regional distribution of the downscaled field is quite con-

sistent with the observed field (Fig. 5b, c, e, f). Precipita-

tion maxima over the Florida panhandle and southwestern

Alabama, and minima over central Georgia, were accu-

rately captured by the downscaled fields. In addition, wet

biases unveiled from the CFS have been significantly

reduced by the downscaling. The coarse-scale CFS spatial

features on the top panel are apparently different from

observed mean patterns. As seen in Fig. 5a and d, the CFS

spatial fields only describe the coarse-scale patterns. Wet

biases are found all over the domain although precipitation

change between the two periods is properly distinguished.

Fig. 4 Left column Ensemble

averaged 19-year seasonally

accumulated precipitation [mm]

for MAM. Figures from the top
row represent the distribution of

precipitation from the CFS,

objectively analyzed

observation to the CFS grid

scale, and correlations between

them. The scale is denoted by

color bar attached on the right

side. Right column Same as the

left column but for JJA season
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These spatial features of Fig. 5 are found again in Fig. 6.

Reduction in bias, precipitation variation, and detailed

local patterns were faithfully realized through the appli-

cation of the downscaling technique. Consequently, the

downscaled 5 year means reasonably reproduced the

observed rainfall oscillation with long-term cycles

(Figs. 5c, f, 6c, f), which is a feature reported for the US

region (Groisman and Legates 1994).

Figure 7a again compares the observation (black bar)

with downscaled data (red) and CFS data (blue), respec-

tively, in terms of their annual (MAMJJA) rainfall each

year for the entire 19 years. In this figure, we took the area

average over the whole domain and then plotted the annual

precipitation (Fig. 7a). The CFS rainfall tends to overesti-

mate the observed precipitation, confirming the wet biases

described in the previous paragraph. In addition, the

Fig. 5 Left column Ensemble

averaged precipitation [mm/

MAMJJA] field for the period of

1987–1990. Figures from the
top row represent the

distribution of precipitation

from the CFS, downscaling, and

observation. The scale is

denoted by color bar attached

on the right side. Right column
Same as the left column but for

the period of following 5 years

(i.e., 1991–1995)
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interannual change in rainfall amount (i.e., temporal vari-

ance) is smaller than that of downscaled rainfall (standard

deviation ratio (Down./Obs.) = 0.70, (CFS/Obs.) = 0.40).

The root mean square error (RMSE) of the CFS data is

substantially reduced by downscaling (RMSE (Down.) =

145 mm, RMSE (CFS) = 207 mm). Correlations of the

observational rainfall with the two modeled data sets

(downscaling and CFS) are, respectively, 0.41 and 0.11,

indicating that the downscaling outperforms the CFS

forecast. This correlation by downscaling is statistically

significant at 90% confidence.

It appears that Fig. 7a does not reflect any persistent

correlations with ENSO, as the weak relationship in sum-

mer was discussed in previous studies (e.g., Hu and Feng

Fig. 6 Same as Fig. 5 but for

the period of 1996–2000 (left
column) and the period of 2001–

2005 (right column)
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2001). As noted in Gershunov et al. (2003), unclear linkage

with ENSO seems an unfavorable condition for achieving

great seasonal predictability in this region.

4.2 Seasonal precipitation

Downscaling also improves the forecasts of precipitation at

the seasonal timescale. Area-averaged seasonal rainfall for

spring (MAM) and summer (JJA) are shown in Fig. 7b and

c, respectively. At the seasonal timescale, CFS precipita-

tion exhibits overestimation and overdispersion (under-

estimation of variance) and larger RMSE than the

downscaled precipitation (see the corresponding values in

each panel). Correlation values have been substantially

increased by *0.3 (MAM from 0.17 to 0.53, JJA from

0.13 to 0.38) through downscaling. Correlations achieved

by downscaling are statistically significant at 95% confi-

dence for MAM but not significant for JJA. Since the CFS

precipitation utilized for this downscaling is not skillful

and summer precipitation is relatively hard to predict, the

increase of *0.25 is lower than the significance threshold

at 95% confidence.

We examine the year-to-year variation of this seasonal

total precipitation at individual local grid points. The

downscaled seasonal rainfall [mm] were plotted for the

eight selected grid points representing four cities in Florida

(Tallahassee, Orlando, Jacksonville, and Miami), two cities

in Georgia (Atlanta and Tifton) and two cities in Alabama

Fig. 7 Year-to-year variation

of the ensemble averaged

precipitation [mm] summed

over each year (MAMJJA) (top
panel), MAM (middle panel),
and JJA (bottom panel) obtained

from the observation (black
bars), downscaling (red bars),

and CFS (blue bars).

Precipitation at each grid point

is area-averaged over the whole

southeastern US domain. Ratio

of the standard deviation to the

observational standard

deviation, root mean square

error, and correlation with the

observation are provided in the

upper corner of each panel. The

green solid time series on the
top panel represent the running

averaged (±2 years)

observational precipitation

plotted by black bars
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(Birmingham and Montgomery). The grid points were

selected to provide an evenly distributed representation of

the southeastern US domain (see Fig. 1a). Each city also

represents a specific subregion of the southeastern US: the

Florida Panhandle, NE Florida, C. Florida, S. Florida, N.

Georgia, S. Georgia, N. Alabama, and S. Alabama. Figs. 8

and 9 show the seasonal rainfall over those cities, respec-

tively, for spring (MAM) and summer (JJA). The CFS

values with 20 km resolution were constructed for

comparison with the downscaling. They were obtained by

assuming that the CFS values are the same at all local grid

points within the CFS grid, which in turn indicates that a

given CFS value at a local grid point is equivalent to a

value at the nearest CFS grid (Murphy 1999). As seen in

Fig. 8 and 9, overall features at a glance indicate that

observed variations (black bars) are reasonably captured

by downscaled data (red). The CFS data (blue bar) tend

to overestimate the observed time series (e.g., Figs. 8b–h,

Fig. 8 Year-to-year variation of the ensemble averaged seasonal

precipitation. Daily precipitation has been summed over MAM [mm]

each year for the selected local grid points. Precipitation from

observation, downscaling, and CFS is, respectively, denoted by black,

red, and blue bars. Downscaled daily precipitations are summed over

MAM each year for each ensemble member, followed by taking the

average over ensemble members. The same averaging has been

applied to observation and CFS, respectively, for comparison
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9e–g). Predictability by downscaling appears greater since

1999, with less agreement in the early period (e.g., 1988,

1989, and 1994). Poor capture of the observed peaks

appeared in the 1994 JJA (Fig. 9a, e, f, h), and the largest

error produced within the downscaled data was in the 1995

JJA in Miami (Fig. 9d). Nonetheless, overall features

indicate the noticeable increase in correlation and reduction

in RMSE by downscaling at all cities (Table 1). In par-

ticular, the CFS forecasts for summer precipitation show

smoothed year-to-year variation with much smaller

amplitude than that of observation (see standard deviation

ratio). The correlation skill of the downscaled data is

relatively higher than that of the CFS data. Improvement of

the correlation values shows wide variation between local

stations. For instance, Tallahassee shows correlation

improved by 0.1 while Atlanta shows correlation increase

by 0.49. Correlations over six cities (Jacksonville, Orlando,

Miami, Atlanta, Tifton, and Montgomery) exceed statisti-

cal significance threshold at 90% confidence. Again, since

the present downscaling attempts the skill improvement

from the nearly unskillful coarse-scale data, the number of

cities where the correlation satisfies the significance at 90%

confidence for summer is reduced to three (Tallahassee,

Jacksonville, and Tifton).

Fig. 9 Same as Fig. 8 but for JJA
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4.3 Skill evaluations (error variance, correlation,

and categorical predictability)

Predictive skill for seasonal precipitation was evaluated

and compared in further detail at individual grid points by

several skill measures. Figure 10 illustrates the distribution

of the relative error variances (REV) and anomaly corre-

lations computed from the CFS and downscaled data,

respectively. REV and correlation were calculated at each

local grid point. The reference forecast when calculating

the REV is the observed climatology. Also, seasonal cli-

matology has been removed before calculating the corre-

lations. The REV of the CFS data is greater than two

(Fig. 10a) over most of region except for the Florida pan-

handle and southern Alabama. These REVs have been

significantly improved by downscaling. As shown in

Fig. 10b, the REV of the downscaled data lies in 0.6–1.4,

with lower values over Georgia and Florida.

Anomaly correlation of the downscaled precipitation

was compared with the CFS precipitation in the right panel

of Fig. 10. Distributions of correlations from downscaling

reveal wide variations in skill between grid points

(Fig. 10d). Correlations range from 0.3 to 0.6 over most

grid points over Georgia and the Florida peninsula except

for the southeastern tip of Florida. Alabama and the wes-

tern Florida panhandle areas exhibit relatively lower cor-

relations than Georgia. Compared with correlations by

downscaling, the CFS data tend to exhibit lower correla-

tions (0–0.2) with observation (Fig. 10c). Increases in

correlations through the application of downscaling are

largest in Florida and Georgia, and moderate in Alabama

(Fig. 10c, d). The present downscaling has improved the

correlation over 1,156 grid points out of a total of 1,252

grid points (i.e., 92%). However, the number of grid points

that satisfy the statistical significance at 90% confidence is

710 out of total of 1,252 grids (i.e., 57%). Also, 43% out of

the total area exceeds the statistical significance threshold

at 95% confidence.

Compared with surface Tmax addressed in Lim et al.

(2007), the downscaled precipitation reveals relatively

lower correlation with observed precipitation. Previous

studies have described difficulties in obtaining demon-

strable predictive skill on seasonal prediction of local

precipitation (Schmidli et al. 2007), especially for summer

(Murphy 1999). The Southeast US has been identified as a

difficult region for prediction of summer precipitation due

to the dominant local-scale convective processes.

Categorical predictability on the seasonal anomalies

was assessed at individual grid points in terms of the

HSS (Heidke 1926; Jolliffe and Stephenson 2003). Two

kinds of classifications were considered in this study as

they were described in detail in Sect. 3.3. The spatial

pattern of HSS in the left panel of Fig. 11 clearly shows

the positive score values over most grid points [1,199

grid points (96%)] from downscaling (Fig. 11a), indi-

cating a skill greater than random forecast. Note that if

the probability of correct forecasts is merely expected by

chance in the absence of any forecasting skill, the HSS

results in zero based on its formula (Heidke 1926;

Barnston 1992). Many grid points have HSSs exceeding

0.1, with some reaching 0.5 over Georgia and the Florida

peninsula. On the other hand, predictability by the CFS

data shown in Fig. 10b reveals mostly the HSS values

from -0.1 to 0.1, suggesting low predictability for sea-

sonal precipitation. 1185 grid points (95%) show higher

HSS by downscaling. Higher HSSs by downscaling are

again found for three category predictability as shown in

Fig. 11d, e. At 1,098 grid points (88%) three category

HSS by downscaling is positive, while 581 grid points

(46%) show positive HSS by CFS. At 1,003 grid points

(80%), three category HSS by downscaling is higher than

CFS.

Table 1 Standard deviation ratios (downscaling/observation, CFS/observation), root mean square errors [mm] and correlations for MAM (left

three columns) and JJA (right three columns) precipitation for the selected local cities shown in Fig. 8

MAM (spring) JJA (summer)

std/std (O) RMSE Corr. std/std (O) RMSE Corr.

D C D C D C D C D C D C

Tallahassee 0.54 0.49 122 128 0.38 0.28 0.61 0.29 135 165 0.50 0.14

Jacksonville 0.51 0.65 81 173 0.63 0.25 0.69 0.39 111 137 0.42 0.09

Orlando 0.49 0.57 87 177 0.57 0.21 0.42 0.17 156 192 0.28 0.04

Miami 0.61 0.70 75 138 0.43 0.18 0.57 0.21 163 173 0.33 -0.15

Atlanta 0.41 0.55 80 247 0.48 0.09 0.63 0.65 122 333 0.32 0.07

Tifton 0.62 0.64 78 202 0.58 0.10 0.75 0.57 97 251 0.44 0.10

Birmingham 0.38 0.41 98 166 0.32 0.06 0.75 0.71 115 178 0.23 0.08

Montgomery 0.46 0.40 112 148 0.41 0.19 0.73 0.56 144 150 0.30 0.20

D and C in the third row, respectively, stand for downscaling and CFS
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The HSS of the downscaled seasonal anomalies were

additionally compared with the localized CFS into 20 km

grids by OA and bias correction (Fig. 11c, f). Two-cate-

gory HSS patterns reveal better prediction through down-

scaling (Fig. 11a, c). 988 grid points (79%) exhibit higher

HSS by downscaling. As shown in Fig. 11c, a majority of

HSSs from CFS range between -0.1 and 0.2 and down-

scaled data (Fig. 11a) exhibit generally higher HSSs than

the CFS by OA and bias correction. Domain averaged HSS

is 0.21 (downscaling) and 0.09 (CFS), respectively. These

higher HSSs indicate that the present downscaling better

explains the local-scale seasonal anomaly, which cannot

be adequately reproduced by bias corrected OA. Three

category HSSs (Fig. 11d, f) represent similar features.

However, the domain averaged HSS is reduced to,

respectively, 0.11 (downscaling) (Fig. 11d) and 0.03 (CFS)

(Fig. 11f). The number of grid points showing greater HSS

by downscaling has also reduced to 928 (74%).

4.4 Daily and subseasonal precipitation statistics

(heavy rainfall days and dry spells)

There have been increases in the annual frequency of heavy

rainfall days over the past several decades in the US

(Higgins et al. 2007). Such heavy rainfall events, and dry

spells, play a significant role in determining the agricultural

yields and regional hydrology. Accurate prediction of the

frequency of these events is, therefore, essential for suc-

cessful agricultural production and water management over

the southeast US (Robertson et al. 2007). We now inves-

tigate the frequency (MAMJJA) of heavy rainfall days and

subseasonal dry spells produced by the downscaling and

the localized CFS by OA and bias correction. How we

define and count the heavy rainfall days each year was

described in detail in Sect. 3.4.

Figure 12 depicts the interannual change in the number

of heavy rainfall days for the representative locations. In

Fig. 10 Left column
Geographical distribution of the

relative error variance based on

observed climatology for the

CFS (upper panel) and the

downscaled seasonal

precipitation (lower panel). The

scale is denoted by color bar on

the bottom (dimensionless).

Right column Same as the left

column but for the seasonal

anomaly correlation. Seasonal

climatology has been removed

before calculating correlations
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this figure, the threshold value that defines the heavy

rainfall is 1 standard deviation above climatology (Saha

et al. 2006). In other words, if there is a rainy day when the

amount is larger than the sum of the daily climatological

mean and 1 standard deviation, it is considered to be a

heavy rainfall day. Blue bars (localized CFS by OA and

Fig. 11 Geographical

distribution of categorical

predictability in terms of HSS

for the downscaled seasonal

precipitation and the CFS. Two

categories (above/below

seasonal climatological

average), and three categories

(above/near/below seasonal

climatological average) are

considered for this HSS

calculation. The left column,
from the top row, represents the

two-category HSS calculated

from downscaling, the CFS, and

objectively analyzed CFS with

bias correction. The right

column is the same as the left

column but for three category

HSS distribution
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bias-correction) indicate that the bias correction proposed

in this study corrects the underestimation problem that can

arise when only OA is applied (green bars). Obviously, OA

will be limited in terms of properly capturing the short-

term extreme events due to the inherent interpolation

process. However, the CFS with OA and bias correction

still has a limited ability to properly reproduce the observed

number of annual heavy rainfall days. For example, it (blue

bar) exhibits less distinct interannual change in amplitude

than the downscaled series (red bar) (see standard deviation

ratio in each panel). This little amplitude change is much

clearer over Orlando and Atlanta, indicating the need for

downscaling for a more desirable capture of observed

extreme events. Downscaling shows relatively larger

interannual changes in amplitude than the CFS with OA

and bias correction (compare the standard deviation ratios).

Also, observed variation is particularly well reproduced

by the downscaling since 1999. Correlation comparisons

Fig. 12 Year-to-year variation of the annual frequency of heavy

rainfall days. Heavy rainfall event is defined as a day when the

rainfall amount is greater than one standard deviation above the

observed daily climatology. Black, red, green, and blue bars,

respectively, represent the frequency variation in time by observation,

downscaling, localized CFS by OA only, and localized CFS by OA

and bias correction. Ratio of the standard deviation to the observa-

tional standard deviation (S), root mean square error (R), and

correlation (C) with the observation are provided in the upper corner

of each panel. D and C in parentheses stand for downscaling and CFS,

respectively
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noted in each panel clarify that the present downscaling

outperforms the localized CFS by OA and bias correction.

It is not encouraging, however, that only four cities

(Jacksonville, Orlando, Atlanta, and Tifton) satisfy the

statistical significance at 90% confidence in terms of cor-

relation. As addressed in Gershunov et al. (2003) and Saha

et al. (2006), successful prediction of rainfall extremes for

the growing season across the southeast US remains

challenging.

We now assess the categorical predictability on the

frequency of heavy rainfall day each year in terms of HSS.

Two different threshold values defining the heavy rainfall

(i.e., 0.5 std. ? climatological daily precipitation, and 1

std. ? climatological daily precipitation) were considered.

Fig. 13 Geographical

distribution of categorical

predictability in terms of HSS

for the frequency of daily heavy

rainfall events each year.

Threshold value for heavy

rainfall is the daily rainfall

amount greater than half a

standard deviation above

observed daily climatology. The

left column, from the top row,

represents the two-category

HSS calculated from

downscaling, localized CFS by

OA and bias correction, and

their difference (downscaling

minus localized CFS by OA and

bias correction). The right

column is the same as the left

column but for three category

HSS distribution
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Then we counted the number of heavy rainfall days each

year and calculated the HSS. Two-category (above/below

average) and three category statistics (above/near/below

average) are, respectively, considered for HSS calculation.

The HSSs calculated from the downscaled data were

compared with those from the localized CFS by OA and

bias correction. Figure 13 (0.5 std.) and 14 (1 std.) depict

the resulting HSSs at each local grid point. The distribution

of HSSs in Fig. 13a reveals the reliable prediction of the

number of heavy rainfall days each year by downscaling.

HSS values are positive but for a few grid points scattered

over northern Alabama and southern Florida. Most areas,

including Georgia, Alabama, and central and northern

Florida, exhibit HSSs exceeding 0.1 and approaching up to

0.5. The result from the CFS also shows the positive HSSs

over grid points (0–0.2) but concurrently, negative HSSs

are observed over many grid points (Fig. 13b). A com-

parison indicates that HSS values by downscaling are, in

general, greater than those of the CFS, as is clarified in the

difference map in Fig. 13c. 1,035 grid points (83%) show

higher HSS by downscaling. All area averaged HSS is,

respectively, 0.20 (downscaling) and 0.07 (CFS). The

similar relative difference between downscaling and

localized CFS is found again from the three category HSS

evaluation on the right column of Fig. 13. Nearly all grid

points except for southern Florida and northwestern Ala-

bama [1,049 (84%)] show improved HSS by downscaling

(Fig. 13f). However, HSS values are, overall, smaller than

those for two-category predictability. Georgia, northeastern

Florida, and eastern Alabama show HSSs at least higher

than 0.1, while remaining areas show lower HSSs

(Fig. 13d). HSSs by the CFS are negative in a majority of

grid points (Fig. 13e). Figure 14 shows a quite similar

distribution of HSSs. The area averaged HSS for two

category classification is, for example, 0.21 (downscaling)

(Fig. 14a) and 0.06 (CFS) (Fig. 14b). The same calculation

for the three category HSS yields, respectively, 0.13

(downscaling) (Fig. 14d) and -0.01 (CFS) (Fig. 14e).

Reasonable probabilistic prediction of heavy rainfall fre-

quency is valuable in that annual rainfall has a strong

contribution from extreme events (Higgins et al. 2007).

Differences among data produced by downscaling, local-

ized CFS by OA and bias correction, and OA only,

respectively, are good indicators that the reasonable

downscaling is indeed essential for better prediction of

extreme events at fine spatial scales, although the pro-

nounced improvement is unfortunately not achieved for

frequency of dry spells in the following discussion.

The same calculation of HSS for the annual frequency of

dry spells (accumulated precipitation of less than 0.1 mm/

day for a week) (Robertson et al. 2004) shows a lower skill

than that for seasonal precipitation anomalies and annual

heavy rainfall days. As shown in Fig. 15a, scores greater

than *0.2 by downscaling are limited over southern Ala-

bama and northern and eastern Georgia. Nearly zero values

or negative HSS values are seen over many other regions.

Comparison between the downscaling (Fig. 15a) and the

localized CFS by OA and bias correction (Fig. 15b) indi-

cates the substantial increase in HSSs by downscaling over

Alabama and Georgia (Fig. 15c). However, all area aver-

aged HSS by the downscaling remains 0.10 (CFS 0.03),

which is lower than that for the seasonal precipitation and

annual heavy rainfall days. The identified features here are

seen again for three category HSSs and different definitions

of the dry spell [e.g., a 10 day rainless period (Robertson

et al. 2004; Higgins et al. 2008)]. Area averaged HSS for

definition of 10 day rainless period is, respectively, 0.10

(downscaling) and 0.06 (bias corrected OA) (Figure not

shown).

The distribution of HSSs demonstrates that the down-

scaling reasonably contributes to the local-scale prediction

of heavy rainfall frequency. However, results also hint at

the difficulty of local-scale prediction of growing season

precipitation. Prevailing rainfall events over this region are

convective in nature, indicating that most rainfall, parti-

cularly for the summer season, is not directly associated

with the large-scale atmospheric circulation. This provides

poor conditions for accurate downscaling from the large-

scale fields (Trigo and Palutikof 2001; Friederichs and

Hense 2007). Specifically, prediction of subseasonal dry

spells should be significantly improved in order to increase

the demonstrable skill in further studies.

5 Concluding remarks and discussion

Coarsely resolved daily precipitation simulated from the

NCEP/CFS (2.5� resolution) has been downscaled to a fine

spatial scale of 20 km 9 20 km for the southeastern US,

covering Florida, Georgia, and Alabama, by the CSEOF-

based statistical downscaling model introduced in Sects. 1

and 3. The main purpose of this study is to better predict

the seasonal precipitation and extreme event frequencies at

a finer spatial resolution than the coarse-scale model.

Previous studies using the coarsely resolved model data

have discussed difficulties in downscaling precipitation for

summer (Murphy 1999; Friederichs and Hense 2007) with

greater success for winter (Cocke et al. 2007). Strong

interannual variation of precipitation, resulting from strong

dry spells, and frequent heavy convective rainfalls,

accompanied by either local thunderstorms or hurricanes,

represent additional prediction challenges over the south-

eastern US. In this study, 19-year CFS precipitation

seasonally integrated for the crop growing season

(e.g., MAMJJA) with ten members has been downscaled

for the period of 1987 to 2005. For skill assessment, the
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downscaled precipitation was compared with the localized

CFS at 20 km resolution. Forecast error has been also

investigated by comparing downscaled forecasts with ref-

erence estimates.

The results demonstrate that the downscaling proposed

in this study outperforms the coarse-scale CFS and the

localized CFS derived from OA and bias correction in

terms of the seasonal prediction of precipitation and heavy

rainfall frequencies. The downscaled seasonal precipitation

patterns and their long-term temporal variation better

reproduce the observed precipitation than the CFS.

The ratio of the standard deviations, RMSE, and correla-

tion has been improved by downscaling. Error statistics

compared with those of reference estimates (e.g., observed

Fig. 14 Same as Fig. 13 but for

the threshold value of 1 standard

deviation above observed daily

climatology
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climatology) and wet biases found in the CFS have been

substantially reduced by the downscaling. For instance, the

relative error variance of the downscaled data to the ref-

erence error variance (e.g., observed climatology) lies in

the 0.6–1.4 range, while the CFS yields a relative error

variance larger than two over a majority of grid points.

Downscaled seasonal anomalies exhibit correlations from

0.3 up to 0.6, in general, over the Florida peninsula and

central and southern Georgia. This correlation range cor-

responds to the correlation increase by 0.1–0.5 from the

unskillful CFS. For inland regions such as northern Geor-

gia and Alabama, however, correlations for downscaled

anomalies are apparently not high. Causes of the relatively

lower correlation over inland regions and higher

Fig. 15 Same as Fig. 13 but for

the subseasonal dry spell. Dry

spell is defined as a week period

with the accumulated rainfall

amount less than 0.1 mm/day
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correlation over Florida and southern Georgia need to be

further investigated. It appears that the downscaled sea-

sonal predictive skill is, to a certain extent, dependent on

the coarse-scale model capability. This indicates that the

successful global model performance would be preferred to

obtain more desirable downscaled fields. Because of the

poor skill of the large-scale CFS, the increased correlations

found over nearly all grid points (92% of the total number

of grid points) by downscaling are not statistically signif-

icant at all grid points. Approximately 60% out of the total

number of grid points satisfy the statistical significance at

90% confidence.

Categorical prediction is also improved through appli-

cation of downscaling. Considering two-category predict-

ability (above/below average), the localized CFS by OA

and bias correction exhibit HSSs ranging from -0.1 to 0.2

over a majority of grid points. HSSs computed from

downscaled data range from 0.1 to 0.5, with the exception

of a few grid points. The downscaled data also exhibit

better performance for frequency of heavy rainfall days.

Area averaged HSSs by downscaling are 0.20–0.21 for

different definitions of a heavy rainfall day, while the HSSs

by CFS result in 0.06–0.07. Specifically, the interannual

amplitude change of the frequency is much less pronounced

by CFS than by downscaling.

Our study has shown the potential improvement of local

scale predictive skill achieved through downscaling of

coarse resolution CFS output. However, the improved skill

values were not statistically significant all over the grid

points. In addition, skill was not yet very encouraging for

the prediction of subseasonal dry spell frequency. A variety

of downscaling attempts under different downscaling

strategies and configurations will be continued in the next

study for further improvement of predictive skill.
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