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ABSTRACT

This paper compares the skills of four different forecasting approaches in predicting the 1-month lead time

of the Malaysian winter season precipitation. Two of the approaches are based on statistical downscaling

techniques of multimodel ensembles (MME). The third one is the ensemble of raw GCM forecast without any

downscaling, whereas the fourth approach, which provides a baseline comparison, is a purely statistical

forecast based solely on the preceding sea surface temperature anomaly. The first multimodel statistical

downscaling method was developed by the Asia-Pacific Economic Cooperation (APEC) Climate Center

(APCC) team, whereas the second is based on the canonical correlation analysis (CCA) technique using the

same predictor variables. For the multimodel downscaling ensemble, eight variables from seven operational

GCMs are used as predictors with the hindcast forecast data spanning a period of 21 yr from 1983/84 to 2003/04.

The raw GCM forecast ensemble tends to have higher skills than the baseline skills of the purely statistical

forecast that relates the dominant modes of observed sea surface temperature variability to precipitation.

However, the downscaled MME forecasts have higher skills than the raw GCM products. In particular, the

model developed by APCC showed significant improvement over the peninsular Malaysia region. This is

attributed to the model’s ability to capture regional and large-scale predictor signatures from which the

additional skills originated. Overall, the results showed that the appropriate downscaling technique and

ensemble of various GCM forecasts could result in some skill enhancement, particularly over peninsular

Malaysia, where other models tend to have lower or no skills.

1. Introduction

Short-term climate variability can have negative im-

pact on the socioeconomic well being of the general pop-

ulation of Malaysia. Recurrent flood episodes during the

intense winter monsoon period often results in massive

evacuation, destruction of public infrastructure, crop

yield damage, and loss of lives, particularly in the low-

lying areas in the eastern coast of peninsular Malaysia

and northern Borneo. For example, the extreme flood

event that occurred in southern peninsular Malaysia be-

tween December 2006 and January 2007 resulted in the

evacuation of more than 200 000 people, 16 deaths, and

economic losses of more than 500 million U.S. dollars
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(Tangang et al. 2008). In big cities like Kuala Lumpur,

frequent flash floods can be a real threat if not properly

mitigated. On the other hand, the El Niño–induced

prolonged drought often causes severe water shortages;

damages rain-fed crops; and exacerbates haze episodes,

which in turn can lead to other problems such as poor

visibility and unhealthy air quality (Fuller et al. 2004;

Gutman et al. 2000; Page et al. 2002). To minimize the

damages and associated risks of climate-related disasters,

relevant authorities must practice effective climate risk

management. Skillful seasonal climate forecasts are rel-

evant to this issue.

Seasonal forecasts are generally provided by a general

circulation model (GCM). GCM products such as the

European Centre for Medium-Range Weather Forecasts

(ECMWF) seasonal forecasts could be useful for large-

scale regions such as the greater Southeast Asian region;

however, because of their coarse resolution of several

hundred kilometers, they may have limited practicality

for small-scale local administrative areas within the re-

gion. In addition to this, because of the difficulty of sim-

ulating rainfall processes, the rainfall forecast of GCMs

may not be as skillful as other variables. However, GCMs

can provide skillful seasonal forecasts of mean circula-

tion, particularly in the tropics (e.g., Stockdale et al. 1998;

Charney and Shukla 1981), and such information may be

used to forecast rainfall at a localized area. It has been

shown that forecasting skills for rainfall at a local area

can be further improved using a statistical downscaling

of dynamically forecast atmospheric variables (Feddersen

and Andersen 2005; Chu et al. 2008; Landman and

Tennant 2000; Pavan et al. 2005). Kang et al. (2007)

showed significant skill improvement compared to that

of the GCMs when a statistical downscaling of GCM

output variables was used to forecast precipitation over

some areas in the Philippines and Thailand.

Statistical downscaling aims to specify the empirical

relationships between the local-scale rainfall (referred to

as the predictand) and the large-scale field (referred to as

the predictor). However, if the predictors used are dy-

namically predicted fields, the scheme is usually referred

to as model output statistics (MOS). These relationships

are then used to infer local changes by means of projec-

ting the large-scale information onto the variability at

local scale (Zorita and von Storch 1999). The technique

bridges the scale differences between the coarse resolu-

tions of the GCM output and the local-scale precipitation,

and it also possibly corrects the GCM’s systematic errors.

The major drawback of this approach is the need for

a long series of hindcast data of an unaltered model. Ev-

ery time the GCMs undergo a major update, a long series

of hindcast must be recomputed to derive a new empirical

relationship between the predictands and predictors.

Another significant advancement in seasonal climate

forecasts over the past few decades was the use of com-

positing multiple GCM forecast techniques to obtain the

multimodel ensemble (MME) forecast (Krishnamurti

et al. 1999; Palmer and Shukla 2000). The MME tech-

nique provides an effective way to handle any uncer-

tainties among the GCMs. Combining the MME and

downscaling have proven to have further increased the

forecast skills. Kang et al. (2007) showed that the down-

scaled MME forecasts for some areas in Thailand and

the Philippines using six GCMs were more skillful than

any individually downscaled GCMs forecast. Chu et al.

(2008) also reported a similar conclusion for seasonal

precipitation predictions in Taiwan.

Statistical models are less expensive than dynamical

models. The skill of the statistical forecast can be used

as a baseline comparison for dynamical forecasts (with

or without downscaling). In this context, running GCMs

cannot be justified if the statistical forecasts are more

skillful. However, if the two methods produce compa-

rable skills, the difference between the two types of fore-

casts can reveal uncertainties. For the Malaysian region,

Juneng and Tangang (2008) formulated a purely statistical

seasonal prediction system using the canonical correla-

tion analysis method. The model uses dominant modes

of observed sea surface temperatures over the Indo-

Pacific region for the preceding four seasons. The model

generally produced useful skills for areas over northern

Borneo for up to 5 months lead time and lower or no

skills over peninsular Malaysia. Given the enhancement

of skills using MME downscaling over the neighboring

countries as highlighted in Kang et al. (2007), the same

could be expected for the Malaysian region. In the current

study, we examine the seasonal forecast skills of two dif-

ferent MME downscaling techniques: 1) the Asia-Pacific

Economic Cooperation (APEC) Climate Center (APCC)

scheme (Kang et al. 2007) and 2) the canonical corre-

lation analysis (CCA) MME scheme. The skills of these

two MME downscaling techniques were compared with

the raw MME. A purely statistical CCA model based

solely on the observed SST is used as a benchmark

(Juneng and Tangang 2008). The next section describes

the dataset used in the study. Section 3 elaborates on

the results, whereas section 4 provides a summary and

conclusions.

2. Data and methods

a. The datasets

Hindcast data from seven global models with the

target seasons of December–February (DJF) were used

as inputs (or predictors) for the statistical downscaling

models. These datasets are of the Seasonal Prediction
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Model Intercomparison Project (SMIP) type of forecast

experiment with 1-month lead time (Kang et al. 2007).

The models were developed and operated by seven op-

erational centers (Table 1), and the data were archived at

APCC, Busan, Korea. For the Central Weather Bureau

(CWB) model, the sea surface temperature (SST) used

for lower boundary forcing was the persistence of obser-

vation; for the Voeikov Main Geophysical Observatory

(MGO), Meteorological Research Institute (METRI),

Seoul National University (GCPS), Korea Meteorologi-

cal Agency (GDAPS), and Japan Meteorological Agency

(JMA) models, the SST was the forecasted product. The

National Centers for Environment Prediction (NCEP)

model was the only coupled model in the group. The

variables selected as potential predictor candidates include

the sea level pressure (SLP), the 850-hPa air tempera-

ture (T850), the surface temperature (T2M), the 500-hPa

geopontential height (Z500), the 850-hPa wind velocity

fields (U850 and V850), and the 200-hPa wind velocity

fields (U200 and V200).

We also compared the GCM’s output downscaling ap-

proaches with a pure statistical model based on preceding

seasonal SST. The SST used was the second version of the

optimally interpolated SST (OISST; Reynolds et al. 2002).

Four consecutive seasonal anomalies [DJF, March–May

(MAM), June–August (JJA), and September–November

(SON)] that preceded the targeted season of DJF were

stacked to capture the evolution of the SST over a 1-yr

period. Further details on the treatment and processing

of the SST predictor data are described in Juneng and

Tangang (2008). The target rainfall (or the predictand)

data were provided by the Malaysian Meteorological

Department (MMD). The geographical distribution of

the 30 stations used is shown in Fig. 1. These stations are

the principle stations from which the collected data were

of good quality. The seasonal total was obtained by

TABLE 1. Description of the hindcast experiments used in the current study, with the data type being either Seasonal Prediction Model

Intercomparison Project/Historical Forecast Project (SMIP/HFP) or CMIP/HFP.

Acronym Participating institution Resolution Data type

CWB Central Weather Bureau, Chinese Tapei T42L18 SMIP/HFP

GCPS Seoul National University, Korea T63L21 SMIP/HFP

JMA Japan Meteorological Agency, Japan T63L40 SMIP/HFP

GDAPS Korea Meteorological Agency, Korea T106L21 SMIP/HFP

METRI Meteorological Research Institute, Korea 58 3 48 L17 SMIP/HFP

MGO Voeikov Main Geophysical Observatory T42L14 SMIP/HFP

NCEP National Centers for Environment Prediction T62L64 CMIP/HFP

FIG. 1. The geographical distribution of the rainfall stations used in the study. The stations used

in Fig. 5 were labeled 1–4.
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summation of daily rainfall from each DJF season. Both

the predictor field and the precipitation field span a com-

mon period of 21 yr from 1983/84 to 2003/04.

b. The APCC downscaling scheme

The downscaling scheme developed by the APCC team

was based on the multipredictor optimal selection method

(Kang et al. 2007). The first step includes the identification

of the coupled pattern and transfer function between the

station rainfall and the predictor. A movable optimal

window scans through the whole globe for an optimal area

where the summation of correlation coefficients between

predictand and the predictor reaches maximum. The

projection of predictors within this optimal window is

obtained based on the weighting of the correlation co-

efficient values. The relationship between the predictor

projection and the local rainfall was established using

simple linear regression. This method captures the large-

scale signals related to the local-scale variability of pre-

cipitation and minimizes the impact of climate drift in

models (Kang et al. 2007). The process is repeated for each

station using each of the eight predictor variables. For

each station, the best predictor variables with the highest

skill is selected and the established relationship is used for

forecast downscaling. This method allows different sta-

tions to have different predictors that best describe the

variation of the winter precipitation. For each station, the

ensemble forecast is represented by a simple composite

from each GCM’s most skillful prediction. A detailed

description of the model is presented in Kang et al. (2007).

c. Canonical correlation analysis

The CCA technique extracts an optimal linear com-

bination between two multivariate fields to produce

maximum correlations (e.g., Barnett and Preisendorfer

1987; Graham et al. 1987; Barnston and Ropelewski

1992; Barnston 1994; He and Barnston 1996; Juneng and

Tangang 2008). In this study, the technique was used in

downscaling the GCM’s output variables and in the pure

statistical forecast model in which the observed preced-

ing SST was used as a predictor. In both cases the pre-

dictor and target fields were prefiltered separately using

the empirical orthogonal function analysis (EOF; e.g.,

Jackson 1991). The mode selection criterion for both the

predictor and predictand fields was based on a minimum

of 80% total explained variance. The CCA mode trun-

cation was based on the Guttman–Kaiser criterion where

only the modes that have an eigenvalue greater than

the average eigenvalue were retained (Jackson 1991;

Landman and Tennant 2000).

For the downscaling experiment, the CCA was ap-

plied by linking each of the eight predictor variables to

the local precipitation field. For a particular GCM model,

the best predictor is selected based on the highest average

correlation skill over all the stations. The selected CCA

relationship between that predictor and the DJF rainfall

FIG. 2. The correlation skill scores of the raw GCM output (light gray), the CCA downscaling scheme (dark gray), and the APCC

downscaling scheme (black) for Malaysian winter monsoon rainfall anomalies averaged over (a) East Malaysia and (b) peninsular

Malaysia. The bars with an asterisk indicate averaged skill scores significant at 95% levels.
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is used for the downscaling forecast. As in the APCC

scheme, a simple average over all downscaling forecasts

of all the GCM’s candidates was taken as the CCA mul-

timodel ensemble downscaling forecast (CCA-MME).

d. Forecast validation

Artificial skills associated with the overfitting of ran-

dom noise are a common problem for all empirical

FIG. 3. The El Niño minus La Niña com-

posite of DJF hindcasted 850-hPa winds of

(a) CWB, (b) CGPS, (c) JMA, (d) GDAPS,

(e) METRI, (f) MGO, and (g) NCEP. The

El Niño years (1987/87, 1987/88, 1991/92,

1994/95, 1997/98, and 2002/03) and La Niña

years (1984/85, 1988/89, 1995/96, 1998/99,

1999/2000, and 2000/01) were defined by

Climate Prediction Center based on the

Oceanic Niño Index (ONI).
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prediction schemes. To minimize such shortcomings,

a leave-one-out cross-validation scheme is applied

(Barnston and Ropelewski 1992; Barnston 1994; He and

Barnston 1996; Yu et al. 1997) for all techniques, in-

cluding the pure statistical model. This is justified, be-

cause the interannual autocorrelation in the data is small

and insignificant. The skill score used was the correlation

value between the cross-validated time series and the

observed precipitation. Given the rather short data pe-

riod of only 21 yr, the significance of the correlation

scores were accessed using a Monte Carlo randomization

test (Wilks 1995). For each of the test, 10 000 replicas

were used. All the tests were performed at the 95% level.

3. Results and discussion

a. Cross-validated skill scores

This section compares the skill scores of four different

models: 1) the APCC multimodel ensemble downscal-

ing scheme (APCC-MME); 2) the CCA-MME; 3) raw

GCM-simulated rainfall, interpolated to the station co-

ordinates; and 4) a purely statistical model based on ob-

served SST as predictor (CCA-SST). Figure 2 depicts the

cross-validated correlation skill scores averaged over two

separate regions: East Malaysia and peninsular Malaysia.

Anomalous rainfall during the winter season over these

two regions appeared to be governed by different mech-

anisms. The ENSO influence tends to be dominant over

East Malaysia (northern Borneo) during the winter sea-

son because of anomalous cyclonic/anticyclonic circula-

tion over the western North Pacific during the period

(Juneng and Tangang 2005). However, the extent of the

circulation does not reach peninsular Malaysia; hence,

the ENSO signal is weak over the region. This resulted in

much lower seasonal rainfall predictability over penin-

sular Malaysia than over East Malaysia during this period

(Juneng and Tangang 2008).

Consistent with Juneng and Tangang (2008), raw GCM

forecasts performed relatively better over East Malaysia

than over peninsular Malaysia (Fig. 2). Among the GCMs,

the CWB and NCEP models provide high skill scores over

East Malaysia, with cross-validated correlation values of

0.45 and 0.50 (significant at 95% level), respectively. The

GDAPS model registered the lowest skill score of 0.07

(not significant at 95% level). Averaging the raw GCM

simulated precipitation to form the raw GCM ensemble

(RAW-MME) provides only a marginal skill improve-

ment, although it is higher overall than any single in-

dividual model. This indicates that the multimodel

ensemble mean reduces the effect of biases that are

specific to individual GCMs. For the peninsular Malaysia

region, the GCM’s skills appear to be modest with the

most skillfull one appearing to be the GCPS, followed by

the CWB. Other models such as GDAPS and MGO

appear to have very low or no skills over this region.

However, the RAW-MME provides only a modest skill

improvement compared to both GCPS and CWB models.

The downscaling technique provides skill improve-

ment over the raw GCM forecasts especially for the

APCC-MME (Fig. 2). This suggests that the GCMs

have less capability in simulating the local precipitation

but can simulate the large-scale atmospheric variables

FIG. 4. The spatial distribution of correlation skill scores for the Malaysian winter monsoon rainfall anomalies

based on (a) raw GCMs output ensemble, (b) downscaled CCA-MME, (c) downscaled APCC-MME, and (d) pure

statistical forecast.
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relatively well and can be further manipulated to provide

a reasonable forecast of seasonal rainfall at local stations.

In the Maritime Continent, climate is characterized by

strong local convections (Chang et al. 2005). The pa-

rameterization of convection in GCMs generally cannot

provide information at local or station scale (Neale and

Slingo 2003). By downscaling, the large-scale signal in the

GCMs can be statistically related to local rainfall, and this

can enhance forecast skills. However, the two downscal-

ing techniques tend to perform differently in some

models. In the East Malaysian region, the APCC down-

scaling procedure appears to be superior to that of the

CCA technique, except for the GDAPS and METRI

models. In peninsular Malaysia, the CCA downscaling

technique tends to have much lower skills compared to

APCC, especially for the GDAPS, METRI, and MGO

models. A general increment of 10%–15% of skill dif-

ferences can be obtained by using the APCC scheme

compared to that of the CCA downscaling method. This

could be due to the optimal selection of predictor vari-

ables and predictor windows for each of the stations in the

APCC scheme, allowing for better extraction of local

variability, which may be important at station-scale vari-

ation. In the CCA method, prefiltration with EOFs results

in a truncation of local variances in both the predictor and

the target field. Generally, the APCC downscaling tech-

nique performs better over East Malaysia than over

peninsular Malaysia. This may suggest that most GCMs

capture the large-scale cyclonic/anticyclonic circulation

over the western North Pacific during the period of

ENSO occurrence in which the skills may originate from.

Figure 3 shows the El Niño minus La Niña composites of

the hindcasted DJF 850-hPa wind vectors for each of the

GCMs used. The Philippine cyclone/anticyclone is gen-

erally reproduced in the GCMs, except for slight varia-

tions in the intensities and the locations of the center.

The APCC multimodel ensemble forecast performs

much better than the CCA multimodel ensemble and

the raw GCM multimodel ensemble. In fact, the APCC-

MME appears to perform significantly better than the

CCA-MME for both regions, with an average skill score

exceeding 0.6. In peninsular Malaysia particularly, the

FIG. 5. The observed (dotted) and the APCC downscaled MME (solid) absolute winter monsoon rainfall anomalies at (a) Kudat,

(b) Kuching, (c) Kuala Terengganu, and (d) Subang. Both the correlation coefficients and root mean squared errors are shown. The

geographical locations of the stations are highlighted in Fig. 1.
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skills improved twofold compared to the RAW-MME.

The improvement of forecast skills by the downscaling

and ensemble of the GCM forecast products signifies

important progress over previous work. In general, there

is essentially no or weak predictability of Malaysian win-

ter monsoon rainfall using purely statistical models over

peninsular Malaysia (Juneng and Tangang 2008). As

shown in Fig. 2, the skills based on the pure CCA model

are much lower than the APCC-MME, especially over

peninsular Malaysia. This indicates that the large-scale

oceanic information preceding the winter season may not

be sufficient to explain the local component of the rain-

fall variability. In addition to the large-scale signals, the

GCMs may also capture regional-scale predictor signals

that may have had an influence on the local variability of

winter rainfall.

Figure 4 depicts the spatial distribution of skill scores

of all MME models, including the pure statistical fore-

cast. Both CCA-SST and RAW-MME show weak or no

skills in predicting the rainfall over the southwestern

coast of peninsular Malaysia. The CCA-SST in particu-

lar forecasted the wrong anomaly signs in several stations

over the southwestern coast and northern peninsular

Malaysia. The RAW-MME generally produced the cor-

rect anomaly signs with modest skills over the north-

ern part of peninsular Malaysia but still failed over the

southwestern coast. The downscaled MME seems to

increase the skills over the southern region as well as the

northeastern coast of peninsular Malaysia. However, the

performance of CCA-MME is still weak over western

Borneo. The APCC-MME shows superior skill with all

the stations registering skill scores over the 95% signifi-

cant confidence level. The correlation skills range from

0.45 to 0.76 (significant at 95% level). Besides the vari-

ance, the scheme also captured most of the high ampli-

tude adequately (Fig. 5). The drought during the 1997/98

El Niño and the subsequent La Niña flood was reason-

ably captured, especially in northern Borneo (Fig. 5a) and

the east coast of peninsular Malaysia (Fig. 5c). However,

the skills over central peninsular Malaysia (Fig. 5d)

FIG. 6. The stations with significant (95% level) correlation skills of winter monsoon rainfall anomalies using the

CWB output fields of (a) Z500, (b) SLP, (c) T850, (d) T2M, (e) U850, (f) V850, (g) U200, and (h) V200.
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remain modest with a correlation value of 0.45 (signifi-

cant at 95% level).

The APCC downscaling scheme is based on an optimal

selection method, which scans through the globe with

a moveable window for useful predictors. However, as

highlighted by DelSole and Shukla (2009), such a method

could artificially inflate the skills because of fortuitous fits.

In this case, the source of the skills may not be associated

with any physical process that influences the anomalous

rainfall. In the following section, we demonstrate that this

is unlikely to be the case, because the possible source of

the predictability is associated with phenomenon that is

known to influence the anomalous rainfall in the region.

b. Difference sources of predictability in Peninsular
and East Malaysia

To better interpret the signals of predictability, we

carefully examined the skill scores performance of each

of the predictor variables for each of the GCMs and

selected two GCMs, CWB and MGO, for further exam-

ination. Figures 6 and 7 show the stations with signifi-

cant correlation skills using various model output fields

as predictors for CWB and MGO, respectively. Gener-

ally, the skills spatial distributions show interpredictor

variations. The most skillful predictor for the Malaysian

winter monsoon precipitation appears to be U850. With

the U850 predictor, both the CWB and MGO attained

high skills of correlation, 0.54 and 0.52, respectively, for the

East Malaysian region. However, for peninsular Malaysia,

the CWB model with U850 as a predictor showed no skill,

whereas the MGO skill level was moderate: 0.33. An in-

teresting question to ask is why have the downscaled

predictions showed such intermodel variations?

Figure 8 shows the correlation maps of the Malaysian

winter monsoon precipitation and the 850-hPa circu-

lations. The precipitation indices are computed as the

area average values for Peninsular and East Malaysia

separately. The correlation maps for the CWB shows

very similar large-scale patterns for both regions, but

the magnitude of the correlation was higher for the

East Malaysian region. Specifically, the correlations map

shows wintertime circulation anomalies during a cold

FIG. 7. As in Fig. 6, but for MGO output fields.
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phase of an ENSO event (Juneng and Tangang 2005).

This suggests that the large-scale variations simulated

by the CWB are important for the prediction of the

East Malaysian precipitation but have relatively less

influence on peninsular Malaysia precipitation. On the

other hand, the correlation maps for the MGO show

more regional features. Both the correlation maps for

Peninsular and East Malaysia show high regional cor-

relation signals over the Maritime Continent. The cor-

relation map for the peninsular Malaysia suggests that

the rainfall anomalies are associated with an anoma-

lous regional-scale cyclonic circulation over the eastern

Indian Ocean. The comparable correlation values for

both the CWB and MGO over East Malaysia suggest that

both regional and large-scale signals are of equal impor-

tance to East Malaysian rainfall. However, the relatively

diverse regional variations for MGO allowed better

downscaling results. Also, the difficulties of most of the

GCMs in simulating the regional variations, particularly

over the Maritime Continent (Kang et al. 2002; Neale and

Slingo 2003), result in a generally poor performance of

precipitation prediction in the Peninsular region com-

pared to the East Malaysian region, as indicated in Fig. 2.

4. Summary and conclusions

We compare the skill levels of two downscaled mul-

timodel ensemble techniques, the APCC-MME and

CCA-MME schemes to the RAW-MME in predicting

the Malaysian winter monsoon rainfall. For baseline

skills, we also included a purely statistical CCA-based

model in the comparison. Generally, the RAW-GCM

forecasts are relatively skillful compared to the purely

statistical CCA-based model that utilizes the dominant

variability signature in the observed SST field as a pre-

dictor. This suggests that the GCMs are able to simulate

important processes that can be a precursor to the

Malaysian winter rainfall anomalies. The GCM pre-

diction is generally better in the East Malaysian sta-

tions than those in the peninsular Malaysia region. For

FIG. 8. The correlation coefficients between the CWB 850-hPa horizontal wind and the stations-averaged rainfall anomalies for

(a) peninsular Malaysia and (b) East Malaysia regions. (c),(d) As in (a),(b), but for the MGO simulated 850-hPa horizontal wind. The area

with correlations between rainfall and the 850-hPa zonal wind above 95% significant level is shaded.

26 J O U R N A L O F C L I M A T E VOLUME 23



peninsular Malaysia, the GCMs tend to have skills over

the northwestern region but low or no skills over the

southern parts of peninsular Malaysia.

The downscaled forecast products appear to be supe-

rior to the RAW-MME GCM forecasts. The CCA-MME

appeared to have improved the skills over the northeast-

ern region of peninsular Malaysia. However, it was the

APCC-MME that had the most skillful forecasts with the

most notable improvement of forecast skills over penin-

sular Malaysia. Such a skill improvement was attributed

to the way the downscaling was formulated. The APCC-

MME selects optimal predictors over a moving window

by maximizing the correlation between the predictors and

the predictands. This technique has the capability of

identifying the important local and regional predictors.

The CCA-MME, on the other hand, uses dominant fea-

tures in the predictor fields based on the EOF prefiltering,

and that tends to ignore the less dominant but important

local and regional features in the predictor fields.
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